
Cloud Types:
Robust Abstractions for Replicated Shared State

March 27, 2014

Technical Report
MSR-TR-2014-43

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Important

This document is work in progress. Feel free to cite, but note that we will update the
contents without warning (pages are timestamped at the bottom right), and that we are
likely going to publish the content in some future venue, at which point we will update this
paragraph.

1 2014/3/27

Cloud Types:
Robust Abstractions for Replicated Shared State

Sebastian Burckhardt
Microsoft Research

sburckha@microsoft.com

Daan Leijen
Microsoft Research
daan@microsoft.com

Manuel Fähndrich
Google

fahndrich@google.com

Abstract
In the age of cloud-connected mobile devices, users want re-
sponsive apps that read and write shared data everywhere, at
all times, even if network connections are slow or unavail-
able. Cloud types [6] have been proposed as a solution that
lets programmers declare, read, and update shared structured
data while hiding tricky consistency issues related to update
propagation and conflict resolution. However, previous work
on cloud types does not satisfactorily address (1) how to best
understand the weak consistency model, (2) where consis-
tency pitfalls continue to lurk, and (3) how to implement the
system efficiently and reliably.

We address these questions by (1) introducing the GLUT
model (global log of update transactions), suitable as a men-
tal reference model that helps programmers to visualize ex-
ecutions and reason about correctness, (2) describing typical
consistency pitfalls (anti-patterns) and how to avoid them us-
ing cloud types, and (3) an efficient client-server implemen-
tation of GLUT that uses robust streaming and optimal delta
reduction.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Distributed programming

Keywords Concurrent revisions, Distributed applications,
Eventual consistency.

1. Introduction
Many applications can benefit from replicating shared data
across devices, because it is often desirable to keep applica-
tions responsive even if network connections are slow or un-
available. Unfortunately, the CAP theorem [1, 4, 14] shows
that strong consistency (such as linearizability or sequen-

[Copyright notice will appear here once ’preprint’ option is removed.]

tial consistency) requires communication with a reliable
server or with a majority partition on each update, which be-
comes slow or impossible if network connections are slow
or unavailable. Since responsiveness is often more impor-
tant than strong consistency, researchers and practitioners
have proposed the use of various forms of eventual consis-
tency [5, 11, 17, 26]. In such systems, update propagation
and conflict resolution is lazy, proceeding only when net-
work conditions permit, and replicas may temporarily differ,
while converging to the same state eventually.

Although eventual consistency offers clear benefits, it is
also more difficult to understand, both for system implemen-
tors and client programmers, motivating the need for sim-
ple programming models for weakly consistent shared data.
One recently proposed approach in this area is to provide (1)
special data types called cloud types [6] to declare cloud-
shared data, which implicitly specify how conflicts are re-
solved, and (2) providing eventually consistent transactions
[5], which allow clients to group multiple updates into pack-
ets that are interleaved and propagated atomically. We call
these packets update transactions.

Our experience with implementing cloud types and up-
date transactions in a scripting language for mobile devices
suggests that they provide significant benefits. In particular,
the elimination of all error handling code and almost all syn-
chronization code substantially simplifies the app develop-
ment. However, we also discovered that there remains room
for improvement in several aspects:

• Reasoning. Client programmers often misunderstand
where exactly they risk consistency errors, and require an
operational system model to understand how to write cor-
rect programs. The existing consistency models for cloud
types and update transactions are either too abstract for
non-experts in memory consistency (e.g. the axiomatic
model in [5]), or too complicated and overly general for
the situation at hand (e.g. the revision diagram model in
[5, 6]).
• Implementation and Performance. The client-server sys-

tem model proposed in [6] transmits the entire state in
each message, which is impractical unless the amount

2 2014/3/27

of data shared is very small. Moreover, the pushing and
pulling of updates between client and server cannot pro-
ceed concurrently but is forced to alternate, which intro-
duces significant delays.

In this paper, we describe several improvements in these
areas. Specifically, we make the following contributions:

• We introduce the GLUT reference model (global log of
update transactions), an operational model describing
the system behavior precisely, yet abstractly (Section 2).
It achieves strong eventual consistency by constructing
both a global log of update transactions as well as keep-
ing local update logs. In related work, we compare it to
the TSO (total store order) memory model.
• We show in Section 3 how this model can be used ef-

fectively within a programming language, offering high
level abstractions to program with persistent shared state
almost as conveniently as with regular global variables.
• Using the programming model, we explain typical con-

sistency errors (anti-patterns) by walking through several
examples, and show how to avoid them. We conclude
with a precise data model describing all the primitive read
and update operations (Section 3).
• We present a detailed system implementation model of

GLUT that provides significant performance and reliabil-
ity advantages:
Robust Streaming. Updates are streamed continuously in
both directions between server and client. The model
shows precisely how connections are established, how
they can fail, and how they can be reconnected, without
disrupting the execution of the client program at any
point (Section 4).
Optimal Delta Reduction. Update sequences often ex-
hibit redundancy. If a variable is assigned several times,
only the last update matters. We show how to implement
update reduction, and prove that our implementation is
correct and optimal (Section 5). This means that we store
and propagate a minimal amount of information only.
When clients accumulate updates while offline, they need
not store every single update, and they transmit only a
minimal sequence of updates to the server when recon-
necting.
• We have implemented the ideas presented in this paper in

the TouchDevelop programming language and develop-
ment environment. Thus, we have made the cloud types
programming model publicly available online for inspec-
tion and experimentation, and we provide links to a dozen
example applications.

Overall, our work marks a big step forward in advancing
cloud types and update transactions as a programming model
for eventual consistency, by providing both an understand-
able high-level system and data model, and a detailed im-

plementation containing powerful and interesting optimiza-
tions.

2. Reference Model
The first contribution of this paper is to give a simple consis-
tency model that programmers can use in practice to reason
about their programs at a high abstraction level. We call this
model GLUT, or global log of update transactions. The model
has the following ingredients:

• A shared global log of all update instructions which rep-
resents our persistent data. Section 3 explains how the
data is defined using cloud types;
• Each client issues read- and update instructions on the

data concurrently;
• Each client regularly calls yield to indicate transaction

boundaries. Yielding is non-blocking and is only used to
delineate transactions. In between yields, all updates are
atomic.

Informally, the GLUT model operates as follows:

• Any update operation by a client is first only locally visi-
ble and confined to a local buffer for the current transac-
tion. On yield these update operations become committed.
• The shared global log of update transactions is built by

interleaving the committed updates of all clients.
• Clients are aware only of some prefix of the shared log.

When a client performs a read, it see the a value that is
consistent with a composite of log pieces, in the follow-
ing order:

1. uncommitted updates in the current transaction,

2. local committed updates that are not yet part of the
known prefix,

3. the known prefix of the shared global log.
• During yield, clients may become aware of a larger prefix

of the shared log. This means that the state observed
by the client program may change. It also guarantees
eventual consistency, since all clients (except crashed
ones) eventually learn about the entire shared log.

Using this reference model we can precisely specify the
guarantees and behavior of our system, yet it abstracts low-
level system behaviors like client, server, and network fail-
ures and/or delays. Moreover, it allows for large transactions
which make it very easy for programmers to reason about
most code.

Automatic Transactions. For event-based programs, rather
than relying on the programmer to sprinkle the code with
yield instructions, it is easy and convenient to call yield au-
tomatically between event handlers. Thus the user is guar-
anteed that all updates within an event handler are atomic,
without writing a single extra line of code.

3 2014/3/27

Flush. A client can issue the flush instruction which blocks
until all previous updates have propagated to the global
shared log. This is needed when a client requires stronger
consistency than what is afforded by lazy update propaga-
tion through yield. In our experience, few client applications
require it, and if so, only in specific situations where the
problem domain requires true arbitration (such as finalizing
a reservation, ending an auction, or joining a game with an
upper limit on the number of players). A flush instruction
necessarily involves communication and may block if the
network is partitioned. Thus, it should thus be used spar-
ingly.

2.1 The Formal Model
We will now give a formal reference model, which precisely
specifies the guarantees, yet abstracts low-level system be-
haviors. It is deliberately unrealistic in several aspects:

• The model keeps a globally shared log of updates, and
local logs per client, which grow without bounds.
• There is no communication. Instead, we specify the be-

havior using atomic transitions that modify the shared
system state.
• There are no failures of any kind.

These deliberate simplifications allow us to reason about
program behavior at a high abstraction level (Section 3),
which is the key challenge when programming with repli-
cated shared state. Yet, all of these simplifications are justifi-
able: In Section 4 we present a realistic client-server imple-
mentation model that conforms fully to the reference model,
but is very efficient. In particular, it avoids storing a log on
the server and guarantees that only the minimal amount of
data is stored (using log reduction, Section 5), and it com-
pletely hides client, server, and network failures.

Labeled Transition System. The formal model is speci-
fied as a labeled transition system, consisting of shared state
and nondeterministic atomic transitions. This type of specifi-
cation is well suited for operational specifications of consis-
tency protocols [13, 19] as it enables both rigorous reasoning
about invariants and model checking [16].

We represent data using abstract types for updates, reads,
and values. The semantic meaning is represented by a single
function rvalue that takes a read operation and a sequence of
updates, and returns the value that results from applying all
the updates in the sequence to the initial state of the data:

type Update ; type Read ; type Value ;
function rvalue: Read × Update* → Value

Update sequences are stored in rounds. Each round rep-
resents updates that were issued by a client inside one or
more update transactions. Rounds by each client are num-
bered consecutively, starting with 1.

struct Round { client: Client ; number: N ;
updates: Update* ; }

// system state
log: Round* := [] ; // global shared log
class Client {

known : N:= 0 ; // prefix of log known to this client
current : Round := new Round(this,1,[]) ;
committed: Round* := [] ; // committed rounds of this client
flushing: N:= 0 ; //nonzero if a flush is in progress

}
// externally visible system transitions
external update(c:Client ; u:Update) {

requires c.flushing = 0 ;
c.current.updates.append(u) ;

}
external read(c:Client, r:Read) : Value {

requires c.flushing = 0 ;
var compositelog := knownlogprefix(c)

· c.committed[numrounds(c, knownlogprefix(c))..]
· c.current ;

return rvalue(r, updates(compositelog)) ;
}
external yield(c:Client) {

requires c.flushing = 0 ;
if (*) commit current(c) ;
while (*) learn next logentry(c) ;

}
// internal system transitions
internal grow log(c:Client) {

requires numrounds(c,log) < c.committed.length ;
log = log · c.committed[numrounds(c,log)] ;

}

Figure 1. States and transitions of the GLUT system model.

procedure commit current(c:Client) {
c.committed := c.committed · c.current ;
c.current = new Round(this, c.current.number + 1, []) ;

}
procedure learn next logentry(c:Client) {

requires c.known < log.length ;
c.known := c.known + 1 ;

}
function knownlogprefix(c: client): Round* {

return log[0..c.known] ;
}
function numrounds(c: client, seq: Round*): N{

return | { r | r in seq and r.client = c } | ;
}
function updates(seq: Round*): Update* {

return seq[0].updates · · · seq[seq.length1].updates ;
}

Figure 2. Auxiliary procedures and functions for the GLUT
system model.

4 2014/3/27

System state. The system state is defined at the top of Fig. 1.
It stores (1) a global shared log consisting of rounds, and
(2) a client object for each client. Each client object stores
(1) an index known into the global shared log, indicating
the prefix of the shared log that this client knows about,
(2) the current round, containing a sequence number and
uncommitted updates, (3) a sequence committed of all the
rounds that this client has committed, and (4) a number
indicating if a flush is in progress on this client.

System transitions. There are seven system transitions over-
all (broken up into Fig. 1 and Fig. 3). Six of them model
client instructions and are considered externally visible (this
distinction matters later when we consider refinement), and
two are internal. All of them execute atomically, and have
one or more precondition, meaning that they fire only in cer-
tain states. For example, the read, update, and yield transition
all have a precondition stating that clients may not invoke
them while waiting for a flush to complete on this client.
Some of them (e.g yield) contain nondeterministic choices,
shown as * expressions.

Updates and Reads. If a client c performs an update, it is ap-
pended to the updates in the current round of c. If it performs
a read, it first constructs the visible sequence of updates by
concatenating (1) all updates in the log prefix known to c

computed by the helper function knownlogprefix(c) in Fig. 2,
(2) all the committed rounds by c with the exception of the
ones that are already in the known log prefix, and (3) the
uncommitted updates in the current round. Note that the vis-
ible server and committed rounds can change during a yield
or flush only. Thus, the user code does not need to worry
about the stability of reads — consecutive reads without a
yield or flush in between see a consistent state.

Yield. As expected, a yield may commit the current round.
However, it is not forced to do so (the commit current call
is guarded by a nondeterministic choice). This allows imple-
mentations to skip some commits, and thus to aggregate sev-
eral transactions into a single round, which is important to
keep storage and network requirements under control. Also
during yield, the client may become aware of a longer prefix
of server rounds by calling learn next logentry one or more
times, which increments the value of the confirmed field.

Flush. (Fig. 3) The flush operation is nonatomic, thus there
are two externally visible transitions that model its beginning
and its end. The flush begin stores the current round number
in the c.flushing field and commits the current round. While
the flush is in progress, the flush yield can fire at any time
- it is equivalent to yield called by the client, but the client
is blocked at this point so we need an alternative internal
transition to allow the client to become aware of longer
prefixes. Once the known prefix includes the round that was
flushed (second precondition of flush end), the flush may
end. Flushes block only the client that issues them and have
no effect or interaction with other clients.

external flush begin(c:Client) {
requires c.flushing = 0 ;
c.flushing := c.current.number ;

}
internal flush yield(c:Client) {

requires c.flushing > 0 ;
if (*) commit current(c) ;
while (*) learn next logentry(c) ;

}
external flush end(c:Client) {

requires c.flushing > 0 ;
requires c.flushing = numrounds(c, knownlogprefix(c)) ;
c.flushing := 0 ;

}

Figure 3. Flush transitions for the GLUT system model.

2.2 Guarantees
The GLUT model is quiescently consistent and eventually
consistent (under the usual fairness assumptions on the non-
deterministic choices) and causally consistent. It is quies-
cently consistent, because after a sufficient number of yields
without further updates, the server will incorporate all client
rounds in its log, and all clients end up with confirmed be-
ing equal to the length of the server log. At that point, each
client state is equivalent because no unconfirmed commits,
nor current round updates are present.

The model is also eventually consistent in the sense of
visibility/arbitration-based axiomatic definitions [5, 7, 8]. In
particular, the model provides eventually consistent transac-
tions according to the axiomatic definition in [5]. The arbi-
tration order is simply the order in the server log, and visi-
bility is determined as spelled out in the definition of reads.

The model is causally consistent because an update U
by some client C cannot become visible to other clients
before all of the updates (let’s call them V) that are visible
to client C at the time it performs U. The reason is that the
updates V consist of (1) the common server prefix, or (2)
local unconfirmed or uncommitted updates, which are all
guaranteed to become visible to other clients no later than
U.

When clients issue updates, those updates are stored in
the current round. They are isolated until that round is com-
mitted, i.e. the updates are not visible to the server or other
clients. They are, however, visible to subsequent operations
by the same client (a property which is sometimes called
Read-my-Writes [25]).

Our update transactions are different from conventional
transactions (read-committed, serializable, snapshot isola-
tion, or parallel snapshot isolation) since they do not check
for any read or write conflicts. In particular, they never
fail. The advantage is that they are highly available [2], i.e.
progress is not hampered by network partitions. The disad-
vantage is that unlike serializable transactions (but like read-
committed, snapshot, or parallel snapshot transactions), they

5 2014/3/27

are not always sufficient to maintain all data invariants. We
discuss the impact of this fact in Section 5.

2.3 Comparison to TSO
GLUT appears superficially similar to TSO[28] (total store
order), a widely used relaxed memory model. However, even
if we ignore the obvious differences (support for transactions
and cloud types) for a moment, they are not equivalent,
because TSO reads always read the latest shared state, while
GLUT may see a stale prefix of the shared log. In particular,
the following stale-read litmus test shows an outcome that is
not possible on TSO, but is possible on GLUT.

write A, 2 ; yield
read B, 0

write B, 1 ; yield
write A, 1 ; yield
read A, 2

Under TSO, seeing read A, 2 implies that the write A, 1 was
overwritten by write A, 2, thus already drained to memory.
Therefore write B, 1 has moved to memory thus the left
program must read B as 1. Not so under GLUT: even if
write B, 1 is in the server log, the left program may not yet
see it.

3. Data Model
In general, programmers choose data models appropriate
for location, size, and lifetime of the data. For example,
persistent data is often modelled using relational databases
or scalable key-value stores, while memory-resident data
is typically represented by variables, arrays, and records,
sometimes using a garbage-collected heap.

Choosing the right data model for persistent, replicated,
shared data is paramount to keep the complexity of conflict
resolution and garbage collection under control. Replicated
data types [7, 20, 21] encapsulate those challenges within
simple abstract data types such as counters, sets, or lists.
Cloud types [6] go one step further, allowing programmers
to express interrelated data structures. To illustrate cloud
types in general, and how they integrate with the GLUT
model, we now walk through a series of examples, demon-
strating common consistency errors (anti-patterns) and how
they can be solved.

3.1 Bird Watch Example
Let’s write a program that keeps track of bird sightings. To
start, we will just count the overall bird sightings using a
global cloud number (nr):

cloud nr birdcount ;

function sighting() {
birdCount.set(birdCount.get() + 1)
}

In the example, we assume there is a UI that invokes the
sighting function. Moreover, we assume that the outer event
loop calls yield after each event is handled. This ensures that

all operations done in an event are part of one update trans-
action, and that individual operations are never interleaved
with other distributed updates. This ensures that the pro-
grammer can always reason sequentially over the (cloud)
state within each event handler. Also, every cloud value
comes with a default value and they never have to be ini-
tialized. For numbers, the default is 0.

Nevertheless, the example is still wrong as it fails to
count bird sightings reliably. Suppose two clients both have
a sighting at the same time and both increment the count to,
say, 1. After yielding, both update transactions, set(1), are
appended to the global log and the final value of the bird
count will be just 1. The anti-pattern here is that updates to a
cloud value must make sense even if some ‘earlier’ updates
are not yet visible to the local client.

To address this issue, cloud types generally come with a
richer set of operations than just set. In particular, the nr type
has an add operation which works incrementally:

cloud nr birdCount ;

function sighting() {
birdCount.add(1)
}

In this case, a concurrent sighting appends two add(1) update
transactions to the log, resulting in a correct global count of
sightings.

We now extend our application to keep track of both
the name and count of each bird sighting. Our data model
supports cloud tables to maintain rows of cloud values:

cloud table Birds {
name : str ;
count: nr ;
}

function sighting(name: string) {
var bird = find(name) ;
bird.count.add(1) ;
}

function find(name : string) {
var bird ;
foreach(bird in Birds) {

if (bird.name.get() == name)
return bird ;

}
bird = Birds.new() ;
bird.name.set(name) ;
return bird ;
}

On a sighting, we first call the find function to see if there
already exists an entry for the particular bird in the cloud
table. If no such entry is found, we create a new row using
the new function and return that instead. Just like before, we
then invoke add(1) to add reliably to the bird count.

Again though, there is a problem with our example. It is
possible that two concurrent clients both create a new row
for a new sighting of the same bird name because they can-
not not see each others’ updates yet. The anti-pattern here
is the test if (not exist) create which is generally a problem
because the element may already exist but is not yet visible

6 2014/3/27

to the local client. For this situation, our data model provides
cloud indices which are conceptually infinite key-value dic-
tionaries where all entries are pre-initialized. In our case, the
Birds cloud index is keyed by the bird name:

cloud index Birds[name : string] {
count: nr ;
}

function sighting(name : string) {
Birds[name].count.add(1) ;
}

Now the example works as expected. In particular, as shown
in Figure 4, each update transaction will consist of the entire
Birds[name].count.add(1) expression. The server atomically
resolves the first Birds[name] part, potentially creating a fresh
entry, and then perform the field operation count.add(1).

Note the contrast between cloud tables and indices: the
cloud tables give the ablity to create (globally) fresh and
ordered rows addressed by unique identities, while cloud
indices provide unordered records of fields addressed by
one or more key values. Global cloud variables as in our
first example are internally implemented using a designated
cloud index without keys, thus with one entry containing all
globals as fields.

Even though a cloud table was not the right data structure
for tracking the bird count, it is useful in other cases. If the
bird log were to also keep track of individual sightings of
birds, a table would be the correct structure for keeping track
of rows of sightings containing the bird name, the person
doing the sighting, the place, date and time.

This concludes our birding example. Note how concise
and robust the final example is. Even though this code of-
fers full distributed operation with eventual consistency and
robustness under disconnected operation, there is almost no
noise: no special error handling code, retrying of transac-
tions, checking of connections, special server code, etc. All
of this is taken care of by the implementation of the GLUT
model. As we saw with the anti-patterns, we still need to
carefully consider the implications of those issues that are
intrinsic to distributed operation, but the GLUT model gives
the programmer a robust mental model to think about these.

3.2 The data model syntax
Formally, the complete syntax of our data model is defined
in Figure 4. For our purposes, we define three basic cloud
types: numbers, booleans, and strings. The first entry of each
Valtype declaration defines the default value for each type.
Also, each type comes with a set of valid operations Foptype
that can be performed on values of that type.

The Uid type is for unique identifiers that are used to
identify table rows. We use a single Rid type to identify
records of cloud values which can be either a table name
indexed by a uid (as tname(uid)), or an index name indexed
by keys.

Finally the various Update and Read operations are de-
fined. Note how fields are indexed uniformly in updates and
reads, using the syntax rid.fname.ftype. In particular, the field
type is included. We do this because we want to avoid need-
ing an explicit schema for the server data, but we do want to
all operations to be type safe. We can allow for every field
name to be indexed by its type because it incurs no perfor-
mance or storage overhead. This becomes apparent when we
define the exact semantics of the data model in next section.

3.3 Semantics
We formally define the semantics of our data model by defin-
ing read and update operations on state objects (Fig. 5). State
objects store the current state, represented by (1) the current
(i.e. created and not deleted) row identifiers, which are stored
in rows, separately for each table, and sorted by creation or-
der, and (2) all non-default field values, which are stored in
the map fields. State objects implement three methods, read

for performing read operations on the current state, update

for performing updates, and targets deleted data which can
check if an update is redundant (i.e. targets data that is al-
ready deleted and thus has no effect).

State objects are of minimal size, i.e. they do not hold
on to irrelevant information: they do not store fields that
have the default value, and when a row is deleted, its field
values are also removed. In particular, the state object does
not contain any tombstones. The only exception is the used

field which does indeed store all previously used identifiers.
However, this field is a ghost field, used for proof purposes
only: it does not affect control flow (other than assertions)
and is not present in the physical implementation.

We now discuss the state object implementation in Fig-
ure 5 in some more detail. The state contains two properties,
namely rows and fields. The rows is used for tables and maps
table names to an ordered sequence of Uid’s (and an empty
sequence by default). The fields stores all the cloud values
for both tables and indices, and maps any triple of a record
identifier, field name, and field type (Rid × Fname × Ftype)
to either undefined or a cloud value.

The read method defines how Read operations are han-
dled. If it is a field read (fread(rid,fname,ftype)) the value is
read from the fields. If the value is undefined, we return the
default value of that cloud type. This is very important: we
never store default values and this allows us to efficiently
represent for example ‘infinite’ indices in bounded storage.

The update method defines Update operations. There are
two assertions that require update sequences to be well-
formed. In particular:

A1. When creating a new row using new(uid,tname), the uid

must be fresh in the sense that it has not been used before
in the update sequence.

A2. For any field update update(rid,fname,ftype,fop), the op-
eration fop must be a valid operation for the field type
ftype.

7 2014/3/27

Set Variable Definition Meaning
Val v = n | b | s value
Valnr n = 0 | . . . number
Valbool b = false | true boolean
Valstr s = "" | . . . string
Uid uid = . . . unique identifier
Fname fname = . . . field name
Tname tname = . . . table name
Iname iname = . . . index name
Ftype ftype = nr | bool | str field types
Fopnr fopnr = set(n) | add(n) number field updates
Fopstr fopstr = set(s) | setifempty(s) string field updates
Fopbool fopbool = set(b) boolean field updates
Rid rid = record identifier

| tname(uid) table row
| iname[key1, . . . , keyn] index entry

Key key = uid | s | n | b index key

Update upd = update operation
| clr clear all data
| new(uid, tname) create table row
| del uid delete table row
| rid.fname.ftype.fopftype field update

Read rd = read operation
| rows tname enumerate rows
| fread rid.fname.ftype field read

Figure 4. The syntax of the data model.

Generally, it is straightforward to ensure that clients can only
generate well-formed update sequences.

In the update method, the clr operations simply resets
the rows and fields. The new operation is interesting since it
takes a unique identifier as an argument where it is asserted
that this uid is indeed not used already. Having a uid as an
argument allows each client to generate unique identifiers
locally without synchronization with the server which is
crucial for disconnected operation for example.

The del(uid) operation deletes a particular row in a table
and the corresponding fields in that table. Note though that
the expression key.contains(uid) deletes both fields in the
table row (indexed by tname(uid)) and any fields that happen
to be indexed by that uid of the form iname[...,uid,...].

The update(rid,fname,ftype,fop) operation is the most in-
teresting and performs an update operation on a particular
field. First there is a check that the particular rid does not
refer to a record that has been deleted already (perhaps by
some other concurrent client). If there is any uid in the rid,
either of the form tname(uid) or iname[...,uid,...], where the
uid is not in the rows, then we return immediately as this up-
date is now a no-op. This is important for the optimality of
storage: if we allow the update to happen on a deleted entry,
this may result in a non-default value which would take up

storage space. After this check, we simply read the current
value, apply the operation, and write back the new value.
Again, if the new value happens to be the default value of
that type, we remove the field to minimize storage require-
ments.

4. Robust Streaming
We now describe a streaming server-client implementation
model. It is observationally equivalent to the abstract model
from § 2. However, it models communication and failures
realistically, and eliminates the unbounded logs present in
the abstract model.

• Connections are represented as stream pairs (sockets).
Clients stream their updates to the server, and the server
streams updates back to all connected clients.
• Channels can fail at any time, and on any end, without

disrupting the execution of the server or clients. In partic-
ular, user code can always read, update, and yield, with-
out blocking, regardless of connectivity. The flush opera-
tion may of course block if disconnected.
• The server may crash and recover, losing soft state in

the process, but preserving persistent state. The persistent
server state contains a snapshot of the current state of the

8 2014/3/27

class State
{

rows : Tname → Uid* = {} ;
fields : Rid × Fname × Ftype ⇀ Val = {} ;
function size() { return rows.count + fields.count ; }
method read(r : Read) {

match(r) with {
fread(rid,fname,ftype) → {

var val = fields[(rid,fname,ftype)] ;
return (val == undefined) ? defaultval(ftype) : val ;
}
rows(tname) → return rows[tname] ;

} }
method update(u: Update) {

match(u) with {
clr() → rows = fields = {} ;
new(uid,tname) → {

assert(! used.contains(uid)) ; //A1
rows[tname].append(uid) ;
}
del(uid) → {

foreach (tn in rows.keys)
if (rows[tn].contains(uid)) rows[tn].remove(uid) ;

foreach (key in fields.keys)
if (key.contains(uid)) fields.remove(key) ;

}
update(rid, fname, ftype, fop) → {

assert(fop in Foptname) ; //A2
if (exists uid in rid : !rows.contains(uid))

return ; // update on nonexisting record is noop
var curval = read(rid,fname,ftype) ;
var newval = match (fop) with {

set(v) → v
add(n) → curval + n
setifempty(s) → (curval = ”” ? s : curval)
}
if (newval = defaultval(ftype))

fields.remove((rid,fname,ftype)) ;
else

fields[(rid,fname,ftype)] = newval ;
} }
foreach(uid in u)

used.append(uid) ; //track uids to detect freshness violations
}
method targets deleted data(u : Update): boolean {

return exists uid in u : !rows.contains(uid) ;
}
}

Figure 5. The semantics of the data model.

data and the number of the last round committed by each
client. Noteably, it does not store a log of operations as
in the reference model.
• Clients may crash silently or temporarily stop executing

for an unbounded amount of time, yet are always able to
reconnect. In particular, there are no timeouts. Permanent
failures of clients cannot disrupt the server, other clients,
or the consistency guarantees.
• Even when clients operate offline forever, their operation

logs do not grow without bounds, but use optimal delta
reduction to minimize storage requirements. In particu-
lar, regardless of the operations performed on the client,
the stored delta is no larger than the sum of the current
data size and the data size at the time they were last con-
nected.

States and Deltas. The streaming model does not store
any update sequences. Instead, it eagerly reduces such se-
quences, and stores them in a special reduced data format,
either as state objects (if the sequence represents the tail of
the log) or as delta objects (if the sequence represents some
segment of the log). We present the delta object implemen-
tation (and show correctness and optimality) in Section 5.1.
For now, we just use the following abstract functions:

const initialstate : State
function read: Read x State → Value
function apply : State x Delta* ⇀ State
const emptydelta: Delta
function append : Delta x Update ⇀ Delta
function reduce : Delta* ⇀ Delta

Note that some of these functions are partial because they
require freshness of unique identifiers and correctly typed
operations on fields.

Rounds. As before, we use rounds to encapsulate update se-
quences. This time, however, we store the updates in reduced
form, using delta objects.

struct Round {client: Client ; number: N ;delta: Delta ; }

Segments. We store pieces of the log in objects called seg-
ments. They store a state or delta object, and a partial map
maxround that records the maximal client round of each
client that is represented in segment.

class LogTail {
maxround: (Client ⇀ N) := {} ;
state: State := initialstate ;
method apply(s: LogSegment) {

foreach((c,r) in s.maxround)
maxround[c] := r ;

state := apply(state, s.delta) ;
} }
class LogSegment {

maxround: (Client ⇀ N) := {} ;
delta: Delta := emptydelta ;
method append(r: Round):void {

9 2014/3/27

requests: set of Channel := {} ;
class Channel {

client: Client ;
serverstream: (LogTail | LogSegment)* = [] ;
clientstream: Round* = [] ;
Channel(c: Client) { client = c ; }

}
internal request is lost(ch: Channel) {

requests.remove(ch) ;
}
internal channel fails at server(ch: Channel) {

connections.remove(ch) ;
}
internal channel fails at client(c:Client) {

c.channel = null ;
}

Figure 6. State and Transitions of Network.

maxround[r.client] := r.number ;
delta := reduce(delta · r.delta) ;

} }

Network (Fig. 6). We model the network state as a set
request of pending connection requests, and channel objects
representing connections. Channels are created by some spe-
cific client, and contain two streams, one for each direction.
The client sends its sequence of rounds, and the server sends
the log in reduced pieces (always starting with the tail, fol-
lowed by consecutive segments). Server and clients can only
access their respective ends of each stream, and do not com-
municate in any other form. We explicitly model network
failures using the three transitions shown. Channels guar-
antee reliable in-order delivery (as provided by TCP sock-
ets, for example), but can fail themselves, and do so non-
atomically at either end.

Server (Fig. 7). The server state is separated into persis-
tent state (serverstate), which stores the current state and the
number of the last round of each client that has been incorpo-
rated into the state, and soft state (connections) which stores
currently active connections and which gets obliterated dur-
ing the crash recovery transition. A connection is started by
the accept connection transition, which removes a channel
from the set of requests and adds it to the active connec-
tions connections, replacing any prior connection by the same
client. It then sends the current state on the channel.

During normal operation, the server repeatedly performs
the processbatch operation. It combines a nondeterministic
number of rounds from each active connection into a single
segment (which stores all updates in reduced form as a delta
object). It then appends this segment to the persistent state
(which applies the delta to the current state, and updates the
maximum round number per client), and sends it out on all
active channels.

// persistent state
serverstate: LogTail := new LogTail() ;
// soft state
connections: (Client ⇀ Channel) := {} ;
internal crash recovery() { connections := {} ; }
internal accept connection(ch: Channel) {

requires ch in requests ;
requests := requests.remove(ch) ;
connections[ch.client] := ch ; // may replace prior connection
ch.serverstream.append(serverstate) ; // send current state
}
internal processbatch() {

var s = new LogSegment() ;
// append incoming segments to s
foreach((c,ch) in connections)

receive(s, ch, *) ;
// atomically commit changes to persistent state
serverstate.apply(s) ;
// notify connected clients
foreach((c,ch) in connections)

ch.serverstream.append(s) ;
}
procedure receive(s: LogSegment, ch:Channel, count: int) {

requires count <= ch.clientstream.length ;
foreach(r in ch.clientstream[0..count])

s.append(r) ;
ch.clientstream := ch.clientstream[count..] ;

}

Figure 7. State and Transitions of Server.

Client (Fig. 8). Clients store the known prefix of the server
log as a state object in base. Of the local rounds, it stores
only the unconfirmed ones and the current one. Just as in
GLUT, (1) updates by the user code are added to the current
round, (2) reads by the user code see a composite of the last
known prefix, uncommitted rounds, and the current round,
(3) yields commit the current round and grow the known pre-
fix. However, we now model asynchronous communication
explicitly.

Channel setup happens in stages. send connection request

can fire at any point, independent of the execution of the
client program, and creates a new channel (replacing the pre-
viously stored c.channel), and sends a connection request to
the server (modeled by adding the channel to the requests

set). When the server accepts, it sends its current state,
containing a snapshot of the data and the number of the
last round committed. During a yield or flush yield, clients
may receive this information (first branch of conditional in
receive). The client then replaces its base state with the sent
server state, and determines which of their uncommitted
rounds have made it to the server by inspecting the maxround

entry, and removes those. Then, the client resends all the re-
maining unconfirmed rounds, which is important to recover
correctly from failure of earlier channels. Now, the channel
is established.

10 2014/3/27

class Client {
base: State := emptystate ;
unconfirmed: Round* := [] ;
current: Round := new Round(this, 1, emptydelta) ;
channel: Channel := null ;
received1stpacket: bool := false ;
flushing: bool := false ;

}
function curstate(c:Client): State {

return apply(base, deltas(unconfirmed · current)) }
function deltas(seq: Round*): Delta {

return seq[0].delta · · · seq[seq.length1].delta ; }
function connection established() {

return c.channel != null ∧ c.received1stpacket ; }
external client update(c: Client, u: Update) {

requires !c.flushing ;
if (! curstate(c).targets deleted data(u))

c.current.delta := c.current.delta.append(u) ;
}
external client read(c: Client, r: Read) {

requires !c.flushing ;
return read(r, curstate(c)) ;

}
external yield(c: Client) {

requires !c.flushing ;
if (*) commit current(c) ;
while(*) receive(c) ;

}
internal send connection request(c: Client) {

c.channel := new Channel(c) ; // may replace prior channel
c.received1stpacket := false ;
requests := requests + c.channel ;

}
procedure commit current(c:Client) {

requires connection established(c) ;
c.channel.clientstream.append(c.current) ;
c.unconfirmed.append(c.current) ;
c.current := new Round(c, c.current.number + 1, emptydelta) ;

}
procedure receive(c: Client) {

requires c != null ∧ c.channel.serverstream.length > 0 ;
var s := c.channel.serverstream[0] ;
c.channel.serverstream := c.channel.serverstream[1..] ;
if (! c.received1stpacket) {

c.received1stpacket := true ;
assert(s instanceof LogTail) ;
c.base := s.state ; // replace base state
adjust confirmed(c, s.maxround[this]) ;
// resubmit unconfirmed rounds
c.channel.clientstream.append(c.unconfirmed) ;

} else {
assert(s instanceof LogSegment) ;
c.base.append(s) ;
adjust confirmed(c, s.maxround[this]) ;

} }
procedure adjust confirmed(c: Client, upto: N) {

while (upto > c.unconfirmed[0].number)
c.unconfirmed := c.unconfirmed[1..] ;

}

Figure 8. State and transitions of Client.

external flush begin(c: Client)
{

requires !c.flushing ;
c.flushing := true ;

}
internal flush yield(c: Client)

requires c.flushing ;
if (*) commit current(c) ;
while(*) receive(c) ;

}
external flush end(c: Client)
{

requires c.flushing ;
requires c.committed = [] ;
c.flushing := false ;

}

Figure 9. Flush transitions on streaming client.

Once the channel is established, and the client receives
deltas (second branch of conditional in receive), it applies
those to the base state, and drains the unconfirmed updates
based on the information received from the server. To com-
mit the current round in commit current, the precondition
states that there must be an established channel — otherwise
we keep appending updates to the current round. This pre-
condition is important to ensure that clients resume sending
the correct round after a previous channel failed: only after
establishing a new channel can we be sure exactly which up-
dates made it all the way into the server state. The freshly
committed round is immediately sent on the channel.

The flush transitions (Fig.9) use a slightly different (but
equivalent) condition for ending the flush than the GLUT
ones (Fig. 3): it ends when there are no unconfirmed rounds
left. To indicate that a flush is in progress, it stores a boolean,
not a number.

In the update transition, we perform an extra check to see
if the update targets data that is already deleted, and skip it
if that is the case. This check is not needed for correctness
(the update will have no observable effect either way), but is
needed to ensure optimal delta reduction, as we will explain
in Section 5.2.

Omitted optimizations. In our prototype we implemented
a few additional optimizations left out here for simplicity.
They include:

• The server caches recent deltas. When clients reconnect,
and the server still has the relevant deltas in its cache, the
server sends only the deltas needed instead of the whole
state.
• The server, when sending segments to a client c, includes

not the whole maxround, but only maxround[c].
• As written, reads are highly inefficient, thus some opti-

mizations are required. Our implementation stores an ob-
ject for each field and row, and keeps relevant updates for

11 2014/3/27

that object stored in the object (to avoid traversing large
logs just to look up the current state). Also, we cache the
result of expensive reads, such as table enumerations.

5. Optimal Delta Reduction
In any system that tracks sequences of updates, it is impor-
tant to keep the length of such sequences under control. In
particular, update sequences often exhibit redundancy; for
example, if the same field is assigned a new value several
times, it is sufficient to store and propagate the last update
only. In this section, we show how to optimally reduce up-
date sequences. This is not an easy problem, since it requires
us to thoroughly remove deleted data without compromising
the semantics. Many systems in practice take the easy route
and use tombstones for deleted data, and are thus not opti-
mal.

We formally express the log reduction concept by defin-
ing a reduction relation w Bw′ on update sequences; it cap-
tures whether we can replace an update sequence w with
another sequence w′ without any observable effect.

DEFINITION 1. Given an update sequence w1 ∈ Update∗

and an update sequence or undefined valuew2 ∈ (Update∗∪
⊥), we say that w1 Bw2 (read: w1 may reduce to w2) iff for
all r ∈ Read and a, b ∈ Update∗ such that rvalue(a · w1 ·
b, r) 6= ⊥, we have rvalue(a ·w1 ·b, r) = rvalue(a ·w2 ·b, r).
For notational convenience, we use w2 C w1 (read: w2 may
replace w1) interchangeably with w1 B w2.

For example, we can prove that deletion is idempotent,
i.e. for any i ∈ Uid, we have del i · del i B del i. As another
example, it is easy to see that new(i, a) · new(i, a) B ⊥
because rvalue(a · new(i, a) · new(i, a) · b, r) = ⊥ for all
r, a, b (because the update sequence is not well-formed).

Note that the reduction relation is reflexive (w B w),
transitive (w1 B w2 ∧ w2 B w3 ⇒ w1 B w3), and con-
gruent (w1 B w2 ⇒ ∀a, b : aw1b B aw2b). However, it
is not symmetric, because the right-hand side may cause
fewer well-formedness violations than the left-hand side.
For example, although new(i, a) · del i B [] (we prove
this below), the converse [] B new(i, a) · del i is not
true: rvalue(new(i, a), rows a) = i but rvalue(new(i, a) ·
new(i, a) · del i, rows a) = ⊥.

Although reduction presents a great opportunity for sav-
ing space and reducing network consumption, many such re-
ductions are possible, and it is not immediately clear what
reductions to apply, in what order, and to what effect. The
following definition sheds light on what we expect from a
good reduction function.

DEFINITION 2. Let reduce : Update∗ ⇀ Update∗ be a par-
tial function on update sequences. For a a subset W ⊆
Update∗ of update sequences, we say

• reduce is a correct reduction function on W if, for all
w ∈W , we have w B reduce(w).

• reduce is optimal reduction function on W if, for all
w1 ∈ W and w1 ∈ Update∗ such that w1 B w2, we have
|reduce(w1)| ≤ |w2|.

Optimality implies that when clients operate offline, the
delta grows only as much as needed to accommodate the
data. For example, even if clients repeatedly update the same
location, or create and then delete many objects, the delta
stays the same size. We can understand this phenomenon as
follows: since the minimal number of updates needed to get
from database state last to database state current is bounded
by last.size() + current.size(), we know that the delta is never
larger than the size of the snapshot of the database when last
connected, plus the current size of the database.

In the remainder of this section, we describe our reduction
implementation, and then prove that it is (1) correct on all
update sequences, and (2) optimal for NDU-free sequences
(defined below), which include all sequences occuring in
executions of our streaming model.

DEFINITION 3. A sequence of updates w ∈ Update∗ is
called NDU-free if it does not contain a subsequence of the
form new(i, a) · del i ·m where i ∈ Uid and a ∈ Tname, and
where m ∈ Update is an update that contains i.

5.1 Delta Objects
Our reduction implementation consists of a Delta class that
stores update sequences in reduced form and allows us to
efficiently append and reduce updates individually. It has the
following abstract signature:

type Delta = ...
const emptydelta : Delta
function append : Delta × Update ⇀ Delta
function seq : Delta → Update*

The implementation is shown in Fig. 10. Note that the ap-
pend function is partial because some updates may cause an
assertion violation (creating a row with a uid that is already
in use triggers assertion A3, and using an operation that is
of the wrong type triggers assertion A4). The last function
above, seq, reads back the reduced sequence from the delta.

5.2 Correctness and Optimality
THEOREM 4. [Optimal Delta Reduction] The following re-
duction function is correct for all w, and is optimal for all
NDU-free well-formed w:

function reduce(w: Delta*): Delta* {
var d = new Delta() ;
foreach(u in w)

d.append(u) ;
return d.seq() ;
}

A complete proof is included in appendix A. Note that
without NDU-freedom, reduce is not guaranteed to be opti-

12 2014/3/27

class Delta {
cleared : boolean ;
deleted : Uid* ;
created : (Uid × Tname)* ;
updated : (Rid × Fname × Ftype) ⇀ Fop ;
Delta() { cleared := false ; deleted := [] ;

created := [] ; updated := {} ; }
function seq(): Update* {

return (cleared ? [clr] : [])
· deleted.map((uid) ⇒ del(uid))
· created.map((uid,tname) ⇒ new(uid,tname))
· updated.map(((r,f,t),o) ⇒ fupd(r,f,t,o)) ;

}
method append(u: Update) {

match(u) with {
clr() → { deleted := created := [] ;

updated := {} ; cleared := true ; }
new(uid,tname) → {

assert(uid does not appear in
deleted, created, or updated) ; //A3

created.append((uid,tname)) ;
}
del(uid) → {

if (!deleted.contains(uid)) {
if (exists tname : created.contains(uid,tname))

created.remove((uid,tname)) ;
else if (!cleared)

deleted.add(uid) ;
foreach (key in updated.keys)

if (key.contains(uid))
updated.remove(key) ;

} }
update(rid, fname, ftype, fop) → {

assert(fop in Foptname) ;//A4
if (fop = add(0) ∨ fop = setifempty(0)

∨ exists uid in deleted s.t. uid occurs in rid)
return ; // update has no effect

var op := match (fop) with {
set(v) → set(v) ; // last writer wins
add(n)) → {

match updated[rid,fname,ftype] with {
undefined → add(n) ;
add(m) → add(m+n) ;
set(m) → set(m+n) ;

} }
setifempty(s)) {

match updated[rid,fname,ftype] with {
undefined → setifempty(s) ;
set(””) → set(s) ; // succeed
set(v) → set(v) ; // fail
setifempty(v) → setifempty(v) ; // fail

} } }
updated[rid,fname,ftype] :=
(op = add(0) ∨ op = setifempty(0)) ? undefined : op ;

} } } }

Figure 10. Delta implementation.

mal. For example,

new(i, a) · del i · del i B ε,

but because reduce always proceeds from left to right, it does
not produce the optimal result:

reduce(new(i, a) · del i · del i)
= reduce(reduce(new(i, a) · del i) · del i)

= reduce(ε · del i) = del i 6= ε

We now show that all delta sequences appearing in execu-
tions of the streaming model are NDU-free, which concludes
our optimality proof.

Proof of NDU-freedom. We need to examine the two places
where the Delta.append method is called: (1) when process-
ing an update u by the user code. In this case, the transition
calls targets deleted data(u) and skips the update if it con-
tains an update that contains a deleted uid. Thus current.delta

is always NDU-free, and therefore all the deltas in all the
rounds. Note that once a client deletes a row, it will forever
appear deleted to this client; therefore, this check enforces
that a delete of some row by some client can never be fol-
lowed by an update by the same client that contains that
same row. (2) When the server creates a new segment and
adds multiple client rounds. If one of the rounds contains a
new(i, a), then there cannot be any del i except by the same
client, because the new is not visible to other clients yet.
However, then there cannot be an update containing i by the
same client, for the reason just explained.

6. Implementation in TouchDevelop
We have realized the ideas presented in this paper and their
implementation in a web-based IDE and runtime system
called TouchDevelop [27]. The language supports tables, in-
dices, and all the operations described in this paper. Ad-
ditionally, there is support for 1) linking rows to other ta-
ble rows, thus enabling cascading deletes, 3) data session
management, and 4) automatic UI updates when shared
data changes. We implemented the streaming model using
a Azure cloud service backed by Azure table storage (for the
persistent state).

The three versions of the bird log example of Section 3
are available within TouchDevelop: Version 1 (http://
tdev.ly/ubbh) is the initial bird log version with both
the read-increment-set, and the double-create problem. Ver-
sion 2 (http://tdev.ly//zalu) fixes first problem by us-
ing the add operation on cloud numbers, whereas Version
3 (http://tdev.ly/ljjb) additionally fixes the double-
create problem by using an index instead of a table. The
reader can experiment with the implementation from any
modern web browser, on any device (touchscreen or not).
To see and edit the code, follow the ”more info / tweak it”
link.

13 2014/3/27

http://tdev.ly/ubbh
http://tdev.ly/ubbh
http://tdev.ly//zalu
http://tdev.ly/ljjb

For illustration, we give a few examples of apps that use
cloud types below: feel free to run them, inspect and edit
their code, and create your own variations! The first two ex-
amples below have been contributed by our user community.
In all of these examples, the use of cloud types is very sim-
ple, with the exception of the Cloud Game Selector which
involves tricky synchronization and a flush operation.

• Relatd [sic] (http://tdev.ly/ruef) Lets users enter
their qualities (either from a list, or freely entered) and
finds and displays other users that share them.
• Chatter Box (http://tdev.ly/spji) A chat applica-

tion.
• TouchDevelop Jr. (http://tdev.ly/vkrpa) Program

a tiny robot using a simple language, then share your
scripts with other users.
• Instant Poll (http://tdev.ly/nggfa) An app for

quickly polling an audience and displaying the responses
as a grid of colors.
• Expense Recorder (http://tdev.ly/nvoha) Allows

easy recording of expenses in a table.
• Contest Voting (http://tdev.ly/etww) Used to de-

termine the winner of the ”Touch of Summer” coding
contest.
• Cloud List (http://tdev.ly/blqz) A general-

purpose list that can be concurrently edited.
• Cloud Game Selector (http://tdev.ly/nvjh) A li-

brary for matching multiple players to play games to-
gether.
• Cloud Paper Scissors (http://tdev.ly/sxjua) A

simple rock/paper/scissors game that uses the cloud game
selector library.

We have also experimented with refactoring non-cloud
data in TD scripts into cloud types. Our formative study
shows that refactoring is applicable, relevant, and saves hu-
man effort [15].

7. Related Work
As discussed in the introduction, we build on previous
work on cloud types [6] by giving an operational reference
model, a data model for optimal delta reduction, and a ro-
bust streaming implementation. Our types and primitives
are almost identical (except that we have omitted cascading
deletes for now).

Replicated Data Types. Most closely related are repli-
cated data types [7, 21, 21] and Bayou’s weakly consis-
tent replication [26]. Replicated data types are similar to our
cloud types, but do not easily compose (because the consis-
tency protocols are defined per-object, not per-database), and
generally provide weaker guarantees (in particular, no up-
date transactions), and no way to recover sequential consis-
tency (as with flush). In Bayou [26], and in the original Con-

current Revisions work [9], conflict resolution is achieved
by explicit merge functions written by the user. In contrast,
cloud types use conflict resolution that is type-directed.

Operational Transformations. The Jupiter system [18]
has a similar system structure (client-server with bidirec-
tional streaming). However, it uses operational transforma-
tions (OT) to reconcile conflicting updates, instead of the
simple sequentialization in our data model. Unlike cloud
types, OT specializes on collaborative editing of text se-
quences, and conflict resolution that is appropriate for that
context, rather than on structured application data organized
as tables, indexes, or sets. OT algorithms [10, 22–24] require
more computation (quadratic in the number of concurrent
updates) and are less robust (clients cannot disconnect for
unbounded periods, then reconnect) than GLUT. Also, there
is no optimal reduction in OT, thus operation logs accumu-
late.

Eventual consistency. EC is motivated by the impossi-
bility of achieving strong consistency, availability, and parti-
tion tolerance at the same time, as stated by the CAP theorem
[14]. EC across the literature uses a variety of techniques to
propagate updates (e.g. general causally-ordered broadcast
[21, 23]). For a general high-level comparison of eventual
consistency notions appearing in the literature, see [3, 8].
The GLUT system can also be understood as an example of a
reliable total order broadcast [12]. However, it goes beyond
broadcast because it includes a data model and optimal re-
duction for the updates.

8. Conclusion
Our work shows that cloud types and update transactions can
be both (1) abstractly understood and programmed against,
and (2) efficiently and robustly implemented. We hope it
provides a path for simpler development of distributed ap-
plications, in particular for social or collaborative scenarios.
In the future, we would like to add more data types (such
as lists), gather more experience and feedback using our de-
ployed prototype, and provide mechanically verified correct-
ness proofs for our models.

14 2014/3/27

http://tdev.ly/ruef
http://tdev.ly/spji
http://tdev.ly/vkrpa
http://tdev.ly/nggfa
http://tdev.ly/nvoha
http://tdev.ly/etww
http://tdev.ly/blqz
http://tdev.ly/nvjh
http://tdev.ly/sxjua

References
[1] IEEE Computer CAP retrospective edition. Computer, 45(2),

2012.

[2] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. Hellerstein,
and I. Stoica. Highly available transactions: Virtues and limi-
tations. In International Conference on Very Large Databases
(VLDB), 2014.

[3] P. Bernstein and S. Das. Rethinking eventual consistency. In
SIGMOD International Conference on Management of Data,
SIGMOD ’13, pages 923–928. ACM, 2013.

[4] E. A. Brewer. Towards robust distributed systems (abstract).
In PODC’00.

[5] S. Burckhardt, M. Fähndrich, D. Leijen, and M. Sagiv. Even-
tually Consistent Transactions. In European Symposium on
Programming (ESOP), (extended version available as Mi-
crosoft Tech Report MSR-TR-2011-117), LNCS, volume 7211,
pages 64–83, 2012.

[6] S. Burckhardt, M. Fähndrich, D. Leijen, and B. Wood. Cloud
types for eventual consistency. In European Conference on
Object-Oriented Programming (ECOOP), volume 7313 of
LNCS, pages 283–307. Springer, 2012.

[7] S. Burckhardt, A. Gotsman, H.Yang, and M. Zawirski. Repli-
cated data types: Specification, verification, optimality. In
Principles of Programming Languages (POPL), 2014.

[8] S. Burckhardt, A. Gotsman, and H. Yang. Understanding
eventual consistency. Technical Report MSR-TR-2013-39,
Microsoft, 2013.

[9] S. Burckhardt and D. Leijen. Semantics of Concurrent Re-
visions. In European Symposium on Programming (ESOP),
LNCS, volume 6602, pages 116–135, 2011.

[10] M. Cart and J. Ferrie. Asynchronous reconciliation based
on operational transformation for p2p collaborative environ-
ments. In Collaborative Computing: Networking, Applica-
tions and Worksharing (CollaborateCom 2007), pages 127–
138, Nov 2007.

[11] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: amazon’s highly available key-value
store. In Symposium on Operating Systems Principles, pages
205–220, 2007.

[12] X. Défago, A. Schiper, and P. Urbán. Total order broadcast
and multicast algorithms: Taxonomy and survey. ACM Com-
put. Surv., 36(4):372–421, Dec. 2004.

[13] D. Dill, S. Park, and A. Nowatzyk. Formal specification
of abstract memory models. In Symposium on Research on
Integrated Systems, pages 38–52. MIT Press, 1993.

[14] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasi-
bility of consistent, available, partition-tolerant web services.
SIGACT News, 33:51–59, June 2002.

[15] M. Hilton, A. Christi, D. Dig, M. Moskal, S. Burckhardt, and
N. Tillmann. Refactoring local to cloud data types for mobile
apps. In MobileSoft ’14. ACM, 2014.

[16] L. Lamport. Specifying Systems, The TLA+ Language and
Tools for Hardware and Software Engineers. 2002.

[17] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Don’t settle for eventual: scalable causal consistency for wide-
area storage with COPS. In SOSP’11.

[18] D. Nichols, P. Curtis, M. Dixon, and J. Lamping. High-
latency, low-bandwidth windowing in the jupiter collaboration
system. In User interface and software technology (UIST),
1995.

[19] S. Park and D. L. Dill. An executable specification, analyzer
and verifier for RMO (relaxed memory order). In Symposium
on Parallel Algorithms and Architectures (SPAA), pages 34–
41, 1995.

[20] M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski. A
comprehensive study of convergent and commutative repli-
cated data types. Technical Report Rapport de recherche 7506,
INRIA, 2011.

[21] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In 13th Int. Symp. on Sta-
bilization, Safety, and Security of Distributed Systems (SSS),
Grenoble, France, Oct. 2011.

[22] M. Suleiman, M. Cart, and J. Ferrié. Serialization of concur-
rent operations in a distributed collaborative environment. In
Conference on Supporting Group Work, GROUP ’97, pages
435–445. ACM.

[23] C. Sun and C. Ellis. Operational transformation in real-
time group editors: Issues, algorithms, and achievements. In
Computer Supported Cooperative Work, CSCW ’98, pages
59–68. ACM, 1998.

[24] D. Sun and C. Sun. Operation context and context-based oper-
ational transformation. In Conference on Computer Supported
Cooperative Work, CSCW ’06, pages 279–288. ACM, 2006.

[25] D. Terry, A. Demers, K. Petersen, M. S. M. Theimer, and
B. Welch. Session guarantees for weakly consistent replicated
data. In PDIS, 1994.

[26] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer,
and C. Hauser. Managing update conflicts in bayou, a weakly
connected replicated storage system. SIGOPS Oper. Syst.
Rev., 29:172–182, December 1995.

[27] N. Tillmann, M. Moskal, J. de Halleux, and M. Fähndrich.
Touchdevelop: Programming cloud-connected mobile devices
via touchscreen. In ONWARD ’11 at SPLASH (also available
as Microsoft TechReport MSR-TR-2011-49), 2011.

[28] D. Weaver and T. Germond, editors. The SPARC Architecture
Manual Version 9. PTR Prentice Hall, 1994.

15 2014/3/27

A. Proof of Theorem 4
We now prove this theorem. We start with a few basic in-
variants that are useful later on. Then we show optimality
(§A.1), and finally correctness (§A.2).

LEMMA 5 (Delta invariants). All d ∈ ∆ satisfy the follow-
ing conditions:

(∆1) Each i ∈ Uid occurs at most once within d.created and
d.deleted.

(∆2) If i appears in d.deleted, then it does not appear in
d.updated.

(∆3) If d.updated(k, f, t) = o with o 6= ⊥, then o ∈ Fopt.
(∆4) If d.updated(k, f, t) = o, then o 6= add(0) and o 6=

setifempty(””).
(∆5) If d.cleared then d.deleted = [].

PROOF. By induction. It is easy to verify that all conditions
are true on emptydelta, and remain true under any append.�

A.1 Optimality Proof
To prove optimality, we need to show that if w1 is well-
formed and NDU-free, and if w1 B w2, then reduce(w1)
is defined and |reduce(w1)| ≤ |w2|. First, we argue that
reduce(w1) 6= ⊥, because otherwise it would have to trigger
an assertion (A3 / A4 in Fig. 10). But ifw1 triggered A3 (A4)
it would have to also trigger A1 / A2 in Fig. 5, contradicting
well-formedness. Second, we prove two lemmas (6, 7) that
together imply that w2 can be no shorter than reduce(w1).

LEMMA 6. Let w1 ∈ Update∗ be an update sequence. Then:

(i) reduce(w1) contains at most one occurrence of clr.
(ii) reduce(w1) contains at most one occurrence of del i for

each i.
(iii) reduce(w1) contains at most one occurrence of new(i,)

for each i.
(iv) reduce(w1) contains at most one occurrence of r.f.t. for

each (r, f, t)

PROOF. (i) is obvious since we store a simple boolean to
record whether clr happened. (ii) is guaranteed because we
explicitly check for duplicates before recording deletions.
(iii) is guaranteed by assertion A3. (iv) is guaranteed because
we store field updates in a partial map, keyed by (r, f, t). �

LEMMA 7. Let w1 be well-formed and NDU-free, and let
w1 B w2. Then:

(i) If reduce(w1) contains clr, then w2 contains clr.
(ii) If reduce(w1) contains del i, then w2 contains del i.

(iii) If reduce(w1) contains new(i, a), then w2 contains
new(i, a).

(iv) If reduce(w1) contains r.f.t.o, then w2 contains r.f.t.o′

for some o′.

PROOF. For each claim, we proceed indirectly: assuming the
claim is false, we find r andw such thatw·w1 is well-formed

(which implies rvalue(w ·w1, r) = rvalue(w · reduce(w1), r))
but for which rvalue(w · reduce(w1), r) 6= rvalue(w · w2, r)
which then contradicts w1 B w2.

(i) Let w = new(i1, a) · · · new(in, a) where the ij are
pairwise distinct and do not appear in w1, and where
n > |w2| + |reduce(w1)|. Since clr is the only update
that can remove more than one row at a time, and is
not contained in w2, |rvalue(w · w2, rows a)| ≥ n −
|w2| > |reduce(w1)|. Since clr is contained in reduce(w1)
and no update can add more than one row at a time,
|rvalue(w · reduce(w1), rows a)| < |reduce(w1)|. Thus,
rvalue(w · w2, rows a) 6= rvalue(w · reduce(w1), rows a).

(ii) Since del i ∈ reduce(w1), we must have del i ∈ w1.
Distinguish cases (using the first matching case below):

[clr ∈ w1 or clr ∈ w2]. Then clr ∈ w1 and thus
clr ∈ reduce(w1). But by (∆5) this implies del i /∈
reduce(w1), contradicting the assumption.
[new(i, a) ∈ w1 for some a]. Then it must occur only
once, and before del i in w1 (otherwise w1 is not well-
formed). Also, there cannot occur a second del i inw1,
becausew1 is assumed NDU-free, nor can there occur
an intervening clr in w1(first case). But this implies
that reduce(w1) does not contain del i (since new(i, a)
and del i cancel out during reduction), contradicting
the assumption.
[otherwise]. Let w = new(i, a). Then w · w1 is well-
formed (because new(i, a) /∈ w1, which would have
been the preceding case). Since del i ∈ reduce(w1),
rvalue(w · reduce(w1), rows a) 63 i. But rvalue(w ·
w2, rows a) 3 i because w2 contains neither clr (first
case) nor del i (which we assumed for the purposes of
deriving a contradiction to the claim). Thus, rvalue(w ·
w2, rows a) 6= rvalue(w · reduce(w1), rows a).

(iii) Let w = []. If new(i, a) /∈ w2, rvalue(w · w2, rows a) 63
i, but since new(i, a) ∈ reduce(w1), rvalue(w ·
reduce(w1), rows a) 3 i. Thus, rvalue(w · w2, rows a) 6=
rvalue(w · reduce(w1), rows a).

(iv) Pick w based on the value of o:
1. if o = set(v) for some v, pick w = r.f.t.set(x) for

some x 6= v.
2. if o = add(n) for some n 6= 0, pick w = r.f.t.set(0)

3. if o = setifempty(v) for some v 6= ””, pick w =
r.f.t.set(””)

Note that these cases are exhaustive, because reduce(w1)
contains no other field updates by (∆4). Also, w · w1

must be well-formed, otherwise w1 must create an iden-
tifier used in r which would contradict the assump-
tion that w1 is NDU-free. Now, if w2 contains no up-
dates for (r, f, t), then rvalue(w · w2, fread r.f.t) is
x or 0 or ””, respectively. But on the other hand,
rvalue(w · reduce(w1), fread r.f.t) is v or n or v, re-
spectively. Thus, rvalue(w · w2, fread r.f.t) 6= rvalue(w ·
reduce(w1), fread r.f.t).

16 2014/3/27

�

A.2 Correctness Proof
To get started with proving the correctness of the reduction
function as claimed in Thm. 4, we first assemble all the
reductions that are needed for the proof, collected in the
Lemma below. None of these reductions increase the length
of the sequence, and most of them decrease it.

LEMMA 8. For all w ∈ Update∗, u ∈ Update, i ∈ Uid,
a ∈ Tname, k, k′ ∈ Key, f, f ′ ∈ Fname, t, t′ ∈ Ftype,
o ∈ Fop, s, s′ ∈ Valstr, n,m ∈ Valnr, the following are true:

(i). w · clr B clr

(ii). w · new(i, a) B new(i, a) · w
(iii). if i occurs in u then (u · del i B del i) else (u · del i B

del i · u)

(iv). new(i, a) · del i B []

(v). del i · del i B del i and clr · del i B clr

(vi). (i occurs in u)⇒ (u · new(i, a) B ⊥)

(vii). ((k, f, t) 6= (k′, f ′, t′)) ⇒ (k.f.t.o · k′.f ′.t′.o′ B
k′.f ′.t′.o′ · k.f.t.o)

(viii). k.f.t.o · k.f.t.set(v) B k.f.t.set(v)

(ix). k.f.t.add(m) · k.f.t.add(n) B k.f.t.add(m+ n)

(x). k.f.t.set(m) · k.f.t.add(n) B k.f.t.set(m+ n)

(xi). k.f.t.set(””) · k.f.t.setifempty(s) B k.f.t.set(s)

(xii). (s 6= ””) ⇒ (k.f.t.set(s) · k.f.t.setifempty(s′) B
k.f.t.set(s))

(xiii). (s 6= ””)⇒ (k.f.t.setifempty(s)·k.f.t.setifempty(s′) B
k.f.t.setifempty(s))

(xiv). k.f.t.add(0) B [] and k.f.t.setifempty(””) B []

(xv). (o /∈ Fopt)⇒ (k.f.t.o B ⊥)

PROOF. Using Def.1 directly to prove claims of the form
w1 B w2 is unwieldy because of the large number of quan-
tifiers. Instead we use Lemma 9 below, which allows us to
check a condition that quantifies over states only. The proofs
of the claims are straightforward, we show the first four only.

(i) Let apply(s, w · clr) 6= ⊥. Note that (1) clr clears rows

and fields, and (2) since used can only grow, apply(s, w ·
clr).used ⊇ apply(s, clr). Thus apply(s, w · clr) w
apply(s, clr).

(ii) Let apply(s, w · new(i, a)) 6= ⊥. Then i cannot appear
in neither s.used nor w. Thus all updates in w commute
with new(i, a).

(iii) If u does not contain i, then u is either clr, del i′ with
i′ 6= i, new(i′, a) with i′ 6= i or r.f.t.o with i /∈ r.
In all of those cases the delete operation commutes. If
u does contain i, it is either (1) del i : see claim (v), or
(2) new(i, a): deleting a nonexisting uid is the same as
creating then deleting it, or (3) r.f.t.o with i ∈ r: then
the deletion means the update turns into a no-op since it
targets a nonexisting record.

(iv) Let apply(s, new(i, a) · del i) 6= ⊥. Since new(i, a)
adds a row that gets immediately removed again by
del i, rows and fields are the same as if nothing was
done at all, but used contains one more element. Thus
apply(s, new(i, a) · del i) w apply(s, []).

�

LEMMA 9. Define a binary relation w on states as

(s1 w s2)⇔ ((s1.rows = s2.rows)∧
(s1.fields = s2.fields) ∧ (s1.used ⊇ s2.used))

Then the following condition is sufficient to imply w1 B w2:

∀s ∈ State : apply(s, w1) 6= ⊥ ⇒
apply(s, w1) w apply(s, w2).

PROOF. It is easy to see that s1 w s2 implies both

∀r ∈ Read : read(s1, r) 6= ⊥ ⇒
read(s1, r) = read(s2, r)

∀b ∈ Update∗ : apply(s1, b) 6= ⊥ ⇒
apply(s1, b) w apply(s2, b)

from which it is easy to deduce the claim. �

We now proceed to prove the correctness claim in Thm. 4.
We show that reduce(w)C w. by induction over the number
of elements in w. For |w |= 0, the claim is trivially satisfied
([]C[]). For the induction step, we can assume reduce(w)Cw,
and we let d be the state of d at the end of the execution
of reduce(w). Then, using (a) Lemma 10 below and (b) the
induction hypothesis, we get that for all u ∈ Update,

reduce(w · u) = d.append(u).seq()C(a) d.seq() · u =

reduce(w) · uC(b) w · u,

which concludes the correctness proof.

LEMMA 10. For all d ∈ ∆ and u ∈ Update, we have
d.append(u).seq()C d.seq() · u.

PROOF. We let lhs = d.append(u).seq and rhs = d.seq · u,
and thus need to show that lhs C rhs. We write d.seq =
C · D · N · U where C,D,N,U are sequences of clear,
delete, new, and field updates. Now, we do a case distinction
(case conditions shown in brackets, applying the first case
that matches), and make use of the reductions proved in
Lemma 8, labelling C with a subscript indicating the clause
used.

• [u = clr]. Then lhs = clrC(i) C ·D ·N · U · clr = rhs.
• [u = new(i, a)].

17 2014/3/27

[i occurs in D ·N ·U]. Then lhs = ⊥C(vi)C ·D ·N ·
U · new(i, a) = rhs.
[otherwise]. lhs = C ·D ·N · new(i, a) · U C(ii) C ·
D ·N · U · new(i, a) = rhs.

• [u = del i]. Let U ′, N ′ be the subsequences of U,N
obtained by removing updates containing i.

[D = D1 · del i · D2]. By ∆5, C = []. Then lhs =
D·N ·UC(v) ·D1 ·del i·del i·D2 ·N ·UC(iii),(∆1),(∆2)

D1 · del i ·D2 ·N · U · del i = rhs.
[N = N1 · new(i, a) · N2 for some a]. Then lhs =
C ·D ·N1 ·N2 ·U ′C(iv)C ·D ·N1 · new(i, a) · del i ·
N2 ·U ′C(iii)C ·D ·N1 ·new(i, a) ·N2 ·U ·del i = rhs.
[C = clr]. Then lhs = clr ·D ·N · U ′ C(v) clr · del i ·
D ·N · U ′ C(iii) C ·D ·N · U · del i = rhs.
[otherwise]. Then lhs = C ·D · del i ·N ·U ′C(iii)C ·
D ·N · U · del i = rhs.

• [u = k.f.t.o]. For convenience, we define a function Φ
on field updates as: Φ((k′.f ′.t′.o′)) ={

[] if o′ = add(0) or o′ = setifempty(0)
k′.f ′.t′.o′ otherwise

[o /∈ Fopt]. Then lhs = ⊥C(xv)C ·D ·N ·U ·k.f.t.o =
rhs.
[(k, f, t) 6∈ U]. Then lhs = C · D · N · U1 · Φ(u) ·
U2 C(vii) C ·D ·N · U · Φ(u)C(xiv) rhs.
[U = U1 · u′ · U2 where u′ = k.f.t.o′]. Then
− [o = add(0) or o = setifempty(””)]. Then lhs =
C ·D ·N · U C(xiv) rhs.

− [o = set(v)]. Then lhs = C ·D·N ·U1 ·u·U2C(viii)

C ·D·N ·U1·u′·u·U2C(vii)C ·D·N ·U1·u′·U2·u =
rhs.

− [o′ = add(m), o = add(n)]. Then lhs = C · D ·
N ·U1 ·Φ(k.f.t.add(m+n)) ·U2C(xv)C ·D ·N ·
U1 · k.f.t.add(m+ n) · U2 C(ix) C ·D ·N · U1 ·
u′ · u · U2 C(vii) C ·D ·N · U1 · u′ · U2 · u = rhs.

− [o′ = set(m), o = add(n)]. Analogously, using
(x) instead of (ix).

− [o′ = set(””)), o = setifempty(s)]. Analogously,
using (xi).

− [o′ = set(v), v 6= ””, o = setifempty(s)]. Analo-
gously, using (xii).

− [o′ = setifempty(v), o = setifempty(s)]. Anal-
ogously, using (xiii) and (∆4) (the latter implies
v 6= ””).

�

18 2014/3/27

	Introduction
	Reference Model
	The Formal Model
	Guarantees
	Comparison to TSO

	Data Model
	Bird Watch Example
	The data model syntax
	Semantics

	Robust Streaming
	Optimal Delta Reduction
	Delta Objects
	Correctness and Optimality

	Implementation in TouchDevelop
	Related Work
	Conclusion
	Proof of Theorem 4
	Optimality Proof
	Correctness Proof

