

Challenges to Building Scalable Services
A Survey of Microsoft’s Internet Services

MSR-TR-2015-29

Comments from the Authors:

This paper was originally circulated as a Microsoft Confidential memo in fall 1999. Its
purpose was to document the findings of the co-authors as we attempted to
understand the state-of-the-art of large internet services. Our original intent was to
gather the data documented in this paper purely for our own to understand. However,
as we discussed early findings with our colleagues, we quickly realized the value of
circulating them to a wider audience. The original memo was circulated to Microsoft’s
entire executive staff and quickly passed around. From file server data, we believe over
1,000 MS employees read the original memo in the first three months after internal
publication.

This release of the memo has been modified slightly from the original to remove non-
technical information, such as business plans.

Due to an unfortunate oversight on my part, the original memo did not name each of
the people we interviewed. Those pioneers deserved recognition at the time and their
groundbreaking work deserves now to be remembered by history.

In the 15 years since this paper’s circulation, much has changed at Microsoft and in the
industry. Experience gathered in writing this paper directly lead to our discovery of the
core principles of what is now widely known as cloud computing. In 1999, Microsoft’s
largest internet service had just over 2,000 computers. Today, many cloud services use
over 100,000 servers. Many of the services and technologies described in this paper no
longer exist. Those that remain have morphed beyond recognition under the intense
pressure of growing by orders of magnitude.

So, why publish such an out-of-date document? To document the world that was; to
provide those who want to understand the past with authoritative data on how
Internet Services worked at the end of the last millennium.

Galen Hunt
April 2015

Redmond, WA

1

Challenges to Building Scalable Services
A Survey of Microsoft’s Internet Services

Version 1.0

September 24, 1999

Steven Levi and Galen Hunt

Microsoft Research

Acknowledgments

We have been continually impressed at the caliber of the people building and operating

Microsoft’s megaservices. Don’t underestimate either their intelligence or their

commitment to deliver. We have borrowed their time and their wisdom. Without

exception, these people have graciously shared both with us. Any value derived from this

report comes from their contribution. Any inaccuracies are solely ours.

Revision History

 Version 0.6 August 24, 1999 Rough draft distributed to executives.

 Version 0.7 September 3, 1999 Text complete and revisions from sites.

 Version 0.8 September 15, 1999 Added LinkExchange.

 Version 0.9 September 17, 1999 Revisions from LinkExchange.

2

CHALLENGES TO BUILDING SCALABLE SERVICES ... 1

ACKNOWLEDGMENTS .. 1
REVISION HISTORY .. 1

1. INTRODUCTION... 3

2. WHAT IS A SERVICE? .. 3

2.1. SERVICE CHARACTERIZATION ... 4
2.2. LOAD BALANCING .. 6
2.3. EXAMPLE .. 8

3. OBSERVATIONS ... 9

3.1. MAINTAINABILITY .. 10
3.2. SCALABILITY... 11

3.3. AVAILABILITY ... 13

4. SERVICES... 14

4.1. HOTMAIL... 14
4.2. HOME.MICROSOFT.COM (HMC) ... 17

4.3. SIDEWALK ... 18
4.4. MSNBC .. 21

4.5. INSTANT MESSAGING .. 23
4.6. EXPEDIA .. 25
4.7. MONEYCENTRAL .. 27

4.8. WINDOWS UPDATE ... 29
4.9. CARPOINT ... 31

4.10. CALENDAR .. 33
4.11. CHAT ... 34

4.12. COMMUNITIES ... 35
4.13. WEBTV ... 36

4.14. LINKEXCHANGE .. 41
4.15. LINKEXCHANGE LISTBOT ... 45

4.16. HYDROGEN ... 46
4.17. PASSPORT/WALLET ... 47
4.18. ADSTECH .. 50
4.19. MSN OPERATIONS .. 52

5. CONCLUSIONS ... 53

3

1. Introduction

Desktop applications and megaservices have fundamentally different per-user scalability

models. The developers of desktop applications like Office, Flight Simulator and Visual

Studio scale to more users by shipping more CD-ROMs. The developers of megaservices

like HotMail, Expedia, and home.microsoft.com must physically scale their servers and

software to support millions of simultaneous users.

While programming and execution in the two domains can be quite different, deployment

and operations are radically different. Software developers bridging the two domains,

whether MS product teams or ISVs, have little incentive to use MS technology when

moving to the Internet because frankly, MS at present has little, if any, technology to aid

with the task of making their application scalable, deployable or operable with millions of

users. Moreover, the skill set of the desktop developer is radically different than the skill

set needed to build and deploy large, scalable services.

Three months ago, we initiated a study of Microsoft megaservices. Recognizing our

complete ignorance, we endeavored to visit each megaservice within the company. Our

goal was to understand their architectural, programming, and deployment challenges. Our

hope was to identify a set of commonalties upon which we could then propose a new

Microsoft application platform for megaservices and create an explosion of new

applications reminiscent of the Win3 desktop application explosion.

This report represents the first major milestone of our study. We visited eighteen

megaservices, including virtually all of the MSN properties, HotMail, LinkExchange, and

WebTV. We believe we have a strong basic understanding of the challenges of building,

deploying, and operating today's megaservices and want to share our understanding with a

broader audience.

The outline of the remainder of this paper is as follows:

Section 2 develops a notion of what a service is by introducing an extremely simple

definition and then layering on top of that additional constraints and complexities that one

must consider as part of any viable (internet) service. To round out a common base of

understanding a discussion of load balancing mechanisms is included. Finally, this notion

is applied to a real-world example where some of the more subtle design trade-offs are

explored.

Section 3 details our key observations. The reader is urged not to skip Section 2 before

reading Section 3. Without the base of understanding developed in Section 2, the findings

in this section will not be as clear.

Section 4 describes each of the Microsoft services.

Section 5 summarizes our most important findings.

2. What is a Service?

We will not propose in this report an application platform for megaservices. Building

scalable systems is hard. Building reliable megaservices is even harder.

4

2.1. Service Characterization

Two-tier client/server computing has evolved into multi-tier service-based computing. In

this newer approach, servers provide logical services to their clients by partitioning the

application workload among themselves, and by depending upon a common

communication model to share their distributed computation.

In practice, application-level megaservices are often recursively composed of multiple

services that cooperatively span many machines. As simple as this statement is, it has

profound implications. The application author must become responsible for matching his

or her code to the hardware and communications capabilities of what is typically a large

and difficult-to-understand cluster of computers. Thinking about multiple types of

machines, and multiple instances of each type, forces the developer to think about network

connectivity. One must consider communications patterns between machines and the

mechanisms needed/desired to balance both machine load and internal/external network

capacity.

Virtually all of the Microsoft services we reviewed minimally decomposed their service

into what are typically called front-end (FE) machines and back-end (BE) machines. The

FE machines usually service incoming user requests, acquire, generate or read some data,

render this data into HTML, and then issue a response to the user. For services that support

the HTTP 1.0 protocol, a TCP connection is created and torn down for each individual user

request.

Front-end (FE) machines are generally stateless. That is to say, after a connection is torn

down there is no need to remember anything about that request to process future requests.

Because of their statelessness, most FE machines are considered interchangeable. Back-

end (BE) machines are typically stateful and are used to retrieve and persist data. Examples

of BE components include the Exchange Store, a SQL or Oracle database, and the HotMail

USTORE machines. FE machines quite often make requests to BE machines to get or store

data. End users rarely communicate directly with BE machines.

As services scale, data partitioning becomes an issue. In the case of a small service where

there is only one BE machine, the way in which the data is partitioned does not matter

much. As the system scales and the needed BE output rate exceeds the resources of a single

box (CPU cycles, network bandwidth, number of disk spindles, etc.), more often than not

there will be a need to find a natural partitioning of the data. Fortunately, many of the

current services being developed are “embarrassingly parallel,” which is to say that data is

easily partitioned, usually on a per-user basis. The developer now concerns himself not

only with how the data can and must be partitioned, but also how it will be accessed and

what the topology of the connectivity between the FE machines servicing the requests and

the set of BE machines. If not careful, the developer will find himself with a full mesh

connectivity from every FE to every BE. A mesh may or may not be a bad thing depending

on how it is used. If, however, the service accesses SQL via ADO in ASP it will open and

tear down connections between the FE and the BE machines for each HTTP request. The

mesh in this case is disastrous.

Of course, our poor developer is not out of the woods yet. Not only does he have to figure

out how to partition the data to accommodate the current BE expansion but he must

provision for all future expansions and new versions as well! Now the developer probably

5

needs to come up with some virtual resource manager (VRM) that provides an indirection

between the logical data and its physical partition. As new data BE machines come on line

he needs to adjust the VRM to reflect the new partitioning. Most likely this new

partitioning will necessitate the migration of data stored on one or more of the BE devices

to other BE devices. The developer has to either handle this directly in the service or

provide support tools for migration.

As a service grows in scale and importance, more and more attention is paid to smaller and

smaller details of performance. With a single machine fulfilling only one functional aspect

of the service, the developer’s attention turns to specific details of what is going on each

box. Where is performance going? Are there things on this box that get in the way? Are

there services or processes running on this box that are not need? Recall that a

subcomponent of the system may run on a very large number of machines. HotMail has

over 1300 Front Door machines all doing exactly the same thing. The cost of additional

fine tuning is amortized over the entire set of machines on which it runs.

To understand the system better, the developer must add all manner of runtime

instrumentation. Sources of runtime instrumentation data serve two distinct purposes: to

aid in monitoring the health of a current system; and to enable understanding of how the

system behaves during real on-line operations. Deeper understanding of the current system

increases the chance of improving its implementation. The most successful services have

built extensive monitoring and logging facilities into their architectures.

As the number of components in the service increases, so does the likelihood of component

failure. Interestingly, as a consequence of their distributed nature, even if a function (or a

function servicing a subset of the user community) is not operational most likely some

portion of the service is still operating. It behooves the developer to exploit partial failure.

Because of partial failure, the developer must treat failures and/or the lack of sub-services

(or infrastructure services) with style and grace when writing his components. He needs

to handle failures from all external components as gracefully as possible and certainly not

cause errors to ripple back to the user in some unintelligible form (or gods forbid, crash!).

Up to this point, a strong system developer or architect with some distributed systems

knowledge could grapple with most of the concepts and issues presented. The challenge

is to expand their mindset to incorporate an intrinsic quality of services: megaservices must

always be up! This is a massive mental shift. For services to become a cornerstone of

electronic business, they must always be available, supporting at least a minimal quality of

service. Think telephone: you can (almost always) depend upon it.

No number of developers and architects versed in distributed computing are sufficient to

ensure high availability – this guarantee can only be offered by a top-notch operations staff.

The requirements placed on a service by operational constraints are as important (and

perhaps even more important) than end-user requirements. Especially in the resource-rich

environment of dedicated personal computer hardware, developers have often paid less

attention to operational ease-of-use than to end-user visible application features. This lack

of engineering detail if left unchecked can have disastrous effects upon the scalability and

availability of a service, however, and must be avoided. Administrative simplicity, ease of

configuration, ongoing health monitoring, and failure detection are as high priorities as any

application feature; because of this, the developer must fully understand the context in

6

which a service is deployed and run. Conversely, the operations staff must also understand

all partitioning schemes, administrative tools, and communications patterns that

characterize the service and its runtime presence on the net.

2.2. Load Balancing

In the presence of diverse and plentiful machines, the developer is forced to think about

partitioning the application workload, as well as the network connectivity needed to

support each partitioning scheme. One very important aspect of connectivity exists

between external users and the service itself. Except for the smallest of services, some

form of load balancing mechanism is needed to distribute the load of incoming connections

over the FE boxes. Many megaservices also have sub-services, which are themselves load

balanced.

Three typical load balancing mechanisms exist: multiple IP addresses (DNS round robin),

hardware support for virtual-to-real IP address mapping, and software support for virtual-

to-real IP address mapping.

2.2.1. Multiple IP Addresses (DNS Round Robin)

DNS name resolution is the process of translating a domain name to an IP address. In

“round robin” DNS, a random IP address will be returned with each DNS resolution

request (if multiple entries exist in the DNS entry.)

The purpose of round robin is to allow use of multiple HTTP servers (with identical

contents) in order to distribute the connection loads. Round robin is not random, though

it gives a random effect. It operates in a round-robin fashion (as the name implies), in

that it rotates the return record sequence by one for each response – one address is handed

out, put at the end of the list, and then the next address is handed out for the next

translation request yielding something like a translation list.

2.2.2. Hardware Solutions (Cisco, Alteon, F5 and others)

The Cisco LocalDirector is an example of a hardware-based load-balancing solution.

Several companies make similar devices. Most of these devices manifest themselves as

switches or bridges with additional software for managing specialized routing. The switch

learns the IP addresses of all the servers connected to it. Based on machine availability

and a balancing algorithm the switch takes the incoming packets, all with the same

destination IP address (the LocalDirector’s IP address), and re-writes them to contain the

appropriate chosen server’s IP address. The high-end LocalDirector can re-write packets

for a 230Mbps data stream with up to 32 destination servers. Moreover, we believe, the

director can support up to 16 independent data segments (sub-nets such that traffic on the

sub-net is completely isolated from traffic on the other sub-nets)

The following is a blurb from http://www.cisco.com/warp/public/cc/cisco/mkt/scale-

/locald/index.shtml

“Cisco System's Local Director is a high-availability, Internet scalability solution that intelligently

load balances TCP/IP traffic across multiple servers. Servers can be automatically and

transparently placed in or out of service, and LocalDirector itself is equipped with a hot standby

failover mechanism, eliminating all points of failure for the server farm. LocalDirector is a high

performance Internet appliance with proven performance in the highest traffic Internet sites.”

http://www.cisco.com/warp/public/cc/cisco/mkt/scale/locald/index.shtml
http://www.cisco.com/warp/public/cc/cisco/mkt/scale/locald/index.shtml

7

Below is an example of a LocalDirector configured in one of its simplest forms. A set of

server machines is connected via a hub on one common Ethernet segment. The segment

is connected to the LocalDirector (bridge).

LocalDirector with Hubs or Switches (simplest configuration):

The example below is considerably more complex. This configuration can survive any

single point of failure (up to but not including, the servers) without the users being

adversely affected. This example is included to demonstrate the complexity and

sophistication that can occur with basic network building blocks.

LocalDirector in Highly Fault-Tolerant Configuration:

2.2.3. Software Solution (WLBS)

Microsoft’s Windows NT Load Balancing System (WLBS), internally known as Convoy,

is a software-only load balancing solution. WLBS creates a shared virtual IP address (VIP)

among a cluster of Windows NT servers. WLBS load balances incoming TCP connections

to the VIP across the members of the cluster.

8

WLBS is an NDIS packet filter driver. WLBS sits above the network adapter’s NDIS

driver and below the TCP/IP stack. Each machine in the cluster receives every packet for

the VIP. WLBS decides on a packet-by-packet basis which packets should be processed

on each machine. If the packet should be processed by another machine in the cluster,

WLBS throws the packet away. If the packet should be processed locally, it is passed up

to the TCP/IP stack.

The WLBS driver on each machine sees all incoming packets because all members of the

cluster sit on a shared Ethernet segment. In essence, each packet is broadcast to every

machine and each machine individually decides which packets to process.

WLBS uses a distributed hash function to determine which packets should be accepted on

a given machine. WLBS hosts exchange heartbeat messages with each other once a

second. The heartbeat message contains a host’s view of the cluster. Based on heartbeats,

each host knows about the state of other cluster members. Each host independently makes

the decision to accept or reject the packet based on its host ID, the number of hosts in the

cluster, and the information in IP header of the packet.

WLBS effectively partitions (through hashing) the IP client space among available cluster

hosts and lets each handle its share of the workload. WLBS does not modify any

information in the packet.

Using a management console, the system administrator can remove or add any host to the

cluster at any time.

2.3. Example

Other architectural components of a megaservice include file storage, database storage

(like SQL), database-access mechanisms (like ODBC), network bandwidth limitations, and

server hardware (number of CPUs, hardware class, etc.). While each of these issues is

important, we’ve found that people at Microsoft tend to have a much better understanding

of these fundamental problems and scalability trade-offs than they do of load balancing.

Naturally, not every service needs to worry about all of these architectural problems. On

the other hand, there is more than one service today that deals with virtually all the above-

described issues. Future services (or services that have yet to scale sufficiently) will likely

have to deal with all of these issues.

To reinforce the difficulty of constructing a megaservice, consider HotMail. It is a service

that easily scales by user. In condensed form, HotMail consists of four classes of machines:

 Web server Front Doors (FDs): Stateless web servers that present the HotMail user

interface via HTML.

 User data stores (USTOREs): Stateful servers persisting the email folders for up to

2M users.

 Member index servers (MSERVs): Stateless servers containing the global mapping

from user ID to USTORE.

 Incoming SMTP servers: These servers accept incoming email messages and save

them to the appropriate USTORE.

9

Hotmail is arguably the largest service Microsoft owns. HotMail has 47M users and

handles many millions of email messages a day. On one occasion when HotMail

suspended incoming SMTP connection for 2 hours, AOL’s outgoing SMTP queue grew to

about 2M messages. HotMail can independently scale each of the four classes of machines.

They currently have over 1,300 Front Doors and 54 USTOREs. Cisco LocalDirectors

allow the Front Doors to share a common IP address and automatically balance incoming

HTTP requests.

HotMail’s most costly scaling unit is the USTORE. Each new USTORE currently cost

over $750,000. The number of I/O requests a USTORE can fulfill per second bounds the

per user scalability of the HotMail architecture. The USTOREs are continuously pounded

by multiple I/O requests per user page view. Furthermore, the USTORE is a single point

of failure. If a USTORE goes down, up to 2M users lose access to their email (although

they can still send outgoing email messages).

One of the proposed solutions to fix HotMail’s problems is the following: since a user’s

email is limited to 2MB (and in fact it is often closer to 400KB), transfer the entire email

folder to the Front Door and back in a single pair of I/O operations per user session.

Furthermore, the email folder could be RAID striped across a cluster of USTOREs. The

Front Door reads the email folder, twiddles on the bits over the lifetime of the HTTP

connection, then flushes the email folder back to the USTOREs.

This “easy” solution overlooks the realities of the web. First, the law of large numbers: the

access patterns of 47M users are indistinguishable from random noise. Second, the

inherent parallelism of web activity: while one Front Door is rendering an email message

to HTML, another email message may arrive for the same user. Third, the law of large

numbers again: thousands of email messages arrive at a given SMTP server in any given

minute, and they just keep coming. Megaservices don’t get coffee breaks.

The “easy” solution becomes complex very quickly. Moving the email folder for every

connection can be very expensive. HTTP and SMTP activity for the same folder can be

concurrent forcing either expensive queuing or locking. The Front Doors and SMTP

servers become stateful drastically complicating load balancing. Finally, HTTP

connections can be very short lived: HTTP 1.0 clients reconnect on every page item

request.

Building scalable megaservices is not easy, but it can be done. One can make the “easy”

solution work and, in fact, a number of low-tech solutions work extremely well in the

megaservice space. Our challenge is to gather the collective wisdom of those who have

built scalable megaservices and harness it for the benefit of the company and our

customers.

3. Observations

In this section, we present several of the most important insights and observations we have

gathered from our survey. While these insights are presented here for conciseness, we

strongly encourage a complete reading of subsequent sections. The true value of these

insights is best appreciated in context. The bulk of this report contains our detailed

descriptions of each of the megaservices we visited.

10

In order to drive this point home the lessons we learned have been classified into three

buckets: Maintainability, Scalability and Availability.

3.1. Maintainability

 Simple solutions are often best. Many web services are basically, in the words of

the parallel computing community, “embarrassingly parallel.” For example,

HotMail has exploited the inherent simplicity of per-user email partitioning to avoid

the extra layers of software and architectural complexity that come with general-

purpose extensibility models such as Application Server Providers (ASP) or

Enterprise Java Beans. They have created a service that directly reflects the natural

partitioning of the domain being modeled, and that scales and performs

exceptionally well because of this. Whether this service will scale well into an era

of inter-service integration remains an open question, but the simplicity remains

striking – general architectures designed for effectively sharing the resources of a

single machine are unlikely to adapt to a world in which the machines themselves

constitute the component boundary.

 Hire the best people for operations. When we visited HotMail, we spent an

afternoon with two development leads and the operations lead. Almost without

exception, the operations lead answered all of our software architecture questions.

He knew every scalability pitfall in the system. He knew the architecture as

intimately as the people who wrote it did. Why does HotMail have fewer operators

by almost any metric than any of our sites? Our conjecture: because the operations

team knows the software.

It is critical to recognize that while developers create code, operators create process.

In the same sense that a service needs strong developers, it also needs strong

operators to create the appropriate processes. Code may be the backbone of our

products, but process is the backbone of our services.

 Operations teams should be integrated into product development.

Development management at several of Microsoft’s largest megaservices insisted

that one of Microsoft’s current failings is that we separate operations and

development into separate teams, often in separate divisions. At both HotMail and

WebTV, the operators are intimately involved in product development. The

WebTV operators are pushing features one, and even two, software releases in

advance. We found at least one example at HotMail where operations correctly

predicted the lack of scalability of a particular feature long before the developers

came to that same conclusion. Operators feel their users’ pain, successful

developers will feel their operators’ pain.

 Configurable off-the-shelf solutions are preferred to custom code. When

possible, it is better to adapt the design of the cluster to accommodate optimized

hardware or software than to write custom code. LocalDirector switches from

Cisco are widely deployed for this reason; they are reliable, well understood,

predictable, and can easily be dropped into a network without adverse impact. This

flies in the face of Microsoft’s traditional extensibility solution, calling user-

supplied code. Although code is a very general solution, it also demands much

11

more operational coordination than LocalDirector’s simple configuration-driven

solution. Likewise, many services expressed a desire for off-the-shelf state

management for both user profiles and content management.

 Low-tech rules. Low-tech systems are often much easier to operate because they

are much easier to understand. For example, with few exceptions the MSN

properties use ROBOCOPY instead of CRS for content replication because it is

restartable, reliable, and easy to understand. When it comes to managing a site with

hundreds or thousands of machines, command-line scriptable tools always beat a

fancy GUI.

The value of low-tech is particularly evident in the megaservices messaging

infrastructures. Only one of the sites we visited uses cross-machine DCOM. Even

sites using very RPC-like communication patterns and proprietary software, such

as the next version of MSN Chat, use low-tech message passing.

 Less is more. Internet users have shown a surprising tolerance for systems that are

operationally reliable and responsive, but that aren’t feature complete. This is

probably symptomatic of both the immaturity of the market and the volatility of the

Internet. This suggests that, within reason, manageability and operations should be

given a higher priority than feature creep. Again, this is a shift from our traditional

product focus.

 Side-by-side component versioning. Launching a new version of a service or one

of its subcomponents involves risk. Each new deployment should include a

backward path in the case of failure, as well as an incremental rollout strategy that

can be adjusted in real time. Most sites employ physical side-by-side operations to

accomplish this: the new version of service is deployed on new hardware parallel

to the existing service. Either a DNS or a router switch is thrown to enable the new

service. WebTV upgrades on the same hardware, in parallel directory trees; they

switch between versions of the system by changing a soft link and restarting.

 A service is never finished. The Internet changes, competitors change, and the

load on a service changes. Constant change demands that service be malleable and

maintainable. A web service is only truly finished when the developers give up and

quit. Once again, megaservices don’t get coffee breaks.

3.2. Scalability

 The network is an integral part of the system. Network topology including

placement of routers, switches, LocalDirectors, and subnets is crucial to service

scalability. Service providers manipulate and exploit the network; it isn’t just part

of the environment. Imagine building HotMail without control over its physical

network topology. Although they have not yet moved to hardware assisted routing

of data, services such as Instant Messaging that depend upon multicast topologies

or distributed event routing are interested in the deployment possibilities

represented by programmable switches.

 Careful partitioning. As mentioned above, one common feature of all of the

services we examined is that at some fundamental level they are embarrassingly

12

parallel. Whether separating HotMail data by user, or chat rooms by topic, the data

decomposition is parallel and, for the most part, obvious. It is likely that as the

Web evolves, the granularity of partitioning will become larger (moving from per-

user to per-community, etc.), but ample opportunities for data partitioning and

operation parallelism will persist.

 Load balancing is a core component. Load balancing is the invocation model

that, when coupled with partitioning, enables scalability. At the level of IP packets

and TCP connections, load-balancing solutions (like DNS round robin, WLBS, and

LocalDirector) are readily available.

 Stateless front ends. Most of the megaservices we visited employ stateless FE

machines (although they often depend upon state passed by the client within their

logic). The front ends render HTML and embody the control logic used to issue

requests to stateful back ends. In one sense, the stateless front end is just the bottom

half of the UI layer in a three-tier system. In another sense the FE machines act as

a high-level, application specific switch since they often switch back-end

connections based on information in the HTTP request rather than data in IP or TCP

headers.

The primary disadvantage of stateless front-end architectures is that state must be

pushed either to the client or to the back-end servers. Pushing state to the server

implies that the site must support a notion of a unique ID (or login) and must

provide a state database. Pushing state to the client-side implies that state must

either be embedded in the URL or transported in a browser cookie. Cookies are

problematic because they do not support user roaming and they are often considered

an invasion of privacy.

 Understand your connectivity. Services must understand the nature of their

internal dataflow in order to scale. This is one reason that the FE/BE distinction is

so useful – the FE can offload the processing bottleneck associated with slow client

connections and enable greater BE concurrency. In general, impedance matching

by service components based on the connectivity patterns and bandwidths is an

important part of megaservice design. Concern with the impedance relationships

between database processing, rendering, and personalization is a topic that recurred

with several of the groups interviewed.

 Cost and performance matter. Scalability of a service is affected by the

performance of individual components. HotMail uses 9GB drives on their front

doors, rather than cheaper 2GB drives, simply to get faster RPM drives; they don’t

use the space. Performance of ASP was a common complaint of the service

developers we met with in our study. By rendering its top four pages from pure

ISAPI (instead of ASP), MoneyCentral reduced its average response time from

32ms to 8ms per page. Optimization for the common case leads to a willingness to

factor components to a very fine grain when necessary – any attempt at automatic

or tool-generated factoring is better when it takes empirically gathered statistics

into account.

13

3.3. Availability

 A component should never fail due to an external component failure.
Individual components in WebTV have defined behaviors for all possible external

failures. For example, if the login server is unavailable, WebTV will service the

user with “unauthenticated” permissions. WebTV can function even when a

remarkable number of its servers have failed. The WebTV home page service will

render a start page even if the mail, ad, and stock ticker services are all down. It is

considerably better to have broad and robust error coverage than to have an

unprotected component that implements more features.

 Components should fast-fail on inconsistent state. The quicker an errant

component fails, the sooner the rest of the system can work around the failure. As

a negative example, consider the interaction between LocalDirector and IIS.

Cisco’s LocalDirector routes incoming packets to the server with fastest turn-

around time. When IIS runs out of internal resources, a fast path immediately

replies to all HTTP requests with a “come back later” reply. LocalDirector

currently interprets this behavior as a very fast server and begins to route all

incoming packets to the overloaded server. Similarly, WLBS currently only

considers a server failed if it no longer issues a heartbeat, regardless of the health

of the resident IIS server.

 Monitoring is absolutely essential. Many of the megaservices use extensive

logging and counter-based monitoring, along with as much remote administration

as possible, to both ensure continuous availability and to provide data with which

to improve their infrastructure. Filtering, alerting, and visualization tools are an

absolute necessity for sites with hundreds of machines in order to filter out

important events from background “noise”.

 Systems should be designed (and tested) with component failure as a rule not

an exception. The standard for designing communicating components for the

Internet is considerably different from Microsoft’s traditional LAN-centric models

such as ODBC and DCOM. For the most part simple socket-based protocols are

used by megaservice components when they cannot piggyback upon an existing

web protocol. Although not all of these protocols are designed to fail in a

recoverable way, they all are designed to come back up as quickly as possible in

the face of failure, and the services interviewed were always aware of the failure

characteristics of their infrastructures.

 The system should work partially even when components fail. Running an

Internet service is a double-edged sword. Users expect service. Sometimes they

expect full service; sometimes they’ll tolerate less. Even if a USERVE is offline,

the affected users still get a HotMail web page and can still send email. On the

other hand, Expedia has found that when it loses connection to its BE machines, it

is better to deny users entry (with a stylized retry-later message) than to let them

get halfway through a ticket purchase before failing.

 Test suites should be delivered to operations as part of the platform. At most

of the sites, the test suites used by development are also used continually to sanity

check the health and the performance of the system. Many of the sites (see full

14

descriptions) have a “hidden” web page that exercises important site features.

Viewing the hidden page alerts operations staff of any problems in functionality or

user-perceived performance.

4. Services

This section describes the eighteen Microsoft Internet services we visited and c with

some observations from the MSN Operations team. Each subsection describes a

service’s basic function, physical architecture, operations issues, and scalability issues.

4.1. Hotmail

Configuration

 Front Ends: 2198

 Back Ends: 58

 Other Boxes: 54

 Load Balancing: LocalDirector

Interview Date: July 22, 1999

HotMail is an Internet mail service founded in 1996. HotMail was acquired by 1997 and is

still in the planning stage of its transition to Microsoft technologies. HotMail currently has

47 million users, and supports up to 77K simultaneous online connections. HotMail serves

approximately 90M ad impressions per day.

Users connect to www.hotmail.com with a standard Internet browser. HotMail.com is

really a set of Front-End (FE) machines behind a local director. All of the FE machines

run FreeBSD and Apache. The FE machines communicate with one of the member index

servers (MSERVs), a set of replicated machines that contain the index of username,

<machine name, data segment> mappings, to determine which USTORE machine to

connect to for data. The USTOREs are large SUN Solaris boxes that contain the user’s

mail, password and customizations (aliases etc.).

The FE acts as an agent for the end user; it reads and writes files on the USTORE through

the XFS protocol (an atomic mail storage protocol with some similarities to NFS) and

generates the appropriate HTML. Ads and images are stored on separate servers to keep

the load down on the front ends.

Instant Messaging, which is housed at HotMail, is detailed in a separate section.

4.1.1. Architecture

For Scaling, HotMail has defined a Hotmail Capitalization Unit (HCU). An HCU is the

incremental unit of scale for adding new users to the system. Given today’s’ hardware a

HCU covers approximately 2M users. An HCU is added approximately every month.

The prototypical HotMail HCU (HotMail Capitalization Unit) consists of the following:

LocalDirector

Ads &

Graphics

..128..

LocalDirector

Incoming

SMTP

..203..

Front

Doors

..1323..

LocalDirector

Client Browser

Internet

Login

Servers

..439..

Catalyst 5000 Switch

MSERVs

..4..

LocalDirector

USTOREs USTOREs
..54..

http://www.hotmail.com/

15

 User data server (USTORE) (1 machine). Typically a very large Solaris box

(latest machines are E4500s with 8 processors). The USTORE holds all of the

email for a large group of user (up to 2M users). Backup is done to tape units

attached directly to the USTORE. Other machines (FE boxes) access the USTORE

files through XFS. Contrary to popular belief, XFS is not a file system; it is really

an atomic mail storage and retrieval protocol. USTOREs are bound by two

constraints: the amount of time needed for backup and the number of I/O operations

per second. It takes 18 hours to back up a USTORE. USTOREs typically have a

CPU load of about 5%, but a disk utilization of 100%.

 Front Door servers (16 machines). Front doors are stateless front-end servers;

their primary responsibilities are accessing storage and HTML rendering. In

addition to HTML, FDs also run spell checking, thesaurus, and dispatch outgoing

email from HotMail users. Current FDs are 400MHz P2 boxes running FreeBSD

and Apache. FDs are CPU and network bound. Each incoming connection requires

at least two FreeBSD processes. The FDs within a cluster share a common IP

address. Incoming requests are distributed with a Cisco LocalDirector.

 Login servers (15 machines). Login servers are stateless web servers that redirect

users at login to the appropriate cluster. Physically they have the same

configuration as the Front Doors.

 Member index server (MSERVs (1 machine). A global directory mapping users

to USTOREs. All MSERVs share a common IP address distributed with a

LocalDirector. Each MSERV contains the entire user directory.

 Graphics servers (4 machines). Simple Web servers for static graphics content.

The graphics servers load all images into cache on boot up to reduce request

latency.

 Incoming mail servers (4 machines). These run SMTP to accept incoming mail

and dispatch it to the appropriate USTORE. Mail servers sit behind a single IP

address and LocalDirector.

Multiple HCUs are combined behind common Cisco LocalDirectors to form a cluster.

HotMail currently runs seven mail clusters; six at the Lawson facility and one at Wyatt.

HotMail runs the LocalDirectors beyond the maximum recommended speed with the

expected instabilities.

The HCU is an idealized model. As HotMail has scaled from 9M users at time of

acquisition to 45M users, the ratios have morphed. For example, a common set of four

MSERVs is shared across all of the HotMail clusters. Ad service has now moved to MSN

Ads.

Given gains in hardware, offloading of ad tracking, and generally better performance from

their code, the team expects that within 12 months one HCU (one USTORE), with the

addition of the appropriate number of disk spindles, will be capable of supporting 4M users.

To support multiple clusters, users enter the site through a set of login servers (via DNS

round robin). The login servers then redirect the user to the appropriate cluster. At login

16

time, a file containing the user's last access time is updated. A user's account is deleted

after 120 days of inactivity.

At time of acquisition, the typical user had 240KB of stored email. Storage has grown to

400-600KB per user primarily because of email attachments. Cost has grown to

$1.62/user/year with an addition $.60/user/year for Instant Messaging. Approximately

70% of the hardware costs are in the USTOREs.

Load during off-peak is 2/3s of load during peak time; many of their customers are foreign

based.

4.1.2. Operations

The operations team is intimately familiar with all of the quirks and details of the system

(including the actual code). In fact, HotMail’s director of operations provided most of the

technical development details during our interview.

HotMail’s machines are housed at Exodus. Exodus supplies cages, power, and Internet

connectivity. Due to Exodus’ pricing model, HotMail has added redundant network

connectivity to many of the major ISPs.

Operations are monitored remotely; all management is through remote shells and scripting.

Updates are propagated to all of the live machines at once using RDIST. Feature upgrades

are applied incrementally. HotMail has never had a “major” release.

Operations is deeply involved in all phases of development. They are a major feature driver

for the system. Operations is involved at least one version ahead of deployment.

Server up time can be as much as 300 days (USTOREs), with 94.5% uptime for the service

as a whole. However, on average across the whole system, they experience one USTORE

kernel panic every two days. USTORE hardware failures are due, in order, to tape drives

gone bad, RAID controllers fried, or dead CPUs. Front doors experience as many as eleven

crashes per day. Luckily, front-door crashes are largely masked by the LocalDirectors.

Nightly backup has proven useful. HotMail has restored one tape backup in the last month.

The login process had not been correctly updating the last access time for 120 days. After

the garbage collector deleted a large faction of a USTORE, the operators noticed, the bug

was fixed, and the previous tape was restored. This was the third restore in the history of

the site. The other restores were due to serious RAID failures.

It is worth noting that users are routinely migrated between USTOREs. For example, in

the last week, approximately 1M accounts were moved in order to retire two old

USTOREs. The average churn rate between USTOREs is probably closer to 250K

accounts per week. The migration of users from one USTORE to another is a good

example of dynamic partitioning in action with the smallest unit of granularity being a

single mailbox. It is interesting to note that migration is under administrative control.

The system has to be brought down briefly when adding a new HCU (all MSERV index

structures have to be updated). Migrating users between stores does not necessitate

downtime.

17

HotMail still is vulnerable to single points of failures – When a USTORE goes down mail

is not available to 2M accounts. HotMail is also vulnerable to catastrophic events as all of

their machines are hosted in one site (excluding ad servers).

4.2. Home.Microsoft.Com (HMC)

Configuration

 Front Ends: 42

 Back Ends: ?

 Other Boxes: ?

 Load Balancing: DNS/WLBS

Interview Date: August 3, 1999

HMC supplies the main web page for the Microsoft portal. Much of the complexity of the

home page arises due to personalization. Personalization information is kept in cookies on

the user’s machine and read before the page is rendered. How many things are on the page,

their order, and localized content are all determined at runtime from the cookie.

4.2.1. Architecture

HMC consists of seven clusters of six machines each. Each box is connected to three

networks: the Internet, an administrative LAN, and the shared services LAN. Ads, profiles

and stock quotes are all accessed through the shared services LAN. Each machine is a

quad-processor Xeon. Ideally, each machine would run with just four threads; one thread

per processor for the Internet, the shared services LAN, IIS, and NT. In reality, they use

approximately 40 threads due to the "lemmings" problem: large groups of users with the

same source IP address (like AOL) hitting a single server.

Load is balanced between the clusters with DNS round robin; load is balanced within each

cluster through WLBS.

Browser clients are bucketized into four classes:

1) IE4+ (support for DHTML).

2) ECMA Script.

3) HTML 2.0 - requires more server round trips.

4) IE2 - pop up a forced upgrade dialog.

The ASP code detects the 70 or so flavors of browser in use and reduces them to one of

these four cases. The rest of the rending code is conditionalized to output for these four

buckets.

..7..

Front

Ends

..6..

WLBSWLBS

Client Browser

Internet

Front

Ends

..6..

Admin LAN

Shared Services LAN

http://home.microsoft.com/

18

4.2.2. Development/Testing methodology

HMC tests performance with ad hoc packet drops. They also rely on MSNSRVT (the MSN

Server Test team) a user experience tool, SOC watch, and the WebCatThreads from the IIS

test team. Most of their in-house testing is focused on UI.

Aside from scale, HMC’s major problem is content management. For example, HMC

acquires stories from the Wall Street Journal (WSJ). Data arrives from the WSJ in a CDF

file encoded in XML. The file is then split into headlines, HTML payloads and redirections

for WSJ pages. The file is retrieved from a WSJ-provided URL every 5-60 minutes

(depending on the specific file). The fetcher applies transformations to the data, publishes

into HMC's CORAL SQL server and schedules it for display. The SQL data is then copied

to a stager, which pushes data out to the web servers.

Another part of content management is the application of business logic rules. For

example, sports scores come in unprocessed. HMC sorts the scores by team and league

using business logic that defines the league for each team and adds URLs such as the team's

home page. The logic of the team/league hierarchy must be encoded into the business

logic; it isn't described in metadata delivered by the WSJ. Another example of business

logic is the conversion of times from GMT to local time. As a final example of the

complexity of business logic, HMC renders local news in the US based on the user's zip

code if known. Internationally, local news is determined by region, but there exists no

standard taxonomy for defining local regions on an international basis.

Content management in the human world is governed by defined processes. However, the

state of web development is that processes must be captured and expressed in code.

4.3. Sidewalk

Configuration

 Front Ends: 3

 Back Ends: 3

 Other Boxes: 2

 Load Balancing: DNS

Interview Date: August 2, 1999

Sidewalk is an online guide to entertainment with targeted content for 74 cities, primarily

in the US. Sidewalk's primary challenges are content management (with customized data

for 74 cities and 3-4 updates per day) and HTML rendering. In July, MS sold the arts and

entertainment sections of its first 10 cities to TicketMaster's City Search. Essentially,

TicketMaster bought version 2.0 of the Sidewalk rendering engine. The other cities (and

the rest of the site) use version 3.0. The yellow pages section (along with local yellow page

advertising) is the most lucrative side of the Sidewalk business.

Staging LAN

Front

Ends

..3..

DNS Round

Robin

Client Browser

Internet

Staging IIS

SQL SQL
Staging

SQL
..3..

19

4.3.1. Architecture

The sidewalk architecture consists of the following:

 Front End (FE) IIS servers (3 machines). Running a custom ISAPI rendering

engine, each machine is DNS registered with 74 names (one for each Sidewalk

city). An ISAPI filter maps friendly URLs to internal URLs. FE servers are

connected to both the Internet and a local 100BaseT publishing LAN. Load is

balanced between the FE servers using DNS round robin.

 Mid-Tier (MT) SQL Servers (3 machines). There is a 1:1 relationship between

FE IIS servers and MT SQL servers. All page content is stored on the SQL servers.

Custom OLEDB data service objects provide optimized support for connection

management and query. A fourth MT SQL server stores non-content data.

 IIS staging server (SS) and SQL staging server (1 machine each). Identical to

the FE IIS and MT SQL servers, these servers run on CorpNet. The IIS server is

actually registered under 592 names (through a custom HOSTS.TXT file

propagated to Sidewalk editors’ and developers’ machines). The 592 names cover

the cross product of 74 cites, 2 modes (preview or live) and 4 content bases (current,

next, and 2 others). New data is replicated from the staging servers to FE and MT

servers every 5 minutes. When a new edition of Sidewalk is ready to publish (3-4

times per day), an update notification is sent to each of the IIS servers to swap the

URL filter for “current” and “next” content.

The Sidewalk rendering platform (now the MSN rendering platform) creates a page

composed of five panes. Traditionally these panes are the Header, Browse, Content, Ads,

and Footer panes. Each pane is a COM object, called a response object, with an extensible

set of properties and an output string. Coincidentally Sidewalk renders HTML into the

output strings, but the engine does not assume HTML at any point. In addition to panes,

the render platform manages any number of Render Support Objects (RSOs). RSOs

contain state useful across the panes.

When a request enters IIS, the rendering platform creates a response object with three

strings, called the Header, Head, and Body. As rendering progresses, text is copied into

these strings. Just before returning, the rendering platform concatenates and flushes the

strings to IIS. Request processing occurs in the following steps:

1) Request arrives in IIS

2) The friendly filter maps the request URL into internal canonical form (based on

content switches).

3) Rendering runtime receives request.

a) Platform asks AppObject for page layout. Note that the AppObject is just a

blessed RSO. A ContextObject, ServerObject and RequestObject are passed

to the AppObject and all RSOs.

b) AppObject hands back the page layout in the form of a GUID for each pane

object (inside glue for layout).

c) The platform initializes all RSOs.

20

d) The platform initializes all panes (allocated from a shared pool using the

Rental Apartment threading model). Typically, at this point, each pane sets

properties on the ContextObject it wishes to propagate to the other panes.

e) The platform notifies all RSOs (and the AppObject) that initialization has

finished.

f) The platform invokes the Render method on all panes.

g) The platform notifies all RSOs that rendering has completed.

h) The platform exits all panes and zeros the thread heap.

4) The page is flushed to IIS.

4.3.2. Development Methodology/Issues

Sidewalk use DNS round robin over WLBS because DNS responds well to stalled systems

(i.e. the user presses refresh). Users balance themselves on a bad experience. WLBS

would meet their needs better if it could adjust its load balancing based on machine load

read from an NT performance counter.

The IIS data is replicated using ROBOCOPY; SQL data is replicated with SQL replication.

Sidewalk uses ROBOCOPY instead of CRS for file replication because it is restartable,

reliable, and easier for operators to understand.

Memory management is a huge issue when rendering many pages. No matter what else

changes, the maximum number of page faults the machine can service per second remains

constant. The key to improving performance is to maximize the work done before the next

page fault. This isn't just a matter of putting more RAM in a box. Soft page faults are still

very expensive (due to limited number of cached TLB entries). Cache pollution is also a

problem.

Sidewalk experienced major problems with heap fragmentation. To code around

fragmentation they use "heap pairs", two heaps per thread. The thread makes the first 100K

allocations on the first heap, and then switches to the second heap for the next 100K

allocations. By the time the thread switches back to the first heap, it is most likely empty

(or at least very un-fragmented). Two heaps actually use less real memory than one

because they are less fragmented. Other memory tricks they use are expanding string

buffers, global arrays, recycled memory, and judicious use of VirtualAlloc. It literally

takes 1000s of string concatenations (via strcat) to build a single page. Only the outermost

string is on the heap, the rest are on the stack. One could reduce the number of strcats by

"pre-render" HTML, but the HTML header needs a content length for keep-alive.

21

4.4. MSNBC

Configuration

 Front Ends: 42

 Back Ends: 2

 Other Boxes: 5

 Load Balancing: DNS/WLBS

Interview Date: August 3, 1999

MSNBC.com is the Microsoft-NBC joint venture whose charter is to lead the web with

coverage of breaking news in general news, sports, business, and other categories, such as

health, entertainment, local, weather, and so on.

In the last two years, MSNBC has grown from 100K unique users/day to 2.5M users/day

(10M/month). The average user makes 3.4 visits per month vs. seven for the average web

page and 3.5 for CNN. The average user views 3-5 pages before leaving the site. Scaling

the service by orders of magnitude without a parallel scaling of cost is their primary

problem

4.4.1. Architecture

Principal components of the MSNBC architecture are:

 Front-end (FE) web servers (42 machines). Each FE runs IIS with ASP and

XML, WMP, and SQL in 512MB of memory. MSNBC averages 500 simultaneous

online connections (SOCs) per box, but peaks at 2000. Every server has every

single page. Peak output from the servers is ~50-60Mbps. ASP server-side objects

cache frequently used content such current weather, headlines, and other material

required to build personalized pagelets. The FE boxes are organized into seven

clusters of six servers each. Between clusters they use DNS round robin; within a

cluster they use WLBS across a shared IP address.

 Front-end SQL servers (2 machines). These machines contain online content

indexes, scores, and surveys.

 CRS staging servers and SQL replication server (2 machines and 1 machine).

The CRS servers update the entire website every hour to each FE box. The entire

web site is approximately 1.1GB.

 Shared NetShow servers (2 machines). Sponsored by the NetShow team, these

shared servers are available to any MS property.

The editors of MSNBC publish somewhere between 100 and 1000 articles per day, or about

25MB/day. Wire services, partners, and the MSNBC editorial staff generate content.

Approximately 100 articles are written by the MSNBC editor staff each day; the remaining

articles are acquired through largely automated processes. For automated content, data

DNS

Shared

NetShow

..2..
..7..

Front

Ends

..6..

WLBSWLBS

Client Browser

Internet

Front

Ends

..6..

Content

Storage

..2..
SQLSQL

CRS

Staging

..2..

SQL

Repl.

22

feeds from the wire services are automatically categorized and beautified into HTML. For

original content, editors place the data onto the staging servers.

Original content is generated using the WorkBench environment, which provides editing,

workflow and publishing. Workbench is a template-based system. WorkBench has about

40 templates with specialized wizards to create dynamic content like surveys and live

maps. Content from WorkBench is published through the "Borg" tool, which consumes

XML and XSL (from WorkBench) and spits out content for MSN, HPC, SNAP, and

GenStar.

MSNBC publishes up to 50 video-on-demand clips per day. Videos are served from the

two, shared ITG/NetShow servers. Approximately 80% of the usage on those servers is

from MSNBC. MSNBC anticipates using broadband to exploit always-on for news alerts.

The hope is to do so without needing extra or secondary editorial staff. Photos are

processed with tools like PhotoShop outside of WorkBench and then attached to

Workbench stories for publication to the staging servers. A new system, FastNS, is about

to be deployed that will allow creation of WMP files for on-demand viewing about 5 times

faster than is currently the case.

MSNBC recently developed and deployed an SSO replacement for the old MPS

personalization system. This SSO presents an MPS-compatible API, so they don't have to

change their pages, but decouples them from the old MPS storage system, which was slow

and unreliable. In general, MSNBC tries to minimize dependence on data storage outside

IIS servers, such as MPS, SQL, or the MoneyCentral quote cache, to avoid bottlenecks.

Hence, MSNBC caches large amounts of external data in their global ASP objects, and

refresh those objects on a frequent basis (approximately every ten minutes).

Unlike services such as Sidewalk, MSNBC does not use friendly URLs. All URLs are

exposed directly. In addition, MSNBC actually changes the web page for a specific URL

over the lifetime of a story. For example, they used a single web page for the entire

Clinton/Lewinsky story over the period of a year. An implication of page reuse is that

MSNBC does not support access to archived news articles.

Users navigate within MSNBC through an ActiveX menu control. A configuration file

that is downloaded onto the client box drives the control. To reduce load on the system

during peak periods, the configuration file is reduce from ~18K to a few K. Reducing the

size of the menu configuration file is tantamount to pruning the space of categories/articles

the user can see. Roughly 60% of MSNBC users have browsers with ActiveX support.

Long term, MSNBC is very interested in pushing XML to the user. Many of their pages

contain per-browser ASP code. Slideshows and some other client-side gadgets are

DHTML; they send different versions from the server depending on the client.

23

4.5. Instant Messaging

Configuration

 Front Ends: 27

 Back Ends: 4

 Other Boxes: HotMail Servers

 Load Balancing: LocalDirector

Interview Date: July 14, 1999

Instance Messaging is Microsoft’s entry into the online messaging field. Instant Messaging

is really two services in one: a notification service and an instant messaging capability.

The notification service provides mail notification and online buddy-list services. Users

connect to Notification Servers (NSs) and see a window listing the online status of their

friends. As friends connect or disconnect (or request a status change), the client is notified

and status is updated. Notifications occur through a persistent TCP connection between

the NS and the client. The Instance Messaging protocol is open, but it is not intended to

be “the” universal standard for Internet instant messaging.

The instant messaging service is started when a user initiates an online conversation session

or double-clicks on a friend’s name to send the friend a message that immediately appears

on the friend’s screen through a one-time, one-way conversation session. To create a

messaging session, the client sends a request to the NS; the NS selects a switchboard server

on which the communication will take place; the NS redirects the client to the switchboard

server; the NS sends a message to the buddy’s client via the buddy’s NS; and finally, the

buddy connects to the designated switchboard.

Instant Messaging started Spring '97 as an offshoot from NetMeeting. Initially the team

planned to build both a client and a server, but stopped building the server in January ’98

in favor of the HotMail-developed server. In January ’99, Instant Messaging acquired

ownership of the server code. While Instant Messaging is now responsible for the software,

the service is hosted at HotMail's Lawson facility.

In its first 12 hours of production (July 22, 1999), the Instant Messaging service received

4000 connects, peaked at a network bandwidth of 400Kbps, and hosted 300 simultaneous

online connections per server. Within 36 hours of launch, Instant Messaging was hosting

50K simultaneous online connections. The site regularly maintains over 120K

connections, but has been tested to 500K simultaneous online connections.

4.5.1. Architecture

The Instant Messaging architecture consists of the following components:

HotMail Network

Switchboard

Servers

..5..

Notification

Servers

..16..

LocalDirector

Win32 Client

Internet

Dispatch

Servers

..5..

HotMail

USTOREs

HotMail MSERVs

MSERVs

..2..
USTORE USTORE..2..

LocalDirector

24

 Client software. The user runs proprietary client software. The client connects to

Instant Messaging through a persistent TCP connection. In order to encourage

migration from AOL (who purchased ICQ and is the largest Internet instant

messaging competitor), the client can connect simultaneously to both AOL's instant

messaging servers and Microsoft’s Instant Messaging.

 Notification Servers (NS) (16 machines). Clients maintain a persistent

connection to one of the NSs. Clients are assigned to a specific NS using a static

hashing function. If the number of servers changes, the entire service must be

brought down to adjust the hashing function. Each NS maintains a list of all

connected users. Notifications, such as on a client login event, are sent to the

appropriate peer NSs based on the client "reverse" buddy list.

 Dispatch Servers (DS) (5 machines). Dispatch servers are used to locate the

correct NS. Dispatch servers run the same code as notifications, but they have no

assigned hash slots.

 User storage servers (USTOREs) (2 machines). Each user's buddy list is

persisted to a USTORE (running the same XFS protocol and server code as

HotMail's USTOREs). Each user has two buddy lists: a forward buddy list, people

whose status the user wants to know about, and a reverse buddy list, people who

want to know the user’s status.

 Member index server (MSERVs) (2 machines). The MSERVs act as a global

directory mapping users to USTOREs. All MSERVs share a common IP address

distributed through a LocalDirector. Each MSERV contains the entire user

directory.

 Switchboard servers (5 machines). Each online conversation is hosted through a

switchboard server. Switchboards broadcast their state to the NSs for load

balancing.

Instant Messaging users can control who has access to their online state (online, busy,

offline), etc. A user can block buddies from knowing their state in which case the user

always appears to be offline to their blocked (un) buddy. Users also control on whose

buddy list they appear. When users add someone to their buddy list, a message is first sent

to the buddy for authorization. Only consenting buddies are added to the user’s list.

Once a user decides to communicate, they send a request to the notification server. The

server chooses a switchboard machine to host the conversation, routes the initiator to the

switchboard, validates that the receiver has permissions and is authenticated, and finally

redirect the receiver to the same switchboard machine.

In addition to buddy-list notifications, Instant Messaging user's with HotMail accounts are

notified of status of their mailbox at login time and as new email arrives. To enable the

initial email status notification, the user's NS sends a message to their HotMail USTORE

at login. To handle notification of incoming mail, the NS writes a notification file onto the

user’s USTORE. When a new message arrives, the HotMail postman sends a message to

the user’s NS if the notification file exists.

25

The Instance Messaging software sends asynchronous messages between servers, from

client to server, and from server to client. They use a simple ASCII protocol instead of

RPC or DCOM because RPC and DCOM contain far too much overhead for their purposes.

4.6. Expedia

Configuration

 Front Ends: 11

 Back Ends: 12

 Other Boxes: 5

 Load Balancing: WLBS

Interview Date: June 21, 1999

Expedia is Microsoft’s travel service. It provides users with the ability to find out flight

information, plan trips, and choose the best fares. Expedia hosts about 230K user/day.

They currently have 7M unique users with about 6M of those being registered users.

The most expensive request a user can make, in terms of cost to the Expedia service, is a

PowerShopper query. A PowerShopper is a request to find the lowest X fares in a specific

category. Expedia must pay their external partners for each PowerShopper whether the

query translates into a purchase or not.

4.6.1. Architecture

Expedia consists of four components: web server front-ends, travel servers in the middle

tier, external back-end travel services, and local databases.

 Stateless web server front-ends (11 machines). Connection state (such as user's

universal identifier, called a TUID, etc.) is maintained on the browser in a cookie.

The server processes the page request (retrieving the user's profile based on their

TUID in the process), calls the travel server as needed to field travel requests, and

returns the reply. Expedia 4.0 uses 8-10 front-end machines. They are proud of

the stability of their service: web servers stay up about 1 week at a time. Load is

balanced with WLBS.

 Back-end, local databases (4 machines). The local databases contain information

like user profiles. Every single page access goes back to the profile database using

the TUID as a key. All access to backend databases is through SQL stored

procedures.

Partner Lan

Expedia

FE

..5..

WLBSWLBS

Client Browser

Internet

International

Northwest

Continental

..2 Each..

..4..SQL SQL
Admin

SQL

CRS System

Email

..4..

WLBS

CRS QueueCRS Queue

26

 Back-end Travel Servers (8 machines). Travel servers provide generic travel

services to the front ends. Web servers send requests to the travel servers through

synchronous DCOM calls, but transfer bulk data through sockets because DCOM

is too slow. In-line components on the travel servers connect the travel servers to

external back ends. Each component connects to a separate Computer Reservation

System (CRS) such as SABRE, American Express, etc. Expedia 4.0 uses four CRS

providers.

 Back-end CRS servers. Run externally by the various CRS systems, each CRS is

fronted at Expedia.com by two CRS-specific queue servers. Most of Expedia.com's

transactions flow to WorldTran via a message queue. Incoming messages are

queued onto WorldTran's two Tandem servers, and are then fed to their mainframes

for processing. In most cases, WorldTran's mainframes process transactions by

contacting airline computers.

It can take almost 5 minutes for a ticket purchase to execute through WorldTran. Expedia

can do nothing to reduce that transaction time. As such, Expedia has throttle mechanisms

in the front end. It is Expedia's goal to accept a user connection only if they will receive

good service. The travel servers give load feedback to web servers. In addition, they can

manual throw a switch in the front-ends to reject 70% of all users for 1 hour. They would

like to have special classes of users and to offer them preferred service. As is, users who

have purchased a ticket in the past are not turned away when the service is throttled down.

In the past, all commerce has occurred below Expedia in WorldTran. They are exploring

options to move the commerce closer. Part of this effort is a new best fare search (BFS)

engine that is currently under development. BFS will serve as a pricing engine. The most

important objective of BFS is to reduce the need to use "PowerShoppers" on the CRS

systems since Expedia must pay the CRS providers for each PowerShopper.

4.6.2. Development and Testing

Pages are rendered from C++ ISAPI extensions. Expedia developed a custom

rendering/scripting library, QScript, which hides authentication details behind roles, like

administrator, user, etc. QScript was roughly a three man-year development effort, but

they are continually improving it.

Current development model is to upgrade the entire system at once. However, over the

last 4 months they have made 98 hot fixes. Hot fixes cover things like new airports, new

or deleted airlines, etc. They want to move to a new development model from large fixed

releases to slipped-in upgrades. Primary goal is to be more nimble.

Expedia has explored using Yukon, written by MSN search, as a 3-level cache to hold

temporary (last 5 minutes) state. Expedia would prefer that the cache be permanent to get

around problems with storing state on the browser.

Front-end Test uses Orville, which does cloned multiple-replication testing. They

aggressively use NT performance counters. Every piece of code dumps performance

counters for operators. They also rely on IIS logging.

On the client side, they had a bad experience with ActiveX controls. ActiveX became a

huge debugging nightmare due to all of the variations in clients. Only about 60% of their

27

clients are IE. They are starting to exploit DHTML. DHTML is structured so that it

degrades gracefully on down level clients.

4.7. MoneyCentral

Configuration

 Front Ends: 10

 Back Ends: 7

 Other Boxes: 2

 Load Balancing: DNS/WLBS

Interview Date: June 23, 1999

MoneyCentral's vision is to be the best place to research, make decisions, and take action

on personal finances.

MoneyCentral serves 6.5M pages per day to 721K users (4.3M users per month).

MoneyCentral’s generates revenue primarily from ad views and value to the rest of the

portal team.

MoneyCentral has 2 operators and 12 developers: three for client, five for web, and four

for servers. They have their own operators to handle site-specific issues and rollout.

4.7.1. Architecture

Key components of the architecture:

 Client's browser (with ActiveX control for graphing). All user state is cached on

the client. However, they support roaming profiles through the subscriber database.

 FE machines (10 machines). Quad Xeon 500MHz machines. Each request

creates a new socket to back-end servers. Historical data is stored on web FEs and

accessed via a 600MB memory mapped file through ISAPI extensions with two

DLLs. Web servers are purely monolithic. Requests are load balanced with DNS

round robin between two IP clusters, then WLBS within each cluster of five

machines.

 Quote servers (4 machines). Input comes either from live feeds (satellite) or from

the data processor. The quote server was written largely by one D14. It is a highly

optimized table database engine. Written using the pipelined server model. The

FEs "round robin" requests to the quote servers. Other services receive feeds from

the quote engine (HMC, mobile).

WLBSWLBS

DNS Round Robin

Front

Ends

..5..

SQL

Server

Client Browser

Internet

Front

Ends

..5..

News

Servers

..2..

Quote

Servers

..4..

Data ProcessorLive Quote Feed
FTP

28

 Data processor (1 machine). Retrieves quotes via FTP from providers.

 News servers (2 machines). Handle news, billing and some email. Bulk outgoing

email is outsourced to Communiqué. News articles are retrieved from MSNBC via

FTP.

 SQL server (1 machine). Contains down level portfolios, subscriber database

(billing, etc.), and assorted databases with small hits (banking ranks, etc.).

Approximately 80-90% of their SQL code is in stored procedures.

Goal of the architecture is to handle the traffic of a market crash plus 25% or about 2x the

average daily usage.

Most of the pages are written in pure ASP. The site contains about 200 core pages plus

thousands of articles rendered through those pages. The top four pages (accounting for

~50% of hits) are rendered directly from ISAPI extensions. The system used to average

30ms/page, but changing these four pages to ISAPI reduced average time to 8ms/page

including the time to call quote server. There is no feedback from back-end to throttle

front-ends because the front-ends are the bottleneck.

One third of quote requests come from external source, primarily HMC. The HMC quote

client, written by MoneyCentral, caches the top 1000 stocks.

Ads are served by the MSN AdsTech. The Advisor FYI runs as a data-mining engine on

the quote servers. It passes over the data with a set of filter formulas and generates events.

4.7.2. Development and Operations

MoneyCentral’s product cycle is a big release about once every 6 to 9 months.

They upgrade hardware as quickly as possible (largely due to the per-machine overhead

costs on older hardware at Canyon Park)"

ITG charges roughly $7000/month/server at Canyon Park for network infrastructure, etc:

 $4K overhead

 $1K network

 $400 per ticket - each time an onsite operator has to touch a machine.

Major scaling issue: ASP performance. They try to use HTML that works on all browsers

as opposed to writing slow ASP code to do browser detection. As a result, like many other

sites, they have least common denominator support for browsers. They believe their pages

are two heavy. Yahoo's pages are under 10KB. People value the quick download.

Profiling is done primarily through NT PerfMon and event logging. They also use

WebMon to answer simple questions like: “Is the server up?”, “Can I get a page?”, “Can I

get a quote?”, etc. WebMon has a scheduling component with a retry count. Failures are

sent to an event dispatcher via email.

For thin clients, they use down-level pages with GIFs for charts. They support mobile

clients through separate quote pages authored by the MSN Mobile team.

29

4.8. Windows Update

Configuration

 Front Ends: 10

 Back Ends: 30

 Load Balancing: DNS/WLBS

Interview Date: Aug. 23, 1999

The Windows Update Service (WUS) is the first step on the road to extending the notion

of Windows onto the web. The WUS objective is to ensure Windows is a living constantly

evolving entity. Equally important is the objective of simplifying the care and maintenance

of PCs for consumers and small businesses and fostering a lasting relationship with those

customers. To motivate the team on one of their walls is a quote from Barry Schuler,

president of online services for AOL:

“The reason Microsoft has failed in the online service business and hasn’t been able to get going

is that they don’t have that relationship with the customer”

4.8.1. Architecture

The Windows Update architecture for the system shipping today is quite simple. It

contrasts in some fundamental ways with most of the other services. In particular, their

raison-d’etre is the rich client. All of their clients are Windows-based and must be running

at least IE4.0. All their clients support ActiveX controls. Consequently, they can use

DHTML (perhaps XML in the future) and client side computation to offload the service

complexity.

The basic architecture consists of:

 Client components. ActiveX controls and DLLs to aide in machine configuration

detection.

 Front-end (FE) web servers (10 machines). Quad Xeon 450MHz machines

running IIS. FE boxes are load-balanced via two groups of five machines. DNS

round robin is used to select a group and WLBS is used within the group.

 ConXion back-end servers (30 machines). WUS downloads come from ConXion

through an existing contract with ITG. There are 30 machines serving Windows

Update downloads: 10 in San Jose, 10 in Chicago, and 10 in Washington D.C. Each

machine houses all of the downloadable bits.

The basic control-flow is as follows (client side operations):

Presenting the user with the list of items to update:

 Controls are downloaded to the client, if needed,

ConXion

WLBSWLBS

DNS Round Robin

Front

Ends

..5..

Client Browser

& ActiveX Control

Internet

Front

Ends

..5..

San Jose

..10..

Chicago

..10..

Washington

..10..

30

 The client controls rummage around to determine the machine configuration. The

DHTML is actually static with VB scripts that dynamic hide/show contents based

on results returned from the client controls. In fact, everything is driven by the

DHTML scripts calling into the client control (detection, download and install).

 Download from the server the list of available catalogs

 From the machine configuration determine which catalogs are needed, and

download them. These catalogs are un-pruned with minimal info (like version

number, location of installation data on server, etc).

 Merge user configuration description with catalog descriptions looking for things

that need to be updated.

Performing an update:

 User selects an item to be updated.

 Request is made to FE to download the information needed to perform the update

(e.g. location of the all the individual pieces [binary chunks] that are needed to

install the package).

 Over the course of minutes, hours, or days, in the background, acquire all the little

pieces.

 Assemble the pieces into the installation package.

 Perform the install.

 Send a post to the service as to the success/failure of the process.

Multitudes of small details must be handled on the client. The client control needs to

determine when the box is online. It needs to detect when the user connection and machine

are idle. It needs to bandwidth-throttle the download so as not to swamp-out user requests.

It needs to keep track of which pieces it has and which ones it needs to get. Note that these

issues apply to the next release, not the current one.

There are no connections between FE and BE machines. There is no dynamic content of

the FEs – pure DHTML. There is no DB access. The client does all the work.

Load balancing for download servers is done via “Hot Route” a patented, proprietary

mechanism used to determine from which machine at which ConXion site the client should

download via client re-direction at ConXion’s site.

4.8.2. Development Methodology and Issues

Today, one of the WUS team’s challenges is the creation and management of the DHTML

catalogs. WUS supports updates from Microsoft internal customers as well as certified

drivers from ISVs. Content for updates from partners is created manually and added to a

DB. Every two weeks they go through a complex build process, taking into consideration

support for 10 platforms and 31 languages, which builds up DTML catalogs and additional

data.

When the bits are ready, those destined for the FE boxes are propagated via the PUBWIZ

tool (based on NT’s multi-threaded file copy program – similar to ROBOCOPY). The

31

packetized bits destined for the download boxes are sent to one central site in San Jose and

ConXion propagates the bits to their boxes.

4.9. CarPoint

Configuration

 Front Ends: 5

 Back Ends: 2

 Other Boxes: 2

 Load Balancing: WLBS

Interview Date: Aug. 19, 1999

CarPoint provides end users with access to new car reviews, surround video, reliability

review information, and competitive price shopping. When appropriate, users are put in

contact with local dealers to expedite the conversion to a real sale. CarPoint is really three

services in one: the one the users see, CarPoint; and the two the dealers see: New Car

Buying (NCB) and the Used Car Marketplace (UCM).

4.9.1. Architecture

CarPoint’s architecture consists of the following components:

 Front-end (FE) web servers (4 machines). Quad P6 200 MHz IIS machines.

Most data served to customers are preprinted HTML pages that are replicated on

all FE machines. All FE machines are running MSN AdsTech’s client SSO. FE

machines are load balanced using WLBS

 SQL servers (2 machines). Contain all the articles, videos, reviews and customer

correspondence.

 SMTP daemon. Co-resident with one of the IIS servers, the SMTP daemon

accepts incoming mail from clients and dealers.

CarPoint has a simple email notification system. As part of their personal page, users can

supply information about their car (like make, model and date purchased) with this info

CarPoint notifies the user via email when their car needs an oil change or needs to be

serviced. The personalized data is stored in a SQL database, which is mined nightly. The

CarPoint team rolled its own email notification system. They started using ECHO, and

then grew their own. Although they spend little time maintaining their own user profile

component, they would consider using a common profile store if it met their needs.

Content management

Offline they have an FTP import server (as well as other forms of data collection) that

acquires data and stores it in an offline SQL database. This data is then massaged and

WLBS

Back-End LAN

Front

Ends

..5..

Client Browser

Internet

SQL

Personal

Auto Page

SQL

New Car Buy

SQL

Pre-Published

Content
FTP Import

Server

32

converted to either ASP or HTML. One significant problem they have is that there is no

common schema to represent a car’s year, make, and model, etc. As a result, they have a

full time person checking the data for both format and validity. In theory, they think that

BizTalk will help in this area. Pre-publishing data is stored in the SQL database as XML.

Once a week, XSL is used to convert the XML data to ASP and HTML, which is then

flushed to the IIS Front-End servers.

DealerPoint Architecture

DealerPoint has the same basic hardware architecture as CarPoint. It is built using a three-

tier model with data access on the back end, business objects written in Visual Basic on

the middle tier, and a specialized presentation (rendering) language and engine on the front

end called TWERP. The CarPoint team built TWERP because of perceived problems with

XML and XSL. Specifically, their HTML was not completely well formed, necessitating

a large HTML to XML migration effort. They also saw problems with handling BLOBs

in XML. They have since changed their opinion of XML and will probably migrate to

XML in the near future.

4.9.2. Issues

Tradeoffs between rendering speed and flexibility have been an ongoing struggle. In the

first implementation, CarPoint used SILK as their rendering language instead of ASP.

Originally, CarPoint kept all of their live data in SQL databases. For every page, they used

ADO via ASP to connect to SQL and get the most up-to-date data. They soon realized that

access to the database (setup and teardown of connections) was killing them. Around the

same time SILK was developed. Its claim to fame was that it optimized connections to the

database, cached data, and hid most of the details.

At some point, they realized that SILK was not caching everything and there were still

performance problems. They thought about rolling their own FE cache manager but

decided that it was too expensive to build.

At this point, they stepped back and analyzed their content flow. They concluded that if

they updated the bulk of the articles only once per week they could pre-print most content

and push it to the FE boxes. This had three significant benefits. First, the cost of database

access went down. Second, the throughput of the FE boxes increased as most of the

rendering went from dynamic to static content. Finally, because the pages were now static,

they knew at design time exactly what the user was going to see.

They are currently exploring XML/XSL for DealerPoint and possibly CarPoint.

CarPoint updates the contact database as mail comes in. They are considering MSMQ for

reliability between SMTP and the database.

33

4.10. Calendar

Configuration

 Front Ends: 6

 Back Ends: TBD

 Load Balancing: WLBS

Interview Date: July 22, 1999

Calendar is a personal calendaring service in development from the Jump team. Jump

Networks was purchased in April 1999. The Jump site (http://jump.com) is operating as a

beta, but does not accept new user registrations. Jump has 60K users. Over the last 60

days, there have been ~120K calendar transactions: 20K index requests, 3K add requests,

1.5K modify requests, 63K Put requests from synchronizing software (1 per calendar

entry), and 38K batched Get requests from synchronizing software.

The primary usage of Calendar is for external, not self-generated events. Examples of

external events include television schedules, CD release schedules, and concert schedules.

Aside from banner advertising, the majority of income comes from advertisers who

schedule promotional events into user's calendars (subject to user approval).

4.10.1. Architecture

The proposed Calendar architecture consists of the following:

 Client software. Users can access Calendar either through HTML, XML, or

program specific relay protocols.

 Web Front Ends (6 machines, 4x Xeons). These run ISAPI extensions in IIS on

Win2K. FEs communicate with back-end servers using one OLE DB (ODBC)

connection per server. FEs select the back-end server for a user using the virtual

resource layer (VRL) developed by MSN Communities. The VRL hashes the user

ID into 10K buckets, then redirects to the resource based on the value in the bucket.

XML front ends and relay front ends exist to support synchronization with client-

based software.

 SQL Back Ends (number of SQL server is still unknown). SQL acts as store

for calendar data. The original Jump architecture used Oracle with no stored

procedures due to poor performance. When we visited the Calendar team, Jim Gray

suggested strongly that they use SQL stored procedures. Oracle’s support for stored

procedures is very weak, but stored procedures work very well under SQL Server.

Front

Ends

..6..

WLBS

Client Browser

Internet

LAN

SQL SQL..?..

http://jump.com/

34

4.11. Chat

Configuration

 Front Ends: 15

 Back Ends: 9

 Load Balancing: DNS

Interview Date: July 21, 1999

Chat support two types of community rooms: user-created communities (UCCs), chat

rooms created by users for the topic of their choice, and social chat communities (SCCs),

chat rooms sponsored by MSN. UCCs tend to be short lived and low volume. The typical

user will check in and out of a number of chat rooms before settling into a room for the

evening. Peak time is in the evenings.

4.11.1. Architecture

The current MSN Chat system uses an Exchange 5.5 backend with a large set of

modifications for performance and customization in a star topology. Users connect to an

Exchange server on the edge of the star. Chat messages to other users in the same room,

but on a different server must pass through a server at the center of the star. Center servers

are the primary bottleneck. Effectively users are bound to machines. Each Exchange

server will support about 4000 simultaneous online connections. The average room

contains 20-30 people.

Chat's new architecture will bind rooms to a machine and direct users to that machine. No

room will ever span more than one machine, reducing the cluster from a star to a flat

topology. Release date for the new architecture is late September 1999.

The Chat architecture consists of:

 Chat client software. The current system supports any chat client using the IRC

protocol. About 78% of users come in through custom Win32 clients. In the next

release, chat will move to a proprietary client. The proprietary client will support

MSN advertising. While the change will reduce the number of current clients,

simultaneous they will advertise Chat heavily to HotMail users (over 80% of whom

use Win32 machines). Chat will contract out development work for Macintosh and

WebTV clients. WebTV users account for about 15K of Chat’s simultaneous

online connections.

 Front-end chat servers (FEs) (15 machines). Users connect to the front ends to

find and create chat rooms. Pages are rendered with ASP. FEs retrieve chat room

information from the directory server (DS).

Back-end LAN

DNS Round Robin

Chat

Servers

..8..

Browser &

 Win32 Client

Internet

Directory

FE

..15..

Directory Server

35

 Directory Server (DS) (1 machine). Maintains list of all chat rooms and mappings

of users to chat rooms. Gather statistics from Exchange back ends. Design goal is

to support 40K simultaneous online connections per DS with one DS in the system.

The interface from DS to Exchange is proprietary.

 Exchange servers (8 machines). Support chat rooms. Both the old and new

architectures use eight Exchange servers, although in the new architecture all eight

servers directly host users.

With the new architecture, their single point of failure moves from the hub of the Exchange

star to the DS. They are mulling over ways to make the DS more scalable.

Their intention is to push point-to-point communication (like file transfer, audio, and

video) to MSN Instant Messaging.

4.12. Communities

Configuration

 Front Ends: 6

 Back Ends: 8

 Other Boxes: 2

 Load Balancing: WLBS

Interview Date: July 15, 1999

The MSN Communities service provides a site for users with common interests to share a

space. The shared community space includes web pages, picture albums, distribution lists,

and a chat room. Their primary competitor, Yahoo, has about 150K clubs. The service is

inherently scalable because it can be partitioned by community.

4.12.1. Architecture

Key components of the architecture:

 Client browser. Basic HTML and some JavaScript, no ActiveX controls.

 Front-end web servers (FEs) (6 machines). MSN Communities uses two classes

of front-ends: Content Stores (CSs) and Attributed Community Stores (ACSs).

They use WLBS to load balance across one shared IP address for the CS servers

and another for the ACS servers. A "vanity" ISAPI filter converts user friendly

URLs to site internal URLs. Each CS can process approximately 300 requests per

second; each ACS can process approximately 250 requests per second. The

rendering engine is based on the Sidewalk engine.

 Virtual Resource Layer (VRL). The VRL sits on the FEs and maps requests from

web FEs to backend SQL databases and NetFilers. The VRL hashes a key into one

of 10K buckets. Each bucket contains a set of resource pointers (about 6 different

WLBSWLBS

Net

Filers

..2..

CS

SQL

CS

SQL
..3.. ACS

SQL

Admin

Admin

SQL

CS

FEs

..3..

ACS

FEs

..3..

Internet

Client Browser

36

data types) to backend servers. The system can be re-balanced by updating the

resource pointers in the buckets.

 Passport authentication. External machines.

 Back-end SQL servers (8 machines). SQL servers are divided into storage for

CS and ACS.

 Back-end NetFilers (2 machines). NetFiles provide BLOB storage for web pages.

 Other servers (5 machines). One administrative machine, one administrative SQL

server, and three machines for publishing and notification services. The

notification service sends email to users on activity or content change within the

communities to which they belong.

4.13. WebTV

Configuration (Per cluster)

 Front Ends: 23

 Back Ends: 1 1/3

 Other Boxes:

 Load Balancing: Custom

Interview Date: August 6, 1999

WebTV is a full service comprised of WebTV boxes (thin clients with no unique persistent

data) that reside at the customer’s premises and a set of service machines located in WebTV

run data centers.

Approximately 75% of boxes are turned on each day – average session per box is ~100

minutes. Users access the WebTV servers through 36 ISPs, both regional and national.

Selection of the ISP is transparent to the customer and is driven based on analysis of

WebTV’s data warehouse. Boxes dial into different ISPs based on time of day and user

usage patterns to minimize cost while still giving a good customer experience. WebTV’s

single largest expense is the cost of user connectivity even though costs have been reduced

by a factor of three since the service was launched.

4.13.1. Architecture

WebTV’s has a theoretical Service Group, the set of machines with inter-dependencies

required to deliver service to a customer and provides a deployment guideline for

capitalization costs. However, they acknowledge that the “clean” Service Group turns into

a myth as the operators drive to reduce cost. Cost reduction often drives “pooling”.

Pooling involves hosting more than one service on the same machine and sharing machines

between service groups when isolation between service groups is not required. Another

interesting aspect of “pooling” is that it affords the opportunity to run a small service on a

Internet

User

Database

WebTV Client

mailtod ..2.. postoffice ..2.. storeless ..3.. web proxy ..8..newsd ..4..storeful ..3..

Net Filer

37

collection of machines to achieve N+1 availability. WebTV defines the following

clustering rules:

 Persistent data servers (the back-ends) tend to define how you cluster the front-end

machines.

 Grouping will be influenced by costs

 Service group size is defined by the exposure you are willing to face when a back-

end machine dies.

Front ends run services that customers hit directly. WebTV front ends have no unique data

and can be easily replaced. The hardware for front ends is selected for the price-

performance “sweet spot,” but not necessarily the machines best suited for the task. Front-

end machines are expected to die and the system provides mechanisms to route around

failed front ends. In the most catastrophic event, a WebTV set-top box will dial a set of

800 numbers to hunt for a WebTV configuration server.

WebTV back ends are stateful. Backend services must be hosted on highly available

platforms. Backend hardware is selected for maximum performance to reduce the number

of expensive servers and enable large pools of front-end servers. WebTV typically uses

Network Appliance Filers running the NFS protocol for persistent data storage. These

machines were selected for their high performance characteristics and high reliability.

WebTV is not pleased with all of the characteristics of NFS, but chose it as a matter of

expediency. WebTV built a “UserStore” abstraction so NFS filers could be replaced at a

later date if appropriate.

A WebTV Service Group contains the machines needed to service 75K customers. For

provisioning purposes, WebTV assumes a maximum of 12% of their customers will be

online at any given point in time. As a result they need to configure for ~9,000

simultaneous online connections per service group.

The unique part of a service group is seven “storeful” machines bundled around a NetApp

Filer for persistent storage. Storeful servers support user-oriented services (except cookies)

that require persistent storage, including mail and Usenet news.

As noted above, each service group also needs a portion of some pooled resources.

Normally these resources are left in one large pool. When WebTV stages roll outs, some

machines might be un-pooled and assigned directly to a specific service group to isolate

new service software. When a new service group is installed, the following resources are

added to WebTV’s pooled resources:

 Fair share of a Cookie Clusters (3 FE machines, 1/3 of a NetApp Filer)

 Storeless servers (1.5 machines).

 Proxy servers (12 machines), which are used to access all external web pages and

convert them to WebTV device friendly data.

There following services that are shared globally:

 4 Customer Database: 1 Central Read/Write Database, 2 Load shedding read-only

databases (can be fail-over read/write if needed), 1 Billing read-only database.

38

 3 Electronic Program Guide Services (Sun E450s with lots of disk)

 10 Mail Notify Servers (tracks online clients and send UDP packets to boxes to tell

them they have new mail)

 8 Mail Gateways: 2 internal transit, 8 incoming (will drop to 2 when we deploy

next generation MTA in the next few weeks), 2 outgoing mail hosts

 7 Logging Hosts: 1 harvester (aggregated all logs), 2 servers which make the

aggregated data available to various tools, 4 machines which run various other

monitoring services.

 4 Administrative Hosts: remote console service, network boot server (golden

master machine) and general administrative tools.

 2 Radius servers used by external ISP/IAPs to authorized our customers access

 3 DNS name servers

 2 Ad servers (the only NT boxes in our service)

 3 FlashROM servers – used to upgrade client boxes

 2 machines used for running backups

 2 Scriptless servers to configure new machines.

Communication between set-top boxes and the FEs is handled though persistent TCP

connections. Set-top boxes communicate via a custom protocol called WTVP (Web TV

Protocol). Essentially, WTVP is an extended HTTP 1.0 (WTVP was created before HTTP

1.1), WTVP includes:

 Persistent connections.

 Encryption and authentication using a shared secret.

 Compression.

 Specialized headers with commands to reboot the WebTV box, flush its cache, and

manipulate the backlist on the WebTV browser.

 “Tickets” – an opaque blob similar to today’s cookies. The ticket arrives in the

HTTP header encrypted with a service key and is passed on every connection.

Load balancing is achieved with two technologies. First, the login service for WebTV,

called headwaiter, provides a service routing function. It hands a round-robin list of

multiple servers for each service a client requires. If one server fails for a given service,

the client retries the next server in the service list. Additionally, WebTV uses Alteon

switches in front of a set of hosts. The first “server” in a client’s service list is typically a

“virtual” host, which the Alteon hands to an appropriate host.

4.13.2. Development methodology

WebTV’s Solaris-based services use a single master configuration file. The configuration

file lists the identity of all machines in the Service Group, their desired configuration, and

optional settings. All system software is distributed to all machines in the Service Group.

39

A particular machine knows which services to enable based on its entry in the configuration

file. The configuration files uses prototype style inheritance, so configuration values can

be set for the entire service while permitting over-rides based on class of machines, service

groups, or individual services on individual machines.

The WebTV service is highly instrumented thanks to an event logging system that

integrates data from the clients as well as all the services. As a result, it is nearly possible

to track user clicks through the entire WebTV service. WebTV’s logging service aims to

offer high performance and low overhead. WebTV logs over 140GB/day to a central data

center repository. Logs are continually spooled to the repository to avoid the need to make

“offline” moves during off-peak periods. WebTV uses a flexible logging API with support

for strings, integers, doubles, a GMT timestamp, and arbitrary BLOBs. Logging uses a

publisher/subscriber model. Data can be streamed to an arbitrary hierarchy of servers.

Subscribers can filter just the events they want. GMT timestamps facility correlation of

logged events.

Each service has a corresponding test harness used by QA for validate correctness of a

service. These tests are tied together into a test system that is deployed in WebTV’s

production environment. This permits end-to-end functional testing of the running system

including verifying provisioning for new users.

WebTV’s design expects applications to fail. The design philosophy is that, “if

applications must die, do it quickly; come back quickly; don’t stay in a half dead state.”

WebTV employs a ServiceLauncher that watches for dying application processes.

ServiceLauncher records the failure in the event log, opens an entry in WebTV’s bug

tracking system, saves the process core dump, and performs a rate limited restart to throttle

any machine spinning on a bad restart. Furthermore, WebTV attempts to provide the best

possible degraded service in the face of failure. For example, if a sub-service can’t write

to a database, it provides whatever functionality is available in read only mode. Operations

exploited read-only operation to enable “online” backup of the user database. The WebTV

home page renders whatever information it has so if, for example, news headlines are

unavailable the server doesn’t include any headline related HTML. Finally, most services

are self-healing. For example, if the mail service detects that the table of contents (TOC)

does not match the individual messages, it automatically rebuilds the TOC.

One weakness in the current release of WebTV is a centralized user database. When the

WebTV service was created, it was recognized that there was not enough time to build a

highly available distributed database. So, the WebTV service launched with a single

machine that ran an Oracle 7 database. Most of WebTV’s major outages have been caused

by database failures. Protecting the database (with aggressive caching and carefully crafted

queries) has been a high priority in the software development. In the last four years, the

service has evolved so that the service can run in a degraded mode against a read-only

database while an automated process replicates the customer database to backup machines.

Related to WebTV’s database is a proprietary billing system which was embedded in the

OLTP database used for customer information. The next release of the WebTV service

(their 8th major release) finally splits the billing database from the OLTP database.

40

4.13.3. Operations

WebTV servers are housed in their data center in Palo Alto and in collocation facilities

owned by GNAC (Redwood City), and Compaq (PAIX). Additional machines will be

hosted in the new SVC once it is constructed and possibly in the Exodus facility. WebTV

also experimented with placing servers in the network fabric of one of its major ISPs to

minimize backhauling traffic, though they concluded this was not cost-effective.

All administration and monitoring of WebTV hosts are done “remotely” (e.g. no touch).

Once a machine is racked and wired, it is possible for the operations staff to perform a

diskless boot, load a current operating system, load applications software, and add the new

machine to the WebTV service. All WebTV needs to run a machine remotely is a pair of

hands which can plug cables and replace failed components.

Applications are distributed using multicast. Each service release is in its own directory

tree with no shared bits. It is possible to push new releases while the service is live.

Switching between service releases requires changing a single symbolic link and restarting

the services. The restart is not a machine reboot so machines can be rolled forward (or

back) in a matter of a few seconds. Most OS reboots have been caused by hardware

failures. All of the reboots traced to software were due to Oracle or the Veritas file system.

WebTV has many machines with more than 300-day uptimes.

WebTV operations motto #1: “If you can’t measure it, you can’t see it, and you’re dead!”

Without appropriate measurement tools, “you are stuck in voodoo administration.” Be able

to log every event, but be prepared to change what you store as your needs change. Data

isn’t enough though. Once you pass a hundred machines there is too much noise.

Visualization tools are essential to really understand the health of the service.

WebTV operations motto #2: “Leverage Commands”

WebTV has a tool called NETEXEC, which executes a command on a set of machines that

match a specification in the master configuration file. For example, it is possible to execute

a set of commands on all machines running a proxy server, or all machines that are part of

a particular service group. All operations have command lines, so it is easy to script a

common procedure and then execute that procedure on appropriate machines.

WebTV operations motto #3: “Process Matters”

The larger an organization gets, the more important it is to have well documented (and tool

assisted) processes and procedures. Communication and coordination is extremely

important in a production environment. It is quite possible that human error (often

communication related) is the first or second most likely cause of our customer visible

service outages (the other is Oracle bugs).

WebTV operation motto #4: “We are one.”

WebTV employs an integrated approach to management. With the exception of the

underlying server OS, they control all aspects of their service. (They have no desire to

control the underlying OS.) Both clients and servers are carefully configured, as are the

network and the application.

41

Integration has three key benefits. First, it offers multiple levels of defense for both

security and fault tolerance. Second, it provides opportunities for global optimizations –

problems can be solved were it is easiest. If one type of solution fails to yield the desired

result, they can often fix the problem in a different layer of the system. Finally, integration

reduces finger pointing and turf wars because the entire team works together. Problems

can be resolved readily without waiting for a third party.

Examples of WebTV’s integrated approach to development and operations:

 “We couldn’t make an application protect itself, so we add protection (packet

filtering) at the network layer. Eventually the host can protect itself, but we need

the network protection in place, just in case a mistake is made on the host.”

 “Headwaiter gives basic service routing. Our network team will mostly add Alteon

switches into the network fabric to complement existing service routing.”

4.14. LinkExchange

Configuration

 Front Ends: 12

 Back Ends: 6

 Other Boxes: 20

 Load Balancing: DNS

Interview Date: Sept. 10, 1999

LinkExchange provides Internet services for small businesses. Microsoft acquired

LinkExchange in November 1998. They are early in their planning to transition to

Microsoft technologies.

LinkExchange’s flagship service is BannerNetwork, an advertising network through which

small web sites exchange advertising space. For every two ads participants display on their

web site, they get credit to have their ad displayed once on another web site. LinkExchange

sales the surplus ad space through their Ad Store. BannerNetwork currently serves

between 45 and 50 million ad impression per day.

When a new site joins BannerNetwork, the owner submits a subscription request including

self-categorization any number of BannerNetwork categories. BannerNetwork has over

2,000 ad categories, such as soccer sites or Spanish-speaking sites.

4.14.1. Architecture

BannerNetwork consists of the following components:

DNS RR

NetApp

Image Filer

ORACLE

Ad

Servers

..11..

Internet

Client Browser

Click Server

Master Mind Credit Bank Genie NetApp

Log Data

Downstream

Application

Servers

..20..

42

 Oracle database server (1 machine). Running Oracle 7.6 on a Sun E3500, the

database contains all ad and customer information. The server has 2GB of RAM.

 Front-end Ad Servers (11 machines). The Ad Servers process all ad

opportunities. Ad Servers run FreeBSD and Apache. While LinkExchange has not

modified the FreeBSD sources, they have tuned FreeBSD to support larger shared

memory regions and more processes. In the near future, the front-ends will be

replaced with dual processor boxes.

 Click Server (1 machine). The click server processes user click-through requests

on ads. One click server is more than adequate as typical ads have a click-through

rate of less than 1%.

 Mastermind (1 machine). The Mastermind is responsible for all ad scheduling.

 NetApp image server (1 machine). Web servers retrieve ad images from the

NetApp using NFS.

 Genie server (1 machine). The Genie server aggregates logs from the front-end

web and click servers. It then dispatches the logs to downstream applications. The

file-based logs are collected and dispatched via NFS. A fortuitous side effect of

using file-based logs is that if any downstream machine goes down, its incoming

log file just grows in its absence until it comes back online and consumes the log.

 Credit Bank (1 machine). Acting as a downstream application, the Credit Bank

accumulates ad credits for BannerNetwork participants. Credits are then fed back

to the Mastermind through the Oracle database. Credits are accumulated in a large

memory-mapped database. The Credit database has transactional, but not

relational, properties.

 Downstream application servers (20 machines). Including the Credit Bank,

BannerNetwork has twenty-three downstream applications include tools for

counting inventory (for sales), site profiling, and log archival. Some of the

downstream applications are small enough that they share a single server. One of

the downstream apps is large enough to have a dedicated Oracle database machine.

The site profiler maintains a running profile for all account and user profiles for

targeted marketing.

All of the BannerNetwork machines are located at the Frontier Global Center in Sunnyvale,

a one-hour drive from LinkExchange’s San Francisco offices. As such, remote consoles

are an absolute necessity. In general, LinkExchange personnel only travel to Sunnyvale to

replace hardware.

Once accepted into the BannerNetwork, the participating web master adds the following

HTML to the site:

43

<!-- BEGIN LINKEXCHANGE CODE -->

<IFRAME SRC=http://leader.linkexchange.com/5/X1132997/showiframe?

 WIDTH=468 HEIGHT=60 MARGINWIDTH=0 MARGINHEIGHT=0 HSPACE=0 VSPACE=0

 FRAMEBORDER=0 SCROLLING=NO>

 <IMG WIDTH=468 HEIGHT=60 BORDER=0 ISMAP ALT=""

 SRC="http://leader.linkexchange.com/5/X1132997/showle?">

</IFRAME>

<!-- END LINKEXCHANGE CODE -->

When a browser views the participating web page, the LinkExchange code issues an ad

request to the Ad Servers. The Ad Server writes the request to the Mastermind, records

information about the request to the Click Server, and logs an event. The Ad Server then

returns the selected banner URL to the browser based on response from the Mastermind.

Image URLs are actually a redirect to the image servers. This redirect defeats caching for

ad counting, but enables caching of previously seen banner images. The architecture

supports multiple Masterminds, but only a single Credit Bank as the Credit Bank owns

synchronization of the authoritative ad-credit database.

Ad Servers cache account and ad information from the database. The receiving Ad Server

asks the Mastermind which banner should be shown through Mastermind relay daemon

running on the Ad Server.

In general, processes in the LinkExchange system communicate through three

mechanisms:

 Relay daemons with local shared memory. To improve tolerance of network

latencies and simplify timeout-related code, LinkExchange components seldom

cross-communicate across machines. Instead, the client component communicates

with a local server relay through a shared memory segment. The server relay

forwards the request to the server machine. If communication with the server

machine times out, the server relay provides the client with a reasonable default.

 Logs. The producing process writes events into the common log. Logs are

aggregated by the Genie and dispatched to downstream applications. The

downstream applications filter and consume log events. The front-end web servers

generate between six and eight GB of log data every day.

 Shared database tables. The producing process writes into the database table and

the consuming processes reads from the table. Shared database tables are used

primary for latency-tolerant feedback, such as to adjust ad schedules based on credit

for ads shown.

Multiple Apache processes on a single Ad Server communicate with one local Mastermind

relay. The Mastermind relay can aggregate requests to the Mastermind machine as

appropriate. The Mastermind caches account information from the account database and

receives updated ad counts from the Credit Bank every 10 minutes. The Credit Bank filters

log events to determine which participating web sites should receive ad credits.

Ad inventory management is a problem. BannerNetwork has approximately 1 million

participating web sites (acting as 1 million ad sponsors) with 400K active sites in any given

month. Ads must be shown based on credit information and site characteristics like “soccer

http://leader.linkexchange.com/5/X1132997/showiframe?

44

sites”. A given site can have multiple overlapping characteristics such as “soccer” and

“Spanish”. In addition to participating web sites, ad space can also be purchased through

the Ad Store. It took one year to develop a working prototype of the inventory management

system.

Variables affecting ad inventory include site category, site rating, banner type, banner size,

site exclusions, IP domain (like .edu or .uk) for either site or user, user’s browser type,

user’s operating system, or stored user information like their geographic region from

ListBot. 33K sites account for 80% of BannerNetwork’s ad inventory.

4.14.2. Development

All of the LinkExchange front-end code is written in ModPerl and runs inside the Apache

process. ModPerl is a sophisticated, in-process Perl5 interpreter. About one year ago,

LinkExchange did a whiteboard survey of a number of rendering options ranging from

Perl, Java, and C++ to Scheme, Python, ColdFusion, and ASP. Perl was chosen primarily

for its large body of readily available libraries; the Comprehensive Perl Archive Network

(CPAN) has over 200 modules. Perl also has a strong developer community. ModPerl

was chosen for performance; it operates in process and does not start a new process on each

web request.

LinkExchange management feels that the choice of scripting language is of lesser

importance compared to the choice of database connectivity. Connectivity is a major

performance problem. Rather than use solutions such as ADO, RDO, or even ODBC,

LinkExchange uses a custom Oracle OCI data connector. While their OCI data connector

has been great for performance, it has impeded their movement from Oracle 7 to Oracle 8.

Called DA Server, LinkExchange’s data connector has explicit notions of database caching

and database modeling.

LinkExchange’s developers are intimately involved with operations; they carry pagers.

LinkExchange uses a 13-week planning cycle feeding into a 6-month development cycle.

In general, no single program takes more than 13 weeks to develop and deploy.

Infrastructure development is separated from product planning. Development resources

are divided with 40% to infrastructure, 40% to new features, and 20% to reactionary needs.

They are 6 months into the rollout of their next infrastructure with an 18-month planned

lifecycle. The goal of the new infrastructure is to scale to 1 billion page impressions per

day. The target was set in January and the first pieces of the architecture were rolled into

day-to-day production in April.

In the past, LinkExchange didn’t have separate staging servers and deployed servers. They

once lost their entire database due to a programming error. Through heroic efforts, they

recovered the database in one day, but they have since opted to stage deployment.

45

4.15. LinkExchange ListBot

Configuration

 Front Ends: 17

 Back Ends: 1

 Other Boxes:

 Load Balancing: DNS

Interview Date: Sept. 10, 1999

ListBot is LinkExchange’s free service for email distribution lists. Just six months ago, a

prior version of ListBot, written by a single developer, ran on a single machine. As demand

on the service increased, the system has been re-architected to run across a cluster of at

least 18 machines. ListBot has 16.7M subscribers, supports 560K distribution lists, and

processes approximately 5.7M email messages per day. Thirty percent of ListBot’s email

recipients are international.

4.15.1. Architecture

ListBot consists of four components:

 Oracle backend database (1 machine). The database runs on a SPARC Ultra

E450. The size of the machine was chosen to pick a “sweet spot” in Oracle’s

pricing. The server has 150GB of online storage of which 90GB is currently used

for live data. Most of the live data is devoted to an online message archive for the

distribution lists. Other components of the architecture connect to the database

through LinkExchange’s DA Server OCI connection provider.

 Front-end servers (5 machines). The front-end servers act as web servers and

incoming SMTP servers. ListBot front-end servers are dual processor Pentium IIIs

running Solaris. Users access the web servers to manage their current distribution

list subscriptions. Users can also access the distribution list archive through the

web servers. The current web servers run out-of-the-box Apache with pure C++

CGI extensions. Load is balanced across the web servers through DNS round robin.

The incoming SMTP daemons receive all email messages bound for distribution

lists. The SMTP daemons filter email messages to remove spam. Only

authenticated members of a distribution list are permitted to submit messages.

After filtering, the email message is copied to the Oracle archive and placed on an

outgoing Oracle queue

 Outgoing SMTP servers (12 machines). The outgoing SMTP servers poll for

messages on the Oracle queue. A child process forks with the email message,

attaches a list of recipients, then launches a copy of QMAIL to distribute the

message. QMAIL forks off one child process per recipient. The turnaround time,

DNS RR

ORACLE

Web &

Incoming SMTP

..5..

Outgoing

SMTP

..12..

Internet

Client Browser & Email

46

from receipt at the incoming SMTP server to full distribution is normally less than

one minute. Outgoing SMTP servers are dual-processor Pentium IIIs with eight

10K RPM disks and 512MB of RAM each.

4.16. Hydrogen

Configuration

 Front Ends: 7

 Back Ends: 3

 Other Boxes: 1

 Load Balancing: DNS/WLBS

Interview Date: Aug. 17, 1999

Hydrogen is the code name for Microsoft’s entry into shared-hosting web site solutions for

small business. Hydrogen also provides the capability to commerce-enable these sites to

allow small businesses to sell products over the web.

In its first release, Hydrogen plans to appeal to small business end-users, by:

 Allowing them to build web sites that are useful, attractive, and tailored to their

business.

 Enabling them to easily create and manage sites by themselves.

 Making it easy for them to upgrade an existing web site to a commerce-enabled

web site.

Users create web pages with a template-based web wizard. After creation, pages can be

edited through the wizard or through Microsoft Front Page. Users can combine templates

with Hydrogen-provided services such shopping carts.

Templates separate the look and feel (in HTML) of a page from its data (in XML). Updates

to a template are automatically visible in both pages created with the template and the web

wizard. Templates are authored in Front Page and can be edited by the 6000+ Certified

Front Page Professionals.

Hydrogen enters beta testing for version 1 in October 1999, followed by a full roll out in

November 1999. Service goal is to support 5000 sites by late December. Hydrogen can

support approximate 500 sites per server. Yahoo, Hydrogen’s primary competitor hosts

7000 users after 1 year in operation.

4.16.1. Architecture

Hydrogen’s major components are:

 Authoring web servers (3 machines). Small business clients connect to the

authoring servers to generate their web pages. Business web pages are stored on

the backend SQL database.

Secondary

DNS & SMTP

..2..

WLBS

Job Server

SQL

Server

Primary DNS

Authoring

Servers

..3..

Rendering

Servers

..2..

Internet

Client Browser

WLBS DNS

47

 Rendering web servers (2 machines). These servers render web pages when end

users (clients of the small businesses) connect to the small business web sites.

 DNS servers (3 machines). One primary and two secondary DNS servers host the

top-level DNS names of the small businesses.

 SQL Server (1 machine). Holds XML for all small business web sites and

Hydrogen support data.

4.17. Passport/Wallet

Configuration

 Front Ends: 25

 Back Ends: 10

 Other Boxes: 1

 Load Balancing: WLBS

Interview Date: Aug. 11, 1999

Passport will provide a unified site logon for all MSN sites. In addition, Passport will

provide a universal login across potentially thousands of partner sites. Passport hopes to

lower the barrier for e-commerce by eliminating forms and increasing users’ sense of trust

and security. As a secondary feature, Passport will share profile information with partners.

Passport consists of two major, end-user visible components: Passport, which gives the

user one login ID associated with an email account and granted by a Domain Authority,

and Wallet, which provides secure access to credit card information enabling one-click

buying to become pervasive.

Passport has two sets of customers: end users, who register with passport to receive an ID,

and partners, sites like MoneyCentral, barnesandnoble.com, etc., who want to use passports

single user ID and wallet information to facilitate e-commerce. Partners will install the

Passport manager to broker Passport logins, manage cookies, and transfer wallet data.

Passport implements “Kerberos” style authentication with cookies, all created on the

Passport login server. Passport supports three types of cookies: ticket-granting cookies

(SSL only), Passport domain cookies (encrypted using Passport key), and partner site

cookies (encrypted using site key found in Nexus data).

The ticket-granting cookie (ID + timestamps) is created at login time and marked as SSL

only. The process of acquiring a ticket-granting cookie involves authentication. The goal

is to have this occur only one time per session. Typically, a Passport domain login cookie

is also created at the same time.

If a partner does not have a cookie for a user, the user is redirected to a Domain Authority.

Since all Domain Authorities are children of the Passport domain, the (parent’s) cookies

WLBS
WLBS

WLBS

WLBS
WLBS

WLBS
WLBS

SQL SQL

Profile

Store

..6..

Internet

Client Browser

Login

..6..

Registration

..4..

Wallet

..4..

Member

Service ..4..

Nexus

..3..

Images

..2..

passport.com

..2..

ID Generators

..4..
CRS SQL

Stager

Partner

Web Site

http://barnesandnoble.com/

48

are sent as part of the (redirected) request as well. If the info in the Passport cookie is still

valid, it is re-encrypted using the site’s key and sent back to the user with a redirect back

to the partner site. The site then uses this info to write a local cookie for the user (to shortcut

this the next time). The implication here is that every time a new site is hit the some

(Domain Authority) login server will be accessed. If the passport ticket is still valid, a

simple .ASP or CGI script can be used to transform the data. This will therefore not involve

either user intervention or membership identification lookup – this can be done on a login

server (frond end box) of any Domain Authority.

In the advent of ticket expiration, access to the “correct” Domain Authority is needed. The

initial steps are similar to above with the following exception: when the Domain Authority

recognizes that the ticket is invalid, it inspects domain name of the user. It then additionally

responds to the user another re-direct to the “right” Domain Authority over HTTPS (SSL)

(the domain is derived from membership ID in passport cookie). This time, the ticket-

granting ticket is passed as well and is updated (this may involve a membership database

lookup to validate the password).

4.17.1. Architecture

The MSN Passport cluster consists of 25 front-end IIS servers and 11 back-end SQL

servers:

 Front-end Nexus servers (3 machines). Central servers that maintain domain map

including Domain Authority partners, encryption keys for all partners, and

miscellaneous info like URL for co-branding logins. Nexus info is pushed/pulled

to all Passport domain components as well as all Passport partners at regular

intervals. The Nexus is stateless; all information is gathered dynamically when a

new Nexus comes up.

 Front-end passport domain servers (e.g. www.passport.com) (2 machines). A

namespace containing one or more Domain Authorities. Domain Authorities issue

user IDs (and supply email). They are responsible for Passport registration, login

(revalidation), and update according to spec. Domain Authorities are free to

authenticate users however they like (HotMail will use their current scheme, MSN

is growing their own, MSNIA will use Concorde). Domain servers are stateless.

 Front-end wallet servers (4 machines). Contain user credit card(s) information.

Credit card information is sent via SSL as a post from centralized servers (MSN)

to the partner. Uses ECML (Electronic Commerce Model Language) to describe

data (nothing more than well-defined named parameters for HTTP post). The

Passport wallet feature is intended to simplify “buy-now” and “one-click buying”

by eliminating (repeatedly) filling out forms. This feature really has nothing to do

with passport authentication. Wallet servers are stateless.

 Front-end login servers (6 machines).

 Front-end registration servers (4 machines).

 Front-end update/member services servers (4 machines).

 Front-end static image servers (2 machines).

http://www.passport.com/

49

 Back-end SQL profile stores (6 machines).

 Back-end ID generators (4 machines).

 Back-end CRS/SQL stager (1 machine).

4.17.2. Deployment Plans

The initial deployment of Passport will occur at HotMail. HotMail front-end boxes will

continue to run FreeBSD. Login will be done using a CGI script.

HotMail now has three login server clusters: the old cluster, an SSL cluster, and a non-SSL

cluster. The old will now act as a partner site (hotmail.com). The non-SSL version of the

Passport login server (*.passport.com) exists because HotMail is worried about SSL

performance even though they use external boxes to generate SSL keys.

Abstractly, the HotMail MSERVs and USTOREs will act as the “SQL backend”. MSERVs

are the indexes. USTOREs provide the data, including password for authentication. All

data to user is served via the front-end engine. Front ends will continue to communicate

with USTORES via XFS.

In the current plan, HotMail will be the only Domain Authority at Passport launch.

Passport.com will be hosted at MSN for third parties (and possibly MSN Passport

accounts). Third party mail will be hosted at HotMail. Passport will ask merchants to

support Wallet initiative for Christmas this year, but not participate in Passport

authentication.

In the next release, Passport will define more data to put into user profile by augmenting

the static schema with a flexible schema. It will allow users to define what is discretionary

and what is not, although choosing an appropriate user interface for this is very difficult.

They hope that the flexible schema will be an incentive for merchant adoption.

There are a number of interesting and unresolved issues relating to international Passport

Domain Authorities. They may want to have a Domain Authority in a country X so that

access for users and merchants in country X is optimized. However, users in country X

may roam the entire planet; for these cases, access could be much worse if, for example,

users from country X spend most of their money at US web sites.

50

4.18. AdsTech

Configuration

 Front Ends: 54

 Back Ends: 36

 Other Boxes:

 Load Balancing: WLBS

Interview Date: August 4, 1999

MSN Advertising Technology Group (AdsTech) provides advertising technology to all

MSN sites. AdsTech serves close to 150M ad impressions per day. Like Passport,

AdsTech provides an infrastructure service rather than an end-user service. The

“customers” of AdsTech are FE boxes at the various properties that need to insert an ad

onto a page before shipping it to the final end user.

AdsTech runs nine advertising clusters: seven for sites in the US and two for international

sites. Large services, such as MSNBC, use an entire cluster. AdsTech recently began to

host HotMail's advertisements.

4.18.1. Architecture

The AdsTech cluster architecture consists of the following:

 Ad Client SSO. Supplied by AdsTech and hosted on FE machines of properties

utilizing the AdsTech service.

 Ad Engines (AEs) (6 machines). Ad Engines receive the GetAd requests from the

AdClient SSO, select an ad, and return HTML. The Ad Engine will be described

in more detail to follow.

 Ad Database (ADB) (2 machine). The Ad Database contains the list of all ads to

be served, their schedules, and their impression counts. The ADB is also the

integration point with line-of-business (LOB) tools.

 Image Servers (ISs). IIS servers that serve up static GIF, JPG, HTML, and

dynamic ASP. The HTML generated by the Ad engine includes URLS to these

machines. The current Quad 500MHz Xeons can server 150 images per sec

(average ad size is 10KB).

 Click Server (CS) (1 machine). Needed to support down-level clients that do not

support floating frames (IFRAME)

Ad

Engine

..6..

WLBSWLBS

Client Browser

Internet

Ad

Engine

..6..

ADB

SQL

Click

Server

MSN Site

w/ Ad SSO

..9..

ADB
Backup

Config

Server

ADB

SQL

Click

Server

ADB
Backup

Config

Server

Arc Server

51

Flow of control through the servers is as follows:

1) Client browser requests content from MSN content server. Content server makes

ad request via client SSO. Ad Server retrieves correct ad from schedule. Ad Server

sends context of request to Click Server. Content is returned.

2) As content renders it encounters HTML tags (SRC=) asynchronously directing

request to Core Ad Server, which returns path to correct ad.

3) Browser retrieves ad from Central Ad server.

4) User with current browser clicks on ad banner. Ad Engine retrieves the redirect

URL and counts the click through. User with downscale browser clicks on ad

banner, Click Server binds context then retrieves the redirect URL and counts click

through.

4.18.2. Software Description

On quad-processor Xeon 500MHz machines, the AE runs 16 threads, and fulfills 800 ad

requests per second. Performance is affected by three main factors: number of schedules,

number of targets per schedule, and hardware (faster hardware really helps). The MSNBC

Engine (4x500 Xeon) has 2000 schedules, and averages 1.7 targets per schedule. For

MSNBC, AdsTech processes 300 ads/second at 20% CPU utilization. AdsTech goal is to

increase to 2000 ads/second.

On every ad opportunity, the FE invokes the SSO that, in the general case, makes one

round-trip "GetAd" call to the ad server. The GetAd call includes a set of properties. Two

properties are mandatory: 1) the ad size, an abstract value that includes not only the size of

the ad, but also the placement of the ad (such as on the top banner, etc.). The GetAd call

also includes a MS GUID. The FE SSO has fail-over strategies to do things like display a

standard ad when it can't reach an ad server. The return value from the GetAd call is stream

of HTML.

GetAd uses a custom ASCII protocol. To improve performance, high volume page groups

are cached entirely within the SSO. High volume pages account for about 1% of the site

pages, but drastically reduce the number of GetAd calls.

Hotmail (and other remote sites such as WebMD and FairMarket) access the GetAd call

via HTML that calls a cluster of FE servers that are run by AdsTech that have AdClient

running as an ISAPI extension (these servers are called Arc servers). The HTML makes

use of the IE <IFRAME> tag to serve the ad. Here is an example of the HTML:

<IFRAME SCROLLING=NO HEIGHT=60 WIDTH=468 FRAMEBORDER=0

 src="http://arc5.msn.com/ADSAdClient31.dll?GetAD?PG=HOTROS?SC=LG">

</IFRAME>

AdClient can also serve from a local “valve” cache (like High Volume page groups) based

on an ad per second threshold. The current HotMail Arc cluster (15 servers) allows 800

ads per second to pass through to the AE and the rest are served from the valve cache.

With newer browsers, ads are embedded in an HTML IFRAME. When a user clicks

through an ad, an ad ID embedded in the referenced IFRAME HTML tells the AE which

52

ad the user was shown. The AE then retrieves the destination URL (all click throughs

return to MSN AEs for accounting). Due to architecture constraints, if the user's browser

does not support IFRAMEs, the ad HTML cannot contain the ad ID. Instead, the ad ID is

stored on the CS by the IS redirector, then retrieved from the CS at click through.

Ads are displayed based on an ad schedule. The schedule includes the ad's content (called

its creative), the impression goal (number of views), and the period to which the schedule

applies. MSNBC runs approximately 2000 ad schedules at a time.

Every six hours, the latest ad contract data are converted to ad schedules and placed in the

ADB. Ad contracts come from network promotions (about 10% of all ads on MSN), line-

of-business (sales), and local site-originated ads. Every 5 minutes the AEs flush their

private impression counts to the ADB and then retrieve the latest schedules (including the

global impression counts).

Within the AE, ads are served from a list sorted by priority of display. The list only

includes those ads that are below quota based on their ad schedule. When a new ad request

arrives, the AE linearly searches through the list for the first ad that matches the GetAd’s

properties. Each ad schedule is augmented with a frequency control counter (valued from

0 to 15). An ad is only displayed if its frequency control counter is zero. If the ad matches

the properties, but has a non-zero count, the count is decremented and the search continues

down the list. If the search reaches the end of the list, it restarts at the beginning. The AE

guarantees that there is always at least one ad in the list. In the worst case, the AE must

loop through the list 15 times (to decrement the single matching ad’s counter from 15 to 0.

The AE's active schedule list is updated every 30 seconds. The update algorithm creates a

new list then swaps the new list with the old list to minimize synchronization costs.

4.19. MSN Operations

Configuration N/A

N/A

Interview Date: June 22, 1999

The MSN Operations Team is charged with day-to-day operations of most of the MSN

properties. Functionally, they operate between MSN sites and onsite ITG Canyon Park

operations staff.

The typical MSN property uses WLBS for balancing across disjoint clusters (HMC has 42

web servers, 7 groups of 6). The typical MSN property consists of a front-end cluster, an

ad cluster in AdsTech, an image cluster for static content, redirection (through WLBS),

and a layer three switch (Alteon or Cisco 6500).

Features MSN Operations would like to see in the software platform and services:

 I/O Filters.

 Dump tracing tools.

 Serviceability: applications should work in "read-only" mode if they system can't

write to store, etc.

53

 Configuration management and propagation (how to change registry key on all 42

machines).

 Mechanisms to create an aggregate view of the system for marketing, application

owners, etc. MSN servers generate on the order of 3-4GB of IIS logs per day. The

backend LAN is 100Mbps. They have to schedule data-movement jobs carefully

to avoid using all of the bandwidth.

 Job engines, batching, etc.

 Tighter integration with line-of-business systems, for example to transfer output

from e-commerce to SAP, etc.

5. Conclusions

If the megaservices we have visited are any indication, Microsoft’s markets are changing

from product-oriented to service-oriented. In shifting to service markets, we must change

our mentality to focus firstly on maintainability, scalability, and availability. Service is

about more than features; it is about providing features when the user wants and expects

them.

Part of providing a service is having a firm understanding of customer needs and usage

patterns. Almost without exception, both the developers and operators at every site we

visited wanted a better understanding of how their customers use their system. They want

to know which features customers are using and for how long.

Customer knowledge is critical to operating a responsive service. One of the hardest

lessons our developers have learned is that in the service business, data is more valuable

than user interface or algorithms.

Most importantly, a service must stay up. It must give the user service no matter how

serious the internal failure. Services must assume that failures will occur and must plan

for them. Because operators are the first line of defense to maintain the service, they are

the developer’s most important customers. Developers must “delight” operators!

Operators are not just customers; they must also be the developers’ closest partners.

Operations personnel must be involved in the development and deployment planning of

the service. As the developers create the service’s code, the operators must create the

processes that allow the service to function from day to day. The developer’s most

important objective should be to make the operator’s life simple.

The service architecture should be understood by the operators at a very deep level.

Specifically at HotMail and WebTV, the operators have repeatedly saved the service by

exploiting knowledge about the system architecture, sometimes by exploiting features in

ways unintended by the developers. The operator as an adversary won’t do that, but the

operator as a friend and partner will.

In Section 3, we presented our key observations from visits to eighteen of Microsoft’s

Internet sites. We iterate them here by the three crucial abilities of any Internet service:

maintainability, scalability, and availability.

54

Maintainability:

 Operations teams should be integrated into product development.

 Simple, understandable solutions are best.

 Configurable off-the-shelf solutions are preferred to custom code.

 Low-tech rules.

 Less is more: Users and operators choose service over features.

 A service is never finished.

 Side-by-side component versioning for rollout is crucial.

 Process isolation and restart increase reliability.

Scalability:

 The network is an integral part of the system.

 Understand your connectivity.

 Partition data careful.

 Load balancing is a core component.

 Cost and performance matter.

Availability:

 Systems should be designed with component failure as a rule not an exception.

 The system should work partially even when components fail.

 A component should never fail due to an external component failure.

 Components should fast-fail on inconsistent state.

 Monitoring is absolutely essential.

 Test suites should be delivered to operations as part of the platform.

	Challenges to Building Scalable Services
	Acknowledgments
	Revision History

	1. Introduction
	2. What is a Service?
	2.1. Service Characterization
	2.2. Load Balancing
	2.2.1. Multiple IP Addresses (DNS Round Robin)
	2.2.2. Hardware Solutions (Cisco, Alteon, F5 and others)
	2.2.3. Software Solution (WLBS)

	2.3. Example

	3. Observations
	3.1. Maintainability
	3.2. Scalability
	3.3. Availability

	4. Services
	4.1. Hotmail
	4.1.1. Architecture
	4.1.2. Operations

	1.1.
	4.2. Home.Microsoft.Com (HMC)
	4.2.1. Architecture
	4.2.2. Development/Testing methodology

	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	4.3. Sidewalk
	4.3.1. Architecture
	4.3.2. Development Methodology/Issues

	1.1.
	4.4. MSNBC
	4.4.1. Architecture

	1.1.
	1.1.
	1.1.
	1.1.
	4.5. Instant Messaging
	4.5.1. Architecture

	4.6. Expedia
	4.6.1. Architecture
	4.6.2. Development and Testing

	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	4.7. MoneyCentral
	4.7.1. Architecture
	4.7.2. Development and Operations

	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	4.8. Windows Update
	4.8.1. Architecture
	4.8.2. Development Methodology and Issues

	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	4.9. CarPoint
	1.1.1.
	1.1.1.
	1.1.1.
	4.9.1. Architecture
	1.1.1.
	4.9.2. Issues

	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	4.10. Calendar
	4.10.1. Architecture

	4.11. Chat
	1.1.1.
	1.1.1.
	4.11.1. Architecture

	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	4.12. Communities
	4.12.1. Architecture

	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	4.13. WebTV
	4.13.1. Architecture
	4.13.2. Development methodology
	4.13.3. Operations

	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	4.14. LinkExchange
	4.14.1. Architecture
	4.14.2. Development

	4.15. LinkExchange ListBot
	1.1.1.
	4.15.1. Architecture

	4.16. Hydrogen
	4.16.1. Architecture

	4.17. Passport/Wallet
	4.17.1. Architecture
	4.17.2. Deployment Plans

	4.18. AdsTech
	4.18.1. Architecture
	4.18.2. Software Description

	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	1.1.
	4.19. MSN Operations

	5. Conclusions

