Optimal Audio-Visual Representations for Illiterate Users of Computers

Indrani Medhi Archana Prasad Kentaro Toyama
Microsoft Research India
“Scientia”, 196/36, 2nd Main
Sadashivnagar, Bangalore - 560080
+91-80-57586000
indranim@microsoft.com archanap@microsoft.com kentoy@microsoft.com

ABSTRACT
We present research leading toward an understanding of the optimal audio-visual representation for illustrating concepts for illiterate and semi-literate users of computers. In our user study, which to our knowledge is the first of its kind, we presented each of 13 different health symptoms to 200 illiterate subjects in one representation randomly selected among the following ten: text, static drawings, static photographs, hand-drawn animations, and video, each with and without voice annotation. The goal was to see how comprehensible these representation types were for an illiterate audience. We used a methodology for generating each of the representations tested in a way that fairly stacks one representational type against the others.

Our main results are that (1) richer information is not necessarily better understood overall; (2) voice annotation generally helps in speed of comprehension, but bimodal audio-visual information can be confusing for the target population; (3) the relative value of dynamic imagery versus static imagery depends on other factors. Analysis of these statistically significant results and additional detailed results are also provided.

General Terms
Design, Human Factors

Keywords
Illiterate users; audio-visual icons; text-free user interfaces.

1. INTRODUCTION
Recent work under the banner of “information and communication for development” considers how computing technology can impact socio-economic development for poor communities [14, 15, 16, 19, 20], minimal use of text[12, 13, 20], voice annotation [17], easy navigability[12, 13, 15, 16, 17,19,20], and the use of numbers for subjects who may be illiterate but not innumerate [15, 16, 17]. All such previous work suggests that information should be provided in graphical, rather than textual, form, with voice annotation on mouse-over as an important component. On the whole, these are obvious and intuitive features.

What is not so obvious, however, is the optimal representation for illustrating a given concept. Are photographs better than abstracted hand-drawn graphics? Are videos or animations better than static imagery? Does the visual representation matter at all, if there is clear voice annotation? Etc.

In this paper, we present a body of research that provides initial answers to these and other questions.

In our initial field studies to identify an application domain, we had seen that the health workers were unable to monitor health information effectively. The ratio of number of paramedical individuals to households was very low. We also saw that in most government-run hospitals, due to the extremely low doctor-patient ratio, long queues of waiting patients abounded. Collecting health information was a time consuming process and most doctors/health workers felt that tremendous amount of their time would be saved if the target community were facilitated to provide their individual records of basic subjective evidence of disease. We therefore decided to design a text-free
health information monitoring form that could be filled out by the patients themselves. This would be stored and sent to both medical practitioners and the public health care department for effective identification of disease and useful information sharing. As we were dealing with an illiterate audience, the interface had to use the medium of graphical representation, and the main question that arose was - which medium of graphical representation would be best suited to aid better understanding of decontextual information.

Our goal was to compare ten different kinds of representations - text, static drawings, static photographs, hand-drawn animations, and video, each with and without voice annotation - to see how comprehensible they were for an illiterate audience.

To this end, we ran a user study with 200 illiterate subjects who were each presented with 13 different health-related concepts to identify, in one of the ten representations mentioned above.

The experiments revealed some unexpected results. Among the findings, (1) richer information does not appear to be better overall, with hand-drawn cartoons faring better than photorealistic representations; (2) voice annotation generally helps in speed of comprehension, but bimodal audio-visual information can be confusing for some illiterate users; and (3) the relative value of dynamic imagery (video and animation) versus static imagery (photo and drawings) depends on many factors. More results will be presented in the penultimate section.

In addition to the results of the user study, we also present a methodology we developed to suit our specific target user group, to generate each of the representations tested. This methodology addresses three of the concerns we had at the beginning of the work: First, what was a meaningful, concrete domain in which to test the abstract representations? Second, how could we ensure that the visual representations we used for the test were comprehensible to the target community, especially when there were cultural differences between the testers (us) and the subjects? Third, how could we ensure a “fair” test between the representation types so that no undue bias existed in the content itself?

2. TARGET COMMUNITY

We based our project in five urban slum communities in Bangalore, India. We gained access into these communities by working with a non-governmental organization (NGO) and a government-run hospital, both of which have been working with people from these slum communities for the past 15+ years.

Most of the people in these slums were either semi-illiterate or illiterate. They were all, however, numerate, and were comfortable reading and writing numbers and performing arithmetic. The average age group of people we worked with was between 25 and 55. They all belong to the lower income bracket, with a combined family income of between 20 to 50 USD per month [24]. All were comfortable with the local language, Kannada; some additionally spoke Hindi or Tamil.

As potential traits which may have biased our results, we report that the subjects were predominantly women (the men were far less accessible, as they worked outside the slums), and subjects all volunteered to participate in the design process.

3. DESIGN ITERATIONS

There were a number of challenges we faced in designing the experiment itself.

First, we needed to identify a good domain in which our ten representations could be compared. It is well and good to try to compare videos against photographs, but what should the videos be of, that our subjects would respond meaningfully?

Second, we needed to ensure that the visual representations that we used were maximally comprehensible to our test subjects. We took special care to ensure that the representations were not our own representations for the concepts, as our subjects had cultural biases different from ours.

Third, we did our best to normalize the representations so that the comparative tests would differentiate between the representation type and not the specific instances of representation.

We describe our approach to solving these methodological issues below.

3.1 Choice of Domain: Health Symptoms

We first needed to identify a domain that would allow us to test the various representations meaningfully. In particular, we felt it was important to work in a domain in which concepts would…

1) Admit to visual representations,
2) Consist of information which they are not exposed to on a daily basis,
3) Have universally recognized meaning,
4) Offer a range of cognitive complexity, and
5) Offer a range of visual complexity.

In addition, we wanted to work in a domain where the immediate results of our experiments could be applied to a practical purpose. Among the different domains we considered – including education, job-related information, government programs, religious rites and rituals, and so on – healthcare seemed to best fit these criteria.

Specifically, we decided to test representations of common symptoms of illness. Medical symptoms readily have visual representations and have semantics that can be understood regardless of culture. They also offer a range of cognitive and visual complexity. We settled on the following thirteen commonly occurring health symptoms: headache, vomiting, difficulty in getting up from sitting position, difficulty in breathing on mild exertion, fever, lockjaw, back ache, skin infection, weakness, swelling of feet, stiff neck, sore throat, and bleeding gums. These symptoms are multimodal in nature, involving elements of color, temperature, and proprioception, and some require motion spanning some temporal duration to illustrate.

Finally, our field studies suggested that efficient medical data-gathering was a pressing need. Much effort could be saved if there were quicker ways to capture health information than through verbally administered interviews. Thus it was appropriate to design a graphical health information collection form which could be installed at primary health-care kiosks so that illiterate patients would be able to enter their own individual health data.
3.2 Culturally Appropriate Representations

Once we decided to use health symptoms as a test domain, we then needed to ensure that the visual and audio representations we supplied were appropriate for the test group.

To accomplish this, we involved a sample design group of subjects, who were part of the same community from which we drew our test group, in our design process. (Note that there was no overlap between the design group and the test group.) Using participatory design methods, we involved the design group in generating gestures for the visual representation of the health symptoms.

3.2.1 Generating Gestures for Graphics

We asked our design group to help us generate gestures and other visual indicators to represent each symptom. There were 20 participants who took part in this exercise. Each participant performed the exercise in isolation, without interaction with other participants. Two techniques were used to elicit the appropriate gestures from our subjects:

3.2.1.1 2D paper cut-out dolls

The limbs of these dolls could be manipulated. The participants of the exercise were asked to depict a given symptom using these paper dolls.

![Figure 1. Subjects maneuvering the paper dolls in the participatory design exercise.](image1)

3.2.1.2 Enacting

The participants were asked to enact the given symptom without using verbal communication.

![Figure 2. Subject enacting the word- “weakness”.](image2)

Participants came in one after another and were asked to go through one of the exercises depending on which they preferred. The session was photographed extensively so that these gestures could then be captured in the design of the graphical elements by a professional artist. Reassuringly, we found that most of the participants showed similar gestures for a given symptom.

In both exercises, we additionally asked verbally, how the symptom ought to be depicted. These questions elicited additional information, such as indications of skin color, etc., that was not immediately captured by the paper-doll or enactment exercises.

All voice annotations were generated by asking colleagues who spoke the native language of the subjects.

3.2.2 Cultural Observations

It should be noted that this design step was essential for the experiment. There were differences in the way we, as experimenters, thought certain words and phrases should be depicted, and the way they were actually depicted by design-group participants. As an example, to depict the symptom “weakness,” we imagined a man feeling dizzy, holding his head, and possibly fainting. But, the participatory design exercise revealed a different depiction: across the board, our subjects identified weakness with physical pain in the limbs. In retrospect, this is consistent with the fact that their daily occupation involved hard physical labor.

3.3 Consistency Across Representations

Our final concern was whether we could fairly represent health symptoms in each of the different visual representations such that there was no bias toward a given representation. To arrive at some consistency, we undertook the following process:

Video: We began by shooting a full-color video clip of the gestures offered by our design group. Videos consisted of short recorded clips of a primary actor performing actions that described a given symptom, as indicated by our design group. The videos also captured secondary information such as skin coloration and background visual context. Videos were shot to take no more time than needed to illustrate the concept as determined by the design group. This resulted in videos of average 13.5 seconds duration.

Photograph: Next, we took the video and extracted one key frame that the design group felt best represented the concept, using the key frame as the photographic representation of the symptom. As with video, textures and colors are captured in this form of visual representation.

Animation: We then asked a professional animator to animate the concept, using the videos as a basis. In all cases, the animator drew cartoon sketches which traced the outlines of only the visual elements relevant to the symptom. Thus, the result was dynamic imagery like video but without photorealistic detail. Color and textural elements were preserved only if relevant in illustrating the symptom.

Static Drawing: Finally, we took the sketch corresponding to the key frame selected for the photograph for the static drawing. Color and textural elements were preserved only if relevant in illustrating the symptom, but obviously, motion elements were lost.

Text: This version consisted of words of written text in the local language, Kannada. The written phrase corresponded with the voice annotation used to represent the symptom.

The result of this process is shown in Table 1.

3.4 Designer Biases

To compare designer intuitions with actual experimental results, we also created a framework to indicate whether we thought a dynamic or static representation would be better suited to capturing each symptom. For example, the designer’s bias towards a dynamic mode of representation (animation) to depict swollen feet was dictated by the notion that a time-based
medium showing the progression from a normal foot to its extreme swollen state would be far more informative than a static visual of the same. Another example is that the designer’s bias for a static medium (photograph) to represent skin pigmentation was dictated by the notion that colour and texture were the primary visual cues for the accurate recognition of this information.

Table 2 shows these categorizations in detail.

4. EXPERIMENTS AND RESULTS

4.1 Participants for the Test

Our 200 subjects were illiterate and semi-literate and were drawn from the same community as mentioned in the target community section. Most of them were never previously exposed to computers. The tests were conducted in community centers near their homes or at their residences, in an environment they were familiar with.

4.2 Experimental Set-Up

We tested all ten representational types, based on the combination of the five visual representations (text, drawing, photograph, animation, and video) and the two audio representations (no audio, voice annotation). We randomized the experiment such that each representational type was tested on 10% of the participants (20 subjects for each representation).

The three-step process of testing was as follows:

1) The subject was shown the representation on a computer, and asked to explain the word or phrase that first came to mind, in regards to the symptom that the character in each representation was suffering from.
2) The subject would then be told what symptom the representation had intended to convey.
3) The subject would finally be asked to enact or depict the intended symptom in a manner that they thought was best representative of it. This step was meant to provide additional insight into the analysis of the data.

Each subject saw only one of the ten representations. For each symptom, we recorded the time taken to respond, as well as the total number of correct answers. In addition, all verbal remarks made throughout the exercise were transcribed for later analysis.

4.3 Quantitative Results

Based on the data we collected from user studies, we have the following findings supported by the standard Students t-test of statistical significance, with $\alpha=0.05$. A summary of the overall accuracy and responsiveness data is given in Figure 1 and Figure 2.

Overall, the static drawing accompanied by voice annotation was the most accurately recognized (t-stat=3.640 for accuracy). This advantage was marginal (only 1% more accurate) over animation with voice, which was its nearest contender. We suspect that one reason why hand-drawn static images and animations fared well was because semi-abstracted drawings in which only the essential information is depicted is better grasped than photorealistic imagery that contains extraneous visual features.

We also found that animation was the most accurately identified among the five representations without audio. It resulted in 7.35 correct identifications out of 13. Compared to the nearest contender, static drawing (which has 5.95 correct identifications), animation leads (t= 2.2782) by a large margin of 23%, for accuracy. The nearest contender to static is photo, which lags marginally (5.45).

Video and static drawings are second most accurately understood, and photographs were the least accurately identified. Surprisingly, animation+voice, which takes finite time to deliver, also resulted in the quickest response times, though this was a relatively weak, if still statistically significant result (t=0.606).

As had been proposed by earlier work [20], voice annotation was confirmed to be of clear value. All visual representations with voice annotation were better recognized than the corresponding representations without. With audio, results show that accuracy is greater in all versions (t=2.461).

Again surprisingly because of the finite time taken to listen to voice annotations, all of the representations allowed for shorter response times – approximately 30% less – with audio than without (t=1.326).
depicted. Particularly in the text+voice annotation representation, some subjects revealed that they didn’t understand the Kannada term for “lockjaw” but simply mimicked the voice annotation they heard. This suggests that good visual representations are still important for certain concepts.

4.4 Qualitative Results
During our tests we made a number of qualitative observations, as well. These results were not statistically significant, but we present them here as qualitative data and avenues for further investigation.

4.4.1 Richer information is not necessarily better understood overall
We were interested to test whether our designers’ bias [Table 2] was justified by the results. In certain cases we noticed that richer information was not necessarily better for the audiences’ understanding. For example while depicting the symptom of weakness the designers’ bias was with video (dynamic mode of representation) so as to lay the context of intense physical activity before showing the state of inertia caused by weakness. However static drawing proved to be better as the audience were confused by the additional rich information (context-laying of intense physical activity) before the primary action (principal actor feeling weak) and thus drew inaccurate conclusions.

4.4.2 Context laying unrelated activity changes value of static versus dynamic imagery
Although aggregate data is presented above, an interesting question is whether different symptoms are better represented by different representation types. The answer seems to be a qualified “yes”.

Table 2 shows the best-guessed representations by symptom. The pattern observed, with the visual representations without audio assist, was that placing a context laying activity that was unrelated to the principal action cue caused confusion amongst the subjects. For example, while describing the symptom of mild fever the video used the context laying activity of an attendant wringing the cloth and then placing it as a cold compress on the subjects. For example, while describing the symptom of mild fever the video used the context laying activity of an attendant wringing the cloth and then placing it as a cold compress on the subjects.

4.4.3 Socio-economic conditions correlated with cognition
We had based our project in five urban slum communities. Within each community, the residents came from similar caste groups and socio-economic conditions. We noticed that subjects from the better-off slums performed better overall throughout the experiment, generally responding more quickly and accurately, and with greater confidence.

4.4.4 For some, audio-visual cognitive coordination was difficult
In the representation types with voice annotation, we saw that some of our subjects were unable to fully process the bimodal stimulus. They inevitably used a strategy of focusing either on the graphic or the audio, but not both. If not told, some of them did not understand that the voice annotation was meant to explain the visual graphic presented on the screen at that moment. This phenomenon was particularly pronounced in subjects from the economically worst slums.

When we tested the text+voice representation with totally illiterate subjects, they listened intently to the audio cue, and ignored the on-screen text completely.

4.5 Experimental Issues
A number of issues came up during the experiments which could have biased the results in one way or another. We do not feel these were serious enough to invalidate the results, but we record them here, so that our results can be taken with the appropriate caveats.

4.5.1 Short-term category conditioning
If the presentation of symptoms was in an order where each of the consecutive symptoms was associated with a complaint of one kind (e.g., some sort of pain or ache), the subject’s seemed to become inclined to think only of symptoms of the same category. For example, if the first three symptoms presented in were headache, backache, sore throat, one after another, then the user was more likely to perceive the next symptom presented as an ache or pain of some sort. This issue was mitigated by the fact that all representation types suffered from the same issue, as the symptoms were presented in the same order for all subjects and all representation types.

4.5.2 Test/text anxiety of subjects
Subjects who had some basic level of schooling exhibited significant nervousness when they were shown the text based version, as they seemed to feel the same pressures they may have faced in school. We did our best to allay their fears, but the results may nevertheless show a slight bias against the text representations.

5. RELATED WORK
There is a lot of research that looks at a range of graphical representations from an interaction-design perspective. One paper presents a simplified progressive structure to help conceptually organize the various types of graphical representations into a unified seven-dimensional framework for information developers [3]. There is research work that looks at methods for visualizing motion graphics in static images [7]. Some work looks at the scientific side of icon designing emphasizing the design of clearer graphical user interfaces contrasting excessive and appropriate detailing; degrees of detailing (but without controlled tests) [8]. There are references to universally used graphic symbols [9, 11], in various disciplines [11]. One paper also looks at giving designers a frame of reference for developing new symbols [9]. Very little of the recommendations presented in this body of work,
however, is based on rigorous tests with live human subjects, and definitely not with illiterate populations.

Separately, there is work that focuses on developing one graphical representation well for a given target group. One paper has looked at designing an iconic graphical language for an interface of a mobile computing device to be used by health workers in emerging markets with minimal exposure to computing technology [1]. Another group has developed a graphical iconography to help people with limited English proficiency navigate health care facilities [2]. A few researchers look at photography as a tool for imparting health education and collection of data on diabetes [4]. Another paper emphasizes preventive healthcare and health education, through illustrations to make difficult information easily accessible [5]. All of this work focuses within a particular representation type, with the predominant emphasis being on static drawings or cartoons.

To our knowledge, the work presented in this paper is novel because (1) it addresses a population that is generally ignored by the computing industry, (2) it performs a controlled experiment testing a variety of representation types against one another, and (3) confirms with some confidence that voice annotation and semi-abstracted drawings are ideal for illiterate users of computing devices.

6. CONCLUSION AND FUTURE WORK
In order to better understand the optimal audio-visual representation for illustrating concepts to illiterate users, we presented 13 different health-related symptoms to a group of 200 illiterate subjects for them to identify. Results show that (1) richer information is not necessarily better overall, with hand-drawn cartoons faring better than photorealistic representations; (2) voice annotation generally helps in speed of comprehension, but bimodal audio-visual information can be confusing for the target population; and (3) the relative value of dynamic imagery (video and animation) versus static imagery (photo and drawings) is mixed. These results were shown with statistical significance, and we believe that these concepts could be applicable to designing UIs for other illiterate user groups in other information domains.

In future work, we are looking at applying these principles which we discovered to the UI design of an application of a mobile computing device to be used by health workers in emerging markets with minimal exposure to computing technology [1]. Another group has developed a graphical iconography to help people with limited English proficiency navigate health care facilities [2]. A few researchers look at photography as a tool for imparting health education and collection of data on diabetes [4]. Another paper emphasizes preventive healthcare and health education, through illustrations to make difficult information easily accessible [5]. All of this work focuses within a particular representation type, with the predominant emphasis being on static drawings or cartoons.

7. REFERENCES
8. W. Horton, Designing icons and visual symbols, Conference companion on Human factors in computing systems: common ground, April 1996

Table 1. Matrix of 5 visual representations for each of 13 health symptoms.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Drawing</th>
<th>Photo</th>
<th>Text</th>
<th>Video</th>
<th>Animation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lockjaw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stiff neck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unable to get up from sitting position</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Image 1</td>
<td>Image 2</td>
<td>Image 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sore throat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back ache</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Description</td>
<td>Images</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difficulty in breathing</td>
<td>on mild exertion</td>
<td>[Image of a person breathing heavily]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weakness</td>
<td></td>
<td>[Image of a person sitting with a pensive expression]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swelling of feet</td>
<td></td>
<td>[Image of a person with swollen feet]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleeding gums</td>
<td></td>
<td>[Image of a person with bleeding gums]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin Pigmentation</td>
<td></td>
<td>[Image of a person with skin pigmentation]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. [Image of a person climbing stairs]
2. [Image of a person sitting on the ground]
3. [Image of a person sitting on the ground]

1. [Image of a person with swollen feet]
2. [Image of a person with swollen feet]
3. [Image of a person with swollen feet]

1. [Image of a person with bleeding gums]
2. [Image of a person with bleeding gums]
3. [Image of a person with bleeding gums]

1. [Image of a person with skin pigmentation]
2. [Image of a person with skin pigmentation]
3. [Image of a person with skin pigmentation]

9
Table 2. Matrix of designer expectation and best representation from experiments, for each of 13 health symptoms. Where designer expected ‘dynamic’ representation to be better, we count a match with animation and video; where ‘static’ is marked, matches with photo and static. Matches of experiment with designer expectation are in bold face. Matches occur at 60% — better than chance, but not good enough that designer intuition can be relied upon.

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Designer’s expectation of best representational type</th>
<th>Best representational type among types without voice</th>
<th>Best representational type among types with voice</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sore throat</td>
<td>Dynamic</td>
<td>animation</td>
<td>static</td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td>Static</td>
<td>animation</td>
<td>static</td>
<td>Static representation of vomit was considered good enough by designers.</td>
</tr>
<tr>
<td>Unable to get-up from seated position</td>
<td>Dynamic</td>
<td>animation</td>
<td>photo</td>
<td>Dynamic information expected to be important.</td>
</tr>
<tr>
<td>Weakness</td>
<td>Dynamic</td>
<td>static</td>
<td>video</td>
<td>Generally difficult to interpret. (Noise effects)</td>
</tr>
<tr>
<td>Backache</td>
<td>Dynamic</td>
<td>video</td>
<td>video</td>
<td></td>
</tr>
<tr>
<td>Difficulty in breathing on mild exertion</td>
<td>Dynamic</td>
<td>video</td>
<td>video</td>
<td>Animation quality very important.</td>
</tr>
<tr>
<td>Mild fever</td>
<td>Static</td>
<td>photo</td>
<td>text</td>
<td></td>
</tr>
<tr>
<td>Bleeding gums</td>
<td>Static</td>
<td>static</td>
<td>static</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>Static</td>
<td>animation</td>
<td>photo</td>
<td>Easy to understand regardless of representation. (Noise effects)</td>
</tr>
<tr>
<td>Lock jaw</td>
<td>Dynamic</td>
<td>photo</td>
<td>static</td>
<td>Some confusion as to meaning of symptom.</td>
</tr>
<tr>
<td>Stiff neck</td>
<td>Dynamic</td>
<td>animation</td>
<td>video</td>
<td></td>
</tr>
<tr>
<td>Swollen feet</td>
<td>Dynamic</td>
<td>animation</td>
<td>animation</td>
<td>Surprising value of dynamic effects.</td>
</tr>
<tr>
<td>Skin pigmentation</td>
<td>Static</td>
<td>animation</td>
<td>animation</td>
<td></td>
</tr>
</tbody>
</table>