On Optimal Frame Expansions for Multiple Description Quantization

Sanjeev Mehrotra
Stanford Univ./Microsoft Corp.
One Microsoft Way
Redmond, WA 98052
sanjeev@ieee.org

Philip A. Chou
Microsoft Corp.
One Microsoft Way
Redmond, WA 98052
pachou@microsoft.com

Abstract — We study the problem of finding the optimal overcomplete (frame) expansion and bit allocation for multiple description quantization of a Gaussian signal at high rates over a lossy channel.

I. INTRODUCTION

The setup is shown in Figure 1. In multiple description quantization using overcomplete (frame) expansions [1, 2], an input signal \(\mathbf{x} \in \mathbb{R}^N \) is represented by a vector \(\mathbf{y} = \mathbf{F} \mathbf{x} \in \mathbb{R}^N \), \(N > K \). \(\mathbf{F} \) is a \(N \times K \) matrix, called the frame operator. It is assumed any \(K \) rows of \(\mathbf{F} \) span \(\mathbb{R}^N \). The coefficients of \(\mathbf{y} \) are scalar quantized to obtain \(\hat{\mathbf{y}} \) and are then independently entropy coded using on average a total of \(R \) bits allocated among the \(N \) coefficients. In channel state \(s \), the decoder receives \(N_{rs} \leq N \) coefficients after potential erasures, and reconstructs the signal \(\hat{\mathbf{x}} \) from the received coefficients. The number of channel states is \(2^N \) since each coefficient can be either received or lost. For a given distribution over channel states, we wish to find the frame operator \(\mathbf{F} \) and the bit allocation for the transform coefficients that minimizes the expected squared error \(D = E[\|\mathbf{x} - \hat{\mathbf{x}}\|^2] \) subject to a constraint on the average rate, \(R \), for asymptotically large \(R \) and Gaussian \(\mathbf{x} \).

II. ANALYSIS

Without loss of generality, assume that \(\mathbf{x} \) is distributed with zero mean and diagonal covariance matrix \(\mathbf{R}_\mathbf{x} = \operatorname{diag}(\sigma_0^2, \ldots, \sigma_{N-1}^2) \) (else can use KLT). Let \(\mathbf{q} = \mathbf{y} - \hat{\mathbf{y}} \) be the quantization error and let \(\mathbf{e} = \mathbf{x} - \hat{\mathbf{x}} \) be the reconstruction error. At high rate, assume \(\mathbf{q} \) is distributed with zero mean and diagonal covariance matrix with \(E[\|\mathbf{q}\|^2] = \sigma_q^2 \mathbf{I}^{2\times 2N} \), where \(\sigma_q^2 = \sigma/6 \) if entropy coded uniform scalar quantization is used. The distortion can be written as \(D = \sum_s p_s D_s \), where \(D_s = E[\|\mathbf{e}\|^2 | S = s] \), and \(p_s \) is the probability of the channel being in state \(s \). Let \(\mathbf{y}_{rs} \) denote the \(N_{rs} \) dimensional vector of received coefficients. Let \(\mathbf{F}_{rs} \) be a \(N_{rs} \times K \) matrix consisting of rows of \(\mathbf{F} \) corresponding to the received coefficients.

To obtain an expression for \(D_s \), there are two cases to consider: \(N_{rs} \geq K \) and \(N_{rs} < K \). When \(N_{rs} \geq K \), the decoder has enough information to localize the input vector to a finite cell. Although the actual reconstruction will use a consistent reconstruction [1, 3], for analysis purposes, we use the optimal linear reconstruction as \(\hat{\mathbf{x}} = \mathbf{F}^+ \mathbf{y}_{rs} \), where \(\mathbf{F}^+ \) is the pseudo-inverse of \(\mathbf{F} \). Since \(\mathbf{x} = \mathbf{F}^+ \mathbf{y}_{rs} \), the conditional distortion can be written as \(D_s = E[\|\mathbf{e}\|^2 | S = s] = E[\|\mathbf{F}^+ \mathbf{y}_{rs} - \mathbf{x}\|^2] \). When \(N_{rs} < K \), there is not enough information to localize \(\mathbf{x} \) to a finite cell. In particular \(\mathbf{x} \) is bounded in \(N_{rs} \) dimensions and unbounded in \(K - N_{rs} \) dimensions. Thus, \(\mathbf{x} = \mathbf{F}_{rs} \mathbf{y}_{rs} + (\mathbf{F}_{rs})^\perp \mathbf{y}_{rs} \), where the rows of \(\mathbf{F}_{rs} \) form an orthonormal basis for the subspace orthogonal to the span of the rows of \(\mathbf{F}_{rs} \) and \(\mathbf{y}_{rs} \) is a \(K - N_{rs} \) dimensional vector. Now the optimal linear reconstruction is

\[
\hat{\mathbf{x}} = \mathbf{F}_{rs}^+ \mathbf{y}_{rs} + (\mathbf{F}_{rs})^\perp \mathbf{y}_{rs} + E[\|\mathbf{y}_{rs} - \mathbf{F}_{rs} \mathbf{y}_{rs}\|^2 | \mathbf{y}_{rs}],
\]

which gives a distortion of \(D_s = E[\|\mathbf{F}_{rs}^+ \mathbf{y}_{rs} - \mathbf{x}\|^2] + E[\|\mathbf{y}_{rs} - \mathbf{F}_{rs} \mathbf{y}_{rs}\|^2 | \mathbf{y}_{rs}] = \hat{\mathbf{y}}_s \). Since the source is Gaussian, \(E[\|\mathbf{y}_{rs} - \mathbf{F}_{rs} \mathbf{y}_{rs}\|^2 | \mathbf{y}_{rs}] \) can be easily computed.

Using the equations for \(D_s \) and the fact that \(E[\|\mathbf{q}\|^2] \) is diagonal, the portion of distortion that can be minimized by bit allocation can be written as \(D_b = \sum_{i=0}^{N-1} \alpha_i \sigma_i^2 \), where \(\alpha_i \) is a function of the transform \(\mathbf{F} \), the channel state probabilities \(p_s \), and the quantization constant \(c \). Let \(D_{ab} \) be the remaining portion of the distortion \(D \). Minimizing \(D_b \) is a classic bit allocation problem with solution given by \(p_s = R/N + \log_2 \left(\alpha_i \sigma_i^2 / (\sum_{i=0}^{N-1} \alpha_i \sigma_i^2) \right)^{1/N} / 2 \). This gives an optimal \(D_b \) of \(D_{ab} = N(\sum_{i=0}^{N-1} \alpha_i \sigma_i^2)^{1/N} - 2R/N \). To find the optimal transform, we have to minimize \(D_b + D_{ab} \). Since it is hard theoretically, we use numerical gradient descent techniques by varying one coefficient at a time.

Results show that at high loss rates \(D_b \) is the dominating term which is minimized by repeating the coefficient with highest variance. At low loss rates, \(D_{ab} \) is the dominating term which is minimized by the optimal source code. Results are shown for \(3 \times 2 \) expansion in Figure 2, where the values for \(\theta_i = \tan^{-1}(F_i/F_0) \), \(i = 0, 1, 2 \) are plotted with rate constraint \(R = 6 \) bits and variances \(\sigma_0^2 = 4 \) and \(\sigma_1^2 = 1 \). Also shown is \(\phi_1 \), which is the kth row of matrix \(\mathbf{F} \).

REFERENCES

