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We introduce a lightweight, scalable and accurate framework for performing node selection
based on network location. The framework, called Meridian, consists of an overlay net-
work structured around multi-resolution rings, gossip protocols for ring maintenance, and
query routing with direct measurements to satisfy user specified latency constraints. We
show how this framework can be used to address three commonly encountered problems,
namely, closest node discovery, central leader election, and locating nodes that satisfy
target latency constraints in large-scale distributed systems without having to compute
absolute coordinates. We also present the Meridian Query Language, a domain specific
language for users to construct custom node selection queries based on their specific net-
work location requirements. To facilitate adoption of Meridian, we have deployed a service
called ClosestNode.com that provides a DNS to Meridian gateway for oblivious clients to
initiate Meridian lookups. We show analytically that the framework is scalable with loga-
rithmic convergence when Internet latencies are modeled as a growth-constrained metric,
a low-dimensional Euclidean metric, or a metric of low doubling dimension. Large scale
simulations, based on latency measurements from 6.25 million node-pairs as well as an im-
plementation deployed on PlanetLab show that the framework is accurate and effective.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—Network topology

General Terms: Algorithms, Design, Measurement, Performance

Additional Key Words and Phrases: Node selection, Network locality, Nearest neighbor

1. INTRODUCTION

Selecting nodes based on their location in the network is a basic building block
for many high-performance distributed systems. In small systems, it is possible to
perform extensive measurements and make decisions based on global information.
For instance, in an online game with few servers, a client can simply measure its la-
tency to all servers and bind to the closest one for minimal response time. However,
collecting global information is infeasible for a significant set of recently emerging
large-scale distributed applications, where global information is unwieldy and lack
of centralized servers makes it difficult to find nodes that fit selection criteria. Yet
many distributed applications, such as filesharing networks, content distribution
networks, backup systems, anonymous communication networks, pub-sub systems,
discovery services, and multi-player online games could benefit substantially from
selecting nodes based on their location in the network.

A general technique for finding nodes that optimize a given network metric is to
perform a network embedding, that is, to map high-dimensional network measure-
ments into a location in a smaller Euclidean space. For instance, recent work in
network positioning [Ng and Zhang 2002; 2004; Dabek et al. 2004; Lim et al. 2003;
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Tang and Crovella 2003; Shavitt and Tankel 2003; Pias et al. 2003; Costa et al. 2004;
Lehman and Lerman 2004] uses large vectors of node-to-node latency measurements
on the Internet to determine a corresponding single point in a d-dimensional space
for each node. The resulting embedded address, a virtual coordinate, can be used
to select nodes.

While the network embedding approach is applicable for a wide range of ap-
plications, it is neither accurate nor complete. The embedding process typically
introduces significant errors. Selection of parameters, such as the constant d, the
set of measurements taken to perform the embedding, the landmarks used for mea-
surement, and the timing interval in which measurements are taken, is nontrivial
and has a significant impact on the accuracy of the approach. Further, coordi-
nates need to be recomputed as network latencies fluctuate. In addition, complex
mechanisms besides virtual coordinates are required to support large-scale appli-
cations. Simple schemes, such as centralized servers that retain O(N ) state or
naive algorithms with O(N ) running time, are unsuitable for large-scale networks.
Peer-to-peer substrates that can naturally work with Euclidean coordinates and
support range queries, such as CAN [Ratnasamy et al. 2001], Mercury [Bharambe
et al. 2004] and P-Trees [Crainiceanu et al. 2004], can reduce the state requirements
per node; however, these systems introduce substantial complexity and bandwidth
overhead in addition to the overhead of network embedding. And our simulation
results show that, even with a P2P substrate that always finds the best node based
on virtual coordinates, the embedding error leads to a suboptimal choice.

This paper introduces a lightweight, scalable and accurate framework, called
Meridian, for performing node selection based on network location 1. Meridian
forms a loosely-structured overlay network, uses direct latency measurements in-
stead of latency estimates from virtual coordinates, and can solve spatial queries
without an absolute coordinate space.

Each Meridian node keeps track of O(logN ) peers and organizes them into con-
centric rings of exponentially increasing radii. This structure makes a node an
expert in its own region of space, and provides it with sufficient contacts in far-
away regions where it is not an authority. A query is matched against the relevant
nodes in these rings, and optionally forwarded to a subset of the node’s peers. Intu-
itively, the forwarding “zooms in” towards the solution space, handing off the query
to a node that has more information to solve the problem due to the structure of
its peer set. A scalable gossip protocol is used to notify other nodes of member-
ship in the system. A node selection algorithm provides diverse ring membership
to maximize the marginal utility provided by each ring member. Meridian avoids
incurring embedding errors by making no attempt to reconcile the latencies seen at
participating nodes into a globally consistent coordinate space. Directly evaluating
queries against relevant peers in each ring avoids errors stemming from out of date
coordinates. Meridian provides a general framework applicable for a wide range
of network location problems. In this paper, we focus on three network location

1We use the term “location” to refer to a node’s placement in the Internet as defined by its
round-trip latency to other nodes. While Meridian does not assume that there is a well-
defined location for any node, our illustrations depict a single point in a two-dimensional
space for clarity.
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problems that are commonly encountered in distributed systems, and describe how
the lightweight Meridian framework can be used to address them.

The first network location problem that we examine is that of discovering the
closest node to a targeted reference point. This is a pervasive problem; content
distribution networks (CDNs) [Johnson et al. 2000], large-scale multiplayer games
[Lawrence 2004], and peer-to-peer overlays [Hildrum et al. 2002; Karger and Ruhl
2002; Castro et al. 2002; 2003], among others, can significantly reduce response time
and network load by selecting nodes close to targets. For instance, a geographically
distributed peer-to-peer web crawler can reduce crawl time and minimize network
load by delegating the crawl to the closest node to each target web server. Simi-
larly, CDNs can reduce download time by assigning clients to nearby servers, and
multiplayer games can improve gameplay by reducing server latency.

Meridian can also be used to find a node that offers the minimal average latency
to a given set of nodes. Intuitively, various applications seek to locate a node
that is at the centerpoint of the region defined by the set members. This basic
operation can be used for central leader election, where the chosen node enables
average communication latency to be minimized. For instance, an application-level
multicast system can use central leader election to improve transmission latencies
by placing centrally-located nodes higher in the tree.

Finally, we examine the problem of finding a set of nodes in a region whose
boundaries are defined by latency constraints. For instance, given a set of latency
constraints to well-known peering points, we show how Meridian can locate nodes
in the region defined by the intersection of these constraints. This functionality is
useful for ISPs and hosting services to cost effectively meet service-level agreements,
for computational grids to locate nodes with specific inter-cluster latency require-
ments, and generally, for applications that require fine-grain selection of services
based on latency to multiple targets.

In addition to these commonly encountered problems, there are many other net-
work location problems that are relevant to specific applications, or other solution
strategies required for specific operating environments. To support these appli-
cations, we provide a language called the Meridian Query Language (MQL) for
expressing application specific algorithms as queries, and a runtime for safe, online
evaluation of these queries.

An obstacle to the adoption of Meridian in existing services is the need to change
the client interface, as clients are often unwilling or unmotivated to update their
software. To enable these services to use Meridian, we deployed a DNS to Meridian
gateway called ClosestNode.com that allows oblivious clients to perform Meridian
lookups by performing DNS resolutions. The gateway also significantly reduces the
amount of work required to use and deploy Meridian for both new and existing
services.

We demonstrate through a theoretical analysis that our system provides robust
performance, delivers high scalability and balances load evenly across the nodes.
The analysis ensures that the performance of our system scales beyond and is not
an artifact of our measurements.

We evaluate Meridian through simulations as well as a deployment on Plan-
etLab [Bavier et al. 2004]. Our simulations are parameterized by an extensive

ACM Transactions on Computer Systems, Vol. X, No. X, X 20X.



4 · Bernard Wong et al.

measurement study, in which we collected node-to-node round-trip latency mea-
surements for 2500 Internet name servers (6.25 million node pairs). We use 500 of
these nodes as targets, and the remaining 2000 as overlay nodes in our experiments.

Overall, this paper makes three contributions. First, it outlines a lightweight,
scalable, and accurate system for keeping track of location-information for par-
ticipating nodes. The system is simple, loosely-structured, and entails modest
resources for maintenance. The paper shows how Meridian can efficiently find the
closest node to a target, the latency minimizing node to a given set of nodes, and the
set of nodes that lie in a region defined by latency constraints, which are frequently
encountered building block operations in many location-sensitive distributed sys-
tems. Although less general than virtual coordinates, we show that Meridian incurs
significantly less error. Second, the paper provides a theoretical analysis of our sys-
tem that shows that Meridian provides robust performance, high scalability and
good load balance. This analysis is general and applies to Internet latencies that
cannot be accurately modeled with a Euclidean metric. Following a line of pre-
vious work on object location (see [Hildrum et al. 2004] for a summary), we give
guarantees for the family of growth-constrained metrics. Moreover, we support a
much wider family of metrics of low doubling dimension. Finally, the paper shows
empirical results from both simulations parameterized with measurements from a
large-scale network study and a PlanetLab deployment. The results confirm our
theoretical analysis that Meridian is accurate, scalable, and load-balancing.

2. FRAMEWORK

The basic Meridian framework is based around three mechanisms: a loose routing
system based on multi-resolution rings on each node, an adaptive ring membership
replacement scheme that maximizes the usefulness of the nodes populating each
ring, and a gossip protocol for node discovery and dissemination.

Multi-Resolution Rings. Each Meridian node keeps track of a small, fixed num-
ber of other nodes in the system, and organizes this list of peers into concentric,
non-overlapping rings. The ith ring has inner radius ri = αsi−1 and outer radius
Ri = αsi, for i > 0, where α is a constant, s is the multiplicative increase factor,
and r0 = 0, R0 = α for the innermost ring. Each node keeps track of a finite
number of rings; all rings i > i∗ for a system-wide constant i∗ are collapsed into a
single, outermost ring that spans the range [αsi∗ ,∞].

Meridian nodes measure the distance dj to a peer j, and place that peer in
the corresponding ring i such that ri < dj ≤ Ri. This sorting of neighbors into
concentric rings is performed independently at each node and requires no fixed
landmarks or distributed coordination. Each node keeps track of at most k nodes
in each ring and drops peers from overpopulated rings. Consequently, Meridian’s
space requirement per node is proportional to k. We later show in the analysis
(Section 6) that a choice of k = O(logN ) can resolve queries in O(logN ) lookups;
in simulations (Section 8), we verify that a small k suffices. We assume that every
participating node has a rough estimate of logN .

The ring structure with its exponentially increasing ring radii favors nearby neigh-
bors, enabling each node to retain a relatively large number of pointers to nodes
in their immediate vicinity. This allows a node to authoritatively answer geo-
ACM Transactions on Computer Systems, Vol. X, No. X, X 20X.
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Fig. 1. Each Meridian node keeps track of a fixed number of other nodes and organizes
these nodes into concentric, non-overlapping rings of exponentially increasing radii.

graphic queries for its region of the network. At the same time, the ring structure
ensures that each node retains a sufficient number of pointers to remote regions,
and can therefore dispatch queries towards nodes that specialize in those regions.
An exponentially increasing radius also makes the total number of rings per node
manageably small and i∗ clamps it at a constant.

Ring Membership Management. The number of nodes per ring, k, represents
an inherent tradeoff between accuracy and overhead. A large k increases a node’s
information about its peers and helps it make better choices when routing queries.
On the other hand, a large k also entails more state, more memory and more
bandwidth at each node.

Within a given ring, node choice can have a significant effect on the performance
of the system. A set of ring members that are geographically distributed provides
much greater utility than a set of ring members that are clustered together, as shown
in Figure 1. Intuitively, nodes that are geographically diverse instead of clustered
together enable a node to forward a query to a greater region. Consequently,
Meridian strives to promote geographic diversity within each ring.

Meridian achieves geographic diversity by periodically reassessing ring member-
ship decisions and replacing ring members with alternatives that provide greater
diversity. Within each ring, a Meridian node not only keeps track of the k primary
ring members, but also a constant number l of secondary ring members, which serve
as a FIFO pool of candidates for primary ring membership.

We quantify geographic diversity through the hypervolume of the k-polytope
formed by the selected nodes. To compute the hypervolume, each node defines a
local, non-exported coordinate space. A node i will periodically measure its distance
di

j to another node j in the same ring, for all 0 ≤ i, j ≤ k + l. The coordinates
of node i consist of the tuple 〈di

1, d
i
2, ..., d

i
k+l〉, where di

i = 0. This embedding is
trivial to construct and does not require a potentially error-introducing mapping
from high-dimensional data to a lower number of dimensions.

Having computed the coordinates for all of its members in a ring, Meridian nodes
then determine the subset of k nodes that provide the polytope with the largest
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hypervolume. For small k, it is possible to determine the maximal hypervolume
polytope by considering all possible polytopes from the set of k + l nodes. For
large k + l, evaluating all subsets is infeasible. Instead, Meridian uses a greedy
algorithm: A node starts out with the k+l polytope, and iteratively drops the vertex
(and corresponding dimension) whose absence leads to the smallest reduction in
hypervolume until k vertices remain. The remaining vertices are designated the new
primary members for that ring, while the remaining l nodes become secondaries.
This computation can be performed in linear time using standard computational
geometry tools [Barber et al. 1996]. The ring membership management occurs in
the background and its latency is not critical to the correct operation of Meridian.
Note that the coordinates computed for ring member selection are used only to
select a diverse set of ring members; they are not exported by Meridian nodes and
play no role in query routing.

Churn in the system can be handled gracefully by the ring membership man-
agement system due to the loose structure of the Meridian overlay. If a node is
discovered to be unreachable during the replacement process, it is dropped from
the ring and removed as a secondary candidate. If a peer node is discovered to be
unreachable during gossip or the actual query routing, it is removed from the ring,
and replaced with a random secondary candidate node. The quality of the ring set
may suffer temporarily, but will be corrected by the next ring replacement. Dis-
covering a peer node failure during a routing query can reduce query performance;
k can be increased to compensate for this expected rate of failure.

Gossip Based Node Discovery. The use of a gossip protocol to perform node
discovery allows the Meridian overlay to be loosely connected, highly robust and
inexpensively kept up-to-date of membership changes. Our gossip protocol is based
on an anti-entropy push protocol [Demers et al. 1987] that implements a member-
ship service. The central goal of our gossip protocol is for each node to discover
and maintain a small set of pointers to a sufficiently diverse set of nodes in the
network. Our gossip protocol works as follows:
(1) Each node A randomly picks a node B from each of its rings and sends a gossip

packet to B containing a randomly chosen node from each of its rings.
(2) On receiving the packet, node B determines through direct probes its latency

to A and to each of the nodes contained in the gossip packet from A.
(3) After sending a gossip packet to a node in each of its rings, node A waits until

the start of its next gossip period and then begins again from step 1.

In step 2, node B sends probes to A and to the nodes in the gossip packet from
A regardless of whether B has already discovered these nodes. This re-pinging
ensures that stale latency information is updated, as latency between nodes on the
Internet can change dynamically. The newly discovered nodes are placed on B’s
rings as secondary members.

For a node to initially join the system, it needs to know the IP address of one of
the nodes in the Meridian overlay. The newly joining node contacts the Meridian
node and acquires its entire list of ring members. It then measures its latency to
these nodes and places them on its own rings; these nodes will likely be binned into
different rings on the newly joining node. From there, the new node participates in
the gossip protocol as usual.
ACM Transactions on Computer Systems, Vol. X, No. X, X 20X.



A Framework for Network Location-Aware Node Selection · 7

The period between gossip cycles is initially set to a small value in order for
new nodes to quickly propagate their arrival to the existing nodes. The new nodes
gradually increase their gossip period to the same length as the existing nodes. The
choice of a gossip period depends on the expected rate of latency change between
nodes and expected churn in the system.

Maintenance Overhead. The average bandwidth overhead to maintain the
multi-resolution rings of a Meridian node is modest. The number of gossip pack-
ets a node receives is equal to the number of neighbors (m logN ) multiplied by the
probability of being chosen as a gossip target by one of the neighbors ( 1

logN ), where
m is the number of rings in the ring-set. A node should therefore expect to send
and receive m gossip packets and to initiate m2 probes per gossip period. A node
is also the recipient of probes from neighbors of its neighbors. Since it has m logN
neighbors, each of which sends m gossip packets, there are m2 logN gossip packets
with a 1

log N probability of containing a reference to it. Therefore, a node expects
to receive m2 probes from neighbors of its neighbors. Assuming m = 9, a probe
packet size of 50 bytes, two packets per probe, and a gossip packet size of 100 bytes,
membership dissemination consumes an average of 20.7 KB/period of bandwidth
per node. For a gossip period of 60 seconds, the average overhead associated with
gossip is 345 B/s, and is independent of system size.

There is also maintenance overhead for performing ring management. In every
ring management period where the membership of one ring is re-evaluated, 2 logN
requests are sent, 2 logN are received, 4 log2N probes are sent, and 4 log2N are
received. Assuming two packets are necessary per request and per probe, the size
of a probe request packet is 100 bytes and a probe packet is 50 bytes, and a 2000
node system with 16 nodes per ring, ring management consumes an average of 218
KB/period. For a ring management period of 5 minutes, the average overhead
associated with ring management is 727 B/s. This analysis conservatively assumes
that all primary and secondary rings of all nodes are full, which is unlikely in
practice.

3. APPLICATIONS

The following three sections describe how Meridian can be used to solve some
frequently encountered location-related problems in distributed systems.

Closest Node Discovery. Meridian locates the closest node by performing a
multi-hop search where each hop exponentially reduces the distance to the target.
This is similar to searching in structured peer-to-peer networks such as Chord
[Stoica et al. 2001], Pastry [Rowstron and Druschel 2001] and Tapestry [Zhao et al.
2001], where each hop brings the query exponentially closer to the destination,
though in Meridian the routing is performed using physical latencies instead of
numerical distances in a virtual identifier space. Another important distinction
that Meridian holds over the structured peer-to-peer networks is the target node
need not be part of the Meridian overlay. The only requirement is that the latencies
between the nodes in the overlay and the target node are measurable. This enables
applications such as finding the closest node to a public web server, where the web
server is not directly controlled by the distributed application and only responds
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Fig. 2. A client sends a “closest node discovery to target T” request to a Meridian node
A, which determines its latency d to T and probes its ring members between (1 − β) · d
and (1 + β) · d to determine their distances to the target. The request is forwarded to the
closest node thus discovered, and the process continues until no closer node is detected.

to HTTP queries.
When a Meridian node receives a request to find the closest node to a target,

it determines the latency d between itself and the target. Once this latency is
determined, the Meridian node simultaneously queries all of its ring members whose
distances are within (1− β) · d to (1 + β) · d. These nodes measure their distance to
the target and report the result back to the Meridian node. Nodes that take more
than (2β + 1) · d to provide an answer are ignored, as they are more than βd away
from the target.

Meridian uses an acceptance threshold β, which determines the reduction in
distance at each hop. The route acceptance threshold is met if one or more of the
queried peers is closer than β times the distance to the target, and the client request
is forwarded to the closest node. If no peers meet the acceptance threshold, then
routing stops and the closest node currently known is chosen. Figure 2 illustrates
the process.

Meridian is agnostic to the choice of a route acceptance threshold β, where 0 ≤
β < 1. A small β value reduces the total number of hops, as fewer peers can satisfy
the requirement, but introduces additional error as the route may be prematurely
stopped before converging to the closest node. A large β reduces error at the
expense of increased hop count.

Central Leader Election. Another frequently encountered problem in distributed
systems is to locate a node that is “centrally situated” with respect to a set of other
nodes. Typically, such a node plays a specialized role in the network that requires
frequent communication with the other members of the set; selecting a centrally
located node minimizes both latency and network load. An example application is
ACM Transactions on Computer Systems, Vol. X, No. X, X 20X.
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Fig. 3. A multi-constraint query consisting of targets A,B,C with respective latency
constraints of αa, αb, αC . The shaded area represents the solution space.

leader election, which itself is a building block for higher level applications such as
clustering and low latency multicast trees.

The central leader election application can be implemented by extending the
closest node discovery protocol. We replace d in the single target closest node
selection protocol with davg for central leader election. When a Meridian node
receives a client request to find the closest node to the target set T , it determines the
latency set {d1, ..., d|T |} between itself and the targets through direct measurements,
and computes the average latency davg = (

∑|T |
i=1 di)/|T |. It selects ring members

that have latency between (1− β) ∗min{d1, ..., d|T |} and (1 + β) ∗max{d1, ..., d|T |}
to itself, and requests these peers to.determine their respective average latency to
the targets. The remaining part of the central leader election application follows
exactly from the closest node discovery protocol.

Changing the latency aggregration function from taking the average of the laten-
cies to the highest latency target is a useful variation to the protocol, as it reduces
the difference in latency between the targets to the chosen node. This is useful in
multi-player online games, as a player with a significantly lower latency to the game
server than the others has an unfair advantage because it is the first to receive and
react on game events.

Multi-Constraint System. Another frequent operation in distributed systems is
to find a set of nodes satisfying constraints on the network geography. For instance,
an ISP or a web hosting service is typically bound by a service level agreement
(SLA) to satisfy latency requirements to well-known peering locations when hosting
services for clients. A geographically distributed ISP may have thousands of nodes
at its disposal, and finding the right set of nodes that satisfy the given constraints
may be necessary for fulfilling an SLA. Latency constraints are also important for
grid based distributed computation applications, where the latency between nodes
working together on a problem is often the main efficiency bottleneck. A customer
may want to specify that ∀q, p ∈ P where P is the set of grid nodes, dq,p < γ for
some desired latency γ.

ACM Transactions on Computer Systems, Vol. X, No. X, X 20X.
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Finding a node that satisfies multiple constraints can be viewed as a node se-
lection problem, where the constraints define the boundaries of a region in space
(the solution space), as illustrated in Figure 3. A constraint is specified as a target
and a latency bound around that target. When a Meridian node receives a multi-
constraint query with u constraints specified as 〈target i, rangei〉, for all 0 < i ≤ u,
it measures its latency di to the target nodes and calculates its distance to the
solution space as

s =
u∑

i=1

max(0, di − rangei)
2

If s is 0, then the current node satisfies all the constraints, and it returns it-
self as the solution to the client. Otherwise, it iterates through all its peers, and
simultaneously queries all peers j that are within max(0, (1 − β) · (di − rangei))
to (1 + β) · (di + range i) from itself, for all 0 < i ≤ u. These nodes include all
the peers that lie within the range of at least one of the constraints, and possi-
bly other peers that do not satisfy any of the constraints, but are nevertheless
close to the solution space. These peer nodes measure their distance to the u
targets and report the results back to the source. Nodes that take longer than
max0<i≤u((2β + 1) · (di + rangei)) to provide an answer are ignored.

The distance sj of each node j to the solution space is calculated using the metric
s defined above. If sj is 0, then node j satisfies all the constraints and is returned
as a solution to the client. If no zero valued sj is returned, the client determines
whether there is an sj < β · s, where β is the route acceptance threshold. If the
route acceptance threshold is met, the client request is forwarded to the peer closest
to the solution space. A larger β may increase the success rate, at the expense of
increased hops.

4. MERIDIAN QUERY LANGUAGE

We described a framework and provided three algorithms for solving three common-
ingly encountered problems. But there may well be other location-related problems
to solve, and other solution strategies that applications may require. To enable such
applications that we could not foresee, we added a language for expressing appli-
cation specific algorithms and a runtime for evaluating such algorithms safely.

The Meridian Query Language (MQL) is a safe, polymorphic, and dynamically
typed variant of C that provides tight resource and processing constraints on each
query. Every Meridian packet carries the full query specified by the user, similar to
a capsule in an active network [Tennenhouse and Wetherall 1996], and the query is
executed on each Meridian node it is forwarded to, with query forwarding abstracted
as simple remote procedure calls.

MQL’s grammar and lexical syntax is very similar to C. To ensure safety, there
are no pointers nor any direct references to memory, and type checking as well as
bounds checking is performed at runtime. MQL has the primitives types int, double
and string, as well as two primitive structures Node and Measurement. The two
structures are used by many of the library functions that provide access to Meridian
operations. The Node structure is an abstraction for a Meridian node and contains
the address of the node, the Meridian port, and the address and port of an optional
ACM Transactions on Computer Systems, Vol. X, No. X, X 20X.
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rendezvous node used for redirecting traffic to the node if direct connectivity is not
available, as is the case for firewalled hosts or hosts behind NATs. The Measurement
structure is an abstraction for latency information from a source node to a set of
targets, and is usually returned as a result of library functions that issue latency
probes.

An MQL query is processed in an isolated runtime environment which consists
of an interpreter that can multiplex multiple simultaneous queries, and a rich set
of native library functions issuing latency probes or accessing the ring structure.
The runtime environment enforces local resource constraints, such as the amount of
memory or time a query can allocate or execute for per node. Restrictions on per
query resources across multiple nodes are also enforced by the runtime environment
using auditing information embedded into the query packet header. This allows
additional constraints such as the maximum number of hops per query and the
query lifetime in the system to be enforced.

4.1 Library Functions

The MQL library interface enables queries to access the underlying Meridian sub-
systems as well as convenience functions that are commonly used in localization
queries. It consists of local functions shown in Figure 4 for accessing local Meridian
ring membership information, and performing math and array operations, as well
as remote functions shown in Figure 5 for resolving names, issuing probes, and
transfering the control flow to another node.

4.2 Closest Node Selection in MQL

MQL enables concise specifications of algorithms for finding desired nodes. Figure 6
illustrates the closest node discovery protocol written in MQL. The MQL version
specifies the complete closest node discovery protocol, and is signficantly shorter
and easier to understand than our previous hand-crafted C++ version.

5. CLOSESTNODE.COM

There is still substantial effort involved in building and deploying overlays and inter-
acting with the outside world through existing interfaces. To enable new distributed
systems to use Meridian easily and to support oblivious clients to perform Meridian
lookups, we deployed a DNS to Meridian gateway called ClosestNode.com A regis-
tered service of ClosestNode.com, named dht, would be given a sub-domain within
ClosestNode.com, such as dht.closestnode.com. When a client issues a request to
resolve dht.closestnode.com, our DNS server, which is the authoritative name server
for the domain, initiates a closest node discovery on the Meridian overlay specific
to the service using the client’s DNS server as the target. The IP address of the
closest node is then returned to the client.

The clients to the service are oblivious to Meridian as they continue to access
it using the DNS interface. The necessary changes to the service itself is minimal.
Service providers need to provide the ClosestNode.com DNS server with a small list
of nodes that are running their service, and the service needs to either be modified
to call a Meridian library function at startup, or start a stand-alone Meridian
daemon along-side it. Two PlanetLab services, CobWeb [Song et al. 2005] and
OCALA [Joseph et al. 2006], are currently using ClosestNode.com. Both of these
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Node get_self() double acos(double x)

Node[] ring_lt(double latency_ms) double atan(double x)
Node[] ring_le(double latency_ms) double log(double x)
Node[] ring_gt(double latency_ms) double exp(double x)
Node[] ring_ge(double latency_ms) double pow(double x, double y)
T print(T value) void push_back(T array[], T value)

T println(T value) void pop_back(T array[])
double dbl(int x) int array_size(T array[])
int round(double x) T[] array_intersect(T x[], T y[])
int ceil(double x) T[] array_union(T x[], T y[])
int floor(double x) T array_max(T x[])

double sin(double x) int array_max_offset(T x[])
double cos(double x) T array_min(T x[])
double tan(double x) int array_min_offset(T x[])
double asin(double x) double array_avg(T x[])

Fig. 4. Local system functions for accessing local Meridian ring membership information,
and performing math and array operations. The type T in the function definitions is a
generic type that can be instantiated as any primitive or abstract data type at runtime.

T rpc(Node target, func, ...) Measurement[] get_distance_icmp(
int dns_lookup(string name) Node target[],

string dns_addr(int addr) int timeout_ms)
Measurement[] get_distance_dns( Measurement[] get_distance_icmp(

Node target[], Node source[],
int timeout_ms) Node target[],

Measurement[] get_distance_dns( int timeout_ms)

Node source[], Measurement[] get_distance_ping(
Node target[], Node target[],
int timeout_ms) int timeout_ms)

Measurement[] get_distance_tcp( Measurement[] get_distance_ping(
Node target[], Node source[],

int timeout_ms) Node target[],
Measurement[] get_distance_tcp( int timeout_ms)

Node source[],
Node target[],

int timeout_ms)

Fig. 5. System functions for issuing remote procedure calls, DNS name resolutions, and
latency probes using DNS queries, TCP SYN/ACK packets, ICMP ECHO packets or
custom Meridian UDP packets.

1 Measurement closest(double beta, Node target) { 19 min_lat = cur_lat;

2 Node t[] = {target}; 20 }
3 Measurement self = get_distance_tcp(t, -1); 21 }
4 double self_lat = self.distance[0]; 22 if (min_index == -1) {
5 Node ring_m[] = array_intersect( 23 return self;

6 ring_ge((1.0 - beta) * self_lat), 24 }
7 ring_le((1.0 + beta) * self_lat)); 25 Measurement min_n = r_lat[min_index];
8 if (array_size(ring_m) == 0) { 26 if (min_n.addr != 0
9 return self; 27 && min_lat < (self_lat * beta)) {
10 } 28 Measurement ret_n = rpc(

11 Measurement r_lat[] = get_distance_tcp(ring_m, 29 ring_m[min_index], closest,
12 t, ceil((2.0 * beta + 1.0) * self_lat)); 30 beta, t);
13 int min_index = -1; 31 if (ret_n.addr != 0) {
14 double min_lat = self_lat; 32 return ret_n;
15 for (int i=0; i < array_size(r_lat); i=i+1) { 33 }

16 double cur_lat = r_lat[i].distance[0]; 34 }
17 if (cur_lat < min_lat) { 35 return min_n;
18 min_index = i; 36 }

Fig. 6. The closest node discovery protocol in MQL.
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services redirect clients to nearby servers, reducing client latency and network load,
while improving bandwidth.

6. ANALYSIS OF SCALABILITY

In this section we argue analytically that Meridian scales well with the size of the
system. Our contributions are three-fold. First, we put forward a rigorous definition
that captures the quality of Meridian ring sets, and prove that under certain rea-
sonable assumptions small ring cardinalities suffice to ensure good quality. Second,
we show that with these good-quality rings, our algorithms for nearest neighbor
selection and central leader election work well, returning near-exact neighbors and
central leaders respectively. We provide further results on exact nearest neigh-
bors. Finally, we argue that if the ring sets of different nodes are stochastically
independent then the system is load-balanced.

We model the matrix of Internet latencies as a metric, i.e. a symmetric function
obeying the triangle inequality. We should not hope to achieve theoretical guar-
antees for arbitrary metrics; we need some reasonable assumptions to capture the
properties of real-life latencies. We avoid assumptions on the geometry of the metric
such as assuming it is Euclidean for two reasons. Firstly, recent experimental re-
sults suggest that approximating Internet latencies by Euclidean metrics, although
a useful heuristic in some cases, incurs significant relative errors [Ng and Zhang
2002; Dabek et al. 2004; Lim et al. 2003; Tang and Crovella 2003; Shavitt and
Tankel 2003; Pias et al. 2003; Costa et al. 2004; Ng and Zhang 2004; Lehman and
Lerman 2004]. Secondly, and perhaps more importantly, even if we assume that
the metric is Euclidean our algorithm is not allowed to use the coordinates since
one of the goals of this work is precisely to avoid heavy-weight embedding-based
approaches.

We will consider two families of metrics that have been popular in the re-
cent theoretical literature as non-geometric notions of low-dimensionality: growth-
constrained metrics and doubling metrics. Growth-constrained metrics have been
considered in the long line of work on DHTs started by Plaxton et al. [Plaxton
et al. 1997]. Doubling metrics is a non-trivial generalization of both growth-
constrained metrics and low-dimensional Euclidean metrics. In particular, unlike
growth-constrained metrics they can combine very dense and very sparse regions.

We focus on the case when the rate of churn and fluctuations in Internet latencies
is sufficiently low so that Meridian has ample time to adjust. So for the purposes
of this analysis we assume that the node set and the latency matrix do not change
with time.

This section is organized as follows. Preliminaries (Section 6.1) are followed by
a section on the quality of Meridian rings (Section 6.2). Then we analyze the
performance our search algorithms (Section 6.3), with extensions to exact nearest
neighbors (Section 6.4) and load-balancing (Section 6.5). We conclude with some
directions in which our results can be fine-tuned (Section 6.6). To improve the flow
of the paper, some of the more involved proofs are located in the appendices. For
completeness, we also include an appendix on tail inequalities (Appendix A).
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6.1 Preliminaries

We start with a formal definition of the Meridian system. Let V be the set of
all nodes in the system. Nodes running Meridian are called Meridian nodes. Let
SM ⊂ V be the set of Meridian nodes, of size N . Let d be the distance function on
V induced by the node-to-node latencies: d(u, v) is the uv-distance, i.e. the latency
between nodes u and v. Sometimes, when this is typographically convenient, we
may also denote it as duv.

Let Bu(r) denote the closed ball in SM of radius r around node u, i.e. the
set of all Meridian nodes within distance r from u. Define Bui = Bu(2i) and
Rui = Bui \ B(u,i−1). Then Rui’s are disjoint concentric rings around u. Without
loss of generality let the smallest distance be 1; denote the maximal distance by ∆.

Throughout this section we will denote the maximal number of nodes in a Merid-
ian ring by k. Formally, for some fixed k every node u maintains log(∆) sets
Sui ⊂ Bui, 0 ≤ i ≤ dlog ∆e of at most k nodes each. These sets are called m-rings
of u (‘m’ stands for ‘Meridian’), and the nodes in these sets are called Meridian
neighbors of u. If |Rui| ≥ k then the corresponding m-ring Sui consists of exactly
k nodes that lie in ring Rui. If |Rui| < k < |Bui| then Sui consists of all nodes in
Rui. Finally, if |Bui| ≤ k then Sui consists of all nodes in ball Bui.

Let us make some remarks about the above definition. Note that each m-ring Sui

contains all Meridian neighbors of u that lie in ring Rui. For a fixed Meridian node
u, let i0 be the largest i such that Bui ≤ k, and let i1 be the largest i such that
Rui ≤ k. Then the m-rings Sui, i ≤ i1 are fixed by the above definition, whereas
the m-rings Sui, i > i1 are not. Also, in the implementation we do not need to
maintain m-rings Sui, i ≤ i0 explicitely; we define them here for the convenience of
the analysis.

Let us formally define the nearest-neighbor search algorithm used in Meridian.
Suppose a node u receives a query to a target node t. Then u measures the distance
dut and looks at the three m-rings S(u,i−1), Sui and S(u,i+1), where i = dlog dute;
let S be the union of these rings. All nodes in S measure their distance to t and
report their measurements to u. Then u forwards the query to the node w ∈ S
that is closest to the target t subject to the constraint that dut/dwt ≤ β0. This
constitutes one step of the algorithm.

If such w does not exist, the algorithm chooses the node in S∪{u} that is closest
to t, call it w′, reports this node to the node that initiated the query, and stops; in
this case we say that as a result of the query, our algorithm finds w′. Here β0 > 1
is a parameter that is the same for all nodes that handle a given query. We denote
this algorithm by A(β0).

For the sake of the analysis we will also consider a version of A(β0) where instead
of looking at three m-rings we look at all m-rings Sui, i ≤ 1 + dlog dute. We denote
this version by A∗(β0).

Let us define the approximation ratio γ for nearest neighbor selection algorithms.
Consider a node t and let v be its nearest neighbor. Say node u is a γ-approximate
nearest neighbor of t if dut/dvt ≤ γ. An algorithm is γ-approximate if for any target
it finds a γ-approximate nearest neighbor.

It is straightforward to generalize the algorithms A(·) and A∗(·) to the central
leader election problem. Namely, given a set T of targets, we simply replace dut,
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the distance to from the current node u to target t, by the average distance from
u to targets in T . Note that we are back to the nearest neighbor selection problem
if |T | = 1. The concept of approximation ratio generalizes similarly.

6.2 Quality of the Meridian rings

Intuitively, we want each m-ring Sui to cover the corresponding ring Rui reasonably
well: we want each node in Rui to be within a small distance from some node in
Sui. For technical reasons in order to cover Rui we might also need some Meridian
neighbors from S(u,i−1) or S(u,i+1). We formalize the ’goodness’ of m-rings is as
follows:

Definition 6.1 Say the Meridian rings are ε-nice, ε < 1, if for any two Meridian
nodes u, v ∈ SM node u has an Meridian neighbor w such that d(w, v) ≤ ε d(u, v).

In the above definition v ∈ Rui for i = dlog duve. Since 2i−2 < duw < 2i+1, node
w is indeed contained in one of the three m-rings S(u,i−1), Sui, S(u,i+1) that are
considered by algorithm A(·).

In Section 6.3 we will how that under Definition 6.1, the Meridian search algo-
rithm achieves good approximation guarantees. Later in this section we show that
even for small cardinalities of m-rings it is possible to make them ε-nice.

Probabilistic interpretation. To show that the m-rings are indeed ε-nice, recall
that the m-rings are constructed by an underlying randomized gossiping protocol.
For each m-ring Sui, this protocol induces a probability distribution over subsets
of SM , so we can treat Sui as a random variable (whose values are subsets of SM ).
In particular, we can talk about the distribution of a given m-ring. A natural and
intuitively appealing distribution for an m-ring Sui is that of a random k-node
subset of the corresponding ring Rui. Let us formalize this:

Definition 6.2 Sui is well-formed if its distribution is that of a random k-node
subset of Rui, or if |Rui| ≤ k.

We proceed to show that if the m-rings are well-formed then even for a small value
of k they are ε-nice; we model Internet latencies by growth-constrained metrics.
Furthermore, we achieve a similar conclusion for a much more general family of
doubling metrics.

Growth-constrained metrics. For n-dimensional grid and α = n + O(1), the
cardinality of any ball is at most 2α times smaller than the cardinality of a ball
with the same center and twice the radius. This motivates the following definition:
the grid dimension of a metric is the smallest α such that the above property holds.
If the grid dimension is constant, we say that the metric is growth-constrained.

Growth-constrained metrics can be seen as generalized grids; they have been
used as a reasonable abstraction of Internet latencies in the long line of work on
DHTs started by Plaxton et al. [Plaxton et al. 1997] (see the intro of [Hildrum
et al. 2004] for a short survey). Growth-constrained metrics have also been con-
sidered in the theoretical computer science literature in the context of compact
data structures [Karger and Ruhl 2002], routing schemes [Abraham and Malkhi
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2005], dimensionality in graphs [Krauthgamer and Lee 2003], and gossiping proto-
cols [Kempe et al. 2001].

We show that even with small ring cardinalities it is possible to make the rings
ε-nice. We consider a model where the metric on the Meridian nodes is growth-
constrained, but we make no such assumption about the non-Meridian nodes. This
is important because even in a quite unfriendly metric we might be able to choose
a relatively well-behaved subset of (Meridian) nodes. We will also assume that the
rings are well-formed. Intuitively, this is desirable since in a growth-constrained
metric the density is approximately uniform.

Theorem 6.3 Let the metric on SM have grid dimension α. Fix δ ∈ (0, 1) and
ε ≤ 1; let the cardinality of a Meridian ring be k = O(1

ε )α log(N/δ). Suppose
the Meridian rings are created by a random process and are well-formed (but not
necessarily independent). Then with probability at least 1 − δ they are ε-nice.

Proof. Fix two Meridian nodes u, v. Recall that we are looking for a Meridian
neighbor w of node u such that dvw ≤ duv. Let r = εduv and pick the smallest i
such that duv + r ≤ 2i. Then

Bui ⊂ Bv(2i + duv) ⊂ Bv(2i+1 − r) = Bv(γr), (1)

where γ = 4 + 3/ε. By definition of the grid dimension

|Bui| ≤ |Bv(γr)| ≤ γα|Bv(r)|. (2)

Since Bu(r) lies in Rui∪R(u,i−1), and the corresponding m-rings Sui and S(u,i−1)

are well-formed, at least one node from these two m-rings lands in Bv(r) with some
(small) failure probability p. We claim that p is very small, namely p < δ/N2.
Indeed, note that p is upper-bounded by the probability of not hitting Bv(r) if we
select k nodes uniformly at random from a larger set Bui. By (2) and the Chernoff
Bounds2 the latter probability is at most δ/N2, claim proved.

Recall that p is a failure probability for a given ordered node pair. By Union
Bound, the probability that any node pair fails is at most p·N2 < δ, as required.

Doubling metrics. Any point set in an n-dimensional Euclidean metric has the
following property [Assouad 1983]: for α = n+ O(1), every ball of radius r can be
covered by 2α balls of radius r/2. For an arbitrary metric, we define the doubling
dimension [Assouad 1983; Gupta et al. 2003] as the smallest α such that the above
property holds. If the doubling dimension is constant, we say that the metric is
doubling.

By definition, doubling metrics generalize low-dimensional Euclidean metrics.
This generalization is non-trivial: there exist doubling metrics that are really non-
Euclidean. More formally, Gupta et al. [Gupta et al. 2003] proved that there exist
doubling metrics on N nodes that need distortion Ω(

√
logN ) to embed into any

Euclidean space.

2Chernoff Bounds is a useful fact from Probability: the sum of many bounded independent
random variables is close to its expectation with very high probability; see Appendix A
for more details.
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It is known [Gupta et al. 2003] that the doubling dimension is at most four
times the grid dimension, so doubling metrics also subsume growth-constrained
metrics. Moreover, there are doubling metrics that are very far from being growth-
constrained. One particularly instructive example is the exponential line, the subset
{2i : 0 ≤ i ≤ N} under the standard metric d(x, y) = |x − y|; here the doubling
dimension is 1, but the grid dimension is logN . Intuitively, doubling metrics are
more powerful than growth-constrained metrics because they can combine very
sparse and very dense regions.

Doubling dimension has been introduced in the mathematical literature by As-
souad [Assouad 1983] (see [Heinonen 2001] for a thorough mathematical treatment)
and has recently become a hot topic in the theoretical computer science commu-
nity, e.g. [Gupta et al. 2003; Krauthgamer and Lee 2004; Talwar 2004; Kleinberg
et al. 2004; Mendel and Har-Peled 2005; Slivkins 2005a]. In particular, it was used
to model Internet latencies in the context of distributed algorithms for network
embedding and distance estimation [Kleinberg et al. 2004; Slivkins 2005b].

For doubling metrics the notion of well-formed rings is no longer adequate, since
we might need to boost the probability of selecting a node from a sparser region.
In fact, this is precisely the goal of our ring-membership management in Section 2.
Fortunately, mathematical literature provides a natural way to formalize this intu-
ition.

Say a measure is s-doubling [Heinonen 2001] if for any ball B, the measure of B is
at most s times larger than that of a ball with the same center and half the radius.
Intuitively, a doubling measure is an assignment of weights to nodes that makes a
metric look growth-constrained; for instance, for an N -node exponential line the
node with coordinate 2i will have weight 2i−N . It is known [Heinonen 2001] that
for any metric of doubling dimension α there exists a 2O(α)-doubling measure µ.

With a doubling measure in mind, we extend Definition 6.2 (of well-formed m-
rings) as follows:

Definition 6.4 Consider a measure µ on nodes that assigns a finite non-zero prob-
ability to every node. Say than an m-ring Sui is µ-well-formed if its distribution is
that of a random k-node subset of Rui drawn according to the measure µ(·)/µ(Rui),
or if |Rui| ≤ k.

Now we obtain the guarantee in Theorem 6.3 (via a similar proof technique),
where instead of well-formed m-rings we use µ-well-formed m-rings, and instead of
the grid dimension we plug in a potentially much smaller doubling dimension of
SM .

Theorem 6.5 Suppose the metric on SM has doubling dimension α, and let µ be
a 2α-doubling measure on SM . Fix δ ∈ (0, 1) and ε ≤ 1; let the cardinality of a
Meridian ring be k = (1

ε )O(α) log(N/δ). Suppose the Meridian rings are created by
a random process and are µ-well-formed (but not necessarily independent). Then
with probability at least 1 − δ they are ε-nice.

Proof. Fix two Meridian nodes uv and let r = εduv. Pick the smallest i such
that duv + r ≤ 2i. By (1), applying the definition of a doubling measure logγ times
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gives

µ[Bui]/µ[Bv(r)] ≤ 2O(α log γ) = γO(α). (3)

In the proof of Theorem 6.3, we essentially consider the special case when µ is the
uniform measure, and use (2) to show that at least one node from Sui or S(u,i−1)

lands in Bv(r), with failure probability at most δ/N2 (and then the theorem follows
by the Union Bound). Using (3) instead of (2), this proof trivially generalizes to
any µ.

6.3 Nearest neighbors and central leaders

We prove that the Meridian algorithm for nearest neighbor selection and (more
generally) for central leader election achieves good approximation ratios, under
the assumption that the Meridian rings are ε-nice. Specifically, algorithm A(2) is
3-approximate, for any ε ≤ 1

8 . A better approximation ratio can be proved for
algorithm A∗(β0); the provable accuracy of this algorithm tends to improve as β0

and ε get smaller. The tradeoff between β0 and the approximation ratio matches
our simulation in Section 8 (see Figure 10). We summarize these results as follows:

Theorem 6.6 Suppose the Meridian rings are ε-nice, for some ε ≤ 1
4 . Consider

Meridian algorithms A(2) and A∗(·) for nearest-neighbor search and, more gener-
ally, for central leader election. Then:

(a) algorithm A(2) is 3-approximate, for any ε ≤ 1
8 ; completes in dlog ∆e steps.

(b) algorithm A∗(1 + ε2) is (1 + 3ε)-approximate; completes in dlog(∆/ε2)e steps.

(c) algorithm A∗(1 + γ) is (1 + 3ε+ γ)-approximate, for any γ ∈
[
ε2; 2

5

]
;

completes in dlog(∆/γ)e steps.

Proof Sketch: Let T be the set of targets, and let dT (u) be the average distance
from node u to the targets in T . Let v∗ be the central leader, i.e. the Meridian node
that minimizes dT . For a node u, let r(u) = dT (u)/dT (v∗) be the approximation
ratio. If the query is forwarded from node u to node v, we say that the progress at
u is dT (u)/dT (v).

For part (a) we show that the progress is at least 2 at every node u such that
r(u) ≥ 3, so in at most log ∆ steps we reach some node v such that r(v) < 3.

For parts (bc) we define a function f(x) which is continuously increasing from
f(1) < 1 + 3ε to infinity, and show that algorithm A(β0) achieves progress x ≥ β0

at any node u such that r(u) = f(x). The query is thus forwarded from node u to
some node v such that dT (v) ≤ dT (u)/x; it follows that r(v) ≤ f(x)/x.

The query proceeds in two stages. In the first stage the progress at each node
is x ≥ 2; in at most log ∆ steps we reach some node u such that r(u) < f(2). For
the second stage, the progress can be less that 2. The crucial observation is that
f(1 + y)/(1 + y) ≤ f(1 + y/2) for any y ≤ 1. Therefore if for the current node r(·)
is f(1 + y), then for the next node it is at most f(1 + y/2).

If β0 = 1 + γ then we can iterate this log 1
γ

times and reach a node such that
r(·) ≤ f(1 + γ/2). For part (c) we just note that f(1 + γ/2) < 1 + 3ε+ γ. For part
(b) we take γ = ε2 and note that f(1 + ε2/2) ≤ 1 + 3ε.
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6.4 Extensions: exact nearest neighbors

We extend our result on growth-constrained metrics (Theorem 6.3 in conjunction
with Theorem 6.6) to show that a version of algorithm A(2) finds exact nearest
neighbors.

We will use a somewhat more restrictive model: in addition to assuming that
the metric on SM is growth-constrained, we will need a similar assumption about
the set Q ⊂ V of potential targets. Specifically, we consider two settings. In one
setting, we assume that the metric on Q is growth-constrained, and that the set
SM of Meridian nodes is chosen uniformly at random from Q. In the other setting
we make a more fine-grained assumption: we assume that the metric on SM ∪ {q}
is growth-constrained, for any target q ∈ Q. Note that here we do not assume that
the metric on all of Q is growth-constrained; in particular, very dense clusters of
potential targets are allowed.

We will show that for any query to a target in Q algorithm A(2) finds an exact
nearest neighbor, and does so in at most log(∆) steps; if this is the case, we say
that algorithm A(2) is Q-exact.

Theorem 6.7 Consider a set Q ⊂ V of potential targets. Assume either of:

(a) the metric on Q has grid dimension α, and the set SM of Meridian nodes is a
random N -node subset of Q, or

(b) the metric on SM ∪ {q} has grid dimension α, for any node q ∈ Q.

Let k = 2O(α) log
(

1
δ
N |Q| log∆

)
be the cardinality of each Meridian ring, for a

given parameter δ > 0. Suppose the Meridian rings are created by a random process
and are well-formed (but not necessarily independent). Then with probability at least
1 − δ the nearest-neighbor selection algorithm A(2) is Q-exact.

Proof Sketch: Using the technique from Theorem 6.6(a), we prove that the dis-
tance to target decreases by a factor of at least 2 on each step except maybe the
last one. We have to be careful about this last step, since in general the target is
not a Meridian node and therefore not a member of any ring. In particular, this is
why bounded grid dimension on just SM does not suffice.

Part (b) is easier; some extra computation is needed in part (a) due to the fact
that there we do not have a good bound on the grid dimension of SM ; instead, we
use the assumption that SM is a random subset of Q.

6.5 Extensions: load-balancing

Ideally, the algorithm for nearest neighbor selection would balance the load among
participating nodes. Intuitively, if Nqy(A) is the maximal number of packets ex-
changed by a given algorithm A on a single query, then for m random queries we
do not want any node to send or receive much more than m

NNqy(A) packets.
We make it precise as follows. Fix some set Q ⊂ V and suppose each Meridian

node u receives a query for a random target tu ∈ Q. Say algorithm A is (γ,Q)-
balanced if in this scenario under this algorithm any given node sends and receives
at most γNqy (A) packets.

We will use the setting of Theorem 6.7(a), with a further assumption that the
m-rings are (stochastically) independent from each other:
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Definition 6.8 Say that the Meridian rings are independent if the collection of all
m-rings is a collection of independent random variables.

The above property matches well with our simulation results (see Figure 13).

Theorem 6.9 Consider a set Q ⊂ V of nodes and assume that the metric on Q
has grid dimension α. Let the set SM of Meridian nodes be a random N -node subset
of Q. For a parameter δ > 0, let the cardinality of a Meridian ring be equal to

k = 2O(α) log(|Q|/δ) log(N ) log(∆).

Let γ = 2O(α) log(N∆/δ). Suppose the Meridian rings are created by a random
process and are well-formed and independent. Then with probability at least 1 − δ
the nearest neighbor selection algorithm A(2) is (γ,Q)-balanced. Recall that it is
Q-exact by Theorem 6.7(a).

Proof Sketch: This result is much harder to prove than all other results in this
paper, essentially because we need to bound, over all nodes, not only the expected
load (which is relatively easy), but also the actual load. We consider the proba-
bility space where the randomness comes from choosing Meridian nodes, Meridian
neighbors, and the query targets tu, u ∈ SM . In this space, we consider the N
nearest-neighbor queries propagating through the Meridian network. Ideally, we’d
like to express the contribution of a given query i to the load on a given node u as a
random variable Lui, and use Chernoff Bounds to show that with high probability
the sum

∑
iLui does not deviate too much from its expectation. However, Chernoff

Bounds only apply to independent random variables, which the Lui’s are not. To
remedy this, we need to be a lot more careful in splitting the load on u into a sum
of random variables; see Appendix D for the full proof.

6.6 Fine-tuned versions of the results

Our provable guarantees can be fine-tuned in two directions: to use relaxed versions
of the grid dimension, and to rely on average (vs worst-case) guarantees.

First, our results hold under a less restrictive definition of the grid-dimension that
only applies to balls that contain sufficiently many nodes: at least log(n) nodes in
Theorem 6.6, and at least log(n|Q|) nodes in Theorem 6.7 and Theorem 6.9.

Second, the vicinity of a given node u could be significantly more ’well-behaved’
than guaranteed by the (global) concept of grid dimension. We can show that in
this case some of this node’s m-rings can be made smaller. We would like the size
of each m-ring Sui to depend only on what happens in the corresponding ball Bui.
Specifically, let r = ε 2i−3 and choose a Meridian node v within distance 2i−r from
u such that the ball Bv(r) has the smallest cardinality. Note that Bv(r) ⊂ Bui.
Define

σui = |Bui|/|Bv(r)|.
Now we can use this ratio, instead of the doubling dimension, to express the ’good-
ness’ of ballBui. In particular, Theorem 6.3 it suffices to assume that the cardinality
of each ring Sui is at least 2.2σui ln(n2/δ).

Third, our guarantees are worst-case; on average it suffices to query only a frac-
tion of neighbors of a given ring. To take advantage of this observation, we need a
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minor modification to the search algorithm. Recall that on every step in algorithm
A(β0) we look at a subset S of neighbors and forward the query to the node w ∈ S
that is closest to the target t subject to the constraint that the progress of w, de-
fined as the ratio dut/dwt, is at least β0. For β0 ≤ 2, suppose instead we forward
the query to an arbitrary progress-2 node in S if such node exists. It is easy to
check that all our results for A(β0) carry over to this modified algorithm.

Now in Theorem 6.6(a) (used in conjunction with Theorem 6.3) instead of asking
all neighbors of a given ring at once, we can ask them in random batches of size
k0 = O(1)α; then in expectation one such batch will suffice to find a progress-2
neighbor. Therefore on average on every step (except the last one) we’ll use only k0

randomly selected neighbors from a given ring. Similarly, we can take k0 = O(1
ε
)α

for Theorem 6.6(bc) (used in conjunction with Theorem 6.3), and k0 = O(1)α for
Theorem 6.7. We obtain similar improvements for Theorem 6.6 used in conjuction
with Theorem 6.5 for doubling metrics.

7. EVALUATION

We evaluated Meridian through both a large scale simulation parameterized with
real Internet latencies and a physical deployment on PlanetLab.

Simulation. We performed a large scale measurement study of internode latencies
between 2500 nodes to parameterize our simulations. We collected pair-wise round-
trip time measurements between 2500 DNS servers at unique IP addresses, spanning
6.25 million node pairs. The study was performed on 10 different PlanetLab nodes,
with the median value of the runs taken for the round-trip time of each pair of
nodes. Data collection was performed on May 5-13, 2004; query interarrival times
were dilated, and the query order randomized, to avoid queuing delays at the DNS
servers. The latency measurements between DNS servers on the Internet were
performed using the King measurement technique [Gummadi et al. 2002].

In the following experiments, each test consists of 4 runs with 2000 Meridian
nodes, 500 target nodes, k = 16 nodes per ring, 9 rings per node, s = 2, probe
packet size of 50 bytes, β = 1

2 , and α = 1ms, for 25000 queries in each run. The
results are presented either as the mean result of the 100000 total queries, or as the
mean of the median value of the 4 runs. All references to latency in this section are
in terms of round-trip time. Each simulation run begins from a cold start, where
each joining node knows only one existing node in the system and discovers other
nodes through the gossip protocol.

We compare Meridian to virtual coordinates computed through network embed-
dings. We computed the coordinates for our 2500 node data set using GNP, Vivaldi
and Vivaldi with height [Dabek et al. 2004]. GNP is a global virtual coordinate
system based on static landmarks. We configured it for 15 landmarks and 8 dimen-
sions, and used the N -clustered-medians protocol for landmark selection. Vivaldi
is a virtual coordinate scheme based on spring simulations and was configured to
use 6 dimensions with 32 neighbors. Vivaldi with height is a recent scheme that
performs a non-Euclidean embedding which assigns a two dimensional location plus
a height value to each node. We randomly select 500 targets from our data set of
2500 nodes.

We first examine the inherent embedding error in absolute coordinate systems
ACM Transactions on Computer Systems, Vol. X, No. X, X 20X.
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Fig. 7. Light bars show the median error for discovering the closest node. Darker bars
show the inherent embedding error with coordinate systems. Meridian’s median closest
node discovery error is an order of magnitude lower than schemes based on embeddings.
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Fig. 8. Meridian’s relative error for closest node discovery is significantly better than
virtual coordinates.

and determine the error involved in finding the closest neighbor. The dark bars in
Figure 7 show the median embedding error of each of the coordinate schemes, where
the embedding error is the absolute value of the difference between the measured
distance and predicted distance over all node pairs. While these systems incur
significant errors during the embedding, they might still pick the correct closest
node. To evaluate the error in finding the closest node, we assume the presence
of a geographic query routing layer, such as a CAN deployment, with perfect in-
formation at each node. This assumption biases the experiment towards virtual
coordinate systems and isolates the error inherent in network embeddings. The
resulting median errors for all three embedding schemes, as shown by the light bars
in Figure 7, are an order of magnitude higher than Meridian. Figure 8 compares
the relative error CDFs of different closest node discovery schemes. Meridian has a
lower relative error than the embedding schemes by a large margin over the entire
distribution.

We also examine the improvement in closest node discovery accuracy using Vi-
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mined by the slowest node in each ring and the hop count, and remains constant within
measurement error bounds.
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Fig. 10. An increase in β significantly improves accuracy for β ≤ 0.5. The average query
latency increases with increasing β, as a bigger β increases the average number of hops
taken in a query.

valdi coordinates with the addition of latency data from active probes. We mod-
ify Vivaldi+CAN to return the top M candidates based on their coordinates and
actively probe the target to determine the closest candidate. Figure 8 shows the
results forM = 2 andM = 3. Active probing greatly improves the accuracy of clos-
est node discovery, but is still significantly less accurate than Meridian. Note that
selecting the M closest targets for M > 1 in a scalable (< O(N )) manner requires
additional, complex extensions to CAN that are equivalent to a multi-dimensional
expanding ring search.

The accuracy of Meridian’s closest node discovery protocol depends on several
parameters, such as the number of nodes per ring k, acceptance interval β, the
constant α, and the gossip rate. The most critical parameter is the number of
nodes per ring k, as it determines the coverage of the search space at each node.
Figure 9 shows that median error drops sharply as k increases. Hence, a node only
needs to keep track of a small number of other nodes to achieve high accuracy. The
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Fig. 11. Median error and average query latency as a function of system size, for k =
blog1.6 Nc; both remain constant as the network grows, as predicted by the analytical
results.
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Fig. 12. The average load of a closest node discovery query increases sub-linearly with
system size (k = blog1.6 Nc).

results indicate that as few as eight nodes per ring can return very accurate results
with a system size of 2000 nodes.

High accuracy must also be coupled with low query latency for interactive ap-
plications that have a short lifetime per query and cannot tolerate a long initial
setup time. The closest node discovery latency is dominated by the sum of the
maximum latency probe at each hop plus the node to node forwarding latency; we
ignore processing overheads because they are negligible in comparison. Meridian
bounds the maximum latency probe by 2β + 1 times the latency from the current
intermediate node to the destination, as any probe that requires more time cannot
be a closer node and its result is discarded. The average query latency curve in
Figure 9 shows that queries are resolved quickly regardless of k. Average query
latency is determined by the hop count and the slowest node in each ring, subject
to the maximum latency bound; both increase only marginally as k increases from
four to sixteen.

The β parameter captures the tradeoff between query latency and accuracy as
ACM Transactions on Computer Systems, Vol. X, No. X, X 20X.
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Fig. 13. The in-degree ratio shows the average imbalance in incoming links within spherical
regions. More than 90% of regions have a ratio less than 2.
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Fig. 14. Central leader election accuracy.

shown in Figure 10. Increasing β increases the query latency, as it reduces the
improvements necessary before taking a hop and therefore increases the number
hops taken in a query. However, increasing β also provides a significant increase in
accuracy for β ≤ 0.5; this matches our analysis (see Theorem 6.6). Accuracy is not
sensitive to β for β > 0.5.

We examine the scalability of the closest node discovery application by evaluating
the error, latency and aggregate load at different system sizes. Figure 11 plots the
median error and average query latency. We set k = blog1.6Nc such that the
number of nodes per ring varies with the system size; setting k to a constant would
favor small system sizes, and this particular log base yields k = 16 for 2000 nodes.
As predicted by the theoretical analysis in Section 6, the median error remains
constant as the network grows, varying only within the error margin. The error
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improves for really small networks where it is feasible to test all possible nodes for
proximity. Similarly, the query latency remains constant for all tested system sizes.

Scalability also depends on the aggregate load the system places on the network,
as this can limit the number of concurrent closest node discoveries that can be
performed at a particular system size. Figure 12 plots the total bandwidth required
throughout the entire network to resolve a query, that is, the total number of bytes
from every packet associated with the query, and shows that it grows sub-linearly
with system size, with 2000 nodes requiring a total of 10.4 KB per query.

A desirable property for load-balancing, and one of the assumptions in our the-
oretical analysis (see Theorem 6.9) is stochastic independence of the ring sets. We
verify this property indirectly by measuring the in-degree ratio of the nodes in the
system. The in-degree ratio is defined as the number of incoming links to a node A
over the average number of incoming links to nodes within a ball of radius r around
A. If the ring sets are independent, then the in-degree ratio should be close to one;
a ratio of one indicates that links to the region bounded by radius r around A are
distributed uniformly across the nodes in the area. Figure 13 shows that Meridian
distributes load evenly. More than 90% of the balls have an in-degree ratio less
than two for balls of radius 20ms and 50ms.

Another useful property, as well as an assumption in our theoretical analysis
(see Theorem 6.6), is that ring members are well distributed. To determine the
effectiveness of Meridian’s ring membership management protocol, we examine the
latency ratio of the nodes. The latency ratio for a node A and a target node B
is defined as the latency of node C to B over the latency of A to B, where C is
the neighbor of A that is closest to B. We find that, for β = 1

2 , further progress
can be made via an extra hop to a closer node more than 80% of the time. For
β = 0.9, an extra hop can be taken over 97% of the time. This indicates that
the ring membership management protocol selects a useful and diverse set of ring
members. Compared to a random replacement protocol, we find that the standard
deviation of relative error is 38ms when using hypervolumes for selection and 151ms
when using random replacement; hypervolume-based selection is more consistent
and robust.

We evaluate how Meridian performs in central leader election by measuring its
relative error as a function of group size. Figure 14 shows that, as group size gets
larger, the relative error of the central leader election application drops. Intuitively,
this is because the larger group sizes increase the number of nodes eligible to serve
as a well-situated leader, and simplify the task of routing the query to a suitable
node. Central leader election based on virtual coordinates incurs significantly higher
relative error than Meridian for a group size of two. The accuracy gap between
coordinate schemes and Meridian closes as the group size increases, as large groups
simplify the problem and even random selection becomes competitive with more
accurate selection.

We evaluate our multi-constraint protocol by the percentage of queries that it
can satisfy, parameterized by the difficulty of the set of constraints. For each multi-
constraint query we select four random target nodes and assign a constraint to each
target node chosen uniformly at random between 40 and 80 ms. The difficulty of
a set of constraints is determined by the number of nodes in the system that can
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Fig. 18. The relative error of closest node discovery for a Meridian deployment on Plan-
etLab versus simulation. Meridian achieves results comparable to or better than our
simulations in a real-world deployment.

satisfy them. The fewer the nodes that can satisfy the set of constraints, the more
difficult is the query.

Figure 15 shows a histogram of the success rate broken down by the percentage
of nodes in the system that can satisfy the set of constraints. For queries that can
be satisfied by 0.5% of the nodes in the system or more, the success rate is over
90% for Meridian and less than 11% when using coordinate schemes.

As in closest node discovery, k, the number of nodes per ring, has the largest
influence on the performance of the multi-constraint protocol. Figure 16 shows
that the failure rate decreases as the number of nodes per ring increases. It also
shows a decrease in average query latency as the number of nodes per ring increases.
An increase in β decreases the failure percentage and increases the average latency
of a multi-constraint query, though the performance of the multi-constraint protocol
is mostly independent of β.

The scalability properties of the multi-constraint system are very similar to the
scalability of closest node discovery. Figure 17 shows that the failure rate and the
average query latency are independent of system size. The average load per multi-
constraint query (not shown) grows sub-linearly and is approximately four times
the average load of closest node discovery query. The non-increasing failure rate
and the sub-linear growth of the query load make the multi-constraint protocol
highly scalable.

Physical Deployment. We have implemented and deployed the Meridian frame-
work and all three applications on PlanetLab. The implementation is small, com-
pact and straightforward; it consists of approximately 6500 lines of C++ code.
Most of the complexity stems from support for firewalled hosts.

Hosts behind firewalls and NATs are very common on the Internet, and a system
must support them if it expects large-scale deployment over uncontrolled, hetero-
geneous hosts. Meridian supports such hosts by pairing each firewalled host with
a fully accessible peer, and connecting the pair via a persistent TCP connection.
Messages bound for the firewalled host are routed through its fully accessible peer.
A ping, which would ordinarily be sent as a direct UDP packet or a TCP connect
ACM Transactions on Computer Systems, Vol. X, No. X, X 20X.
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request, is sent to the proxy node instead, which forwards it to the destination,
which then performs the ping to the originating node and reports the result. A
node whose proxy fails is considered to have failed, and must join the network from
scratch to acquire a new proxy. Since a firewalled host cannot directly or indirectly
ping another firewalled host, firewalled hosts are excluded from ring membership
on other firewalled hosts, but included on fully-accessible nodes.

A large overlay network that performs active probes can potentially be used as a
platform for launching denial-of-service attacks. This problem can be avoided either
by controlling the set of clients that may inject queries via authentication, or by
placing limits on the probing frequency of the overlay nodes. Our implementation
chooses the latter and caches the result of latency probes. This considerably reduces
the load the overlay nodes can place on a target, as each overlay node can only be
coerced to send at most one probe per target within a cache timeout.

We deployed the Meridian implementation over 166 PlanetLab nodes. We bench-
mark the system with 1600 target web servers drawn randomly from the Yahoo web
directory, and examine the latency to the target from the node selected by Meridian
versus the optimal obtained by querying every node. Meridian was configured with
k = 8, s = 2, β = 1

2
, and α = 1ms. Overall, median error in Meridian is 1.8ms, and

the relative error CDF in Figure 18 shows that it performs better than simulation
results from a similarly configured system.

8. RELATED WORK

Meridian is a general network location service that was first introduced in [Wong
et al. 2005]. This paper extends the previous work significantly in three directions.
First, we describe MQL, an application-specific, safe and expressive query language
that provides an extensible way to specify location queries. Second, we describe
the integration of our framework with DNS, and describe how client redirection to
nearby servers can be done transparently; this is an extension of [Wong and Sirer
2006]. Finally, we show that the system is theoretically sound with a complete
theoretical analysis of the system’s most common application.

Past work on network location services can be separated into approaches that
rely on network embeddings and those that do not. We survey both in turn.

Network Embedding: Recent work on network coordinates can be categorized
roughly into landmark-based systems and simulation-based systems. Both types
can embed nodes into a Euclidean coordinate space. Such an embedding allows the
distance between any two nodes to be determined without direct measurement.

GNP [Ng and Zhang 2002] determines the coordinates of a node by measur-
ing its latency to a fixed set of landmarks and then solving a multidimensional,
iterative, nonlinear minimization problem. ICS [Lim et al. 2003] and Virtual Land-
marks [Tang and Crovella 2003] both aim to reduce the computational cost of the
GNP embedding algorithm by replacing it with a computationally cheaper, linear
approximation based on principal component analysis, though the speedup may
incur a loss in accuracy. To avoid the load imbalance and lack of failure resilience
created by a set of fixed landmarks, PIC [Costa et al. 2004] and PCoord [Lehman
and Lerman 2004] use landmarks only for bootstrapping and calculate their co-
ordinates based on the coordinates of peers. This can lead to compounding of
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embedding errors over time in a system with churn. NPS [Ng and Zhang 2004]
is similar to PIC and PCoord but further imposes a hierarchy on nodes to avoid
cyclic dependencies in computing coordinates and to ensure convergence. Light-
house [Pias et al. 2003] avoids fixed landmarks entirely and uses multiple local
coordinate systems that are joined together through a transition matrix to form a
global coordinate system.

Simulation-based systems map nodes and latencies into a physical system whose
minimum energy state determines the node coordinates. Vivaldi [Dabek et al.
2004] is based on a simulation of springs, and can be augmented with an additional
height vector to increase accuracy. Big-Bang Simulation [Shavitt and Tankel 2003]
performs a simulation of a particle explosion under a force field to determine node
positions.

IDMaps [Francis et al. 2001] is a system that can compute the approximate dis-
tance between two IP addresses without direct measurement based on strategically
placed tracer nodes. IDMaps incurs inherent errors based on the client’s distance to
its closest tracer server and requires deploying system wide infrastructure. Other
work [Fei et al. 1998] has also examined how to delegate probing to specialized
nodes in the network.

Recent theoretical work [Kleinberg et al. 2004; Slivkins 2005b] has sought to
explain the empirical success of network embeddings and IDMaps-style approaches.

Server Selection: Our closest node discovery protocol draws its inspiration from
the Chord DHT [Stoica et al. 2001], which performs routing in a virtual identi-
fier space by halving the virtual distance to the target at each step. Proximity
based neighbor selection [Castro et al. 2002; 2003] populates DHT routing tables
with nearby nodes, which decreases lookup latency, but does not directly address
location-related queries. The time and space complexity of two techniques are dis-
cussed in [Hildrum et al. 2002] and [Karger and Ruhl 2002], but these techniques
focus exclusively on finding the nearest neighbor, apply only to Internet latencies
modeled by growth-constrained metrics, and have not been evaluated with a large
scale Internet data.

In beaconing [Kommareddy et al. 2001], landmark nodes keep track of their la-
tency to all other nodes in the system. A node finds the closest node by querying all
landmarks for nodes that are roughly the same distance away from the landmarks.
This approach requires each landmark to retain O(N ) state, and can only resolve
nearest neighbor queries. Binning [Ratnasamy et al. 2002] operates similarly, using
approximate bin numbers instead of direct latency measurements. Mithos [Wald-
vogel and Rinaldi 2002] provides a gradient descent based search protocol to find
proximate neighbors in its overlay construction. It is similar to Meridian as it is
iterative and performs active probing but it requires O(N ) hops to terminate. It
is also more prone to terminate prematurely at a local minimum than Meridian
as it does not promote diversity in its neighbor set. Various active-probing based
nearest neighbor selection schemes are proposed in [Shanahan and Freedman 2005].
These schemes require O(N ) state per node, which limits their scalability, and are
non-trivial to adapt to other positioning problems. Tiers [Banerjee et al. 2002]
reduces the state requirement by forming a proximity-aware tree and performing a
top-down search to discover the closest node. Hierarchical systems suffer inherently
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from load imbalance as nodes close to the root of the hierarchy service more queries,
which limits scalability when the workload increases with system size.

Early work on locating nearby copies of replicated services [Guyton and Schwartz
1995] examined combining traceroutes and hop counts to perform a rough trian-
gulation, and to determine the closest replica at a centralized O(N ) server using
Hotz’s distance metric [Hotz 1994]. Dynamic server selection was found in [Carter
and Crovella 1997] to be more effective than static server selection due to the vari-
ability of route latency over time and the large divergence between hop count and
latency. Simulations [Carter and Crovella 1999] using a simple dynamic server se-
lection policy, where all replica servers are probed and the server with the lowest
average latency is selected, show the positive system wide effects of latency-based
server selection. Our closest node discovery application can be used to perform
such a selection in large-scale networks.

9. CONCLUSIONS

Selecting nodes based on their network location is a critical building block for many
large scale distributed applications. Network coordinate systems, coupled with a
scalable node selection substrate, may provide one possible approach to solving
such problems. However, the generality of absolute coordinate systems comes at
the expense of accuracy and complexity.

In this paper, we outlined a lightweight, accurate and scalable framework for
solving positioning problems without the use of explicit network coordinates. Our
approach is based on a loosely structured overlay network and uses direct mea-
surements instead of virtual coordinates to perform location-aware query routing
without incurring either the complexity, overhead or inaccuracy of an embedding
into an absolute coordinate system or the complexity of a geographic peer-to-peer
routing substrate.

We have argued analytically that Meridian provides robust performance, delivers
high scalability, and balances load evenly across nodes. We have evaluated our
system through a PlanetLab deployment as well as extensive simulations, param-
eterized by data from measurements of 2500 nodes and 6.25 million node pairs.
The evaluation indicates that Meridian is effective; it incurs less error than systems
based on an absolute embedding, is decentralized, requires relatively modest state
and processing, and locates nodes quickly. We have deployed a DNS to Merid-
ian gateway that enables oblivious clients to issue Meridian lookups, reducing the
amount of work required to use Meridian. We have shown how the framework
can be used to solve three network positioning problems frequently-encountered in
distributed systems, and described a domain specific language that can be used to
express other application-specific algorithms. It remains to be seen whether the
lightweight approach advocated in this paper can be applied to other significant
problems.
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A. TAIL INEQUALITIES

Here we describe the tail inequalities used in the proofs in Section 6. Essentially, a
tail inequality is a statement that the sum of random variables is very close to its
expectation with very low failure probability. We start with the standard Chernoff
Bounds:

Lemma A.1 (Chernoff Bounds [Motwani and Raghavan 1995]) Consider the
sum X of n independent random variables Xi ∈ [0, y].

(a) for any µ ≤ E(X) and any ε ∈ (0, 1) we have Pr[X < (1−ε)µ] ≤ exp(−ε2µ/2y).

(b) for any µ ≥ E(X) and any β ≥ 1 we have Pr[X > βµ] ≤
[

1
e
(e/β)β

]µ/y.

We also use two easy applications of Chernoff Bounds. Their proofs are fairly
standard; we include them here for the sake of completeness.

Claim A.2 Consider sets T ⊂ V . Suppose we choose a k-node subset S ⊂ V
uniformly at random from V . Then with failure probability at most e−(1−1/µ)2µ/2

some node from S lands in T , where µ = k|T |/|V |.

Proof. Denote the desired event by A. The distribution of Sui is that of the
following process P : pick nodes from V independently and uniformly at random,
until we gather k distinct nodes. For simplicity consider a slightly modified process
P ′: pick k nodes from Bui independently and uniformly at random, possibly with
repetitions. Obviously, P ′ is doing exactly the same as P , except P might stop
later and, accordingly, choose some more nodes. Therefore Pr P [A] ≥ Pr P ′ [A].

Let’s analyze process P ′. Let Xj be a 0-1 random variable that is equal to 1 if
and only if the j-th chosen node lands in Bv(r). Then Pr[Xj = 1] = |T |/|V |, so µ =
E(

∑
Xj). The claim follows from Lemma A.1(a) with y = 1 and 1 − ε = 1/µ.

Claim A.3 Consider two sets S′ ⊂ S and suppose n nodes are chosen indepen-
dently and uniformly at random from S; say X of them land in S′. Let λ =
n|S′|/|S|. Then:

(a) Pr[X < λ/2] ≤ e−λ/8,

(b) Pr[X > k] ≤ e−k/16 for any k ≥ 2λ,

(c) Pr[X > 2λ] ≤ (e/4)λ.

Proof. Let Xj be a 0-1 random variable that equals 1 if and only if the j-th
chosen node lands in S′. Then X =

∑n
j=1Xj is a sum of independent random

variables, so

E(X) = n · Pr[Xj = 1] = n · |S′|/|S| = λ.

For part (a), use Lemma A.1(a) with y = 1 and ε = 1/2. Parts (bc) follow from
Lemma A.1(b) with y = 1 and β = 2; specifically, take µ = k/2 in part (b), and
take µ = λ in part (c).
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B. FULL PROOF OF THEOREM 6.6 ON CENTRAL LEADER ELECTION

Let us recap the definitions from the proof sketch. Let use fix the set of targets
T , and let dT (u) be the average distance from node u to the targets in T . Let v∗

be the central leader, i.e. the Meridian node that minimizes dT . For a node u, let
r(u) = dT (u)/dT (v∗) be the approximation ratio.

Recall that if the query is forwarded from node u to node v, we say that the
progress at u is dT (u)/dT (v). More generally, if node v is a Meridian neighbor of
node u, say that v is a progress-β neighbor, for β = dT (u)/dT (v). We will use a
function

fε(β) = β(1 + ε)/(1 − βε).

Note that for β ∈ (1, 1/ε) this function is continuously increasing to infinity.
The following claim captures the performance of a single step of the central leader

election algorithm.

Claim B.1 Assume the rings are ε-nice, ε ≤ 1/3. Let u be any Meridian node,
and suppose rT (u) = fε(β) for some β ∈ (1, 1

ε ). Then a progress-β neighbor of u
exists and is found by the algorithm A∗(β). Moreover, if β = 2 then such neighbor
is found by algorithm A(2) as well.

Proof. First we claim that such neighbor exists. Indeed, pick the smallest i
such that d(u, v∗)(1 + ε) ≤ 2i. Since the rings are ε-nice, node u has a Meridian
neighbor w within distance ε d(u, v∗) from node v∗. Then

dT (w) ≤ dT (v∗) + d(w, v∗) ≤ dT (v∗) + ε d(u, v∗)
≤ dT (v∗) + ε (dT (u) + dT (v∗))
≤ ε dT (u) + (1 + ε) dT (u)/fε(β)
= dT (u)/β,

claim proved.
It is easy to see that w lies in Sui ∪ S(u,i−1). To prove that node w is found by

A∗(β) it suffices to show that both m-rings are considered by this algorithm, i.e.
that i ≤ 1 + dlog dT (u)e. Indeed,

d(u, v∗) ≤ dT (u) + dT (v∗) ≤ dT (u)
(
1 + fε(β)−1

)

≤ 2 dT (u)/(1 + ε),
2i < 2 d(u, v∗) (1 + ε) ≤ 4 dT (u).

Finally, for the case β = 2 we need to show that node w is found by algorithm
A(2) as well. Specifically, we need to prove two things:
(i) if w ∈ S(u,i−1) then i − 1 ≥ j − 1.
(ii) if w ∈ Sui then i ≥ j − 1.

First let us note that by the triangle inequality we have

d(u,w) ≥ dT (u) − dT (w) ≥ dT (u)/2. (4)
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Now if w ∈ S(u,i−1) then dT (u) ≤ 2 d(u,w) ≤ 2i by (4); it follows that i ≥ j,
proving (i). For (ii) recall that

d(u,w) ≤ d(u, v) + d(v, w) ≤ (1 + ε) d(u, v) ≤ 2i. (5)

By (4), (5) and the definition of j it follows that

2j ≤ 2 dT (u) ≤ 4 d(u,w) ≤ 2i+2,

so j ≤ i+ 1, proving (ii).

Let us state some properties of the function fε(β) that will be used in the forth-
coming proof of Theorem 6.6. Out of these five properties, most crucial is property
(c): in conjunction with Claim B.1 it shows that in one step our search algorithm
passes from an fε(1+γ)-approximate neighbor to an fε(1+γ/2)-approximate neigh-
bor.

Claim B.2 Some useful properties of the function fε(β):

(a) function fε(2) is at most 8 whenever ε ≤ 1
3 , and at most 3 whenever ε ≤ 1

8 .
(b) fε(1 + γ)/(1 + γ) ≤ fε(1 + γ/2), for any ε ≤ 1

3 and any γ ∈ (0, 1).
(c) fε(1 + ε2/2) ≤ 1 + 3ε for any ε ≤ 1

4
.

(d) fε(1 + γ/2) ≤ 1 + 3ε+ γ, for any ε ≤ 1
4 and any γ ∈ (0, 2

5 ).

Proof Sketch: Part (a) are trivial: just plug in the definition of fε(2). For parts
(bcd), we plug in the definition of fε(·) and carefully solve the resulting inequality
for ε.

In part (b) the inequality reduces to ε ≤ 1/(2 + γ), which holds for any ε ≤ 1
3
.

In part (c) we get g(ε) := ε((1 + 3ε)2 + 20) ≤ 6, which is true for any ε ≤ 1
4 since

the function g(ε) is increasing in ε and g(1
4 ) < 6.

Finally, in part (d) the inequality reduces to

g(ε) := ε2(3γ + 6) + ε(γ2 + 4γ − 2) − γ ≤ 0.

Since g(0) = −γ < 0 and the polynomial g(ε) is a quadratic in ε, it has two
roots, call them ε1 and ε2, and it is negative for any ε ∈ (ε1; ε2). Therefore it
suffices to show that g(1

4 ) < 0. Indeed, solving the latter inequality for γ we get
γ < (

√
41 − 3)/8, which is more than 2

5
.

Now we are ready to prove Theorem 6.6.

Proof of Theorem 6.6(a): We need to prove that algorithm A(2) finds a 3-
approximate neighbor of q. By Claim B.1 while the query visits nodes u such that
rT (u) ≥ fε(2), the algorithm finds a progress-2 neighbor of u and forwards the
query to it. The distance dT (u) goes down by a factor of at least 2 at each step, so
after at most log(∆) steps the query should arrive at some node v such that r(v)
is less than fε(2), which is at most 3 by Claim B.2(a).

Proof of Theorem 6.6(b): We will show that A∗(β) finds a (1+3ε)-approximate
neighbor of q. The query proceeds in two stages. In the first stage, while the query
visits nodes u such that rT (u) ≥ fε(2), by Claim B.1 the distance dT (u) goes down
by a factor of at least 2 at each step. So after at most log(∆) steps the query
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should arrive at some node v such that r(v) is less than fε(2), which is at most 8
by Claim B.2(a).

In the second phase the progress at each step is smaller than 2. Specifically,
by Claim B.1 and Claim B.2b our search algorithm passes from an fε(1 + γ)-
approximate central leader to an fε(1 + γ/2)-approximate central leader, for any
γ ∈ (0, 1). By induction on i we show that after i more steps the query will arrive
at node w such that r(w) < fε(1 + 2−i). So i = dlog(2/ε2)e steps suffices by
Claim B.2c.

Proof of Theorem 6.6(c): The proof is similar to that for part (b); in the
second stage i = dlog 2/γe steps suffices by Claim B.2d.

C. FULL PROOF OF THEOREM 6.7 ON EXACT NEAREST NEIGHBORS

We start with part (b) since it is simpler.

Proof of Theorem 6.7(b): Let the size of a Meridian ring be k = 2.2·10α ln(1/p),
where p = δ/N |Q| log(∆). Let q ∈ Q be the target, and let v ∈ SM be its exact
nearest neighbor. Fix some Meridian node u, let d = duq and choose the smallest i
such that 1.5d ≤ 2i.

We claim that either v ∈ Sui, or with failure probability at most p node u has a
Meridian neighbor w ∈ Bq(d/2). Indeed,

Bui ⊂ Bq(2i + d) ⊂ Bq(4d)
|Bui| ⊂ |Bq(4d)| ≤ 8α |Bq(d/2)|,

so if |Bui| ≥ k then the claim follows from Claim A.2; the constant 2.2 in front
of k works numerically as long as e.g. n|Q| > 552 and δ < e−2, which is quite
reasonable. Finally, if |Bui| ≤ k then every node in Bui is in ring Sui, including v,
claim proved.

Recall that, letting j = dlog de, algorithm A(2) at node u considers the m-rings
S(u,j−1), Suj and S(u,j+1). Since by the triangle inequality d/2 ≤ duw ≤ 3d/2, node
w lies in one of these three m-rings, and therefore is found by A(2). So the progress
is at least 2 at every step except maybe the last one, with failure probability at
most p. Therefore the algorithm makes at most log∆ steps before completion.

Finally, for a single (u, q) pair the failure probability for a single step is at most p.
Taking the Union Bound over all N |Q| possible (u, q) pairs and all dlog ∆e possible
steps, it follows that the total probability is at most δ.

Theorem 6.7(a) is proved using the same idea, except we need to address the fact
that Meridian nodes themselves are chosen at random from Q.

Proof of Theorem 6.7(a): Let Qu(r) denote the closed ball in Q of radius r
around node u, i.e. the set of all nodes in Q within distance r from u. Denote
Qui = Qu(2i) and let the cardinality of a Meridian ring be

k = 8 · 8α ln
(

2
δ N |Q| log∆

)
. (6)

Let q be the target and let v ∈ SM be its exact nearest neighbor. Fix some Meridian
node u, let d = duq and B = Bq(d/2); choose the smallest i such that 1.5 d ≤ 2i.
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Note that without loss of generality we can view the process of selecting SM from
Q as follows: choose the cardinality x for Bui from the appropriate distribution,
then choose, independently and uniformly at random, x nodes from Qui, and n−x
nodes from Q \Qui.

We claim that with failure probability at most δ′ = δ/N |Q| log(∆) either v ∈ Sui,
or node u has a Meridian neighbor w ∈ B. Indeed, if the cardinality of Bui is
at most k, then all of Bui lies in the ring Sui, including v. Now assume the
cardinality of Bui is some fixed number x > k. Since by the triangle inequality
Qui ⊂ Qq(2i + d) ⊂ Qq(4d), it follows that

x

E(|B|)
=

|Qui|
|Qu(d/2)|

≤ |Qu(4d)|
|Qu(d/2)|

≤ 8α,

where the last inequality holds by definition of the grid dimension. Therefore by
Claim A.3(a) with failure probability at most δ′/2 the cardinality of B is at least
half the expectation. If it is indeed the case that, then by Claim A.2 with failure
probability at most δ′/2 some node in ring Sui lands in B. So the total failure
probability is at most δ′, claim proved.

As in the proof of part (b), we show that node w is found by algorithm A(2).
Therefore the progress is at least 2 at every step except maybe the last one, with
failure probability at most δ′. Finally, we take the Union Bound over all N |Q|
possible (u, q) pairs and all log ∆ possible steps to show that the probability that
any such pair fails on any step is at most δ.

D. FULL PROOF OF THEOREM 6.9 ON LOAD-BALANCING

In this section we will prove Theorem 6.9 on load-balancing. A large part of the
proof is the setup (Sections D.1 and D.2): it is non-trivial to restate the algorithm
and define the random variables so that the forth-coming Chernoff Bounds-based
argument works through. For technical reasons we introduce some minor changes
in the definition of the m-rings and in the search algorithm; these changes do not
(really) affect the practical implementation of Meridian. Proving our result for the
exact version of Meridian that is implemented leads to mathematical difficulties
that are far beyond the scope of this paper.

Recall that for the present theorem we use the setting of Theorem 6.7(a). Com-
pared to the latter, we increase the ring cardinalities by a factor of O(logN )(log ∆).
This is essentially because we cannot use Chernoff Bounds on collections of random
variables that are almost independent – we need exact independence, which is hard
to come by. We conjecture that this blow-up can be avoided by a more careful
analysis of almost-independent random variables. However, such analysis is again
beyond the scope of this paper.

D.1 Setup: Meridian rings and the search algorithm

For convenience, for any x > 0 let us define a set of integers [x] = {0, 1 . . .dxe}.
Recall that each m-ring Sui was defined as a subset of the corresponding ring

Rui, as long as |Bui| ≥ k. Here to simplify the proofs let us allow each Sui to be
an arbitrary subset of Bui:

Definition D.1 The distribution of each Meridian ring Sui is the distribution of
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a set of k nodes that are drawn independently and uniformly at random from the
corresponding ball Bui, possibly with repetitions.

Note that all previous results for growth-constrained metrics work under this
definition as well.

Recall that on every step in algorithm A(·) we look at a subset S of neighbors,
and either the search stops, or the query is forwarded the node w ∈ S that is
closest to the target. We will relax this as follows: if w is a progress-2 node, then
instead of forwarding to w the algorithm can forward the query to an arbitrary
progress-2 node in S. It is easy to check that all our results for A(·) carry over to
this modification.

We will now proceed to define a specific version of A(2) which can be seen as a
rule to select between different progress-2 nodes; we denote it A.

Recall that each ring Sui consists of k nodes from Bui. More formally, let us say
that Sui consists of k slots, each of which is a node id selected independently and
uniformly at random from Bui. Let us partition these slots into L log(∆) collections
of size k′ each, where

L = 6 ln
(

1
δN log∆

)
,

k′ = 8 · 10α ln(2K/δ),
K = N |Q|L log(∆).

We will denote these collections by Cui(j, l), where j ∈ [log∆] and l ∈ [L]. Each
collection will just consist of k′ consecutively numbered slots, starting from the slot
number (jL+ l)k′. Let Sui(j, l) be the set of nodes whose ids are stored in the slots
in collection Cui(j, l). Obviously, Sui(j, l) ⊂ Bui, and the union of all sets Sui(·, ·)
is Sui.

Say a j-step query is a query on the j-th step of the algorithm. When node u
receives a j-step query to target q, it chooses l ∈ [L] in a round-robin fashion (the
round-robin is separate for each uj pair) and (essentially) lets algorithmA(2) handle
this query using only the neighbors in Sui(j, l), for the corresponding i. Specifically,
node u sets i = 1+blog duqc and asks every node in Sui(j, l) to measure the distance
to q. Out of these nodes, let w be one that is closest to q. If w is a progress-2 node,
then the query is forwarded to w; else, the search stops, and node w is reported to
the node that originated the query.

Using the argument from part (a) we can show that for a given tuple (u, q, j, l)
either the corresponding set Sui(j, l) contains a progress-2 node or it contains a
nearest neighbor of q, with failure probability at most δ/K. The Union Bound over
all K possible (u, q, j, l) tuples shows that our algorithm is Q-exact with failure
probability at most δ.

Note that algorithm A can be seen as A(2) with a rule to select between different
progress-2 nodes if such nodes exist: namely, choose a progress-2 node from the
corresponding Sui(j, l).

D.2 Setup: randomization and random variables

Recall that each Sui(j, l) is a set of k′ nodes drawn from Bui independently and
uniformly at random, possibly with repetitions. Moreover, once the set SM of all
Meridian nodes is fixed then (since the m-rings are independent), the collection of
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all sets

{Sui(j, l) : u ∈ SM , i, j ∈ [log∆], l ∈ [L]}

is a collection of independent random variables.
We consider the probability distribution induced by several independent random

choices, namely:

• a random N -node subset SM of Q,
• random subsets Sui(j, l) ⊂ Bui, independently for each tuple (u, i, j, l),

• target tu for each node u.

For a collection of independent random choices, without loss of generality we can
assume that a given choice happens any time before its result is actually used. In
particular, we will assume the following order of events. First, SM and tu’s are
chosen. After that the time proceeds in log(∆) epochs. In a given epoch j, all
subsets Sui(j, ·) are chosen, and then all queries are advanced for one step.

Recall that all queries are handled separately, even if a given node simultaneously
receives multiple queries for the same target. When node u handles a j-step query
and in the process measures distance to its neighbor v, we say that v receives a j-
step request from u. Let’s define several families of random variables; here j ranges
between 0 and log∆:

• Xuv(j, l) is the number of j-step queries forwarded from u to v, and handled at
u using, for some i, a set Sui(j, l).

• Xj
u is the number of all j-step queries forwarded to node u; set X0

u = 1.

• Yuv(j, l) is the number of j-step requests that are received by v from u, and
handled at u using, for some i, a set Sui(j, l).

• Y j
u is the number of all j-step requests received by node u.

Note that Xuv(j, l) ≤ Xj
u/L and Yuv(j, l) ≤ Xj−1

u /L.

D.3 The actual proof

First let us analyze the choice of SM and the queries. Let T be the set of all N
queries. For q ∈ T , let t(q) be the corresponding target. Let Tv(r) be the set of
queries q ∈ T such that t(q) is within distance r from v. Let t(S) be the set of all
targets in the set S of queries. Let ψ = N/|Q|. By Claim A.3 |Bu(r)| and |Tu(r)|
are close to its expectation:

Claim D.2 With failure probability at most δ, for any u ∈ SM ∪ t(T ) and radius
r the following holds:

(*) if z = ψ|Qu(r)| ≥ k0 then |Bu(r)| and |Tu(r)| are within a factor of 2 from z,
else they are at most 2k0, where k0 = O(log(n/δ)).

For every j-step query received, a given node sends some constant number c of
packets to each of the k′ neighbors in the corresponding set Sui(j, l). Therefore
a given node u sends ck′

∑
j X

j
u packets total, and receives c

∑
j Y

j
u packets total.
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Since a single query involves exchanging at most ck′ log(∆) packets, algorithm A
is (γ,Q)-balanced if and only if

∑
j(k

′Xj
u + Y j

u ) ≤ 2γk′ log(∆) (7)

for every node u. Recall that γ is a parameter in the theorem statement.

Definition D.3 Property P(j) holds if and only if for each node v it is the case
that Xj

v ≤ γ and Y j
v /k

′ ≤ γ.

By (7) it suffices to prove that with high probability P(j) holds for all j; recall
that j ranges between 0 and log ∆. It suffices to prove the following inductive claim:

Claim D.4 If property P(j− 1) holds, then with failure probability at most δ/ log(∆)
property P(j) holds, too.

Then we can take the Union Bound over all log ∆ steps j to achieve the desired
failure probability δ.

Let’s prove Claim D.4. Suppose all queries have completed j − 1 steps and
are assigned to the respective sets Sui(j, l). Now the only remaining source of
randomness before the j-th step is the choice of these sets. In particular, each
random variable Xuv(j, l) depends only on one set Sui(j, l), and so does Yuv(j, l).
Since these sets are chosen independently, for any fixed node v the random variables

{Xuv(j, l) : u ∈ SM , l ∈ [L]}

are independent, and so are the random variables

{Yuv(j, l) : u ∈ SM , l ∈ [L]}.

First we claim that P (j) holds in expectation:

Claim D.5 For every Meridian node v and every step j we have (a) E(Xj
v ) ≤ γ/2

and (b) E(Y j
v /k

′) ≤ γ/2.

Suppose property P (j − 1) holds. Let’s bound the load on some fixed node v.
Note that

Xj
v =

∑

all pairs (u, l)

Xuv(j − 1, l)

is a sum of independent random variables, each in [0, y] for y = γ/L. Applying
Claim A.1(b) with µ = γ/2, we see that

Pr[Xj
v > γ] ≤ (e/4)L/2 ≤ δ/2N log(∆).

Similarly, Y j
v =

∑
(u,l) Yuv(j, l) is a sum of independent random variables, each in

[0, y], so by Claim A.1(b) we can upper-bound Pr[Y j
v /k

′ > γ]. By the Union Bound
property P (j) holds with the total failure probability at most δ. This completes
the proof of Claim D.4.

It remains to prove Claim D.5. Let S0 be the set of queries q ∈ T such that v is
a nearest neighbor of the target t(q).
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Claim D.6 |S0| ≤ O(2α) log(N/δ).

Proof. Choose target t ∈ t(S0) such that dvt is maximal. Let d = dvt. Then
Bt(d/τ ) ∈ {q} for any τ > 1, so by Claim D.2 |Qt(d/τ )| ≤ O(log(n/δ)). Note that
S0 ⊂ Bt(2d) ⊂ Qt(2d) and

|Qt(2d)| ≤ (2τ )α|Qt(d/τ )| ≤ (2τ )αO(log(n/δ)).

Claim follows if we take small enough τ > 1.

Let r0 be the smallest r such that Bv(r) has cardinality at least twice the k0 from
Claim D.2. Let Ri = Tv(r0 2i). Let S ⊂ T be the set of queries that get forwarded
to v on step j; recall that Xj

v = |S|.

Claim D.7 For any query q ∈ T \ (S0 ∪R0), letting t = t(q), we have

Pr[q ∈ S] ≤ O(2α)/|Bv(dvt)|.

Proof. Let d = dvt and suppose query q is currently at node u. Since q 6∈ S0

this query gets forwarded to some node w ∈ Bq(dut/2), so if d > dut/2 then clearly
q 6∈ S. Assume d ≤ dut/2. Since Bv(d) ⊂ Bt(2d), by Claim D.2 we have

|Bv(d)| ≤ |Bt(2d)| ≤ 2ψ|Qt(2d)| ≤ 2ψ 2α|Qt(d)| ≤ 4 2α|Bt(d)|,
Pr[q ∈ S] = 1/|Bt(dut/2)| ≤ 1/|Bt(d)|,

which is at most 4 2α/|Bv(d)|, as required.

Now for R = Ri+1 \ (Ri ∪ S0) and r = r0 2i

ψi := E|S ∩R| ≤ |Ri+1| Pr[q ∈ S : q ∈ R]
≤ O(2i)|Ri+1|/|Ri| ≤ O(4α),

E|Xj
v | = E|S| ≤ |S0| + |R0| +

∑
ψi

≤ O(2α) log(n/δ) +O(4α) log(∆)
≤ O(4α) log(n∆/δ) ≤ γ/2.

This completes the proof of Claim D.5(a). For Claim D.5(b), let S be the set of
queries that cause a j-step request to v. Suppose a j-step query q is at node u; let
t = t(q) and d = dut. Node v receives a j-step request due to t only if duv ≤ 2d, so
let’s assume it is the case. Then dvt ≤ d+ duv ≤ 3d, so

Bu(dvt) ⊂ Bu(duv + dvt) ⊂ Bu(5d)
|Bu(dvt)| ≤ |Bu(5d)| ≤ 4 (2.5)α |Bu(2d)|
Pr[v ∈ S] ≤ 1/|Bu(2d)| ≤ 4 (2.5)α |Bu(dvt)|

as long as |Bu(dvt)| is at least twice as large as the k0 from Claim D.2. The rest of
the proof of Claim D.5(b) is similar to that of Claim D.5(a). This completes the
proof of Claim D.5 and Theorem 6.9.
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