
1

Minimizing Partial Reconfiguration Overhead with Fully Streaming

DMA Engines and Intelligent ICAP Controller

Shaoshan Liu, Richard Neil Pittman, Alessandro Forin

Microsoft Research

September 2009

Technical Report

MSR-TR-2009- 150

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

2

3

Minimizing Partial Reconfiguration Overhead with Fully Streaming DMA Engines

and Intelligent ICAP Controller

Shaoshan Liu, Richard Neil Pittman, Alessandro Forin

Microsoft Research

ABSTRACT

Configuration overheads seriously limits the usefulness of FPGA

partial reconfiguration. In this paper, we propose a combination

of two techniques to minimize the overhead. First, we design and

implement fully streaming DMA engines to saturate the

configuration throughput. Second, we exploit a simple form of data

redundancy to compress the configuration bitstreams, and we

implement an intelligent ICAP controller to perform decompression

at runtime. The results show that our design achieves an effective

configuration data transfer throughput of up to 1.2 Gbytes/s, which

actually well surpasses the theoretical upper bound of the data

transfer throughput, 400 Mbytes/s. Specifically, our fully streaming

DMA engines reduce the configuration time from the range of

seconds to the range of milliseconds, a more than 1000-fold

improvement. In addition, our simple compression scheme

achieves up to a 75% reduction in bitstream size and results in a

decompression circuit with negligible hardware overhead.

1. INTRODUCTION

The defining characteristic of reconfigurable computing systems is

their ability to change computations on demand. In an ideal

scenario, we will have reconfigurable accelerators to execute

certain parts of each desired program. As the system is used, we

can load and unload accelerators to make best use of the

reconfigurable resources. However, the configuration process itself

incurs some performance overhead, thus it is unclear whether this

approach is feasible or not in practice.

The performance overhead incurred by partial reconfiguration

can be derived by dividing the bitstream size by the configuration

throughput. Hence the key to minimizing this overhead is either to

increase the configuration throughput, or to reduce the bitstream

size. In this paper, we propose a combination of two techniques to

minimize the partial reconfiguration performance overhead. First,

we design and implement fully streaming DMA engines to nearly

saturate the configuration bandwidth of the device. Second, we

exploit a simple form of configuration data redundancy to compress

the configuration bitstreams, and implement an intelligent ICAP

controller to perform decompression at runtime.

To successfully apply these techniques, we need to have a

good understanding of the partial reconfiguration process.

Specifically, we would like to find out how a configuration

bitstream interacts with the ICAP. While there is limited

documentation available, we perform a low-level study to de-

mystify the partial configuration process.

The rest of this paper is organized as follows: in section 2, we

review the related work in partial reconfiguration and bitstream

compression; in section 3, we introduce the design of the streaming

DMA engines; in section 4, we present our study to understand the

configuration process; in section 5, we discuss the design of the

intelligent ICAP engine; in section 6 we demonstrate the

experimental results and then we conclude in section 7.

2. BACKGROUND

In this section, we discuss the related work in partial

reconfiguration, bitstream file compression, as well as introduce the

Virtex-4 FPGA and eMIPS platform on which we performed our

experiments.

2.1 Fast Partial Reconfiguration

Runtime partial reconfiguration (PR) is a special feature offered by

Xilinx FPGAs that allow designers the ability to reconfigure certain

portions of the FPGA during runtime without influencing other

parts of the design. This feature allows the hardware to be adaptive

to a changing environment. First, it allows optimized hardware

implementation to accelerate computation. Second, it allows

efficient use of chip area such that different hardware modules can

be swapped in/out the chip at runtime. Last, it may allow leakage

and clock distribution power saving by unloading hardware

modules that are not active. One major issue of PR is the

configuration speed because the reconfiguration process incurs

performance and power overhead. By maximizing the

configuration speed, these overheads can be minimized.

In [1], to improve the reconfiguration speed, Liu et al.

proposed the use of direct memory access (DMA) techniques to

directly transfer configuration data to the Internal Configuration

Access Port (ICAP). They reported to have achieved 82 Mbytes/s

ICAP throughput using this approach. In addition, they placed a

block RAM (BRAM) cache next to the ICAP so as to increase the

ICAP throughput to 378 Mbytes/s. However, since on-chip storage

resources are precious and scarce, putting a large BRAM next to

the ICAP is not a practical approach. Similarly, in [2], Claus et al.

also designed a DMA engine to provide high configuration

throughput and they reported to have achieved 295 Mbytes/s on the

Virtex-4 chip. In [3], facing the problem that the Xilinx Spartan III

FPGA does not have an ICAP for reconfiguration, Paulsson et al.

proposed and implemented a virtual internal configuration access

port, or JCAP, to enable partial self reconfiguration on the Spartan

III FPGA. The JCAP was actually an internal hardware interface

that directly sent the configuration data to the JTAG to perform

reconfiguration. The configuration throughput they approached

was 2 Mbits/s.

According to [4], on the Virtex-4 chip the ICAP can run at 100

MHz and in each cycle it is able to receive 4 bytes. Thus the ideal

ICAP throughput should be 400 Mbytes/s. In section 3 of this

paper, we propose a fully streaming DMA design to approach this

ideal throughput.

4

2.2 Bitstream File Compression

The second approach to reduce configuration time is by reducing

the configuration file size through compression techniques. In [5],

Li et al. studied the redundancy in various bitstream files and

applied compression algorithms including Huffman coding,

arithmetic coding, and LZ compression on these bitstream files.

Their simulation results indicated that a compression ratio of 4:1

could be achieved. However, their study focused on only the

compression ratio, it was not clear how much improvement on the

actual configuration time their approach would bring. In [6],

Dandalis et al. proposed a dictionary-based compression approach.

Their results demonstrated up to 11~41% savings in memory for

configuration bit-streams of several real-world applications. In [7],

Pan et al. proposed techniques to exploit the redundancy between

bitstream files such that certain parts could be reused. They

reported that their approach achieved 26.5~75.8% improvement

over the DV and LZSS algorithms.

Most bitstream file compression proposals utilized

complicated compression algorithms in order to achieve high

compression ratios. However, one major problem with this

approach is that it requires the implementation of a complicated

decompression circuit that may bring excessive area, power, and

performance overheads to the design. This issue has been

overlooked in many research studies. In most bitstream

compression papers, the actual decompression hardware overhead,

such as gate count, were not reported. In this paper, we propose an

intelligent ICAP controller that can automatically extract the

redundancy from the bitstream files. Our approach does not use a

complicated compression algorithm, but it achieves a high

compression ratio on real circuits and imposes negligible hardware

overhead.

2.3 Other Approaches to Improve Configuration

Performance

Some other approaches to improve configuration performance

include prefetching configuration bitstream files and bitstream file

relocation. In [8], Resano et al. proposed a prefetch scheduling

heuristic to minimize the runtime reconfiguration overhead. Their

approach computed the prefetch decision at design time and was

able to prevent prediction misses. They reported to have eliminated

from 93% to 100% of the configuration overhead. In [9], Li et al.

provided a performance model for prefetching and proposed hybrid

(static and dynamic) prefetching heuristics. They reported 70%

reduction on configuration overhead. In [10], Carver et al.

proposed a bitstream file relocation technique such that if the same

hardware extension could be used in different locations of the same

chip, then no separate bitstream files needed to be generated. This

approach reduced the bitstream file storage overhead as well as the

configuration time overhead. And our approach does not do

anything to limit the use of these kinds of further enhancements

2.4 The Virtex-4 FPGA and the eMIPS System

The Virtex-4 FPGA consists of two abstract layers. The first layer

is the logic and memory layer: it contains the reconfigurable

hardware including logic blocks (CLBs), block RAMs (BRAMs),

I/O blocks, and configurable wiring resources. The second layer

contains the configuration memory as well as additional

configuration and control logic that handle the configuration

bitstream loading and the configuration data distribution. The

smallest piece of reconfiguration information that can be sent to the

FPGA is called a frame. A frame contains the configuration

information needed to configure blocks of 16 CLBs. The ICAP

allows internal access to read and write the FPGA’s configuration

memory, thus it allows self-reconfiguration. On the Virtex-4 chip,

the ICAP is able to run at 100 MHz and in each cycle it is able to

consume 4 bytes of configuration data. Thus the ideal ICAP

throughput is 400 Mbytes/s. Also, we store the configuration data

in external SRAM which runs at 100 MHz. At its maximum speed,

it is able to output 4 bytes per cycle. Thus the SRAM also has a

maximum throughput of 400 Mbytes/s.

To test the performance impact of reconfiguration on a real

system, we use the eMIPS system as our test platform. The eMIPS

system is a dynamically extensible processor [11]. The eMIPS

architecture allows additional logic to interface and interact with

the basic data path at all stages of the pipeline. The additional logic,

called Extensions, can be loaded on-chip dynamically during

execution by the processor itself. Thus, the architecture possesses

the unique ability to extend its own ISA at runtime. In the eMIPS

system, the pipeline stages, general purpose register file, and

memory interface match those in the classic MIPS RISC processor.

The eMIPS system augments the basic MIPS architecture to

include all the facilities for self-extension, including instructions

for loading, unloading, disabling, and controlling the unallocated

blocks in the microprocessor.

The partially reconfigurable Extensions distinguish the eMIPS

architecture from the conventional RISC architecture from which it

is derived. Using the partial reconfiguration design flow, the

eMIPS system can be partitioned into fixed and reconfigurable

regions such that the core architecture is included in the fixed

region, whereas the Extensions are included in the reconfigurable

regions. In this paper, we implement the fully streaming DMA

engines and the intelligent ICAP controller in the eMIPS system to

study how fast partial reconfiguration can be achieved as well as its

impact on system performance.

3. STREAMING DMA ENGINES FOR THE

ICAP PORT

In this section, we design and implement fully streaming direct

memory access (DMA) engines to establish a direct transfer link

between the external SRAM, where the configuration files are

stored, and the ICAP.

3.1 Design of the Streaming DMA Engines

Figure 1 shows our system design for partial reconfiguration. In

the original design, the ICAP Controller contains only the ICAP

and the ICAP FSM, and the SRAM Controller only contains the

SRAM Bridge and the SRAM Interface. Hence, in the original

design there is no direct memory access between SRAM and the

ICAP and all configuration data transfers are done in software. In

this way, the pipeline issues one read instruction to fetch a

configuration word from SRAM, and then issues a write instruction

to send the word to the ICAP; instructions are also fetched from

SRAM and this process repeats until the transfer process completes.

This scheme is highly inefficient because for the transfer of one

word it requires tens of cycles. This makes the ICAP transfer

throughput only 318Kbytes/s. In order to achieve close to ideal

ICAP throughput, our streaming DMA design provides three key

features: master-slave DMA engines, a FIFO between the two

DMA engines, and burst mode to support data streaming.

5

System Bus

S
R

A
M

 B
rid

g
e

S
R

A
M

In
te

rfa
c
e

S
la

v
e

D
M

A

M
a

s
te

r

D
M

A

IC
A

P
 F

S
M

FIFO

S
R

A
M

 C
o

n
tro

lle
r

IC
A

P
 C

o
n

tro
lle

r

IC
A

P

Figure 1: Structure of the Master-Slave DMA for PR

3.1.1 Adding the master-slave DMA engines

First, we implemented the master-slave DMA engines. As shown

in Figure 1, the master DMA engine resides in the ICAP controller

and interfaces with the ICAP FSM, the ICAP, as well as the slave

DMA engine. The slave DMA engine resides in the SRAM

Controller, and it interfaces with the SRAM Bridge and the master

DMA engine. When a DMA operation starts, the master DMA

engine receives the starting address as well as the size of the DMA

operation. Then it starts sending control signals (read_enable,

address etc.) to the slave DMA engine, which then forwards the

signals to the SRAM Bridge. After the data is fetched, the slave

DMA engine sends the data back to the master DMA engine. Then,

the master DMA engine decrements the size counter, increments

the address, and repeats the process to fetch the next word.

Compared to the baseline design, adding the DMA engines avoids

the involvement of the pipeline in the data transfer process and it

significantly increases the ICAP throughput to about 50 Mbytes/s.

3.1.2 Adding a FIFO between the DMA engines

Second, we modified the master-slave DMA engines and added a

FIFO between the two DMA engines. In this version of the design,

when a DMA operation starts, instead of sending control signals to

the slave DMA engine, the master DMA engine forwards the

starting address and the size of the DMA operation to the slave

DMA engine, then it waits for the data to become available in the

FIFO. Once data becomes available in the FIFO, the master DMA

engine reads the data and decrements its size counter. When the

counter hits zero, the DMA operation is complete. On the other

side, upon receiving the starting address and size of the DMA

operation, the slave DMA engine starts sending control signals to

the SRAM Bridge to fetch data one word at the time. Then, once

the slave DMA engine receives data from the SRAM Bridge, it

writes the word into the FIFO, decrements its size counter, and

increments its address register to fetch the next word. In this

design, only data is transferred between the master and slave DMA

engines and all control operations to SRAM are handled in the

slave DMA. This greatly simplifies the handshaking between the

ICAP Controller and the SRAM Controller, and it leads to a 100

Mbytes/s ICAP throughput.

3.1.3 Adding burst mode to provide fully streaming

The SRAM embedded in the ML401 FPGA board actually provides

burst read mode such that we can read four words at a time instead

of one. Note that burst mode reads are available on DDR memories

as well. There is an ADVLD signal to the SRAM device. During a

read, if this signal is set, a new address is loaded into the device.

Otherwise, the device will output a burst of up to four words, one

word per cycle. Therefore, if we can set the ADVLD signal every

four cycles, given that the synchronization between control signals

and data fetches is correct, then we are able to stream data from the

SRAM to the ICAP.

To achieve this, we implemented two independent state

machines in the slave DMA engine. One state machine sends

control signals as well as addresses to the SRAM in a continuous

manner such that every four cycles the address is incremented by

four words (16 bytes) and sent to the SRAM device. The other

state machine simply waits for the data to become ready at the

beginning, and then each cycle receives one word from the SRAM

and streams the word to the FIFO until the DMA operation

completes. Similarly, the master DMA engine waits for data to

become available in the FIFO, and then in each cycle it reads one

word from the FIFO and streams the word to the ICAP until the

DMA operation completes. This fully streaming DMA design

leads to an ICAP throughput that exceeds 395 Mbytes/s, very close

to the ideal 400 Mbytes/s number.

3.2 Handshaking between the Master and Slave

DMA Engines

Our fully streaming DMA design achieves near perfect, but not

perfect, ICAP throughput because in order to initiate a DMA

operation there is a handshaking process between the two DMA

engines. This process introduces some performance overheads.

The waveform shown in Figure 2 illustrates this process. At the

beginning, the master DMA engine receives the DMA starting

address (ADDR_master) as well as the size (SIZE_master) from the

ICAP FSM. After one cycle, the ICAP FSM sets the DMA

operation signal (DMA_OP) to notify the master DMA engine to

start the DMA operation. Then one cycle later, the master DMA

engine forwards the DMA starting address and size to the slave

DMA engine (ADDR_slave, SIZE_slave). Upon receiving these

signals, the slave DMA engine starts operation by triggering the

control state machine to send address and control signals to the

SRAM, such that the active-low ADVLD signal (burst_DMA) is

set low to stream a new address to SRAM every four cycles.

Meanwhile, the data state machine waits for the SRAM data

(DATA_SRAM) to become available. After seven cycles, the first

SRAM data becomes available and the slave master engine sends

one word to FIFO (DATA_FIFO) each cycle until the DMA

operation completes. On the other side, the master DMA engine

checks whether the FIFO is empty (FIFO_EMPTY), once the FIFO

becomes not empty, the master DMA engine starts reads data from

the FIFO and sends one word to the ICAP in each cycle until the

DMA operation completes. Thus, the handshaking process takes

12 cycles to complete. At the end of the DMA operation, it takes

another 5 cycles to re-synchronize and reset the two state machines

in the slave DMA engine. Thus, the total control overhead of this

design is only 17 cycles. During the rest of the transfer time this

design streams configuration data at a full 400 Mbytes/s.

6

Figure 2: Handshaking of the DMA engines

3.3 Synchronization between the Control and Data

State Machines

In the slave DMA engine there are two independent state machines:

the control state machine (which sends control signals and

addresses to the SRAM interface) and the data state machine

(which receives data from the SRAM interface and forwards the

data to the FIFO). The synchronization between these two state

machines is critical to the correctness of DMA operations. Any

mistake in the synchronization between these two state machines

may result in missing or redundant data transfer, potentially leading

to incorrect configuration.

The state machine diagrams and synchronization mechanisms

between are illustrated in Figure 3. These two state machines

interact with each other, as well as with two other modules: the

master DMA engine and the SRAM interface. At the beginning of

a DMA transfer, the master DMA engine sends the start DMA

operation signal to both state machines. Upon receiving this signal,

both state machines wait for the SRAM interface to become ready,

and then they transition to the next state. Up to this point, the two

state machines are synchronized.

After verifying that the SRAM interface is ready, the control

state machine starts sending control signals and address to the

SRAM interface to start burst operation. Each burst takes four

cycles to complete. Thus, the control state machine updates the

address every four cycles, each time incrementing the address by

16 bytes. As shown in Figure 2, there is a six-cycle delay between

the time when the control signals are sent to the SRAM interface

and the time when the data returns. Thus, after verifying that the

SRAM interface is ready, the data state machine waits on the data

ready signal from the SRAM interface. After receiving this signal,

the data state machine starts reading data until the DMA operation

completes. During this process, the two state machines are not

synchronized.

When the DMA operation completes, the data state machine

sends out a DMA complete signal to the control state machine and

it switches back to the initial state. On the other side, upon

receiving this signal the control state machine also transitions to the

initial state and waits for the next start DMA operation signal. At

this point, the two state machines become synchronized again.

Initial

State

Burst

word 1

Burst

word 2

Burst

word 3

Burst

word 4

Start signal from the

master DMA engine

SRAM ready

signal from

SRAM Interface

DMA complete

signal from the data

state machine

A.) control state machine in the slave DMA engine

Initial

State

Wait for

Data

Read

Data

Start signal from the

master DMA engine

SRAM ready

signal from

SRAM Interface

data ready

signal from

SRAM Interface

DMA complete

B.) data state machine in the slave DMA engine

Conditional state transition Unconditional state transition

Figure 3: Synchronization between the state machines in the slave DMA engine

4. DE-MYSTIFYING CONFIGURATION

BITSTREAM FILES

Although Xilinx provides some documentation [12] to explain the

details of the bitstream files, how the contents of the bitstream files

would affect the configuration process remains a mystery. In this

section, we perform several low-level experiments in order to

identify the effect of the bitstream files on the configuration

process. To carry out these low-level experiments we implemented

a block RAM (BRAM) next to the ICAP port and stored different

bitstreams in the BRAM. We then modified the bitstreams and

observed how the modifications affected the behavior of the

configuration process.

4.1 Configuration CRC Test

The first question we have is whether we can manually modify the

bitstream file. At the end of each bitstream file, there is a cyclic

7

redundancy check (CRC) command that checks whether the

bitstream file has been modified since it is generated. In order to

understand how the CRC test would affect the configuration

behavior, we performed the following experiments:

1. CRC modification: we modified the CRC word such that we

were using a wrong CRC value. Once the CRC error was

detected by the ICAP, the ICAP stopped functioning and would

not take any more new commands.

2. CRC removal: we removed the CRC command from the

bitstream file to test whether it would affect the configuration.

The result was that the bitstream was written to ICAP as usual.

After the configuration process completed, the design functioned

as expected.

3. Disabling CRC using the COR: there is a configuration option

register (COR) in the ICAP, we can modify this register to

enable or disable CRC; by default CRC is enabled. In this

experiment, we modified the COR to disable CRC. Although we

used a correct CRC value, the ICAP port still stopped taking any

new commands after the CRC command was detected.

The conclusion is that CRC is optional: in case we want to

manually modify the bitstream, we can simply remove the CRC

command from the bitstream.

4.2 The ICAP Busy Signal

The ICAP interface has an output called BUSY. Without any

detailed documentation, we assumed that this signal indicates that

the ICAP is performing some function and cannot take commands

or data at that time. To test this assumption, we wrote various

patterns of commands and data to the ICAP in an attempt to force

the ICAP to raise this BUSY signal.

1. We repeated the same register read command 20 times to the

ICAP port.

2. We issued a read immediately after a write to the same register,

and repeated this process 20 times.

3. We selected several frame addresses within a clock region and

wrote configuration data frames to the ICAP port in pseudo

random pattern.

4. We wrote the same partial bitstream to the ICAP over and over.

5. We wrote nothing but NOP to the ICAP over and over.

6. We repeated writing the set frame address command followed by

the same address.

7. We repeated writing the set frame address command followed by

the different addresses.

8. We took a working bitstream and replaced all the configuration

frame data with zeros and wrote it to the ICAP.

9. We turned off the ICAP write enable (WE) signal and turned it

back on.

Only the last test, cycling the write enable signal, caused the

BUSY signal to be set for 6 cycles. In all other cases, the BUSY

signal was never set. The conclusion is that the BUSY signal of

ICAP would unlikely be set during the configuration process,

implying that the ICAP is able to run at full speed during

configuration.

4.3 Configuration Time—a Pure Function of the

Bitstream Size

In order to find out how configuration time can vary, we performed

the following experiments:

1. Location study: we wanted to find out whether the configuration

time depends on the location of configuration, thus we

implemented a design that contained 256 counters and fit the

design into one clock region on the Virtex-4 chip. Then we

placed the design in various locations on the chip, some far away

from the ICAP port, and others close to the ICAP port. Then we

studied whether the location affected the configuration time.

The results showed that the ICAP port was able to run at full

speed regardless of the reconfiguration location.

2. Command study: we wanted to find out whether the

configuration time depends on the configuration command, thus

we kept writing NOPs to the ICAP port and verified that the

ICAP consumed one command each cycle. Then we repeated

the experiments for other commands, including the write

configuration data command (WCFG), the multiple-frame writes

command (WFWR), etc. The result was the same; these

commands did not affect the configuration speed.

3. Configuration stress study: to find out whether continously

configuring one clock region of the chip would stress the ICAP,

we did an experiment to repeatedly write the bitstream for one

clock region to the ICAP. The result showed that the ICAP port

was still running at full speed in this case.

During all these tests, we found out that ICAP always ran at

full speed such that it was able to consume four bytes of

configuration data per cycle, regardless of the semantics of the

configuration data. This confirms that configuration time is a pure

function of the size of the bitstream file.

4.4 The NOPs

The FPGA tool chain inserts many NOPs throughout the bitstream

file. We wanted to understand if these are necessary and if so why.

For this purpose, we first examined various bitstream files and

identified the following common patterns of NOPs:

1. NOPs are inserted after each write to CMD command has

finished

2. NOPs are inserted after each write to FAR command has

finished

3. If the write to FAR command is followed by the write to CMD

command or by the write to MFWR command, then no NOP is

inserted between these commands.

4. A large number of NOPs are inserted at the end of each bitstream

file.

Then we performed the following experiments:

1. We removed all NOPs from a working bitstream file and

configured the FPGA with the new bitstream file. However,

after the configuration process completed, the chip did not

function as expected, implying that removing the NOPs changed

the behavior of the design.

2. We sent the working bitstream to the ICAP port; however, if a

NOP were spotted, we stalled the ICAP for several cycles and

jumped to the next command. In this way, we replaced each

NOP with several cycles of delay. After the configuration

process completed, the design functioned as expected.

The conclusion is that NOPs carry no special meaning to the

ICAP. For example, these are not used to flush some buffer

internally. The sole purpose of NOP is to insert delay to give the

ICAP enough time to finish the current operation.

8

5. INTELLIGENT ICAP CONTROLLER

FOR BITSTREAM SIZE REDUCTION

In the previous section we have verified that we can indeed

manually modify the bitstream file in various ways and still

maintain ICAP functionality. Based on this property, we propose

to exploit a simple form of redundancy. Our approach does not

require any complicated compression algorithms; instead it simply

scans the bitstream file a word at a time to check how likely it is

that the next word is the same as the current word. As an example

shown in Figure 4, the same word 0x00000000 repeats itself four

times in the middle of the data sequence. We are going to exploit

this redundancy pattern to reduce the size of the bitstream files as

well as to reduce the configuration data transfer time. The main

advantage of this method over others is that it does not require a

complicated decompression scheme, thus it minimizes the overhead

of the decompression circuit.

0x0def8037

0x00000000

0x00000000

0x00000000

0x00000000

0x0539af80

Figure 4: sample data sequence

5.1 Redundancy in Bitstream Files

First, we examined the compression ratio achieved by this simple

scheme. We scanned through a set of bitstream files with varying

sizes and complexities to quantify the simple redundancy. These

bitstream files include: blank is used to wipe out a design spanning

three clock regions; counters is a design that consists of 256

counters and spans one clock region; debug_full is a full design of

the eMIPS base architecture plus a hardware debugger;

debug_partial is the hardware debugger only; lr is a hardware

acceleration module for the load-return operation that loads the

address of the stack and jumps there; mmldiv64 is a hardware

acceleration module to accelerate 64-bit division; static_full is a

design of the eMIPS base architecture plus a 64-bit division

accelerator; and timer is a hardware timer implementation. The

results are summarized in table 1: where new size is derived by

subtracting the redundancy from the original size, and compression

ratio is the ratio of original size over new size. The results show

that even by exploiting this simple redundancy, we can achieve a

compression ratio ranging from 1.21 to 3.93, with the average

being 1.73.

Table 1: compression ratio of bitstream files

bitfile
original size

(words)
new size
(words)

compression
ratio

blank 25790 17543 1.47

counters 19930 13110 1.52

debug_full 244396 145470 1.68

debug_partial 31214 22267 1.40

lr 28887 21048 1.37

mmldiv64 32487 25969 1.25

static_full 244391 62231 3.93

timer 32705 27054 1.21

5.2 Design of the Intelligent ICAP Controller

In our scheme, the bitstream files should be pre-compressed and

stored in the SRAM. Then after each word is transferred from the

SRAM to the ICAP, the ICAP controller examines the word and

determines whether decompression is necessary. If so, the ICAP

controller performs decompression and sends the decompressed

configuration data sequence to the ICAP port; otherwise, the ICAP

controller simply forwards the configuration word to the ICAP port.

5.2.1 Encoding and decoding

In order to perform compression and decompression, we need a

coding scheme. Our design principle is to keep the decompression

circuit as simple as possible. Thus, our coding scheme is very

straightforward. As shown in Figure 5, the word 0x0000000

repeats four times in the original bitstream. To encode this in a

new bitstream, a new command word 0xecdc0004 is inserted into

the bitstream. The upper 16 bits of this word is a special command

(0xecdc) that signals the decompression circuit to start operation,

whereas the lower 16 bits of this word encodes the number of

repetitions in the original stream. The word immediately following

0xecdc0004, in this case 0x00000000, is the word to be

decompressed. Note that if 0xecdcxxxx existed in the original

bitstream, our compression program would detect it and insert a

special command to notice the decompression circuit, but we do not

go into the details of this mechanism.

0x0def8037

0x00000000

0x00000000

0x00000000

0x00000000

0x0539af80

0x0def8037

0xecdc0004

0x00000000

0x0539af80
encode

decode

Figure 5: encoding and decoding

5.2.2 Decompression circuit design

The baseline ICAP controller simply waits for the configuration

data and then forwards it to the ICAP port. Our intelligent ICAP

controller is able to recognize the decompression command and

perform configuration data decompression. In comparison to the

baseline ICAP controller, our intelligent controller adds only a

small decoding module and a simple state machine to repeatedly

send the decompressed configuration word to the ICAP. Due to

this simple design, our intelligent ICAP controller introduces little

hardware overhead. Table 2 summarizes the hardware resource

utilization of the baseline ICAP controller (baseline), our intelligent

ICAP controller (new), and the whole eMIPS design (eMIPS). It

shows that our intelligent ICAP controller only uses 5% more slices,

12% more slice Flip-Flops, and 9% more 4-input LUTs compared

to the baseline ICAP controller. In the context of the whole eMIPS

design these overheads are negligible.

Table 2: resource utilization

baseline new overhead eMIPS

slices 260 274 5% 10416

slice FF 301 336 12% 10398

4-input LUTs 336 367 9% 19335

9

5.3 Combining the Intelligent ICAP Controller and

the Streaming DMA

In order to minimize the configuration data transfer time, we

combine the fully streaming DMA engines and the intelligent ICAP

controller. To evaluate the performance of our design, we define a

metric, the effective transfer throughput. This is equal to the

original size of the bitstream divided by the transfer time.

5.3.1 Disruption of the DMA stream

A major problem the intelligent ICAP controller brings is that it

may disrupt the DMA operation. For instance, if the ICAP

controller receives a decompression command word 0xecdc1000,

the ICAP controller will be busy sending the decompressed

configuration data to the ICAP port for the next 4096 cycles.

During this time it is not able to fetch new configuration data from

the FIFO. On the other hand, the slave DMA engine will continue

sending one word per cycle to the FIFO. After the FIFO becomes

full, the incoming configuration data will be dropped. To solve this

problem we design a mechanism to pause and resume the DMA

operation.

Figure 6 illustrates the extension of the control and data state

machines in the slave DMA engine to handle this situation. When

decompression starts, the master DMA engine sends a DMA pause

signal to disrupt the DMA operation in the slave DMA engine. In

the control state machine, this signal is masked until it finishes the

current burst to prevent the disruption of the burst read. Then the

control state machine turns off the read signal to the SRAM

interface and transitions to the DMA pause state. On the other

hand, the data state machine continues reading data from the

SRAM interface until the data ready signal from the SRAM

interface becomes low. Then the data state machine transitions to

the DMA pause state. In the DMA pause state, the control and data

state machines become synchronized again, and both state

machines wait for the DMA resume signal from the master DMA

engine to re-start the DMA operation. Note that each DMA

pause/resume process introduces a control overhead of 6 cycles.

Conditional state transition Unconditional state transition

A.) control state machine in the slave DMA engine

Initial

State

Burst

word 1

Burst

word 2

Burst

word 3

Burst

word 4

Start signal from the

master DMA engine

SRAM ready

signal from

SRAM Interface

DMA complete

signal from the data

state machine

DMA

pause

DMA pause signal

from the master

DMA engine

DMA resume signal

from the master

DMA engine

B.) data state machine in the slave DMA engine

Initial

State

Wait for

Data

Read

Data

Start signal from the

master DMA engine

SRAM ready

signal from

SRAM Interface

data ready

signal from

SRAM Interface

DMA complete

DMA

pause

DMA resume signal

from the master

DMA engine

data not ready

signal from

SRAM Interface

Figure 6: the state machines in the slave DMA engine (with DMA pause and resume capability)

5.3.2 Memory access time sharing

In the eMIPS system, both instruction and data are stored in the

SRAM. Thus, during DMA operations the SRAM is not able to

service normal memory operations. Nevertheless, as shown in

Figure 7, with our intelligent ICAP controller design we can free

the SRAM from DMA operations when the ICAP controller is

performing decompression. This allows memory access time

sharing between the DMA operations and the normal memory

operations. In the next section, we show how this technique

improves the program execution time compared to the case where

only the baseline ICAP controller is used.

Time

DMA operations
normal memory

operations

A.) Without the intelligent ICAP controller

B.) With the intelligent ICAP controller

Figure 7: memory access time sharing

6. EXPERIMENTS AND RESULTS

We have performed experiments on the Virtex-4 FPGA to study

how the proposed techniques improve FPGA performance. In this

section, we show our experimental results on the fully streaming

DMA design, the intelligent ICAP controller, and the memory

access time sharing scheme. In addition, we present a case study

on the 64-bit division accelerator to demonstrate the effectiveness

of the combination of these techniques.

6.1 Performance of the Fully Streaming DMA

Engines

In order to measure the performance of our fully streaming DMA

design, we tested it with the same eight bitstream files as shown in

Table 1. Recall that these eight bitstream files have varying sizes

and complexities. By inserting hardware cycle counters into the

design, we measured the time taken to complete the DMA

operation and the results are summarized in Table 3: the second

column shows the size of the bitstream file, the third column shows

the time taken to complete the DMA operation without the fully

streaming DMA engines(in this original design, the ICAP

throughput is only 318 Kbytes/s), the fourth column shows the time

taken to complete the DMA operation using our fully streaming

10

DMA engines, and the fifth column shows the throughput of the

DMA operation (derived by dividing the size of the bitstream by

the time taken to complete the DMA operation). In all eight cases,

our fully streaming DMA design achieved an ICAP throughput that

was higher than 399 Mbytes/s. This high ICAP throughput reduces

the configuration time from the range of seconds to the range of

milliseconds, a more than 1000-fold improvement.

Table 3: DMA data transfer throughput

bitfile
size

(word)

original
time

(seconds)
time

(seconds)
TP

(Mbytes/s)

blank 25790 0.32 0.00026 399.71

counters 19930 0.24 0.00020 399.62

debug_full 244006 3.00 0.00244 399.33

debug
_partial 31212 0.38 0.00031 399.78

lr 28886 0.35 0.00029 399.74

mmldiv64 32486 0.40 0.00033 399.77

static_full 244000 3.00 0.00244 399.33

timer 32140 0.39 0.00032 399.79

6.2 Performance of the Intelligent ICAP Controller

Next, we combined the fully streaming DMA engines and the

intelligent ICAP controller. We studied the performance of this

design with the same set of bitstream files. Recall that there is a 6-

cycle overhead associated with each disruption of the DMA

operation. Therefore, it is not worthwhile to compress the data

sequence that contains less than 6 repetitions of the same

configuration word. In our experiments, we define the threshold

for compression as 10 repetitions of the same configuration word.

In this case, we sacrifice some compression ratio but guarantee that

each compression can contribute to the reduction of data transfer

time.

The experimental results are summarized in Table 4. The

second, third, and fourth columns show the original bitstream file

size, the new bitstream file size after compression, and the

compression ratio, respectively. The fifth and sixth columns show

the time taken to transfer the bitstream and the time taken for the

ICAP to complete configuration, respectively. Finally, the last two

columns respectively show the effective data transfer throughput

and the ICAP throughput. Note that effective transfer throughput is

derived by dividing original size by transfer time, whereas ICAP

throughput is derived by dividing new size by ICAP time.

The first observation from Table 4 is that our scheme leads to

significant reduction of the bitstream file size, in the case of

static_full, our scheme reduces the file size by more than 75%. The

second observation is that a higher compression ratio leads to a

higher effective transfer throughput. In the case of timer, the

compression ratio is only 1.09 and the effective transfer throughput

is 434 Mbytes/s. In contrast, in the case of static_full the

compression ratio reaches 3.15. This leads to a 1203 Mbytes/s

effective transfer throughput. This is because a higher compression

ratio implies a larger reduction of the bitstream file size. Thus it

takes less time to transfer the configuration data. The third

observation is that ICAP throughput ranges from 374 Mbytes/s to

392 Mbytes/s, whereas we show in Table 3 that the throughput

should be greater than 399 Mbytes/s. This is because each

transition from the normal ICAP operation to decompression

operation involves the transition from one state machine to another,

thus it incurs a two-cycle overhead. Consequently, the more often

the transition occurs, the more overhead it incurs.

The most important message conveyed by Table 4 is that by

combining the fully streaming DMA design, which aims at

improving configuration data transfer throughput, and the

intelligent ICAP controller, which aims at reducing the size of

bitstream files, we are able to achieve an effective configuration

data transfer throughput that well surpasses the upper bound of data

transfer throughput, 400 Mbytes/s.

Table 4: performance of the intelligent ICAP controller

bitfile

original
size

(words)

new
size

(words)
compression

ratio

transfer
time

(seconds)
ICAP time
(seconds)

effective
transfer

throughput
(Mbytes/s)

ICAP
throughput
(Mbytes/S)

blank 25790 21474 1.20 0.000217 0.000266 474.65 387.12

counters 19930 15684 1.27 0.000160 0.000209 499.69 381.93

debug_full 244006 161640 1.51 0.001628 0.002485 599.59 392.74

debug_partial 31212 26450 1.18 0.000268 0.000324 465.73 385.39

lr 28886 24880 1.16 0.000251 0.000298 459.69 388.27

mmldiv64 32486 28942 1.12 0.000292 0.000337 444.30 385.59

static_full 244000 77382 3.15 0.000811 0.002552 1203.90 382.43

timer 32704 29920 1.09 0.000301 0.000349 434.55 374.77

6.3 Memory Access Time Sharing

We performed an experiment to identify the effectiveness of the

memory access time sharing scheme. The test program consists of

two parts: the first part performs a DMA configuration file transfer,

and the second part is a sequence of numerical computation that

takes eMIPS roughly 10 milliseconds to complete. We used this

test program on the eight bitstream files and the results are

summarized in Table 5.

The second and third columns, respectively, show the time

taken for the baseline ICAP and the intelligent ICAP to finish the

configuration process. The fourth and fifth columns, respectively,

show the execution time of the original design with the baseline

11

ICAP and that of the new design with the intelligent ICAP; finally

the sixth column shows the speedup, or the ratio of original

execution time over new execution time.

With the intelligent ICAP controller, the transition from the

normal ICAP operations to the decompression operations incur

some performance overheads, thus intelligent ICAP time is higher

than baseline ICAP time. However, the memory access time

sharing scheme allows the memory to service the normal memory

operations when the DMA operation is disrupted, thus reducing the

overall execution time. The combined effect of these two tradeoffs

leads to an overall program speedup. In this case, it ranges from

1.00 (as in timer and lr) to 1.17 (as in static_full). By comparing

the data in Table 5 to that in Table 4, we conclude that a higher

compression ratio leads to a higher program speedup because more

instructions can be executed during the disruption of DMA

operations.

Table 5: speedup through memory access time sharing

bitfile
baseline ICAP time

(seconds)
intelligent ICAP
time (seconds)

original
execution time

(seconds)
new execution
time (seconds) Speedup

blank 0.000258 0.000266 0.010667 0.010580 1.01

counters 0.000199 0.000209 0.010608 0.010543 1.01

debug_full 0.002444 0.002485 0.012853 0.011905 1.08

debug_partial 0.000312 0.000324 0.010721 0.010631 1.01

lr 0.000289 0.000298 0.010698 0.010679 1.00

mmldiv64 0.000325 0.000337 0.010734 0.010669 1.01

static_full 0.002444 0.002552 0.012853 0.011025 1.17

timer 0.000322 0.000349 0.010736 0.010683 1.00

6.4 Case Study: 64-bit Division Accelerator

In the ideal scenario, a hardware accelerator can be loaded to

accelerate portions of a program. When the accelerator is not

active, we can unload the accelerator to either save power or to

give room to other accelerators. However, if the performance

overhead imposed by the reconfiguration process were

overwhelming, this approach would not be feasible. We

performed a case study to identify the conditions under which our

design would allow this approach to be feasible. In our case

study, we use a 64-bit division accelerator and our test program

first starts the DMA operation to load the hardware accelerator,

and then it performs 64-bit divisions in the rest of the program.

The results of our case study are shown in Figure 8: the x-

axis indicates the 64-bit division workload. Each increment of

the x-axis represents a sequence of 64-bit divisions, which takes

the baseline eMIPS (without extension) about 1 millisecond to

complete. The accelerator is able to cut the 64-bit division time

by half, thus the same sequence of 64-bit divisions takes the

accelerator only about 0.5 millisecond to complete. The y-axis

shows the execution time. In this experiment, we compared the

execution time of three designs: no ext represents the baseline

eMIPS design that does not use accelerator; ext1 represents the

eMIPS with accelerator, but only the fully streaming DMA

engines are used to stream the configuration data; and ext2

represents the same design as in ext1, but both the fully streaming

DMA engines and the intelligent ICAP controller are used to

stream the configuration data.

In this case, configuration only takes 0.2 milliseconds. When

the 64-bit division work load is small (x = 1), the configuration

process imposes a significant overhead of the execution time, thus

we do not observe a 2x speedup by using the accelerator.

However, as the workload increases the configuration overhead

becomes negligible. Note that the 64-bit division work load in

this experiment is very small. Even in the case x = 5, the total

program execution time of no ext is only 5 milliseconds.

Therefore, we show that with our fully streaming DMA using

partial reconfiguration to load/unload accelerators becomes

beneficial even when the workload to be accelerated is in the

millisecond range. This extremely low configuration overhead

enables partial reconfiguration to be an effective technique to

improve system performance (by loading the accelerators at

runtime) and may potentially lead to energy reduction (by

unloading the accelerators when acceleration is not necessary).

In addition, the intelligent ICAP controller further reduces

the execution time by 1% (x = 5) to 5% (x = 1) because it allows

the SRAM to service both DMA operations and normal memory

operations in a time-sharing fashion. Note that the compression

ratio of the accelerator bitstream file is only 1.12, a fairly low

number. Given a design with higher compression ratio, the

improvement brought by the intelligent ICAP controller would be

much higher.

Figure 8: case study with 64-bit division accelerator

0.00000

0.00100

0.00200

0.00300

0.00400

0.00500

1 2 3 4 5

e
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

64-bit division work load

n
o
e…

12

7. CONCLUSIONS

In order to minimize the configuration overhead, we proposed a

combination of two techniques: one to improve configuration data

transfer throughput, and the other to reduce the size of

configuration bitstreams. We studied how these designs can

improve performance.

First, we designed and implemented fully streaming DMA

engines to improve configuration throughput. The experimental

results show that our fully streaming DMA engines nearly

saturate the throughput of the internal ICAP and reduce the

configuration time from the range of seconds to the range of

milliseconds, a more than 1000-fold improvement. Second, our

low-level study on the configuration process indicates that we can

manually modify the bitstream files and the configuration time is

a pure function of bitstream size. Third, our compression scheme

achieves up to 75% reduction of bitstream size and results in a

decompression circuit with negligible hardware overhead.

The combination of these two techniques achieves an

effective configuration data transfer throughput of up to 1.2

Gbytes/s, which well surpasses the 400 Mbytes/s data transfer

throughput upper bound. In addition, our design allows memory

access time sharing and results in up to 17% further performance

improvement.

REFERENCES

1. M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “run-time partial

reconfiguration speed investigation and architectural design

space exploration,” in proceedings of IEEE International

Conference on Field Programmable Logic and Applications,

2009.

2. C. Claus, B Zhang, W. Stechele, L. Braun, M. Hubner, and J.

Becker, “a multi-platform controller allowing for maximum

dynamic partial reconfiguration throughput,” in proceedings

of IEEE International Conference on Field Programmable

Logic and Applications, 2008.

3. K. Paulsson, M. Hubner, G. Auer, M. Dreschmann, L. Chen,

and J. Becker. “Implementation of a virtual internal

configuration access port (JCAP) for enabling partial self-

reconfiguration on Xilinx Spartan II FPGAs,” in proceedings

of International Conference on Field Programmable Logic

and Applications, 2007.

4. Virtex-4 FPGA User Guide:

http://www.xilinx.com/support/documentation/user_guides/u

g070.pdf

5. Z. Li and S. Hauck, “configuration compression for Virtex

FPGAs,” in proceedings of the IEEE symposium on Field-

Programmable Custom Computing Machines, 2001.

6. A. Dandalis and V.K. Prasanna, “configuration compression

for FPGA-based embedded systems,” in proceedings of

ACM/SIGDA Symposium on Field-Programmable Gate

Arrays, 2001.

7. L. He, T. Mitra, and W-F. Wong, “configuration bitstream

compression for dynamically reconfigurable FPGAs,” in

proceedings of the IEEE/ACM International Conference on

Computer-Aided Design, 2004.

8. J. Resano, D. Mozos, and F. Catthoor, “a hybrid prefetch

scheduling heuristic to minimize at run-time the

reconfiguration overhead of dynamically reconfigurable

hardware,” in proceedings of the conference on Design,

Automation and Test in Europe, 2005.

9. Z. Li and S. Hauck, "Configuration Prefetching Techniques

for Partial Reconfigurable Coprocessor with Relocation and

Defragmentation," in proceedings of ACM/SIGDA

Symposium on Field-Programmable Gate Arrays, 2002.

10. J. Carver, R.N. Pittman, A. Forin, “Relocation and

Automatic Floor-planning of FPGA Partial Configuration

Bit-Streams,” MSR-TR-2008-111, Microsoft Research, WA,

August 2008.

11. D.B. Thomas and W. Luk, “multivariate gaussian random

number generation targeting reconfigurable hardware,”

ACM Transactions on Reconfigurable Technology and

Systems, vol. 1, no. 2, June 2008.

12. Virtex-4 FPGA Configuration User Guide:

http://www.xilinx.com/support/documentation/user_guides/u

g071.pdf

http://www.xilinx.com/support/documentation/user_guides/ug070.pdf
http://www.xilinx.com/support/documentation/user_guides/ug070.pdf
http://www.ee.washington.edu/faculty/hauck/publications/RDprefetch.PDF
http://www.ee.washington.edu/faculty/hauck/publications/RDprefetch.PDF
http://www.ee.washington.edu/faculty/hauck/publications/RDprefetch.PDF
http://research.microsoft.com/en-us/projects/emips/tr-2008-111.pdf
http://research.microsoft.com/en-us/projects/emips/tr-2008-111.pdf
http://research.microsoft.com/en-us/projects/emips/tr-2008-111.pdf
http://portal.acm.org/citation.cfm?id=1371579.1371584&coll=ACM&dl=ACM&idx=J1151&part=transaction&WantType=Transactions&title=ACM%20Transactions%20on%20Reconfigurable%20Technology%20and%20Systems%20%28TRETS%29&CFID=65179467&CFTOKEN=40813327
http://portal.acm.org/citation.cfm?id=1371579.1371584&coll=ACM&dl=ACM&idx=J1151&part=transaction&WantType=Transactions&title=ACM%20Transactions%20on%20Reconfigurable%20Technology%20and%20Systems%20%28TRETS%29&CFID=65179467&CFTOKEN=40813327
http://www.xilinx.com/support/documentation/user_guides/ug071.pdf
http://www.xilinx.com/support/documentation/user_guides/ug071.pdf

13

APPENDIX 1: DESIGN OF FULLY STREAMING DMA AND THE
INTELLIGENT ICAP CONTROLLER

NOTE: ALL CODE CHANGES ARE TAGGED WITH “/**SL**/”

System Bus

S
R

A
M

 B
rid

g
e

S
R

A
M

In
te

rfa
c
e

S
la

v
e

D
M

A

M
a

s
te

r

D
M

A

IC
A

P
 F

S
M

FIFO

S
R

A
M

 C
o

n
tro

lle
r

IC
A

P
 C

o
n

tro
lle

r

IC
A

P

In MEMORY_CONTROLLER:
1. Modification of the ICAP controller inputs/outputs

/**SL**/

/*****ICAP Peripherial**/

 icap_controller ICAPcntr(

 .ADDR_IN(ADDR_IN),

 .BYTES(BYTES),

 .CADDR(`ICAP_ADDR),

 .CLK(MEMCLK),

 .DATA_IN(DATA_AL),

 .DATA_OUT(DATA_OUT_0),

 .DNE(DNE_ICAP),

 //.GPIO_IN(GPIO_IN),

 //.GPIO_IRQ(GPIO_IRQ),

 //.GPIO_OUT(GPIO_OUT),

 //.GPIO_TR(GPIO_TR),

 .OE(OE),

 .RESET(RESET & ICAP_EN),

 .SRT(srt_r),

 .WE(WE),

 /**SL**/// the following I/O ports are for DMA to SRAM

 .DMAF_DOUT(dmaf_dout),

 .DMAF_EMPTY(dmaf_empty),

 .DMAF_RE(dmaf_re),

 .DMAF_DATA_COUNT(dmaf_data_count),

 .DMA_OP_SRAM(DMAOP_ICAP_SRAM),

 .ADDR_OUT_SRAM(ADDR_ICAP_SRAM),

 .SIZE_OUT_SRAM(SIZE_ICAP_SRAM)

);

14

2. Addition of a DMA FIFO

/**SL**/

/***** DMA FIFO **/

 dma_fifo dmaf(

 .clk(MEMCLK), //common clock

 .rd_en(dmaf_re), //read enable

 .wr_en(dmaf_we), //write enable

 .din(dmaf_din), //32-bit data input from SRAM

 .dout(dmaf_dout), //32-bit data output to ICAP DMA

 .data_count(dmaf_data_count), //fifo 4-bit data count

 .empty(dmaf_empty), //empty status bit

 .full(dmaf_full) //full status bit

);

3. Modification of outgoing signals to the SRAM device

 /* Outgoing Signals */

 BSMUX1_2to1 bsmux0(

 .a0(NWE_SRAM),

 .a1(NWE_FLASH),

 .def(1'b1),

 .en0(DMA_BUSY | (~DNE_SRAM)), /**SL**/ //.en0(~DNE_SRAM),

 .en1(~DNE_FLASH),

 .out(NWE_MEM)

);

 BSMUX1_2to1 bsmux1(

 .a0(NOE_SRAM),

 .a1(NOE_FLASH),

 .def(1'b1),

 .en0(DMA_BUSY | (~DNE_SRAM)), /**SL**/ //.en0(~DNE_SRAM),

 .en1(~DNE_FLASH),

 .out(NOE_MEM)

);

 BSMUX24_2to1 bsmux2(

 .a0(ADDR_SRAM),

 .a1(ADDR_FLASH),

 .def(24'b0),

 .en0(DMA_BUSY | (~DNE_SRAM)), /**SL**/ //.en0(~DNE_SRAM),

 .en1(~DNE_FLASH),

 .out(ADDR_MEM)

);

 BSMUX32_2to1 bsmux3(

 .a0(SRAMDQ_IN),

 .a1(FLASHDQ_IN),

 .def(32'b0),

 .en0(DMA_BUSY | (~DNE_SRAM)), /**SL**/ //.en0(~DNE_SRAM),

 .en1(~DNE_FLASH),

 .out(DATA_MEM_IN)

);

 BSMUX32_2to1 bsmux4(

 .a0(SRAMDQ_TR),

 .a1(FLASHDQ_TR),

 .def(32'hffffffff),

 .en0(DMA_BUSY | (~DNE_SRAM)), /**SL**/ //.en0(~DNE_SRAM),

 .en1(~DNE_FLASH),

15

 .out(DATA_MEM_TR)

);

In SRAM_CONTROLLER:
1. Modification to the input/output ports of SRAM_CONTROLLER

 /**SL**/ //ICAP/SRAM DMA I/O ports

 input [31:0] ADDR_ICAP, //starting address of DMA operation

 input [31:0] SIZE_ICAP, //dma transfer size

 input DMA_OP_ICAP, //dma operation signal

 output [31:0] DMAF_DIN, //dma fifo input from SRAM

 output DMAF_WE, //dma fifo write enable

 input DMAF_FULL, //dma fifo full signal

 output DMA_BUSY //slave DMA busy

2. Modification to the inputs/outputs of SRAM_BRIDGE

 sram_bridge sb(

 .ADDR_IN(ADDR_IN[24:0]),

 .ADDR_OUT(ADDR_OUT_C),

 //.BURST_ORDER(control[BURST_ORDER]),

 .BYTES(BYTES),

 .CE2(CE2),

 .CEN(NCEN),

 .CLOCK_MASK(control[CLOCK_MASK]),

 .DATA_IN(DATA_IN),

 .DATA_OUT(DATA_SRAM),

 .DNE(DNE_SRAM),

 .DQ_IN(DQ_IN),

 .DQ_OUT(DQ_OUT),

 .DQ_TR(DQ_TR),

 .DQP_IN(DQP_IN),

 .DQP_OUT(DQP_OUT),

 .DQP_TR(DQP_TR),

 .MODE(MODE),

 .NADVLD(NADVLD),

 .NBW(NBW),

 .NCE1(NCE1),

 .NCE3(NCE3),

 .NOE(NOE0),

 .NWE(NWE0),

 .PR(PR),

 .RESET(RESET & resetcnt[2]),

 .SLEEP(control[SLEEP]),

 .SRAMCLK(SRAMCLK),

 .SRT(SRT && en_reg),

 .WE(WE & en_reg),

 .OE(OE & en_reg),

 .ZZ(ZZ),

 /**SL**/ //DMA operation signals

 .DMA_OP_ICAP(DMA_OP_ICAP),

 .ADDR_ICAP(ADDR_ICAP[24:0]), //starting address of DMA operation

 .SIZE_ICAP(SIZE_ICAP), //dma transfer size

 .DMAF_DIN(DMAF_DIN), //dma fifo input from SRAM

 .DMAF_WE(DMAF_WE), //dma fifo write enable

 .DMAF_FULL(DMA_FULL), //dma fifo full signal

 .DMA_BUSY(DMA_BUSY)

);

16

In SRAM_BRIDGE:
1. Modifications to the SRAM_BRIDGE input/output ports

/**SL**/ //DMA operation ports

 input DMA_OP_ICAP, //DMA operation signal

 input [24:0] ADDR_ICAP, //starting address of DMA operation

 input [31:0] SIZE_ICAP, //dma transfer size

 output [31:0] DMAF_DIN, //dma fifo input from SRAM

 output DMAF_WE, //dma fifo write enable

 input DMAF_FULL, //dma fifo full signal

 output DMA_BUSY //slave DMA busy

2. New registers/wires for the streaming operations

/**SL**/

/************* SL ***/

 reg bl; /* Burst Latch */

 wire [31:0] data_out_wire; //data_out from SRAM_Interface

 wire [3:0] bw_wire;//byte enable wire

 wire drdy_wire; //data ready wire

 //streaming

 reg [3:0] stream_control_state;

 reg [3:0] stream_data_state;

 reg [31:0] size_reg_dma;

 reg [31:0] dmaf_din;

 reg dmaf_we;

 reg bl_dma, en_dma, cen_r_dma, zz_r_dma, oen_dma, wen_dma;

 reg [24:0] addr_in_reg_dma;

 reg dne_r_dma;

 reg dma_busy;

 wire select;

 assign select = dma_busy & dne_r; /**SL**/

 assign DMAF_DIN = dmaf_din;

 assign DMAF_WE = dmaf_we;

 assign DATA_OUT = data_out_wire;

 assign DMA_BUSY = dma_busy;

/***/

3. Modifications to the input/output signals to SRAM_INTERFACE

 sram_interface si(

 .ADDR_IN(select ? addr_in_reg_dma : ADDR_IN), //ADDR_IN /**SL**/

 .ADDR_OUT(ADDR_OUT),

 .ADVLD(NADVLD),

 .BUSY(BUSY0),

 .BURST_LATCH(select ? bl_dma : bl), /**SL**/

 .BURST_ORDER(1'b0), //hardcoded to linear mode /**SL**/

 .BW(NBW),

 .BYTES(BYTES),

 .CE1(NCE1),

 .CE2(CE2),

 .CE3(NCE3),

 .CEN(CEN),

 .CLK(SRAMCLK),

 .CLOCK_MASK(select ? cen_r_dma : cen_r), /**SL**/

 .DATA_IN(DATA_IN),

 .DATA_IO_IN(DQ_OUT),

 .DATA_IO_OUT(DQ_IN),

17

 .DATA_OUT(data_out_wire), /**SL**/

 .DATA_PIO_IN(DQP_OUT),

 .DATA_PIO_OUT(DQP_IN),

 .DIR(DIR),

 .DRDY(drdy_wire), /**SL**/

 .EN(select ? en_dma : en), /**SL**/

 .END(END),

 .MODE(MODE),

 .OE(NOE),

 .OEN(select ? oen_dma : oen), /**SL**/

 .PARE(PR),

 .RESET(RESET),

 .SLEEP(select ? zz_r_dma : zz_r), /**SL**/

 .WE(NWE),

 .WEN(select ? wen_dma : wen), /**SL**/

 .ZZ(ZZ)

);

4. Normal memory operation state machine

/**SL**/

/**************************SL***/

 always@(posedge SRAMCLK) begin

 if(~select) begin

 bl = 1'b0;

 if (RESET == 0) begin

 /* Reset */

 wen = 1'b1;

 oen = 1'b1;

 en = 1'b1;

 zz_r = 1'b0;

 cen_r = 1'b0;

 //bo = 1'b0;

 dne_r = 1'b1;

 bsy = 1'b0;

 end

 else begin

 if (SLEEP) begin

 if (~BUSY) begin

 /* Put SRAM IC to sleep */

 zz_r = 1'b1;

 end

 end

 else begin

 zz_r = 1'b0;

 end

 if (CLOCK_MASK) begin

 if (~BUSY) begin

 /* Disable SRAM Clock */

 cen_r = 1'b1;

 end

 end

 else begin

 cen_r = 1'b0;

 end

 if (zz_r || cen_r) begin

 if (SRT && dne_r) begin

 dne_r = 1'b0;

 end

18

 else begin

 dne_r = 1'b1;

 end

 end

 else begin

 if (SRT && ~BUSY) begin

 /* Recieved Request */

 en = 1'b0;

 dne_r = 1'b0;

 end

 else if (BUSY && END && ~BUSY0) begin

 bsy = 1'b1;

 if (WE) wen = 1'b0;

 if (OE) oen = 1'b0;

 end

 else if (BUSY) begin

 en = 1'b1;

 wen = 1'b1;

 oen = 1'b1;

 end

 else if (~dne_r && ~BUSY && bsy) begin

 /* Interface Done */

 bsy = 1'b0;

 dne_r = 1'b1;

 end

 end

 end

 end

 end

5. DMA operation control state machine

/********************* streaming **************************************/

 always@(posedge SRAMCLK) begin //stream control state machine

 case(stream_control_state)

 4'b0000: begin

 if(DMA_OP_ICAP & dne_r) begin //wait for start

 zz_r_dma = 1'b0;

 cen_r_dma = 1'b0;

 en_dma = 1'b1;

 oen_dma = 1'b1;

 wen_dma = 1'b1;

 addr_in_reg_dma = {ADDR_ICAP[24:4], 4'b0000}; //latch address

 stream_control_state = 4'b0001;

 end

 end

 4'b0001: begin //wait for SRAM to be ready

 if(DMA_OP_ICAP & dne_r) begin

 if(~BUSY) begin

 en_dma = 1'b0;

 oen_dma = 1'b1;

 wen_dma = 1'b1;

 stream_control_state = 4'b0010;

 end

 end

 else stream_control_state = 4'b1000;

19

 end

 4'b0010: begin // wait for SRAM to be ready

 if(DMA_OP_ICAP & dne_r) begin

 if (BUSY & END & ~BUSY0) begin

 stream_control_state = 4'b0011;

 end

 end

 else stream_control_state = 4'b1000;

 end

 4'b0011: begin //burst word 0

 bl_dma = 1'b0;

 en_dma = 1'b0;

 oen_dma = 1'b0;

 stream_control_state = 4'b0100;

 end

 4'b0100: begin //burst word 1

 bl_dma = 1'b1;

 oen_dma = 1'b0;

 en_dma = 1'b0;

 stream_control_state = 4'b0101;

 end

 4'b0101: begin //burst word 2

 bl_dma = 1'b1;

 oen_dma = 1'b0;

 en_dma = 1'b0;

 stream_control_state = 4'b0110;

 end

 4'b0110: begin //burst word 3

 if(dne_r_dma) begin //done

 bl_dma = 1'b1;

 oen_dma = 1'b1;

 en_dma = 1'b1;

 wen_dma = 1'b1;

 if(~DMA_OP_ICAP) begin

 stream_control_state = 4'b0000;

 end

 end

 else begin

 bl_dma = 1'b1;

 oen_dma = 1'b0;

 en_dma = 1'b0;

 addr_in_reg_dma = addr_in_reg_dma + 16; //increment addr to next burst

 if(~DMA_OP_ICAP) begin

 stream_control_state = 4'b0111;

 end

 else begin

 stream_control_state = 4'b0011;

 end

 end

 end

 4'b0111: begin

 stream_control_state = 4'b1000;

 end

 4'b1000: begin //pause

 bl_dma = 1'b1;

 oen_dma = 1'b1;

 en_dma = 1'b1;

 wen_dma = 1'b1;

 if(DMA_OP_ICAP & dne_r) begin //wait for resume

 zz_r_dma = 1'b0;

20

 cen_r_dma = 1'b0;

 stream_control_state = 4'b0001;

 end

 if(dne_r_dma) begin //done

 if(~DMA_OP_ICAP) begin

 stream_control_state = 4'b0000;

 end

 end

 end

 endcase

 end

6. DMA operation data state machine

 always@(posedge SRAMCLK) begin //stream data state machine

 case(stream_data_state)

 4'b0000: begin

 if(DMA_OP_ICAP & dne_r) begin //start streaming operation

 dma_busy = 1'b1;

 dne_r_dma = 1'b0;

 size_reg_dma = SIZE_ICAP; //latch size

 stream_data_state = 4'b0001;

 end

 else begin

 dma_busy = 1'b0;

 dne_r_dma = 1'b1;

 end

 end

 4'b0001: begin //wait for SRAM to be ready

 if(DMA_OP_ICAP & dne_r) begin

 dma_busy = 1'b1;

 if(~BUSY) stream_data_state = 4'b0010;

 end

 else stream_data_state = 4'b0110;

 end

 4'b0010: begin //make sure SRAM is working

 if(DMA_OP_ICAP & dne_r) begin

 if(BUSY & END & ~BUSY0) stream_data_state = 4'b0100;

 end

 else stream_data_state = 4'b0110;

 end

 4'b0100: begin

 if(drdy_wire) stream_data_state = 4'b0101;

 end

 4'b0101: begin

 if(size_reg_dma == 0) begin //done

 dne_r_dma = 1'b1;

 dma_busy = 1'b0;

 dmaf_we = 1'b0;

 if(~DMA_OP_ICAP) begin

 stream_data_state = 4'b0000;

 end

 end

 else if(~DMA_OP_ICAP) begin //pause

 if(~drdy_wire) begin

21

 dmaf_we = 1'b0;

 stream_data_state = 4'b0110;

 end

 else if(~DMAF_FULL) begin

 dmaf_we = 1'b1;

 dmaf_din = data_out_wire;

 size_reg_dma = size_reg_dma - 1;

 end

 end

 else begin //normal operation

 if(drdy_wire & ~DMAF_FULL) begin

 dmaf_we = 1'b1;

 dmaf_din = data_out_wire;

 size_reg_dma = size_reg_dma - 1;

 end

 end

 end

 4'b0110: begin //wait for resume

 dmaf_we = 1'b0;

 dma_busy = 1'b0;

 if(DMA_OP_ICAP & dne_r) begin //restart

 dne_r_dma = 1'b0;

 stream_data_state = 4'b0001;

 end

 end

 endcase

 end

 /**/

In ICAP_CONTROLLER:
1. Modifications to the ICAP input/output ports to support DMA operations

 /********************* SL ************************************/

 input [31:0] DMAF_DOUT, //data from DMA fifo

 input DMAF_EMPTY, //DMA fifo empty

 input [3:0] DMAF_DATA_COUNT, //DMA fifo data count

 output DMAF_RE, //DMA fifo read enable

 output DMA_OP_SRAM, //start DMA signal to SRAM

 output [31:0] ADDR_OUT_SRAM, //address out to SRAM

 output [31:0] SIZE_OUT_SRAM //size out to SRAM

 /**/

2. New registers/wires for DMA data and control signals

/**SL**/

/********************* SL ***/

 reg [31:0] dma_size_reg; //DMA size register

 reg [31:0] dma_addr_reg; //DMA starting address

 parameter DMASIZEREG = 16'h0008;

 parameter DMAADDRREG = 16'h000c;

 reg [2:0] state;

 reg dma_start;

 wire dma_done;

 wire [31:0] data_out_icap;

 wire icap_cen;

 wire icap_wen;

22

 //DMA counter

 reg [31:0] dma_counter;

 parameter DMACOUNTER = 16'h0010;

 assign REG_M_0 = (ADDR_IN[BASEr-1:0] == DMACOUNTER)?dma_counter:32'bz;

 reg [31:0] dma_eff_counter;

 wire [31:0] dma_eff_count_wire;

 parameter DMAEFFCOUNTER = 16'h0014;

 assign REG_M_0 = (ADDR_IN[BASEr-1:0] == DMAEFFCOUNTER)?dma_eff_counter:32'bz;

/**/

3. Addition of the DMA controller

/**SL**/

/*****DMA controller **/

 dma_controller dmacntrl(

 //inputs

 .CLK(CLK),

 .START(dma_start), //command to start DMA operation from

ICAPcntrl

 .ADDR_IN(dma_addr_reg), //DMA starting address

 .SIZE(dma_size_reg), //DMA transfer size

 .DMAF_DOUT(DMAF_DOUT), //data in from SRAM

 .DMAF_EMPTY(DMAF_EMPTY),

 .DMAF_DATA_COUNT(DMAF_DATA_COUNT),

 //outputs

 .DMAF_RE(DMAF_RE),

 .DONE(dma_done), //DMA done

 .DMA_OP(DMA_OP_SRAM), //indicate DMA start op to SRAM

 .ADDR_OUT(ADDR_OUT_SRAM), //address out to SRAM

 .SIZE_OUT(SIZE_OUT_SRAM), //size out to SRAM

 .DATA_OUT(data_out_icap), //data out to ICAP

 .ICAP_CE_N(icap_cen), //clock enable signal to ICAP

 .ICAP_WE_N(icap_wen), //write enable signal to ICAP

 .DMA_EFF_COUNT(dma_eff_count_wire), //effective bandwidth cycle counter

 .ICAP_BUSY(BUSY_ICAP)

);

4. Modification of the ICAP controller state machine to start DMA operations

 DMASIZEREG : begin

 dma_size_reg = data_in_m_reg; //update dma transfer size

 dner = 1'b1;

 end

 DMAADDRREG : begin

 if(dma_done) begin

 dma_addr_reg = data_in_m_reg;

 dma_start = 1'b1;

 dner = 1'b1;

 end

 else dma_start = 1'b0;

 end

5. Addition of an independent state machine to control DMA operations

 always@(posedge CLK) begin //state machine for DMA

 CE_n = icap_cen;

 WRITE_n = icap_wen;

 ICAP_datain = data_out_icap;

23

 case (state)

 3'b000: begin

 if(dma_start) begin

 state = 3'b001;

 dma_counter = 32'h00000000; //reset DMA_counter

 dma_eff_counter = 32'h00000000; //reset DMA effective counter

 end

 end

 3'b001: begin //make sure DMA starts

 dma_counter = dma_counter + 1;

 if(~dma_done) state = 3'b010;

 end

 3'b010: begin //wait for DMA to finish

 dma_counter = dma_counter + 1;

 if(dma_done) begin

 dma_eff_counter = dma_eff_count_wire;

 state = 3'b000;

 end

 end

 endcase

 end

In DMA_CONTROLLER:

The master fully stream DMA engine: it is able to decompress the compressed bitstreams and performs

DMA operations.

module dma_controller(

 input CLK,

 input START, //start DMA operation

 input [31:0] ADDR_IN, //DMA start address

 input [31:0] SIZE, //DMA size

 //DMA fifo (DMAF)

 input [31:0] DMAF_DOUT, //Data out from DMA_FIFO

 input DMAF_EMPTY, //DMA_FIFO empty

 input [3:0] DMAF_DATA_COUNT,

 output DMAF_RE, //DMA_FIFO ready enable

 output DMA_OP, //DMA operation signal to SRAM (arbitration)

 output [31:0] ADDR_OUT, //address to SRAM

 output [31:0] SIZE_OUT, //size to SRAM

 output DONE, //DMA operation done

 output [31:0] DATA_OUT, //data to ICAP

 output ICAP_CE_N, //clock enable signal to ICAP

 output ICAP_WE_N, //write enable signal to ICAP

 output [31:0] DMA_EFF_COUNT, //DMA effective counter

 input ICAP_BUSY

);

/***/

 reg [2:0] state;

 reg dmaf_re;

 reg [31:0] size, size_original, addr;

 reg dma_op, done, icap_cen, icap_wen;

 reg [1:0] bytes;

 wire [31:0] data_out_wire;

 reg [31:0] data_out_reg;

24

 reg [31:0] addr_debug; //debug

 assign DMAF_RE = dmaf_re;

 assign DONE = done;

 assign DMA_OP = dma_op;

 assign ADDR_OUT = addr;

 assign SIZE_OUT = size_original;

 assign ICAP_CE_N = icap_cen;

 assign ICAP_WE_N = icap_wen;

 //intelligent ICAPcntrl

 reg [15:0] size_decode;

 assign DATA_OUT = data_out_reg;

 reg [31:0] dma_eff_count;

 assign DMA_EFF_COUNT = dma_eff_count;

/***/

 /* Endian Flip incoming data */

 endianflip32 ed(

 .IN(DMAF_DOUT),

 .EN(1'b1),

 .OUT(data_out_wire) //(DATA_OUT)

);

/***/

/***/

 initial begin

 dmaf_re <= 1'b0;

 size <= 32'h00000000;

 size_original <= 32'h00000000;

 addr <= 32'h00000000;

 state <= 3'b000;

 dma_op <= 1'b0;

 done <= 1'b1;

 icap_cen <= 1'b1;

 icap_wen <= 1'b1;

 //intelligent ICAPcntrl

 size_decode <= 16'h0000;

 data_out_reg <= 32'h00000000;

 dma_eff_count <= 32'h0000000;

 end

/***/

 always @ (posedge CLK) begin

 case (state)

 3'b000: begin //latch dma info, wait for start

 dma_op <= 1'b0;

 icap_cen <= 1'b1;

 icap_wen <= 1'b1;

 dmaf_re <= 1'b0;

 if(START) begin

 dma_eff_count <= 0;

 done <= 1'b0;

 size <= SIZE;

 size_original <= SIZE;

 addr <= ADDR_IN;

 state <= 3'b001;

 addr_debug <= ADDR_IN; //debug

 end

25

 end

 3'b001: begin //start dma operation

 dma_eff_count <= dma_eff_count + 1;

 icap_cen <= 1'b1;

 icap_wen <= 1'b1;

 dma_op <= 1'b1; //start

 if(~DMAF_EMPTY) begin //read from fifo

 dmaf_re <= 1'b1;

 state <= 3'b010;

 end

 end

 3'b010: begin //wait for fifo to become ready

 dma_eff_count <= dma_eff_count + 1;

 state <= 3'b011;

 end

 3'b011: begin

 if(size == 0) begin //done

 state <= 3'b000;

 dma_op <= 1'b0;

 done <= 1'b1;

 icap_cen <= 1'b1;

 icap_wen <= 1'b1;

 dmaf_re <= 1'b0;

 end

 else if(data_out_wire[31:16] == 16'hecdc) begin //special instruction caught

 size_decode <= data_out_wire[15:0];

 dmaf_re <= 1'b0;

 icap_cen <= 1'b1;

 icap_wen <= 1'b1;

 if(DMAF_EMPTY) begin

 size <= size - 1;

 state <= 3'b101;

 end

 else begin

 dma_op <= 1'b0;

 size <= size - 2;

 state <= 3'b100;

 end

 end

 else begin

 dma_eff_count <= dma_eff_count + 1;

 icap_cen <= 1'b0;

 icap_wen <= 1'b0;

 data_out_reg <= data_out_wire;

 size <= size - 1;

 addr_debug <= addr_debug + 4; //debug

 if(DMAF_EMPTY) begin

 dmaf_re <= 1'b0;

 if(size > 1) begin //need to resync

 state <= 3'b001;

 end

 end

 end

 end

 3'b100: begin //start intelligent ICAPcntrl

 dmaf_re <= 1'b0;

 if(size_decode == 0) begin

 icap_cen <= 1'b1;

26

 icap_wen <= 1'b1;

 if(DMAF_DATA_COUNT >= size) dma_op <= 1'b0;

 else dma_op <= 1'b1;

 if((~DMAF_EMPTY) || (size==0)) begin

 dmaf_re <= 1'b1;

 state <= 3'b010;

 end

 end

 else begin

 icap_cen <= 1'b0;

 icap_wen <= 1'b0;

 data_out_reg <= data_out_wire;

 size_decode <= size_decode - 1;

 end

 end

 3'b101: begin

 dma_eff_count <= dma_eff_count + 1;

 icap_cen <= 1'b1;

 icap_wen <= 1'b1;

 dma_op <= 1'b1;

 if(~DMAF_EMPTY) begin

 dmaf_re <= 1'b1;

 state <= 3'b110;

 end

 end

 3'b110: begin

 dma_eff_count <= dma_eff_count + 1;

 dmaf_re <= 1'b0;

 dma_op <= 1'b0;

 size <= size - 1;

 state <= 3'b100;

 end

 endcase

 end

endmodule

27

APPENDIX 2: Step-by-Step Demo

Note: please email to shaoshal@uci.edu if you have questions about this process

Test 1: test fully streaming DMA engine without compression

Steps:
1. Grab the bitstream files from

“\Shaoshan_Liu\eMIPSv1.1_PR_ICAP_DMA_streamingFIFO_PR\project_PR\project_PR2.runs\floorplan_1\m
erge”

In this case, we grab the file “ext0_pblock_ext0_partial.bit” and copy it over to the folder
“\Shaoshan Liu\intelligent ICAPcntrl static analysis”

2. Generate the uncompressed bitstream file

To generate the uncompressed bitstream file in ASCII format, use the following command:

“bin2icap ext0_pblock_ext0_partial.bit ext0.coe 1”

3. Store the uncompressed bitstream file into the file “\Shaoshan Liu\eMIPS Tests\PRstreamingext0.h” and set

the file size to 24488.

mailto:shaoshal@uci.edu

28

4. Compile the file “\Shaoshan Liu\eMIPS Tests\my_timer_mmldiv64.c”

5. Use IMPACT to configure the chip such that only the baseline TISA is loaded

First do a full chip configuration by downloading the following file to the chip:

“\Shaoshan_Liu\eMIPSv1.1_PR_ICAP_DMA_streamingFIFO_PR\project_PR\project_PR2.runs\flo

orplan_1\merge\static_full.bit”

Then take out the extension by downloading the following file to the chip:

“\Shaoshan_Liu\eMIPSv1.1_PR_ICAP_DMA_streamingFIFO_PR\project_PR\project_PR2.runs\flo

orplan_1\merge\pblock_ext0_blank.bit”

29

By now we should have only the baseline TISA design running on the V4 chip, and in the next few

steps we show how to do run-time partial reconfiguration and test it with the mmldiv64 test.

6. Download the test file to the chip by typing the following command: “download com1:

my_timer_mmldiv64.bin && serplexd –n –r –s com1: ”

7. Get results from the command prompt

The results show that the ICAP-DMA counter is 5fb9 (24505 in decimal), whereas the ICAP-DMA

effective counter is 5fb7 (24503 in decimal). For these two counters, the clock runs at 100 MHz,

and ICAP-DMA counter counts the number of cycles the ICAP takes to finish configuration,

whereas the ICAP-DMA effective counter counts the number of cycles the fully streaming DMA

engines take to complete data transfer. Since we are not using the compressed bitstream in this case,

these two numbers are just off by 2 cycles. If we do the calculation, the file size is 24488 words

(each word is 4 bytes) and it takes 24505 cycles to complete configuration, thus the ICAP

throughput is 399.7 Mbytes/s.

30

After configuration, the rest of the program performs mmldiv64 operations as well as normal integer

operations. The results also show the time taken for these operations. Note that different from the

previous counter numbers, these performance numbers are generated using the on-chip timer, which

runs at 10 MHz instead of 100 MHz.

8. Double check functionality with the standalone mmldiv64 test by typing the following command: “download

com1: mmldiv64_test2.bin && serplexd –n –r –s com1: ”

9. Results of double-check

31

Test 2: test fully streaming DMA engine with compression (intelligent ICAP controller)

Steps:
1. Grab the bitstream files from

“\Shaoshan_Liu\eMIPSv1.1_PR_ICAP_DMA_streamingFIFO_PR\project_PR\project_PR2.runs\floorplan_1\m
erge”

In this case, we grab the file “ext0_pblock_ext0_partial.bit” and copy it over to the folder
“\Shaoshan Liu\intelligent ICAPcntrl static analysis”

2. Generate the uncompressed bitstream file

To generate the compressed bitstream file in ASCII format, use the following command:

“binprofiler ext0_pblock_ext0_partial.bit ext0.coe 1”

3. Store the compressed bitstream file into the file “\Shaoshan Liu\eMIPS Tests\PRstreamingext0.h” and set

the file size to 22648, note that the original size is 24488, thus the compression ratio is 1.08.

32

4. Same as that in the previous section

5. Same as that in the previous section

6. Same as that in the previous section

7. Get results from the command prompt

The results show that the ICAP-DMA counter is 6281 (25217 in decimal), whereas the ICAP-DMA

effective counter is 59a8 (22952 in decimal). Thus, the effective transfer throughput is 426.8

Mbytes/s, whereas the ICAP throughput is 388.4 Mbytes/s.

8. Same as that in the previous section

33

9. Same as that in the previous section

