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ABSTRACT 

Configuration overheads seriously limits the usefulness of FPGA 

partial reconfiguration.  In this paper, we propose a combination 

of two techniques to minimize the overhead.  First, we design and 

implement fully streaming DMA engines to saturate the 

configuration throughput.  Second, we exploit a simple form of data 

redundancy to compress the configuration bitstreams, and we 

implement an intelligent ICAP controller to perform decompression 

at runtime.  The results show that our design achieves an effective 

configuration data transfer throughput of up to 1.2 Gbytes/s, which 

actually well surpasses the theoretical upper bound of the data 

transfer throughput, 400 Mbytes/s. Specifically, our fully streaming 

DMA engines reduce the configuration time from the range of 

seconds to the range of milliseconds, a more than 1000-fold 

improvement.  In addition, our simple compression scheme 

achieves up to a 75% reduction in bitstream size and results in a 

decompression circuit with negligible hardware overhead.     

1. INTRODUCTION 

The defining characteristic of reconfigurable computing systems is 

their ability to change computations on demand.  In an ideal 

scenario, we will have reconfigurable accelerators to execute 

certain parts of each desired program.  As the system is used, we 

can load and unload accelerators to make best use of the 

reconfigurable resources.  However, the configuration process itself 

incurs some performance overhead, thus it is unclear whether this 

approach is feasible or not in practice.   

The performance overhead incurred by partial reconfiguration 

can be derived by dividing the bitstream size by the configuration 

throughput.  Hence the key to minimizing this overhead is either to 

increase the configuration throughput, or to reduce the bitstream 

size.  In this paper, we propose a combination of two techniques to 

minimize the partial reconfiguration performance overhead.  First, 

we design and implement fully streaming DMA engines to nearly 

saturate the configuration bandwidth of the device.  Second, we 

exploit a simple form of configuration data redundancy to compress 

the configuration bitstreams, and implement an intelligent ICAP 

controller to perform decompression at runtime.   

To successfully apply these techniques, we need to have a 

good understanding of the partial reconfiguration process.  

Specifically, we would like to find out how a configuration 

bitstream interacts with the ICAP.  While there is limited 

documentation available, we perform a low-level study to de-

mystify the partial configuration process.                

The rest of this paper is organized as follows: in section 2, we 

review the related work in partial reconfiguration and bitstream 

compression; in section 3, we introduce the design of the streaming 

DMA engines; in section 4, we present our study to understand the 

configuration process; in section 5, we discuss the design of the 

intelligent ICAP engine; in section 6 we demonstrate the 

experimental results and then we conclude in section 7.      

2. BACKGROUND 

In this section, we discuss the related work in partial 

reconfiguration, bitstream file compression, as well as introduce the 

Virtex-4 FPGA and eMIPS platform on which we performed our 

experiments. 

2.1 Fast Partial Reconfiguration 

Runtime partial reconfiguration (PR) is a special feature offered by 

Xilinx FPGAs that allow designers the ability to reconfigure certain 

portions of the FPGA during runtime without influencing other 

parts of the design.  This feature allows the hardware to be adaptive 

to a changing environment.  First, it allows optimized hardware 

implementation to accelerate computation.  Second, it allows 

efficient use of chip area such that different hardware modules can 

be swapped in/out the chip at runtime.  Last, it may allow leakage 

and clock distribution power saving by unloading hardware 

modules that are not active.  One major issue of PR is the 

configuration speed because the reconfiguration process incurs 

performance and power overhead.  By maximizing the 

configuration speed, these overheads can be minimized.    

In [1], to improve the reconfiguration speed, Liu et al. 

proposed the use of direct memory access (DMA) techniques to 

directly transfer configuration data to the Internal Configuration 

Access Port (ICAP).  They reported to have achieved 82 Mbytes/s 

ICAP throughput using this approach.  In addition, they placed a 

block RAM (BRAM) cache next to the ICAP so as to increase the 

ICAP throughput to 378 Mbytes/s.  However, since on-chip storage 

resources are precious and scarce, putting a large BRAM next to 

the ICAP is not a practical approach.  Similarly, in [2], Claus et al. 

also designed a DMA engine to provide high configuration 

throughput and they reported to have achieved 295 Mbytes/s on the 

Virtex-4 chip.  In [3], facing the problem that the Xilinx Spartan III 

FPGA does not have an ICAP for reconfiguration, Paulsson et al. 

proposed and implemented a virtual internal configuration access 

port, or JCAP, to enable partial self reconfiguration on the Spartan 

III FPGA.  The JCAP was actually an internal hardware interface 

that directly sent the configuration data to the JTAG to perform 

reconfiguration.  The configuration throughput they approached 

was 2 Mbits/s.        

According to [4], on the Virtex-4 chip the ICAP can run at 100 

MHz and in each cycle it is able to receive 4 bytes. Thus the ideal 

ICAP throughput should be 400 Mbytes/s.   In section 3 of this 

paper, we propose a fully streaming DMA design to approach this 

ideal throughput. 
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2.2 Bitstream File Compression 

The second approach to reduce configuration time is by reducing 

the configuration file size through compression techniques.  In [5], 

Li et al. studied the redundancy in various bitstream files and 

applied compression algorithms including Huffman coding, 

arithmetic coding, and LZ compression on these bitstream files.  

Their simulation results indicated that a compression ratio of 4:1 

could be achieved.  However, their study focused on only the 

compression ratio, it was not clear how much improvement on the 

actual configuration time their approach would bring.  In [6], 

Dandalis et al. proposed a dictionary-based compression approach.  

Their results demonstrated up to 11~41% savings in memory for 

configuration bit-streams of several real-world applications.  In [7], 

Pan et al. proposed techniques to exploit the redundancy between 

bitstream files such that certain parts could be reused.  They 

reported that their approach achieved 26.5~75.8% improvement 

over the DV and LZSS algorithms. 

Most bitstream file compression proposals utilized 

complicated compression algorithms in order to achieve high 

compression ratios.  However, one major problem with this 

approach is that it requires the implementation of a complicated 

decompression circuit that may bring excessive area, power, and 

performance overheads to the design. This issue has been 

overlooked in many research studies.  In most bitstream 

compression papers, the actual decompression hardware overhead, 

such as gate count, were not reported.  In this paper, we propose an 

intelligent ICAP controller that can automatically extract the 

redundancy from the bitstream files. Our approach does not use a 

complicated compression algorithm, but it achieves a high 

compression ratio on real circuits and imposes negligible hardware 

overhead.         

2.3 Other Approaches to Improve Configuration 

Performance 

Some other approaches to improve configuration performance 

include prefetching configuration bitstream files and bitstream file 

relocation.  In [8], Resano et al. proposed a prefetch scheduling 

heuristic to minimize the runtime reconfiguration overhead.  Their 

approach computed the prefetch decision at design time and was 

able to prevent prediction misses.  They reported to have eliminated 

from 93% to 100% of the configuration overhead.   In [9], Li et al. 

provided a performance model for prefetching and proposed hybrid 

(static and dynamic) prefetching heuristics.  They reported 70% 

reduction on configuration overhead.   In [10], Carver et al. 

proposed a bitstream file relocation technique such that if the same 

hardware extension could be used in different locations of the same 

chip, then no separate bitstream files needed to be generated.  This 

approach reduced the bitstream file storage overhead as well as the 

configuration time overhead.  And our approach does not do 

anything to limit the use of these kinds of further enhancements          

2.4 The Virtex-4 FPGA and the eMIPS System 

The Virtex-4 FPGA consists of two abstract layers.  The first layer 

is the logic and memory layer: it contains the reconfigurable 

hardware including logic blocks (CLBs), block RAMs (BRAMs), 

I/O blocks, and configurable wiring resources.  The second layer 

contains the configuration memory as well as additional 

configuration and control logic that handle the configuration 

bitstream loading and the configuration data distribution. The 

smallest piece of reconfiguration information that can be sent to the 

FPGA is called a frame.  A frame contains the configuration 

information needed to configure blocks of 16 CLBs.    The ICAP 

allows internal access to read and write the FPGA’s configuration 

memory, thus it allows self-reconfiguration. On the Virtex-4 chip, 

the ICAP is able to run at 100 MHz and in each cycle it is able to 

consume 4 bytes of configuration data.  Thus the ideal ICAP 

throughput is 400 Mbytes/s.  Also, we store the configuration data 

in external SRAM which runs at 100 MHz.  At its maximum speed, 

it is able to output 4 bytes per cycle.  Thus the SRAM also has a 

maximum throughput of 400 Mbytes/s.            

To test the performance impact of reconfiguration on a real 

system, we use the eMIPS system as our test platform.  The eMIPS 

system is a dynamically extensible processor [11].  The eMIPS 

architecture allows additional logic to interface and interact with 

the basic data path at all stages of the pipeline.  The additional logic, 

called Extensions, can be loaded on-chip dynamically during 

execution by the processor itself.  Thus, the architecture possesses 

the unique ability to extend its own ISA at runtime.  In the eMIPS 

system, the pipeline stages, general purpose register file, and 

memory interface match those in the classic MIPS RISC processor.  

The eMIPS system augments the basic MIPS architecture to 

include all the facilities for self-extension, including instructions 

for loading, unloading, disabling, and controlling the unallocated 

blocks in the microprocessor.   

The partially reconfigurable Extensions distinguish the eMIPS 

architecture from the conventional RISC architecture from which it 

is derived.   Using the partial reconfiguration design flow, the 

eMIPS system can be partitioned into fixed and reconfigurable 

regions such that the core architecture is included in the fixed 

region, whereas the Extensions are included in the reconfigurable 

regions.   In this paper, we implement the fully streaming DMA 

engines and the intelligent ICAP controller in the eMIPS system to 

study how fast partial reconfiguration can be achieved as well as its 

impact on system performance.      

3. STREAMING DMA ENGINES FOR THE 

ICAP PORT  

In this section, we design and implement fully streaming direct 

memory access (DMA) engines to establish a direct transfer link 

between the external SRAM, where the configuration files are 

stored, and the ICAP.   

3.1 Design of the Streaming DMA Engines 

Figure 1 shows our system design for partial reconfiguration.  In 

the original design, the ICAP Controller contains only the ICAP 

and the ICAP FSM, and the SRAM Controller only contains the 

SRAM Bridge and the SRAM Interface.  Hence, in the original 

design there is no direct memory access between SRAM and the 

ICAP and all configuration data transfers are done in software. In 

this way, the pipeline issues one read instruction to fetch a 

configuration word from SRAM, and then issues a write instruction 

to send the word to the ICAP; instructions are also fetched from 

SRAM and this process repeats until the transfer process completes.  

This scheme is highly inefficient because for the transfer of one 

word it requires tens of cycles. This makes the ICAP transfer 

throughput only 318Kbytes/s.    In order to achieve close to ideal 

ICAP throughput, our streaming DMA design provides three key 

features: master-slave DMA engines, a FIFO between the two 

DMA engines, and burst mode to support data streaming.    
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Figure 1: Structure of the Master-Slave DMA for PR 

3.1.1 Adding the master-slave DMA engines 

First, we implemented the master-slave DMA engines.  As shown 

in Figure 1, the master DMA engine resides in the ICAP controller 

and interfaces with the ICAP FSM, the ICAP, as well as the slave 

DMA engine. The slave DMA engine resides in the SRAM 

Controller, and it interfaces with the SRAM Bridge and the master 

DMA engine.  When a DMA operation starts, the master DMA 

engine receives the starting address as well as the size of the DMA 

operation.  Then it starts sending control signals (read_enable, 

address etc.) to the slave DMA engine, which then forwards the 

signals to the SRAM Bridge.  After the data is fetched, the slave 

DMA engine sends the data back to the master DMA engine. Then, 

the master DMA engine decrements the size counter, increments 

the address, and repeats the process to fetch the next word. 

Compared to the baseline design, adding the DMA engines avoids 

the involvement of the pipeline in the data transfer process and it 

significantly increases the ICAP throughput to about 50 Mbytes/s.      

3.1.2 Adding a FIFO between the DMA engines 

Second, we modified the master-slave DMA engines and added a 

FIFO between the two DMA engines.  In this version of the design, 

when a DMA operation starts, instead of sending control signals to 

the slave DMA engine, the master DMA engine forwards the 

starting address and the size of the DMA operation to the slave 

DMA engine, then it waits for the data to become available in the 

FIFO.   Once data becomes available in the FIFO, the master DMA 

engine reads the data and decrements its size counter.  When the 

counter hits zero, the DMA operation is complete.  On the other 

side, upon receiving the starting address and size of the DMA 

operation, the slave DMA engine starts sending control signals to 

the SRAM Bridge to fetch data one word at the time.  Then, once 

the slave DMA engine receives data from the SRAM Bridge, it 

writes the word into the FIFO, decrements its size counter, and 

increments its address register to fetch the next word.   In this 

design, only data is transferred between the master and slave DMA 

engines and all control operations to SRAM are handled in the 

slave DMA. This greatly simplifies the handshaking between the 

ICAP Controller and the SRAM Controller, and it leads to a 100 

Mbytes/s ICAP throughput.   

3.1.3 Adding burst mode to provide fully streaming 

The SRAM embedded in the ML401 FPGA board actually provides 

burst read mode such that we can read four words at a time instead 

of one.  Note that burst mode reads are available on DDR memories 

as well. There is an ADVLD signal to the SRAM device. During a 

read, if this signal is set, a new address is loaded into the device. 

Otherwise, the device will output a burst of up to four words, one 

word per cycle.  Therefore, if we can set the ADVLD signal every 

four cycles, given that the synchronization between control signals 

and data fetches is correct, then we are able to stream data from the 

SRAM to the ICAP.  

To achieve this, we implemented two independent state 

machines in the slave DMA engine.  One state machine sends 

control signals as well as addresses to the SRAM in a continuous 

manner such that every four cycles the address is incremented by 

four words (16 bytes) and sent to the SRAM device.  The other 

state machine simply waits for the data to become ready at the 

beginning, and then each cycle receives one word from the SRAM 

and streams the word to the FIFO until the DMA operation 

completes.  Similarly, the master DMA engine waits for data to 

become available in the FIFO, and then in each cycle it reads one 

word from the FIFO and streams the word to the ICAP until the 

DMA operation completes.  This fully streaming DMA design 

leads to an ICAP throughput that exceeds 395 Mbytes/s, very close 

to the ideal 400 Mbytes/s number.         

3.2 Handshaking between the Master and Slave 

DMA Engines 

Our fully streaming DMA design achieves near perfect, but not 

perfect, ICAP throughput because in order to initiate a DMA 

operation there is a handshaking process between the two DMA 

engines.  This process introduces some performance overheads.  

The waveform shown in Figure 2 illustrates this process.  At the 

beginning, the master DMA engine receives the DMA starting 

address (ADDR_master) as well as the size (SIZE_master) from the 

ICAP FSM.  After one cycle, the ICAP FSM sets the DMA 

operation signal (DMA_OP) to notify the master DMA engine to 

start the DMA operation.  Then one cycle later, the master DMA 

engine forwards the DMA starting address and size to the slave 

DMA engine (ADDR_slave, SIZE_slave).  Upon receiving these 

signals, the slave DMA engine starts operation by triggering the 

control state machine to send address and control signals to the 

SRAM, such that the active-low ADVLD signal (burst_DMA) is 

set low to stream a new address to SRAM every four cycles.  

Meanwhile, the data state machine waits for the SRAM data 

(DATA_SRAM) to become available.  After seven cycles, the first 

SRAM data becomes available and the slave master engine sends 

one word to FIFO (DATA_FIFO) each cycle until the DMA 

operation completes.  On the other side, the master DMA engine 

checks whether the FIFO is empty (FIFO_EMPTY), once the FIFO 

becomes not empty, the master DMA engine starts reads data from 

the FIFO and sends one word to the ICAP in each cycle until the 

DMA operation completes.   Thus, the handshaking process takes 

12 cycles to complete.  At the end of the DMA operation, it takes 

another 5 cycles to re-synchronize and reset the two state machines 

in the slave DMA engine.   Thus, the total control overhead of this 

design is only 17 cycles.  During the rest of the transfer time this 

design streams configuration data at a full 400 Mbytes/s.  
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Figure 2: Handshaking of the DMA engines 

3.3 Synchronization between the Control and Data 

State Machines 

In the slave DMA engine there are two independent state machines: 

the control state machine (which sends control signals and 

addresses to the SRAM interface) and the data state machine 

(which receives data from the SRAM interface and forwards the 

data to the FIFO).  The synchronization between these two state 

machines is critical to the correctness of DMA operations.  Any 

mistake in the synchronization between these two state machines 

may result in missing or redundant data transfer, potentially leading 

to incorrect configuration.  

The state machine diagrams and synchronization mechanisms 

between are illustrated in Figure 3.  These two state machines 

interact with each other, as well as with two other modules: the 

master DMA engine and the SRAM interface.  At the beginning of 

a DMA transfer, the master DMA engine sends the start DMA 

operation signal to both state machines.  Upon receiving this signal, 

both state machines wait for the SRAM interface to become ready, 

and then they transition to the next state.  Up to this point, the two 

state machines are synchronized.   

After verifying that the SRAM interface is ready, the control 

state machine starts sending control signals and address to the 

SRAM interface to start burst operation.  Each burst takes four 

cycles to complete.  Thus, the control state machine updates the 

address every four cycles, each time incrementing the address by 

16 bytes.   As shown in Figure 2, there is a six-cycle delay between 

the time when the control signals are sent to the SRAM interface 

and the time when the data returns.  Thus, after verifying that the 

SRAM interface is ready, the data state machine waits on the data 

ready signal from the SRAM interface.  After receiving this signal, 

the data state machine starts reading data until the DMA operation 

completes.  During this process, the two state machines are not 

synchronized.          

When the DMA operation completes, the data state machine 

sends out a DMA complete signal to the control state machine and 

it switches back to the initial state.  On the other side, upon 

receiving this signal the control state machine also transitions to the 

initial state and waits for the next start DMA operation signal.  At 

this point, the two state machines become synchronized again.   
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Figure 3: Synchronization between the state machines in the slave DMA engine 

4. DE-MYSTIFYING CONFIGURATION 

BITSTREAM FILES 

Although Xilinx provides some documentation [12] to explain the 

details of the bitstream files, how the contents of the bitstream files 

would affect the configuration process remains a mystery.  In this 

section, we perform several low-level experiments in order to 

identify the effect of the bitstream files on the configuration 

process.  To carry out these low-level experiments we implemented 

a block RAM (BRAM) next to the ICAP port and stored different 

bitstreams in the BRAM.  We then modified the bitstreams and 

observed how the modifications affected the behavior of the 

configuration process.  

4.1 Configuration CRC Test 

The first question we have is whether we can manually modify the 

bitstream file.  At the end of each bitstream file, there is a cyclic 
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redundancy check (CRC) command that checks whether the 

bitstream file has been modified since it is generated.  In order to 

understand how the CRC test would affect the configuration 

behavior, we performed the following experiments: 

1. CRC modification: we modified the CRC word such that we 

were using a wrong CRC value.  Once the CRC error was 

detected by the ICAP, the ICAP stopped functioning and would 

not take any more new commands. 

2. CRC removal: we removed the CRC command from the 

bitstream file to test whether it would affect the configuration.  

The result was that the bitstream was written to ICAP as usual.  

After the configuration process completed, the design functioned 

as expected.   

3. Disabling CRC using the COR: there is a configuration option 

register (COR) in the ICAP, we can modify this register to 

enable or disable CRC; by default CRC is enabled.  In this 

experiment, we modified the COR to disable CRC.  Although we 

used a correct CRC value, the ICAP port still stopped taking any 

new commands after the CRC command was detected. 

The conclusion is that CRC is optional: in case we want to 

manually modify the bitstream, we can simply remove the CRC 

command from the bitstream.   

4.2 The ICAP Busy Signal 

The ICAP interface has an output called BUSY.  Without any 

detailed documentation, we assumed that this signal indicates that 

the ICAP is performing some function and cannot take commands 

or data at that time.  To test this assumption, we wrote various 

patterns of commands and data to the ICAP in an attempt to force 

the ICAP to raise this BUSY signal. 

1.  We repeated the same register read command 20 times to the 

ICAP port. 

2. We issued a read immediately after a write to the same register, 

and repeated this process 20 times.  

3. We selected several frame addresses within a clock region and 

wrote configuration data frames to the ICAP port in pseudo 

random pattern.  

4. We wrote the same partial bitstream to the ICAP over and over. 

5. We wrote nothing but NOP to the ICAP over and over. 

6. We repeated writing the set frame address command followed by 

the same address. 

7. We repeated writing the set frame address command followed by 

the different addresses. 

8. We took a working bitstream and replaced all the configuration 

frame data with zeros and wrote it to the ICAP. 

9. We turned off the ICAP write enable (WE) signal and turned it 

back on.   

Only the last test, cycling the write enable signal, caused the 

BUSY signal to be set for 6 cycles.  In all other cases, the BUSY 

signal was never set.  The conclusion is that the BUSY signal of 

ICAP would unlikely be set during the configuration process, 

implying that the ICAP is able to run at full speed during 

configuration.  

4.3 Configuration Time—a Pure Function of the 

Bitstream Size 

In order to find out how configuration time can vary, we performed 

the following experiments: 

1. Location study: we wanted to find out whether the configuration 

time depends on the location of configuration, thus we 

implemented a design that contained 256 counters and fit the 

design into one clock region on the Virtex-4 chip.  Then we 

placed the design in various locations on the chip, some far away 

from the ICAP port, and others close to the ICAP port.  Then we 

studied whether the location affected the configuration time.  

The results showed that the ICAP port was able to run at full 

speed regardless of the reconfiguration location.  

2. Command study: we wanted to find out whether the 

configuration time depends on the configuration command, thus 

we kept writing NOPs to the ICAP port and verified that the 

ICAP consumed one command each cycle.  Then we repeated 

the experiments for other commands, including the write 

configuration data command (WCFG), the multiple-frame writes 

command (WFWR), etc.  The result was the same; these 

commands did not affect the configuration speed.    

3. Configuration stress study: to find out whether continously 

configuring one clock region of the chip would stress the ICAP, 

we did an experiment to repeatedly write the bitstream for one 

clock region to the ICAP.  The result showed that the ICAP port 

was still running at full speed in this case.  

During all these tests, we found out that ICAP always ran at 

full speed such that it was able to consume four bytes of 

configuration data per cycle, regardless of the semantics of the 

configuration data.  This confirms that configuration time is a pure 

function of the size of the bitstream file.    

4.4 The NOPs 

The FPGA tool chain inserts many NOPs throughout the bitstream 

file.  We wanted to understand if these are necessary and if so why.  

For this purpose, we first examined various bitstream files and 

identified the following common patterns of NOPs: 

1. NOPs are inserted after each write to CMD command has 

finished 

2. NOPs are inserted after each write to FAR command has 

finished 

3. If the write to FAR command is followed by the write to CMD 

command or by the write to MFWR command, then no NOP is 

inserted between these commands. 

4. A large number of NOPs are inserted at the end of each bitstream 

file.  

Then we performed the following experiments: 

1. We removed all NOPs from a working bitstream file and 

configured the FPGA with the new bitstream file.  However, 

after the configuration process completed, the chip did not 

function as expected, implying that removing the NOPs changed 

the behavior of the design. 

2. We sent the working bitstream to the ICAP port; however, if a 

NOP were spotted, we stalled the ICAP for several cycles and 

jumped to the next command.  In this way, we replaced each 

NOP with several cycles of delay.  After the configuration 

process completed, the design functioned as expected. 

The conclusion is that NOPs carry no special meaning to the 

ICAP.  For example, these are not used to flush some buffer 

internally.  The sole purpose of NOP is to insert delay to give the 

ICAP enough time to finish the current operation.    
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5. INTELLIGENT ICAP CONTROLLER 

FOR BITSTREAM SIZE REDUCTION 

In the previous section we have verified that we can indeed 

manually modify the bitstream file in various ways and still 

maintain ICAP functionality.  Based on this property, we propose 

to exploit a simple form of redundancy.  Our approach does not 

require any complicated compression algorithms; instead it simply 

scans the bitstream file a word at a time to check how likely it is 

that the next word is the same as the current word.  As an example 

shown in Figure 4, the same word 0x00000000 repeats itself four 

times in the middle of the data sequence.  We are going to exploit 

this redundancy pattern to reduce the size of the bitstream files as 

well as to reduce the configuration data transfer time.  The main 

advantage of this method over others is that it does not require a 

complicated decompression scheme, thus it minimizes the overhead 

of the decompression circuit.      

0x0def8037

0x00000000

0x00000000

0x00000000

0x00000000

0x0539af80
 

Figure 4: sample data sequence 

5.1 Redundancy in Bitstream Files 

First, we examined the compression ratio achieved by this simple 

scheme.  We scanned through a set of bitstream files with varying 

sizes and complexities to quantify the simple redundancy.  These 

bitstream files include: blank is used to wipe out a design spanning 

three clock regions; counters is a design that consists of 256 

counters and spans one clock region; debug_full is a full design of 

the eMIPS base architecture plus a hardware debugger; 

debug_partial is the hardware debugger only; lr is a hardware 

acceleration module for the load-return operation that loads the 

address of the stack and jumps there; mmldiv64 is a hardware 

acceleration module to accelerate 64-bit division; static_full is a 

design of the eMIPS base architecture plus a 64-bit division 

accelerator; and timer is a hardware timer implementation.  The 

results are summarized in table 1: where new size is derived by 

subtracting the redundancy from the original size, and compression 

ratio is the ratio of original size over new size. The results show 

that even by exploiting this simple redundancy, we can achieve a 

compression ratio ranging from 1.21 to 3.93, with the average 

being 1.73.         

Table 1: compression ratio of bitstream files 

bitfile 
original size 

(words) 
new size 
(words) 

compression 
ratio 

blank 25790 17543 1.47 

counters 19930 13110 1.52 

debug_full 244396 145470 1.68 

debug_partial 31214 22267 1.40 

lr 28887 21048 1.37 

mmldiv64 32487 25969 1.25 

static_full 244391 62231 3.93 

timer 32705 27054 1.21 

5.2 Design of the Intelligent ICAP Controller 

In our scheme, the bitstream files should be pre-compressed and 

stored in the SRAM.  Then after each word is transferred from the 

SRAM to the ICAP, the ICAP controller examines the word and 

determines whether decompression is necessary.  If so, the ICAP 

controller performs decompression and sends the decompressed 

configuration data sequence to the ICAP port; otherwise, the ICAP 

controller simply forwards the configuration word to the ICAP port.    

5.2.1 Encoding and decoding 

In order to perform compression and decompression, we need a 

coding scheme.  Our design principle is to keep the decompression 

circuit as simple as possible.  Thus, our coding scheme is very 

straightforward.  As shown in Figure 5, the word 0x0000000 

repeats four times in the original bitstream.  To encode this in a 

new bitstream, a new command word 0xecdc0004 is inserted into 

the bitstream.  The upper 16 bits of this word is a special command 

(0xecdc) that signals the decompression circuit to start operation, 

whereas the lower 16 bits of this word encodes the number of 

repetitions in the original stream. The word immediately following 

0xecdc0004, in this case 0x00000000, is the word to be 

decompressed.  Note that if 0xecdcxxxx existed in the original 

bitstream, our compression program would detect it and insert a 

special command to notice the decompression circuit, but we do not 

go into the details of this mechanism. 

0x0def8037

0x00000000

0x00000000

0x00000000

0x00000000

0x0539af80

0x0def8037

0xecdc0004

0x00000000

0x0539af80
encode

decode

 
Figure 5: encoding and decoding 

5.2.2 Decompression circuit design 

The baseline ICAP controller simply waits for the configuration 

data and then forwards it to the ICAP port.  Our intelligent ICAP 

controller is able to recognize the decompression command and 

perform configuration data decompression.   In comparison to the 

baseline ICAP controller, our intelligent controller adds only a 

small decoding module and a simple state machine to repeatedly 

send the decompressed configuration word to the ICAP.  Due to 

this simple design, our intelligent ICAP controller introduces little 

hardware overhead.  Table 2 summarizes the hardware resource 

utilization of the baseline ICAP controller (baseline), our intelligent 

ICAP controller (new), and the whole eMIPS design (eMIPS).  It 

shows that our intelligent ICAP controller only uses 5% more slices, 

12% more slice Flip-Flops, and 9% more 4-input LUTs compared 

to the baseline ICAP controller.  In the context of the whole eMIPS 

design  these overheads are negligible.    

Table 2: resource utilization 

 
baseline  new overhead eMIPS 

slices 260 274 5% 10416 

slice FF 301 336 12% 10398 

4-input LUTs 336 367 9% 19335 
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5.3 Combining the Intelligent ICAP Controller and 

the Streaming DMA 

In order to minimize the configuration data transfer time, we 

combine the fully streaming DMA engines and the intelligent ICAP 

controller.  To evaluate the performance of our design, we define a 

metric, the effective transfer throughput.  This is equal to the 

original size of the bitstream divided by the transfer time.   

5.3.1 Disruption of the DMA stream 

A major problem the intelligent ICAP controller brings is that it 

may disrupt the DMA operation.  For instance, if the ICAP 

controller receives a decompression command word 0xecdc1000, 

the ICAP controller will be busy sending the decompressed 

configuration data to the ICAP port for the next 4096 cycles.  

During this time it is not able to fetch new configuration data from 

the FIFO.  On the other hand, the slave DMA engine will continue 

sending one word per cycle to the FIFO.  After the FIFO becomes 

full, the incoming configuration data will be dropped.  To solve this 

problem we design a mechanism to pause and resume the DMA 

operation.   

Figure 6 illustrates the extension of the control and data state 

machines in the slave DMA engine to handle this situation.  When 

decompression starts, the master DMA engine sends a DMA pause 

signal to disrupt the DMA operation in the slave DMA engine. In 

the control state machine, this signal is masked until it finishes the 

current burst to prevent the disruption of the burst read.  Then the 

control state machine turns off the read signal to the SRAM 

interface and transitions to the DMA pause state.  On the other 

hand, the data state machine continues reading data from the 

SRAM interface until the data ready signal from the SRAM 

interface becomes low.  Then the data state machine transitions to 

the DMA pause state.  In the DMA pause state, the control and data 

state machines become synchronized again, and both state 

machines wait for the DMA resume signal from the master DMA 

engine to re-start the DMA operation.  Note that each DMA 

pause/resume process introduces a control overhead of 6 cycles.          

Conditional state transition Unconditional state transition

A.) control state machine in the slave DMA engine

Initial 

State

Burst 

word 1

Burst 

word 2

Burst 

word 3

Burst 

word 4

Start signal from the 

master DMA engine

SRAM ready 

signal from 

SRAM Interface

DMA complete 

signal from the data 

state machine

DMA 

pause

DMA pause signal 

from the master 

DMA engine

DMA resume signal 

from the master 

DMA engine

B.) data state machine in the slave DMA engine

Initial 

State

Wait for 

Data

Read 

Data

Start signal from the 

master DMA engine

SRAM ready 

signal from 

SRAM Interface

data ready 

signal from 

SRAM Interface

DMA complete 

DMA 

pause

DMA resume signal 

from the master 

DMA engine

data not ready 

signal from 

SRAM Interface

 
Figure 6: the state machines in the slave DMA engine (with DMA pause and resume capability)  

5.3.2 Memory access time sharing 

In the eMIPS system, both instruction and data are stored in the 

SRAM.  Thus, during DMA operations the SRAM is not able to 

service normal memory operations. Nevertheless, as shown in 

Figure 7, with our intelligent ICAP controller design we can free 

the SRAM from DMA operations when the ICAP controller is 

performing decompression.  This allows memory access time 

sharing between the DMA operations and the normal memory 

operations.  In the next section, we show how this technique 

improves the program execution time compared to the case where 

only the baseline ICAP controller is used. 

Time

DMA operations
normal memory 

operations

A.) Without the intelligent ICAP controller

B.) With the intelligent ICAP controller

 
Figure 7: memory access time sharing 

6. EXPERIMENTS AND RESULTS 

We have performed experiments on the Virtex-4 FPGA to study 

how the proposed techniques improve FPGA performance.  In this 

section, we show our experimental results on the fully streaming 

DMA design, the intelligent ICAP controller, and the memory 

access time sharing scheme.  In addition, we present a case study 

on the 64-bit division accelerator to demonstrate the effectiveness 

of the combination of these techniques.  

6.1 Performance of the Fully Streaming DMA 

Engines 

In order to measure the performance of our fully streaming DMA 

design, we tested it with the same eight bitstream files as shown in 

Table 1. Recall that these eight bitstream files have varying sizes 

and complexities.  By inserting hardware cycle counters into the 

design, we measured the time taken to complete the DMA 

operation and the results are summarized in Table 3: the second 

column shows the size of the bitstream file, the third column shows 

the time taken to complete the DMA operation without the fully 

streaming DMA engines(in this original design, the ICAP 

throughput is only 318 Kbytes/s), the fourth column shows the time 

taken to complete the DMA operation using our fully streaming 
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DMA engines, and the fifth column shows the throughput of the 

DMA operation (derived by dividing the size of the bitstream by 

the time taken to complete the DMA operation).  In all eight cases, 

our fully streaming DMA design achieved an ICAP throughput that 

was higher than 399 Mbytes/s.  This high ICAP throughput reduces 

the configuration time from the range of seconds to the range of 

milliseconds, a more than 1000-fold improvement.   

Table 3: DMA data transfer throughput 

bitfile 
size 

(word) 

original 
time 

(seconds) 
time 

(seconds) 
TP 

(Mbytes/s) 

blank 25790 0.32 0.00026 399.71 

counters 19930 0.24 0.00020 399.62 

debug_full 244006 3.00 0.00244 399.33 

debug 
_partial 31212 0.38 0.00031 399.78 

lr 28886 0.35 0.00029 399.74 

mmldiv64 32486 0.40 0.00033 399.77 

static_full 244000 3.00 0.00244 399.33 

timer 32140 0.39 0.00032 399.79 

6.2 Performance of the Intelligent ICAP Controller 

Next, we combined the fully streaming DMA engines and the 

intelligent ICAP controller.  We studied the performance of this 

design with the same set of bitstream files. Recall that there is a 6-

cycle overhead associated with each disruption of the DMA 

operation.  Therefore, it is not worthwhile to compress the data 

sequence that contains less than 6 repetitions of the same 

configuration word.  In our experiments, we define the threshold 

for compression as 10 repetitions of the same configuration word.   

In this case, we sacrifice some compression ratio but guarantee that 

each compression can contribute to the reduction of data transfer 

time. 

The experimental results are summarized in Table 4.  The 

second, third, and fourth columns show the original bitstream file 

size, the new bitstream file size after compression, and the 

compression ratio, respectively.  The fifth and sixth columns show 

the time taken to transfer the bitstream and the time taken for the 

ICAP to complete configuration, respectively.  Finally, the last two 

columns respectively show the effective data transfer throughput 

and the ICAP throughput.  Note that effective transfer throughput is 

derived by dividing original size by transfer time, whereas ICAP 

throughput is derived by dividing new size by ICAP time. 

The first observation from Table 4 is that our scheme leads to 

significant reduction of the bitstream file size, in the case of 

static_full, our scheme reduces the file size by more than 75%.  The 

second observation is that a higher compression ratio leads to a 

higher effective transfer throughput.  In the case of timer, the 

compression ratio is only 1.09 and the effective transfer throughput 

is 434 Mbytes/s.  In contrast, in the case of static_full the 

compression ratio reaches 3.15.  This leads to a 1203 Mbytes/s 

effective transfer throughput.  This is because a higher compression 

ratio implies a larger reduction of the bitstream file size.  Thus it 

takes less time to transfer the configuration data.  The third 

observation is that ICAP throughput ranges from 374 Mbytes/s to 

392 Mbytes/s, whereas we show in Table 3 that the throughput 

should be greater than 399 Mbytes/s.  This is because each 

transition from the normal ICAP operation to decompression 

operation involves the transition from one state machine to another, 

thus it incurs a two-cycle overhead.  Consequently, the more often 

the transition occurs, the more overhead it incurs.       

The most important message conveyed by Table 4 is that by 

combining the fully streaming DMA design, which aims at 

improving configuration data transfer throughput, and the 

intelligent ICAP controller, which aims at reducing the size of 

bitstream files, we are able to achieve an effective configuration 

data transfer throughput that well surpasses the upper bound of data 

transfer throughput, 400 Mbytes/s.    

Table 4: performance of the intelligent ICAP controller 

bitfile 

original 
size 

(words) 

new 
size 

(words) 
compression 

ratio 

transfer 
time 

(seconds) 
ICAP time 
(seconds) 

effective 
transfer 

throughput 
(Mbytes/s) 

ICAP 
throughput 
(Mbytes/S) 

blank 25790 21474 1.20 0.000217 0.000266 474.65 387.12 

counters 19930 15684 1.27 0.000160 0.000209 499.69 381.93 

debug_full 244006 161640 1.51 0.001628 0.002485 599.59 392.74 

debug_partial 31212 26450 1.18 0.000268 0.000324 465.73 385.39 

lr 28886 24880 1.16 0.000251 0.000298 459.69 388.27 

mmldiv64 32486 28942 1.12 0.000292 0.000337 444.30 385.59 

static_full 244000 77382 3.15 0.000811 0.002552 1203.90 382.43 

timer 32704 29920 1.09 0.000301 0.000349 434.55 374.77 
 

6.3 Memory Access Time Sharing 

We performed an experiment to identify the effectiveness of the 

memory access time sharing scheme.  The test program consists of 

two parts: the first part performs a DMA configuration file transfer, 

and the second part is a sequence of numerical computation that 

takes eMIPS roughly 10 milliseconds to complete.  We used this 

test program on the eight bitstream files and the results are 

summarized in Table 5. 

The second and third columns, respectively, show the time 

taken for the baseline ICAP and the intelligent ICAP to finish the 

configuration process.  The fourth and fifth columns, respectively, 

show the execution time of the original design with the baseline 
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ICAP and that of the new design with the intelligent ICAP; finally 

the sixth column shows the speedup, or the ratio of original 

execution time over new execution time.  

With the intelligent ICAP controller, the transition from the 

normal ICAP operations to the decompression operations incur 

some performance overheads, thus intelligent ICAP time is higher 

than baseline ICAP time. However, the memory access time 

sharing scheme allows the memory to service the normal memory 

operations when the DMA operation is disrupted, thus reducing the 

overall execution time.  The combined effect of these two tradeoffs 

leads to an overall program speedup.  In this case, it ranges from 

1.00 (as in timer and lr) to 1.17 (as in static_full).  By comparing 

the data in Table 5 to that in Table 4, we conclude that a higher 

compression ratio leads to a higher program speedup because more 

instructions can be executed during the disruption of DMA 

operations.      

  

Table 5: speedup through memory access time sharing 

bitfile 
baseline ICAP time 

(seconds) 
intelligent ICAP 
time (seconds) 

original 
execution time  

(seconds) 
new execution 
time (seconds) Speedup 

blank 0.000258 0.000266 0.010667 0.010580 1.01 

counters 0.000199 0.000209 0.010608 0.010543 1.01 

debug_full 0.002444 0.002485 0.012853 0.011905 1.08 

debug_partial 0.000312 0.000324 0.010721 0.010631 1.01 

lr 0.000289 0.000298 0.010698 0.010679 1.00 

mmldiv64 0.000325 0.000337 0.010734 0.010669 1.01 

static_full 0.002444 0.002552 0.012853 0.011025 1.17 

timer 0.000322 0.000349 0.010736 0.010683 1.00 
  

6.4 Case Study: 64-bit Division Accelerator 

In the ideal scenario, a hardware accelerator can be loaded to 

accelerate portions of a program.  When the accelerator is not 

active, we can unload the accelerator to either save power or to 

give room to other accelerators. However, if the performance 

overhead imposed by the reconfiguration process were 

overwhelming, this approach would not be feasible.  We 

performed a case study to identify the conditions under which our 

design would allow this approach to be feasible.  In our case 

study, we use a 64-bit division accelerator and our test program 

first starts the DMA operation to load the hardware accelerator, 

and then it performs 64-bit divisions in the rest of the program.   

The results of our case study are shown in Figure 8: the x-

axis indicates the 64-bit division workload.  Each increment of 

the x-axis represents a sequence of 64-bit divisions, which takes 

the baseline eMIPS (without extension) about 1 millisecond to 

complete.  The accelerator is able to cut the 64-bit division time 

by half, thus the same sequence of 64-bit divisions takes the 

accelerator only about 0.5 millisecond to complete.  The y-axis 

shows the execution time. In this experiment, we compared the 

execution time of three designs: no ext represents the baseline 

eMIPS design that does not use accelerator; ext1 represents the 

eMIPS with accelerator, but only the fully streaming DMA 

engines are used to stream the configuration data; and ext2 

represents the same design as in ext1, but both the fully streaming 

DMA engines and the intelligent ICAP controller are used to 

stream the configuration data.          

In this case, configuration only takes 0.2 milliseconds. When 

the 64-bit division work load is small (x = 1), the configuration 

process imposes a significant overhead of the execution time, thus 

we do not observe a 2x speedup by using the accelerator. 

However, as the workload increases the configuration overhead 

becomes negligible.  Note that the 64-bit division work load in 

this experiment is very small.  Even in the case x = 5, the total 

program execution time of no ext is only 5 milliseconds. 

Therefore, we show that with our fully streaming DMA using 

partial reconfiguration to load/unload accelerators becomes 

beneficial even when the workload to be accelerated is in the 

millisecond range.  This extremely low configuration overhead 

enables partial reconfiguration to be an effective technique to 

improve system performance (by loading the accelerators at 

runtime) and may potentially lead to energy reduction (by 

unloading the accelerators when acceleration is not necessary).  

In addition, the intelligent ICAP controller further reduces 

the execution time by 1% (x = 5) to 5% (x = 1) because it allows 

the SRAM to service both DMA operations and normal memory 

operations in a time-sharing fashion.  Note that the compression 

ratio of the accelerator bitstream file is only 1.12, a fairly low 

number.  Given a design with higher compression ratio, the 

improvement brought by the intelligent ICAP controller would be 

much higher. 

    

 
Figure 8: case study with 64-bit division accelerator 
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7. CONCLUSIONS 

In order to minimize the configuration overhead, we proposed a 

combination of two techniques: one to improve configuration data 

transfer throughput, and the other to reduce the size of 

configuration bitstreams.  We studied how these designs can 

improve performance.  

First, we designed and implemented fully streaming DMA 

engines to improve configuration throughput.  The experimental 

results show that our fully streaming DMA engines nearly 

saturate the throughput of the internal ICAP and reduce the 

configuration time from the range of seconds to the range of 

milliseconds, a more than 1000-fold improvement.  Second, our 

low-level study on the configuration process indicates that we can 

manually modify the bitstream files and the configuration time is 

a pure function of bitstream size.  Third, our compression scheme 

achieves up to 75% reduction of bitstream size and results in a 

decompression circuit with negligible hardware overhead.   

The combination of these two techniques achieves an 

effective configuration data transfer throughput of up to 1.2 

Gbytes/s, which well surpasses the 400 Mbytes/s data transfer 

throughput upper bound.  In addition, our design allows memory 

access time sharing and results in up to 17% further performance 

improvement.      
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APPENDIX 1: DESIGN OF FULLY STREAMING DMA AND THE 
INTELLIGENT ICAP CONTROLLER 

NOTE: ALL CODE CHANGES ARE TAGGED WITH “/**SL**/” 
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In MEMORY_CONTROLLER: 
1. Modification of the ICAP controller inputs/outputs  

 

/**SL**/ 

/*****ICAP Peripherial****************************************************************/ 

 icap_controller ICAPcntr( 

  .ADDR_IN(ADDR_IN), 

  .BYTES(BYTES), 

  .CADDR(`ICAP_ADDR), 

  .CLK(MEMCLK), 

  .DATA_IN(DATA_AL), 

  .DATA_OUT(DATA_OUT_0), 

  .DNE(DNE_ICAP), 

  //.GPIO_IN(GPIO_IN), 

  //.GPIO_IRQ(GPIO_IRQ), 

  //.GPIO_OUT(GPIO_OUT), 

  //.GPIO_TR(GPIO_TR), 

  .OE(OE), 

  .RESET(RESET & ICAP_EN), 

  .SRT(srt_r), 

  .WE(WE), 

   

  /**SL**/// the following I/O ports are for DMA to SRAM 

  .DMAF_DOUT(dmaf_dout),  

  .DMAF_EMPTY(dmaf_empty), 

  .DMAF_RE(dmaf_re), 

  .DMAF_DATA_COUNT(dmaf_data_count), 

  .DMA_OP_SRAM(DMAOP_ICAP_SRAM), 

  .ADDR_OUT_SRAM(ADDR_ICAP_SRAM), 

  .SIZE_OUT_SRAM(SIZE_ICAP_SRAM) 

 );  



14 

 

 

2. Addition of a DMA FIFO 

 

/**SL**/ 

/***** DMA FIFO ****************************************************************/ 

 dma_fifo dmaf( 

  .clk(MEMCLK),   //common clock 

  .rd_en(dmaf_re),  //read enable 

  .wr_en(dmaf_we),  //write enable 

  .din(dmaf_din),  //32-bit data input from SRAM 

  .dout(dmaf_dout),  //32-bit data output to ICAP DMA 

  .data_count(dmaf_data_count), //fifo 4-bit data count 

  .empty(dmaf_empty), //empty status bit 

  .full(dmaf_full)  //full status bit 

 );  
 

3. Modification of outgoing signals to the SRAM device  
 

 /* Outgoing Signals */ 

 BSMUX1_2to1 bsmux0( 

  .a0(NWE_SRAM),  

  .a1(NWE_FLASH),  

  .def(1'b1),  

  .en0(DMA_BUSY | (~DNE_SRAM)),  /**SL**/ //.en0(~DNE_SRAM), 

  .en1(~DNE_FLASH),  

  .out(NWE_MEM) 

  ); 

   

 BSMUX1_2to1 bsmux1( 

  .a0(NOE_SRAM),  

  .a1(NOE_FLASH),  

  .def(1'b1),  

  .en0(DMA_BUSY | (~DNE_SRAM)),  /**SL**/ //.en0(~DNE_SRAM), 

  .en1(~DNE_FLASH),  

  .out(NOE_MEM) 

  ); 

   

 BSMUX24_2to1 bsmux2( 

  .a0(ADDR_SRAM),  

  .a1(ADDR_FLASH),  

  .def(24'b0),  

  .en0(DMA_BUSY | (~DNE_SRAM)),  /**SL**/ //.en0(~DNE_SRAM),  

  .en1(~DNE_FLASH),  

  .out(ADDR_MEM) 

  ); 

   

 BSMUX32_2to1 bsmux3( 

  .a0(SRAMDQ_IN),  

  .a1(FLASHDQ_IN),  

  .def(32'b0),  

  .en0(DMA_BUSY | (~DNE_SRAM)),  /**SL**/ //.en0(~DNE_SRAM),  

  .en1(~DNE_FLASH),  

  .out(DATA_MEM_IN) 

  ); 

   

 BSMUX32_2to1 bsmux4( 

  .a0(SRAMDQ_TR),  

  .a1(FLASHDQ_TR),  

  .def(32'hffffffff),  

  .en0(DMA_BUSY | (~DNE_SRAM)),  /**SL**/ //.en0(~DNE_SRAM), 

  .en1(~DNE_FLASH),  
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  .out(DATA_MEM_TR) 

  ); 

 

In SRAM_CONTROLLER: 
1. Modification to the input/output ports of SRAM_CONTROLLER 

 /**SL**/ //ICAP/SRAM DMA I/O ports 

 input [31:0] ADDR_ICAP,  //starting address of DMA operation 

 input [31:0] SIZE_ICAP,  //dma transfer size 

 input DMA_OP_ICAP,  //dma operation signal 

 output [31:0] DMAF_DIN,  //dma fifo input from SRAM 

 output DMAF_WE,   //dma fifo write enable 

 input DMAF_FULL,   //dma fifo full signal   

 output DMA_BUSY   //slave DMA busy 

 
2. Modification to the inputs/outputs of SRAM_BRIDGE 

 sram_bridge sb( 

  .ADDR_IN(ADDR_IN[24:0]),   

  .ADDR_OUT(ADDR_OUT_C), 

  //.BURST_ORDER(control[BURST_ORDER]), 

  .BYTES(BYTES),     

  .CE2(CE2), 

  .CEN(NCEN), 

  .CLOCK_MASK(control[CLOCK_MASK]),    

  .DATA_IN(DATA_IN), 

  .DATA_OUT(DATA_SRAM),    

  .DNE(DNE_SRAM), 

  .DQ_IN(DQ_IN), 

  .DQ_OUT(DQ_OUT), 

  .DQ_TR(DQ_TR), 

  .DQP_IN(DQP_IN), 

  .DQP_OUT(DQP_OUT), 

  .DQP_TR(DQP_TR), 

  .MODE(MODE), 

  .NADVLD(NADVLD), 

  .NBW(NBW), 

  .NCE1(NCE1), 

  .NCE3(NCE3), 

  .NOE(NOE0), 

  .NWE(NWE0), 

  .PR(PR), 

  .RESET(RESET & resetcnt[2]), 

  .SLEEP(control[SLEEP]),    

  .SRAMCLK(SRAMCLK), 

  .SRT(SRT && en_reg),     

  .WE(WE & en_reg),     

  .OE(OE & en_reg),     

  .ZZ(ZZ), 

   

  /**SL**/  //DMA operation signals 

  .DMA_OP_ICAP(DMA_OP_ICAP),    

  .ADDR_ICAP(ADDR_ICAP[24:0]),   //starting address of DMA operation 

  .SIZE_ICAP(SIZE_ICAP),     //dma transfer size 

  .DMAF_DIN(DMAF_DIN),    //dma fifo input from SRAM 

  .DMAF_WE(DMAF_WE),    //dma fifo write enable 

  .DMAF_FULL(DMA_FULL),   //dma fifo full signal 

  .DMA_BUSY(DMA_BUSY) 

  ); 
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In SRAM_BRIDGE: 
1. Modifications to the SRAM_BRIDGE input/output ports 

 
/**SL**/ //DMA operation ports 

 input DMA_OP_ICAP,     //DMA operation signal  

 input [24:0] ADDR_ICAP,   //starting address of DMA operation 

 input [31:0] SIZE_ICAP,   //dma transfer size 

 output [31:0] DMAF_DIN,   //dma fifo input from SRAM 

 output DMAF_WE,     //dma fifo write enable 

 input DMAF_FULL,     //dma fifo full signal 

 output DMA_BUSY     //slave DMA busy 

 

2. New registers/wires for the streaming operations 

 
/**SL**/ 

/************* SL *******************************************************/  

 reg bl;  /* Burst Latch */ 

 wire [31:0] data_out_wire; //data_out from SRAM_Interface 

 wire [3:0] bw_wire;//byte enable wire 

 wire drdy_wire; //data ready wire 

 

 //streaming 

 reg [3:0] stream_control_state; 

 reg [3:0] stream_data_state; 

 reg [31:0] size_reg_dma; 

 reg [31:0] dmaf_din; 

 reg dmaf_we; 

 reg bl_dma, en_dma, cen_r_dma, zz_r_dma, oen_dma, wen_dma; 

 reg [24:0] addr_in_reg_dma; 

 reg dne_r_dma; 

 reg dma_busy; 

 wire select; 

 assign select = dma_busy & dne_r; /**SL**/ 

 assign DMAF_DIN = dmaf_din; 

 assign DMAF_WE = dmaf_we; 

 assign DATA_OUT = data_out_wire; 

 assign DMA_BUSY = dma_busy;  

/***********************************************************************************/ 

 
3. Modifications to the input/output signals to SRAM_INTERFACE 

 
 sram_interface si( 

  .ADDR_IN(select ? addr_in_reg_dma : ADDR_IN),  //ADDR_IN /**SL**/ 

  .ADDR_OUT(ADDR_OUT), 

  .ADVLD(NADVLD), 

  .BUSY(BUSY0), 

  .BURST_LATCH(select ? bl_dma : bl),    /**SL**/ 

  .BURST_ORDER(1'b0),   //hardcoded to linear mode /**SL**/ 

  .BW(NBW), 

  .BYTES(BYTES), 

  .CE1(NCE1), 

  .CE2(CE2), 

  .CE3(NCE3), 

  .CEN(CEN), 

  .CLK(SRAMCLK), 

  .CLOCK_MASK(select ? cen_r_dma : cen_r), /**SL**/ 

  .DATA_IN(DATA_IN), 

  .DATA_IO_IN(DQ_OUT), 

  .DATA_IO_OUT(DQ_IN),  
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  .DATA_OUT(data_out_wire), /**SL**/ 

  .DATA_PIO_IN(DQP_OUT), 

  .DATA_PIO_OUT(DQP_IN), 

  .DIR(DIR), 

  .DRDY(drdy_wire),  /**SL**/ 

  .EN(select ? en_dma : en), /**SL**/ 

  .END(END), 

  .MODE(MODE), 

  .OE(NOE), 

  .OEN(select ? oen_dma : oen), /**SL**/ 

  .PARE(PR), 

  .RESET(RESET), 

  .SLEEP(select ? zz_r_dma : zz_r), /**SL**/ 

  .WE(NWE), 

  .WEN(select ? wen_dma : wen), /**SL**/ 

  .ZZ(ZZ)  

  ); 

 
4. Normal memory operation state machine 

 
/**SL**/ 

/**************************SL*****************************************/ 

 always@(posedge SRAMCLK) begin 

  if(~select) begin 

   bl = 1'b0; 

   if (RESET == 0) begin 

    /* Reset */ 

    wen = 1'b1; 

    oen = 1'b1; 

    en = 1'b1; 

    zz_r = 1'b0; 

    cen_r = 1'b0; 

    //bo = 1'b0; 

    dne_r = 1'b1; 

    bsy = 1'b0; 

   end 

   else begin 

    if (SLEEP) begin 

     if (~BUSY) begin 

      /* Put SRAM IC to sleep */ 

      zz_r = 1'b1; 

     end 

    end 

    else begin 

     zz_r = 1'b0; 

    end 

     

    if (CLOCK_MASK) begin 

     if (~BUSY) begin 

      /* Disable SRAM Clock */ 

      cen_r = 1'b1; 

     end 

    end 

    else begin 

     cen_r = 1'b0; 

    end 

     

    if (zz_r || cen_r) begin 

     if (SRT && dne_r) begin 

      dne_r = 1'b0; 

     end 
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     else begin 

      dne_r = 1'b1; 

     end 

    end 

    else begin 

     if (SRT && ~BUSY) begin  

      /* Recieved Request */ 

      en = 1'b0; 

      dne_r = 1'b0; 

     end 

     else if (BUSY && END && ~BUSY0) begin 

      bsy = 1'b1; 

      if (WE) wen = 1'b0; 

      if (OE) oen = 1'b0; 

     end 

     else if (BUSY) begin 

      en = 1'b1; 

      wen = 1'b1; 

      oen = 1'b1; 

     end 

     else if (~dne_r && ~BUSY && bsy) begin 

      /* Interface Done */ 

      bsy = 1'b0; 

      dne_r = 1'b1; 

     end 

    end 

   end 

  end 

 end 

 
5. DMA operation control state machine 

 
/********************* streaming **************************************/ 

 always@(posedge SRAMCLK) begin  //stream control state machine 

         case(stream_control_state)         

  4'b0000: begin          

             

  

   if(DMA_OP_ICAP & dne_r) begin  //wait for start  

    zz_r_dma = 1'b0; 

    cen_r_dma = 1'b0;       

    en_dma = 1'b1; 

    oen_dma = 1'b1; 

    wen_dma = 1'b1;        

             

    

    addr_in_reg_dma = {ADDR_ICAP[24:4], 4'b0000}; //latch address 

    stream_control_state = 4'b0001;      

   end 

  end    

  4'b0001: begin     //wait for SRAM to be ready   

        

   if(DMA_OP_ICAP & dne_r) begin 

    if(~BUSY) begin 

     en_dma = 1'b0;   

     oen_dma = 1'b1; 

     wen_dma = 1'b1;      

     stream_control_state = 4'b0010; 

    end 

   end 

   else stream_control_state = 4'b1000; 
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  end 

  4'b0010: begin     // wait for SRAM to be ready 

   if(DMA_OP_ICAP & dne_r) begin 

    if (BUSY & END & ~BUSY0) begin 

     stream_control_state = 4'b0011; 

    end 

   end 

   else stream_control_state = 4'b1000; 

  end 

  4'b0011: begin //burst word 0  

   bl_dma = 1'b0;   

   en_dma = 1'b0; 

   oen_dma = 1'b0;     

   stream_control_state = 4'b0100;  

  end    

  4'b0100: begin     //burst word 1   

   bl_dma = 1'b1;  

   oen_dma = 1'b0; 

   en_dma = 1'b0; 

   stream_control_state = 4'b0101;    

  end 

  4'b0101: begin     //burst word 2 

   bl_dma = 1'b1; 

   oen_dma = 1'b0; 

   en_dma = 1'b0;    

   stream_control_state = 4'b0110; 

  end 

  4'b0110: begin     //burst word 3 

   if(dne_r_dma) begin  //done 

    bl_dma = 1'b1;   

    oen_dma = 1'b1; 

    en_dma = 1'b1; 

    wen_dma = 1'b1; 

    if(~DMA_OP_ICAP) begin 

     stream_control_state = 4'b0000; 

    end  

   end 

   else begin 

    bl_dma = 1'b1; 

    oen_dma = 1'b0; 

    en_dma = 1'b0;    

    addr_in_reg_dma = addr_in_reg_dma + 16;  //increment addr to next burst  

     

    if(~DMA_OP_ICAP) begin        

     stream_control_state = 4'b0111;      

    end 

    else begin 

     stream_control_state = 4'b0011; 

    end 

   end  

  end 

  4'b0111: begin 

   stream_control_state = 4'b1000; 

  end 

  4'b1000: begin  //pause    

   bl_dma = 1'b1;       

   oen_dma = 1'b1; 

   en_dma = 1'b1; 

   wen_dma = 1'b1;    

    

   if(DMA_OP_ICAP & dne_r) begin //wait for resume     

    zz_r_dma = 1'b0; 
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    cen_r_dma = 1'b0;        

             

          

    stream_control_state = 4'b0001;      

   end  

 

   if(dne_r_dma) begin  //done 

    if(~DMA_OP_ICAP) begin 

     stream_control_state = 4'b0000; 

    end  

   end    

   

  end   

        endcase 

 end   

   

6. DMA operation data state machine  
    

 always@(posedge SRAMCLK) begin  //stream data state machine 

               case(stream_data_state)         

  4'b0000: begin           

              

   if(DMA_OP_ICAP & dne_r) begin  //start streaming operation    

    dma_busy = 1'b1;  

    dne_r_dma = 1'b0; 

    size_reg_dma = SIZE_ICAP;    //latch size 

    stream_data_state = 4'b0001;      

   end 

   else begin 

    dma_busy = 1'b0; 

    dne_r_dma = 1'b1; 

   end  

  end    

  4'b0001: begin     //wait for SRAM to be ready    

       

   if(DMA_OP_ICAP & dne_r) begin 

    dma_busy = 1'b1; 

    if(~BUSY) stream_data_state = 4'b0010; 

   end 

   else  stream_data_state = 4'b0110; 

  end 

  4'b0010: begin     //make sure SRAM is working 

   if(DMA_OP_ICAP & dne_r) begin 

    if(BUSY & END & ~BUSY0) stream_data_state = 4'b0100; 

   end 

   else stream_data_state = 4'b0110; 

  end   

  4'b0100: begin 

   if(drdy_wire) stream_data_state = 4'b0101; 

  end  

  4'b0101: begin      

   if(size_reg_dma == 0) begin //done  

    dne_r_dma = 1'b1; 

    dma_busy = 1'b0; 

    dmaf_we = 1'b0; 

    if(~DMA_OP_ICAP) begin 

     stream_data_state = 4'b0000;  

    end  

   end    

   else if(~DMA_OP_ICAP) begin //pause        

  

    if(~drdy_wire) begin 
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     dmaf_we = 1'b0; 

     stream_data_state = 4'b0110;  

    end 

    else if(~DMAF_FULL) begin 

     dmaf_we = 1'b1; 

     dmaf_din = data_out_wire; 

     size_reg_dma = size_reg_dma - 1; 

    end      

   end 

   else begin     //normal operation 

    if(drdy_wire & ~DMAF_FULL) begin 

     dmaf_we = 1'b1; 

     dmaf_din = data_out_wire; 

     size_reg_dma = size_reg_dma - 1; 

    end 

   end       

  end  

  4'b0110: begin  //wait for resume 

   dmaf_we = 1'b0;    

   dma_busy = 1'b0;  

   if(DMA_OP_ICAP & dne_r) begin  //restart 

    dne_r_dma = 1'b0; 

    stream_data_state = 4'b0001;      

   end  

     end   

      endcase 

   end    

 /************************************************************************/ 

 

 

 

 

In ICAP_CONTROLLER: 
1. Modifications to the ICAP input/output ports to support DMA operations 

 
 /*********************  SL ************************************/ 

 input [31:0] DMAF_DOUT,    //data from DMA fifo  

 input DMAF_EMPTY,      //DMA fifo empty 

 input [3:0] DMAF_DATA_COUNT,  //DMA fifo data count 

 output DMAF_RE,      //DMA fifo read enable  

 output DMA_OP_SRAM,     //start DMA signal to SRAM 

 output [31:0] ADDR_OUT_SRAM,  //address out to SRAM 

 output [31:0] SIZE_OUT_SRAM  //size out to SRAM 

 /**************************************************************/ 

 
2. New registers/wires for DMA data and control signals 

 
/**SL**/ 

/********************* SL ***********************************************************/ 

 reg [31:0] dma_size_reg;   //DMA size register 

 reg [31:0] dma_addr_reg;   //DMA starting address  

 parameter DMASIZEREG = 16'h0008; 

 parameter DMAADDRREG = 16'h000c; 

 reg [2:0] state; 

 reg dma_start; 

 wire dma_done; 

 wire [31:0] data_out_icap; 

 wire icap_cen; 

 wire icap_wen;  
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 //DMA counter 

 reg [31:0] dma_counter; 

 parameter DMACOUNTER = 16'h0010; 

 assign REG_M_0 = (ADDR_IN[BASEr-1:0] == DMACOUNTER)?dma_counter:32'bz;  

 reg [31:0] dma_eff_counter; 

 wire [31:0] dma_eff_count_wire; 

 parameter DMAEFFCOUNTER = 16'h0014; 

 assign REG_M_0 = (ADDR_IN[BASEr-1:0] == DMAEFFCOUNTER)?dma_eff_counter:32'bz;  

/************************************************************************************/ 

 
3. Addition of the DMA controller 

 
/**SL**/ 

/*****DMA controller ************************************************************/  

 dma_controller dmacntrl( 

  //inputs 

  .CLK(CLK),        

  .START(dma_start),    //command to start DMA operation from 

ICAPcntrl 

  .ADDR_IN(dma_addr_reg),   //DMA starting address  

  .SIZE(dma_size_reg),    //DMA transfer size 

  .DMAF_DOUT(DMAF_DOUT),   //data in from SRAM  

  .DMAF_EMPTY(DMAF_EMPTY), 

  .DMAF_DATA_COUNT(DMAF_DATA_COUNT),  

  //outputs 

  .DMAF_RE(DMAF_RE), 

  .DONE(dma_done),     //DMA done 

  .DMA_OP(DMA_OP_SRAM),   //indicate DMA start op to SRAM  

  .ADDR_OUT(ADDR_OUT_SRAM),  //address out to SRAM  

  .SIZE_OUT(SIZE_OUT_SRAM),  //size out to SRAM 

  .DATA_OUT(data_out_icap),  //data out to ICAP 

  .ICAP_CE_N(icap_cen),   //clock enable signal to ICAP 

  .ICAP_WE_N(icap_wen),   //write enable signal to ICAP 

  .DMA_EFF_COUNT(dma_eff_count_wire), //effective bandwidth cycle counter 

  .ICAP_BUSY(BUSY_ICAP) 

 ); 

 
4. Modification of the ICAP controller state machine to start DMA operations 

 
 DMASIZEREG : begin          

   dma_size_reg =  data_in_m_reg; //update dma transfer size  

  dner = 1'b1;          

  end 

 DMAADDRREG : begin          

   if(dma_done) begin 

   dma_addr_reg = data_in_m_reg;       

    dma_start = 1'b1;         

    dner = 1'b1;  

  end 

  else dma_start = 1'b0; 

 end 

 
5. Addition of an independent state machine to control DMA operations 

 

 always@(posedge CLK) begin   //state machine for DMA   

  

  CE_n = icap_cen; 

  WRITE_n = icap_wen; 

  ICAP_datain = data_out_icap; 
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  case (state) 

   3'b000: begin   

    if(dma_start) begin 

     state = 3'b001; 

     dma_counter = 32'h00000000; //reset DMA_counter 

     dma_eff_counter = 32'h00000000; //reset DMA effective counter 

    end  

   end 

   3'b001: begin  //make sure DMA starts 

    dma_counter = dma_counter + 1; 

    if(~dma_done) state = 3'b010; 

   end 

   3'b010: begin  //wait for DMA to finish 

    dma_counter = dma_counter + 1; 

    if(dma_done) begin 

     dma_eff_counter = dma_eff_count_wire; 

     state = 3'b000;        

    end 

   end 

  endcase   

 end 

 

 

 

In DMA_CONTROLLER: 

The master fully stream DMA engine: it is able to decompress the compressed bitstreams and performs 

DMA operations. 

 
module dma_controller( 

 input CLK, 

 input START,  //start DMA operation 

 input [31:0] ADDR_IN, //DMA start address 

 input [31:0] SIZE,  //DMA size 

  

 //DMA fifo (DMAF) 

 input [31:0] DMAF_DOUT,  //Data out from DMA_FIFO 

 input DMAF_EMPTY,  //DMA_FIFO empty 

 input [3:0] DMAF_DATA_COUNT,  

 output DMAF_RE,   //DMA_FIFO ready enable 

  

 output DMA_OP,   //DMA operation signal to SRAM (arbitration) 

 output [31:0] ADDR_OUT,  //address to SRAM  

 output [31:0] SIZE_OUT,  //size to SRAM 

 output DONE,   //DMA operation done 

  

 output [31:0] DATA_OUT,  //data to ICAP 

 output ICAP_CE_N,   //clock enable signal to ICAP 

 output ICAP_WE_N,  //write enable signal to ICAP  

 output [31:0] DMA_EFF_COUNT, //DMA effective counter 

 input ICAP_BUSY 

   ); 

  

/*****************************************************************************/  

 reg [2:0] state; 

 reg dmaf_re; 

 reg [31:0] size, size_original, addr; 

 reg dma_op, done, icap_cen, icap_wen; 

 reg [1:0] bytes; 

 wire [31:0] data_out_wire; 

 reg [31:0] data_out_reg; 
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 reg [31:0] addr_debug;  //debug 

   

 assign DMAF_RE = dmaf_re; 

 assign DONE = done; 

 assign DMA_OP = dma_op; 

 assign ADDR_OUT = addr; 

 assign SIZE_OUT = size_original; 

 assign ICAP_CE_N = icap_cen; 

 assign ICAP_WE_N = icap_wen; 

 

 //intelligent ICAPcntrl 

 reg [15:0] size_decode; 

 assign DATA_OUT = data_out_reg; 

 reg [31:0] dma_eff_count; 

 assign DMA_EFF_COUNT = dma_eff_count; 

 

/*****************************************************************************/ 

 /* Endian Flip incoming data */ 

 endianflip32 ed( 

  .IN(DMAF_DOUT), 

  .EN(1'b1), 

  .OUT(data_out_wire) //(DATA_OUT) 

  );  

/*****************************************************************************/ 

 

/*****************************************************************************/ 

 initial begin 

  dmaf_re <= 1'b0; 

  size <= 32'h00000000; 

  size_original <= 32'h00000000; 

  addr <= 32'h00000000; 

  state <= 3'b000; 

  dma_op <= 1'b0; 

  done <= 1'b1; 

  icap_cen <= 1'b1; 

  icap_wen <= 1'b1;   

   

  //intelligent ICAPcntrl 

  size_decode <= 16'h0000; 

  data_out_reg <= 32'h00000000; 

  dma_eff_count <= 32'h0000000; 

 end 

/*****************************************************************************/ 

  

 always @ (posedge CLK) begin 

  case (state) 

   3'b000: begin    //latch dma info, wait for start   

  

    dma_op <= 1'b0; 

    icap_cen <= 1'b1; 

    icap_wen <= 1'b1;      

    dmaf_re <= 1'b0;     

    if(START) begin 

     dma_eff_count <= 0; 

     done <= 1'b0; 

     size <= SIZE; 

     size_original <= SIZE; 

     addr <= ADDR_IN; 

     state <= 3'b001;       

    

     addr_debug <= ADDR_IN; //debug 

    end 
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   end 

   3'b001: begin    //start dma operation  

    dma_eff_count <= dma_eff_count + 1; 

    icap_cen <= 1'b1; 

    icap_wen <= 1'b1;       

    dma_op <= 1'b1; //start 

    if(~DMAF_EMPTY) begin  //read from fifo 

     dmaf_re <= 1'b1;    

     state <= 3'b010;    

    end    

   end 

   3'b010: begin  //wait for fifo to become ready 

    dma_eff_count <= dma_eff_count + 1; 

    state <= 3'b011;  

   end 

   3'b011: begin     

    if(size == 0) begin  //done 

     state <= 3'b000; 

     dma_op <= 1'b0; 

     done <= 1'b1; 

     icap_cen <= 1'b1; 

     icap_wen <= 1'b1;  

     dmaf_re <= 1'b0; 

    end 

    else if(data_out_wire[31:16] == 16'hecdc) begin  //special instruction caught 

     

      

     size_decode <= data_out_wire[15:0]; 

     dmaf_re <= 1'b0; 

     icap_cen <= 1'b1; 

     icap_wen <= 1'b1; 

      

     if(DMAF_EMPTY) begin  

      size <= size - 1;       

      state <= 3'b101; 

     end 

     else begin 

      dma_op <= 1'b0; 

      size <= size - 2;   

      state <= 3'b100; 

     end      

    end 

    else begin  

     dma_eff_count <= dma_eff_count + 1; 

     icap_cen <= 1'b0; 

     icap_wen <= 1'b0;  

     data_out_reg <= data_out_wire; 

     size <= size - 1; 

     addr_debug <= addr_debug + 4;  //debug   

    

     if(DMAF_EMPTY) begin  

      dmaf_re <= 1'b0;       

      if(size > 1) begin  //need to resync 

       state <= 3'b001; 

      end       

     end 

    end 

   end 

   3'b100: begin  //start intelligent ICAPcntrl 

    dmaf_re <= 1'b0; 

    if(size_decode == 0) begin 

     icap_cen <= 1'b1; 
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     icap_wen <= 1'b1;  

      

     if(DMAF_DATA_COUNT >= size) dma_op <= 1'b0; 

     else dma_op <= 1'b1;  

 

     if((~DMAF_EMPTY) || (size==0)) begin   

      dmaf_re <= 1'b1;    

      state <= 3'b010;    

     end 

    end 

    else begin  

     icap_cen <= 1'b0; 

     icap_wen <= 1'b0; 

     data_out_reg <= data_out_wire; 

     size_decode <= size_decode - 1;  

    end      

   end 

   3'b101: begin     

    dma_eff_count <= dma_eff_count + 1; 

    icap_cen <= 1'b1; 

    icap_wen <= 1'b1;       

    dma_op <= 1'b1;  

    if(~DMAF_EMPTY) begin   

     dmaf_re <= 1'b1;    

     state <= 3'b110;    

    end    

   end 

   3'b110: begin     

    dma_eff_count <= dma_eff_count + 1; 

    dmaf_re <= 1'b0; 

    dma_op <= 1'b0; 

    size <= size - 1; 

    state <= 3'b100;   

   end    

  endcase  

           end 

endmodule 
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APPENDIX 2: Step-by-Step Demo 

Note: please email to shaoshal@uci.edu if you have questions about this process 

Test 1: test fully streaming DMA engine without compression 

Steps: 
1. Grab the bitstream files from 

“\Shaoshan_Liu\eMIPSv1.1_PR_ICAP_DMA_streamingFIFO_PR\project_PR\project_PR2.runs\floorplan_1\m
erge” 
 
In this case, we grab the file “ext0_pblock_ext0_partial.bit” and copy it over to the folder 
“\Shaoshan Liu\intelligent ICAPcntrl static analysis” 

 
2. Generate the uncompressed bitstream file 

 

To generate the uncompressed bitstream file in ASCII format, use the following command: 

“bin2icap ext0_pblock_ext0_partial.bit ext0.coe 1” 

 

 
 

 
3. Store the uncompressed bitstream file into the file “\Shaoshan Liu\eMIPS Tests\PRstreamingext0.h” and set 

the file size to 24488. 
 

 
 

mailto:shaoshal@uci.edu
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4. Compile the file “\Shaoshan Liu\eMIPS Tests\my_timer_mmldiv64.c” 

 

 
  
5. Use IMPACT to configure the chip such that only the baseline TISA is loaded 

 

First do a full chip configuration by downloading the following file to the chip: 

“\Shaoshan_Liu\eMIPSv1.1_PR_ICAP_DMA_streamingFIFO_PR\project_PR\project_PR2.runs\flo

orplan_1\merge\static_full.bit”  

 
 

Then take out the extension by downloading the following file to the chip: 

“\Shaoshan_Liu\eMIPSv1.1_PR_ICAP_DMA_streamingFIFO_PR\project_PR\project_PR2.runs\flo

orplan_1\merge\pblock_ext0_blank.bit”  
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By now we should have only the baseline TISA design running on the V4 chip, and in the next few 

steps we show how to do run-time partial reconfiguration and test it with the mmldiv64 test. 

 
6. Download the test file to the chip by typing the following command: “download com1: 

my_timer_mmldiv64.bin && serplexd –n –r –s com1: ” 

 

 
 
7. Get results from the command prompt 
 

The results show that the ICAP-DMA counter is 5fb9 (24505 in decimal), whereas the ICAP-DMA 

effective counter is 5fb7 (24503 in decimal).   For these two counters, the clock runs at 100 MHz, 

and ICAP-DMA counter counts the number of cycles the ICAP takes to finish configuration, 

whereas the ICAP-DMA effective counter counts the number of cycles the fully streaming DMA 

engines take to complete data transfer.  Since we are not using the compressed bitstream in this case, 

these two numbers are just off by 2 cycles.   If we do the calculation, the file size is 24488 words 

(each word is 4 bytes) and it takes 24505 cycles to complete configuration, thus the ICAP 

throughput is 399.7 Mbytes/s. 
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After configuration, the rest of the program performs mmldiv64 operations as well as normal integer 

operations.  The results also show the time taken for these operations.  Note that different from the 

previous counter numbers, these performance numbers are generated using the on-chip timer, which 

runs at 10 MHz instead of 100 MHz. 

 

 
 
8. Double check functionality with the standalone mmldiv64 test by typing the following command: “download 

com1: mmldiv64_test2.bin && serplexd –n –r –s com1: ” 

 

 
 
9. Results of double-check 
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Test 2: test fully streaming DMA engine with compression (intelligent ICAP controller) 

Steps: 
1. Grab the bitstream files from 

“\Shaoshan_Liu\eMIPSv1.1_PR_ICAP_DMA_streamingFIFO_PR\project_PR\project_PR2.runs\floorplan_1\m
erge” 
 
In this case, we grab the file “ext0_pblock_ext0_partial.bit” and copy it over to the folder 
“\Shaoshan Liu\intelligent ICAPcntrl static analysis” 

     
2. Generate the uncompressed bitstream file 

 

To generate the compressed bitstream file in ASCII format, use the following command: 

“binprofiler ext0_pblock_ext0_partial.bit ext0.coe 1” 

 

 
 

 
3. Store the compressed bitstream file into the file “\Shaoshan Liu\eMIPS Tests\PRstreamingext0.h” and set 

the file size to 22648, note that the original size is 24488, thus the compression ratio is 1.08. 
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4. Same as that in the previous section 

 
5. Same as that in the previous section 

 
6. Same as that in the previous section 

 
7. Get results from the command prompt 

 

The results show that the ICAP-DMA counter is 6281 (25217 in decimal), whereas the ICAP-DMA 

effective counter is 59a8 (22952 in decimal).  Thus, the effective transfer throughput is 426.8 

Mbytes/s, whereas the ICAP throughput is 388.4 Mbytes/s.    

 

 
 

 
8. Same as that in the previous section 
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9. Same as that in the previous section 

 


