
MonoFusion: Real-time 3D Reconstruction
of Small Scenes with a Single Web Camera

Vivek Pradeep∗ Christoph Rhemann Shahram Izadi Christopher Zach Michael Bleyer Steven Bathiche

Microsoft Corporation and Microsoft Research, Cambridge, UK

Figure 1: We present a new system for real-time 3D reconstruction using a single moving off-the-shelf web camera. Our system first estimates
the pose of the camera using a sparse feature tracker. We then perform efficient variable-baseline stereo matching between the live frame and a
previously selected key frame. Our stereo matcher creates a dense depth map per frame, which is then fused volumetrically into a single implicit
surface representation. Our method does not require a cost volume for intermediate construction of depth maps, and instead integrates every
frame directly into the voxel grid using a computationally simple fusion method. This allows cheap and readily-available web cameras to be used
for small sized reconstructions for AR applications.

ABSTRACT

MonoFusion allows a user to build dense 3D reconstructions of
their environment in real-time, utilizing only a single, off-the-shelf
web camera as the input sensor. The camera could be one already
available in a tablet, phone, or a standalone device. No additional
input hardware is required. This removes the need for power in-
tensive active sensors that do not work robustly in natural outdoor
lighting. Using the input stream of the camera we first estimate the
6DoF camera pose using a sparse tracking method. These poses
are then used for efficient dense stereo matching between the input
frame and a key frame (extracted previously). The resulting dense
depth maps are directly fused into a voxel-based implicit model
(using a computationally inexpensive method) and surfaces are ex-
tracted per frame. The system is able to recover from tracking fail-
ures as well as filter out geometrically inconsistent noise from the
3D reconstruction. Our method is both simple to implement and
efficient, making such systems even more accessible. This paper
details the algorithmic components that make up our system and a
GPU implementation of our approach. Qualitative results demon-
strate high quality reconstructions even visually comparable to ac-
tive depth sensor-based systems such as KinectFusion.

1 INTRODUCTION AND BACKGROUND

Whilst 3D reconstruction is an established field in computer vision
and graphics, it is now gaining newfound momentum due to the rise
of consumer depth cameras (such as the Microsoft Kinect and Asus
Xtion). Since these sensors are capable of delivering depth maps at

∗e-mail:vpradeep@microsoft.com

real-time rates, a particular focus of recent systems is to perform on-
line surface reconstruction. The ability to obtain reconstructions in
real time opens up various interactive applications including: aug-
mented reality (AR) where real-world geometry can be fused with
3D graphics and rendered live to the user; autonomous guidance for
robots to reconstruct and respond rapidly to their environment; or
even to provide immediate feedback to users during 3D scanning.

Many recent online systems [11, 20, 8, 10, 31, 33] have be-
gun to embrace active depth cameras, such as the Kinect. Some
[11, 20] have adopted the volumetric fusion method of Curless and
Levoy [4]. This approach supports incremental updates, exploits re-
dundant samples, make no topological assumptions, approximates
sensor uncertainty, and fusion simply becomes the weighted aver-
age of existing and new samples. For active sensors, this type of
fusion has demonstrated very compelling results [4, 14, 11].

Whilst active sensors have many strengths, there are certain
scenarios where standard passive RGB cameras are preferred due
to power consumption, outdoor use and form-factor. This has
led many researchers to investigate methods that try to recon-
struct scenes using only passive cameras, employing structure-
from-motion (SfM) [23] or multi-view stereo (MVS) [30] methods.
Unlike active sensors, passive depth estimation is effected by untex-
tured regions and matching errors which can result in many outliers
and missing data. Therefore most systems regularize depth maps
using smoothness priors, and even optimize over multiple frames
using photo-consistency, visibility, and shape priors, before per-
forming surface reconstruction [30, 24, 23, 21].

Recently, due to increased computational capabilities, many new
passive systems have pushed further towards live reconstructions.
Parallel Tracking and Mapping (PTAM) [13] demonstrated ex-
tremely robust sparse tracking, due to real-time performance but
only provided sparsely mapped 3D points. Merrell et al. [17] com-
pute noisy depth maps from an image sequence and merge several

neighboring depth frames to generate fused dense reconstructions.
The main objective in the fusion method is to reduce the number of
freespace violations. The GPU-accelerated implementation is capa-
ble of merging depth maps in real-time. Newcombe et al. [19] pro-
pose to incrementally build a dense 3D mesh model from images
by utilizing fast and GPU-accelerated techniques for dense corre-
spondence estimation and PTAM-based tracking.

Sparse keypoint-based tracking systems have limitations in tex-
tureless scenes, which is addressed by Dense Tracking and Map-
ping (DTAM) [21]. In DTAM the camera pose is tracked robustly
using a dense, whole image alignment method. To generate depth
maps, DTAM incrementally builds a cost volume [25] from many
data samples, which is continually regularized using a global op-
timization. This approach takes inspiration from Zach et al. [35],
which adds spatial regularization and robustness to the Curless’ and
Levoy’s volumetric method by formulating the depth map fusion
problem as TV-L1-type optimization task, which also can be solved
efficiently on the GPU [34]. Whilst producing impressive results,
these approaches however carry computational complexity imposed
by the global optimization.

In this paper we present a new system called MonoFusion, which
allows a user to build dense 3D reconstructions of their environment
in real-time, utilizing only a single, off-the-shelf camera as the in-
put sensor. The camera could be one already available in tablet or a
phone, or a peripheral web camera. No additional input hardware is
required. This removes the need for power intensive active sensors
that do not work robustly in natural outdoor lighting. Using the in-
put stream of the camera we first estimate the six degree-of-freedom
(6DoF) pose of the camera using a hybrid sparse and dense track-
ing method. These poses are then used for efficient dense stereo
matching between the input frame and a key frame (extracted pre-
viously). The resulting dense depth maps are directly fused into
a voxel-based implicit model (using a computationally inexpensive
method) and surfaces are extracted per frame. The system is able
to recover from tracking failures as well as filter out geometrically
inconsistent noise from the 3D reconstruction.

Compared to existing approaches, our system avoids expensive
global optimization methods for depth computation or fusion such
as TV-L1. Further, it removes the need for a memory and compute
intensive cost volume for depth computation. This leads to a simple
and efficient system that makes real-time dense 3D reconstructions
further accessible to researchers. This paper details the algorithmic
components that make up our system and a GPU implementation of
our approach. Qualitative results demonstrate high quality recon-
structions even visually comparable to active depth sensor-based
systems such as KinectFusion.

2 SYSTEM OVERVIEW

MonoFusion works off a live stream of images of a scene from a
single, moving camera to generate and maintain a live, dense 3D
reconstruction of the scene. The live processing of the image data
can be visualized as being split across three computation blocks.
This processing scheme is illustrated in Figure 2, and the corre-
sponding blocks are described in detail in the sections that follow.
In summary, the live image stream is fed through a hybrid, keyframe
based feature tracking and mapping system, that is primarily used
to estimate the camera pose trajectory in 6DoF. The camera pose at
a given time is used to search for a keyframe (cached as part of the
tracking process) with a corresponding camera pose that is optimal
(for stereo matching) in terms of baseline and image overlap with
the current image frame. This pair of frames and camera poses are
used to compute a dense depth map for the current frame by apply-
ing a real-time variant of PatchMatch stereo [3]. Per-frame dense
depth maps are computed in this manner and ultimately, integrated
into a voxel-based representation of the scene surface applying vol-
umetric fusion.

Figure 2: System overview. The 6DoF camera pose trajectory is
recovered from a live sequence of images. The online pose infor-
mation is used to construct per-frame dense disparity maps using
PatchMatch stereo and volumetric fusion applied over this data to
reconstruct the underlying scene geometry.

3 CAMERA POSE TRACKING

Given a sequence of images {I0, I1, ..., It} over a period of time
t, the camera pose tracker estimates the 6DoF camera poses
{T0,T1, ...,Tt}, where Ti, i = 0,1, ..., t represents the 3×4 pose ma-
trix consisting of a 3× 3 rotation R and a 3× 1 translation vector
t. Note that we assume that the camera’s intrinsics are already es-
timated through a checkerboard-based calibration procedure. The
process of tracking consists of detecting salient corners every frame
of the image stream. By matching them against a persistent map of
3D landmarks (which is also created, updated and maintained by
the tracker) the camera pose at the current frame may be estimated.
For scale-invariant salient corner detection and matching, an input
image Ii is first converted into a 3-level multi-scale Gaussian pyra-
mid [16] and the FAST interest point detector [28] is applied over
each level in the pyramid. Further details of the tracking pipeline
follow.

Map Initialization. The entire system is initialized by first
bootstrapping the camera pose tracker to construct an initial 3D
landmark map for tracking. For the first few frames, patches of
size M ×M are extracted around the FAST interest points and
tracked. During this stage, the user moves the camera slowly across
the scene (pure translation is not necessary, but the system will
automatically bootstrap only once a sufficient motion baseline is
reached). At this stage, since the camera is moving slowly and over
a small distance, it can be safely assumed that the patches do not un-
dergo significant appearance change from frame to frame. Hence,
a simple Zero Mean Normalized Cross Correlation score (ZNCC)
can be utilized in conjunction with inverse match checks to yield a
set of matched 2D features between the initial frame and the cur-
rent frame i. For every frame during this initialization phase, the
five point algorithm [22] is applied to the correspondence set in
a RANSAC [7] setting to compute the essential matrix E0,i (since
the camera is already calibrated) . This essential matrix yields the
relative pose transformation between the two viewpoints by com-
puting its singular value decomposition (SVD). This initial pose
information is then used to triangulate the matched features in the
correspondence set and generate the map M consisting of N land-
marks, {L0,L1, ...,LN − 1}, where each landmark L j computed
at feature j is given by:

L j = {X j,Y j,Z j,Pj} (1)

Here, (X j,Y j,Z j) represents the triangulated 3D coordinate of
the feature in the coordinate system of the reference frame, and Pj
is corresponding M×M patch centered on the feature pixel from
the latest viewpoint image Ii. The patch is stored as a pointer to
the appropriate memory block in the Gaussian pyramid of Ii. Be-
fore performing the feature triangulation, an arbitrary scale factor

is applied to the translation vector to determine the overall scale of
the map. Note that there are alternative ways in which the tracker
might be bootstrapped. For instance, PTAM employs a homogra-
phy based decomposition, but our approach yields robust results
using a simpler bootstrapping technique.

Tracking and Pose Estimation. As mentioned at the beginning
of this section, multi-scale FAST corners extracted from the current
image frame are matched against the 3D landmark map to compute
the camera pose. Let us assume that at frame i, we have a guess of
the current camera pose T ∗i . Denoting the camera intrinsic matrix
as K, we can project any map landmark L j into the image plane Ii:

Ii(L j) = π(KT ∗i

 X j
Y j
Z j
1

), (2)

where π(x) = (x/z,y/z) describes the projection of a 3D point x
onto the image plane. From the FAST corners extracted in the cur-
rent image, we extract M×M patches Pk for those corners that lie
within a Euclidean distance threshold of Ii(L j) on the 2D image
plane. Defining this collection of candidate matches for landmark
j as K j , the best match m j is defined as the one that minimizes
the ZNCC score between the landmark patch Pj and the candidate
patch Pk over all candidates in K j

m j = argmin
k∈K j
− ∑

p∈Pj

(Pj(p)−Pj) · (Pk(p)−Pk)

σ(Pj) ·σ(Pk)
. (3)

We reject matches that have ZNCC scores above a threshold
and perform inverse match checks as well to remove any outliers.
Finally, we fit a quadratic function to a window around the best
matching pixel and refine the match to sub-pixel accuracy. Given
a set of such 3D-2D matching pairs, we employ the three point al-
gorithm in a RANSAC setting, using the Cauchy M-Estimator for
error cost computation (instead of mean squared error) to estimate
the final pose Ti.

The generation of a good pose estimate T ∗i prior to obtaining
the final pose is critical for the agility of the tracker. We compute
this guess in two steps. First, similar to PTAM [13], we employ
the method of Benhimane and Malis [2] to perform whole image
alignment over downsampled images to estimate the camera rota-
tion between the current and previous frame. In the second step, this
rotation guess is used to compute T ∗i by finding matches for a few
landmarks from the visible set. The landmarks are selected based
on how successful their past measurements have been (the ZNCC
scores from previous matches are stored) and instead of the five
point algorithm at this stage, a minimization procedure that reduces
the Euclidean difference between predicted (based on the rotation
estimate and pose Ti−1) and observed feature locations is used.

Map Updates and Maintenance. From Eq. 2, it is clear that
new landmarks have to be continually added to the map as the cam-
era explores more regions in the scene in order to ensure that there
always are enough map points visible in the current view. Further-
more, revisiting preexisting landmarks presents a good opportunity
to update their 3D locations as well as filter out drift induced errors
in the camera trajectory estimate by employing global constraints
on the structure of the scene and motion parameters. The map keeps
a list of keyframes {K0,K1, ...}, where each keyframe Ki is a col-
lection of the source image Ii, the estimated pose Ti and correspond-
ing landmark set L j, j = 0,1, The creation of a keyframe takes
place when the amount of landmarks visible in the current frame
falls below a specified threshold and landmark generation follows
the same procedure as described in the map initialization, with the
caveat that a sparse bundle adjustment routine [15] is applied over
the new and neighboring keyframes to maintain structure consis-
tency. Additionally, during tracking, we maintain a “hit-count” of

the number of landmarks from each keyframe that are matched suc-
cessfully and once this crosses a set number, the sparse bundle ad-
juster runs a full structure plus pose optimization over the reob-
served keyframes and their neighbors, refining the pose and land-
mark information attached to each keyframe.

4 DEPTH ESTIMATION

Our approach for estimating depth is essentially based on stereo
matching across the live image and a previously selected key frame.
Stereo matching is the task of finding corresponding pixels between
two images taken from different but known viewpoints. Stereo al-
gorithms can be categorized into global and local methods. Global
approaches (see [29] for an overview) formulate an energy function
that is minimized taking all image pixels into account. The op-
timization techniques used to minimize the energy function are of-
tentimes too slow for real-time applications. However, approximate
global optimization methods [9, 32, 6, 27, 18] based on dynamic
programming achieve reasonable frame rates but are restricted to
low-resolution images and operate on a strongly quantized depth
range (typically at 64 discrete depth values). Local stereo algo-
rithms are generally faster than their global counterparts, because
they identify corresponding pixels only based on the correlation
of local image patches. Many correlation functions can be imple-
mented as a filter with a computational complexity independent of
the filter size. For instance, the sum of absolute differences (SAD)
corresponds to a simple box filter [29]. Recent real-time stereo ap-
proaches focus on filters that weight each pixel inside the correla-
tion window based on image edges, e.g. based on bilateral filtering
[12, 26, 36] or guided image filtering [25, 5]. These approaches
show good computational performance if the number of depth val-
ues is small. Thus, these approaches do not scale well if a high
depth precision is required.

Once the tracking is initialized and running, our system starts
generating per-pixel depth frames for every new incoming frame in
the video stream, I. Using a method described later in this section,
we select an image I′ from the tracker’s list of keyframes that best
matches the current frame (appearance based) and yet provides suf-
ficient baseline to perform depth estimation. Given these two im-
ages I and I′ (with lens distortion removed), our goal is to search for
a depth value for each pixel i = (u,v) in image I that has minimal
costs among all possible depth values D :

di = argmin
d∈D

C(i,d), (4)

where function C returns the costs for a certain depth hypotheses d
at pixel i and is based on the ZNCC over image patches. Let Ip be
a square patch in image I centered at pixel p and I′p the projection
of this patch into image I′ according to depth d:

I′p(i) = I′(π(KT π
−1(i,d)))∀i ∈ Ip. (5)

As before, K is the intrinsic matrix of the camera and T describes
the relative motion between the two cameras. Function π−1(i,d) =
dK−1i converts pixel i into 3D scene point x according to depth d.
Then C is given, similar to Eq. 3, by

C(i,d) =− ∑
j∈Ip

(Ip(j)− Ip) · (I′p(j)− I′p)
σ(Ip) ·σ(I′p)

. (6)

Ip(j) returns the intensity value in patch Ip at pixel j. Ip and
σ(Ip) denote the mean and standard deviation in patch Ip, respec-
tively.

4.1 Patch-based Optimization
Evaluating Eq. 4 for all possible depth values is prohibitively ex-
pensive especially when dealing with high-resolution images and

if high depth precision is required. We tackle this challenge by
employing an optimization scheme similar to the one proposed in
PatchMatch stereo [3]. This method has a runtime independent
of the number of depth values under consideration. PatchMatch
stereo alternates between random depth generation and propagation
of depth. However, the runtime performance of the algorithm de-
pends on the correlation window size. Further, PatchMatch stereo
is an iterative algorithm requiring several passes over the image.

We iteratively generate a solution by alternating between ran-
dom depth generation and depth propagation between image pix-
els. This randomized optimization strategy has the advantage that
the computational complexity is independent of the number of pos-
sible depth values, i.e. only a small fraction of all possible depth
values needs to be tested at each pixel. However, due to the it-
erative nature of the algorithm a multi-core CPU implementation
needs several minutes to process a low-resolution frame [3]. Thus
this algorithm is not directly applicable in our real-time application
scenario.

In contrast to PatchMatch stereo our 3D reconstruction is not
based on a single depth map but is generated by fusing multiple
depth maps over time. This means that the quality requirements
for the individual depth maps are slightly lower. Thus we propose
an approximation of PatchMatch stereo that is capable to generate
high-quality depth maps in real-time.

Our two major differences to PatchMatch stereo can be summa-
rized as follows. First, PatchMatch stereo estimates the depth and
surface normal for each pixel, whereas we focus on computing only
depth. Though this has the drawback that slanted surfaces are ap-
proximated as piecewise-planar, it reduces the search space from
three (depth plus normal) to one dimension (depth). As a conse-
quence, the algorithm converges very quickly and does not need
to be iterated. Note that due to the fusion of multiple depth maps
piece-wise planar artifacts are reduced almost instantaneously. Sec-
ond, we use ZNCC on small patches for cost computation (Eq. 6).
ZNCC compensates for local gain and offset changes and hence
gives us the ability to cope with even large radiometric differences
in the input images. (Radiometric changes are likely to occur since
our input images are captured at different instances in time.) This
is in contrast to PatchMatch stereo where the matching costs are
based on the sum of absolute difference of the intensity and gradi-
ent inside large patches. The large patches used in [3] are prone to
the edge fattening problem and therefore adaptive support weights
had to be used to attenuate this effect. By using small patches we
not only reduce the computational complexity but also diminish
the edge fattening problem and relax the piece-wise planar bias in
slanted regions. The drawback of a small patch size is that wrong
depth estimates may be obtained in untextured regions. However,
wrong depth measurements can be easily discarded and the result-
ing missing data will be filled over time with depth computed from
subsequent frames.

We now continue with a description of our method. The assump-
tion of our approach is that the image comprises of relatively large
regions of constant depth (we discuss the size of these regions be-
low). Our algorithm starts by assigning a random depth value to
each pixel in the image. Although most pixels will be assigned to a
wrong depth value, it is likely that at least one correct guess in each
region of constant depth is obtained. Note that regions of constant
depth can comprise a large number of pixels and hence the chances
for obtaining at least one good (i.e. low cost) guess are quite high.
Having obtained one or more depth estimates with low costs we
aim to propagate these depth values to spatially neighboring pixels.
In the following, we discussed the algorithm in more detail.

Random Initialization. We start by testing for each pixel
i a number of K random depth hypotheses {D∗ = d1

i , . . . ,d
K
i }.

The depth for pixel i is chosen as the one with minimum costs:
di := argmind∈D∗C(i,d).

To analyse the properties of the random initialization let R be
a region of constant depth comprising |R| pixels and let l = |D |
be the number of all possible depth values. Then the likelihood P
to correctly assign at least one pixel in R to the correct depth is
P = 1− (1−1/l)|R|·K . Thus in order to obtain the correct depth for
at least one pixel in R with a likelihood of P, the region size has to
be |R| ≥ log(1−P)/(K · log(1−1/l)).

For example, let us assume that we would like to reconstruct
depth in a range of up to two meters with a precision of 5mm. Then
the total number of possible depth values l = 400 = 2000mm/5mm.
If K = 5 then with 95% probability at least one correct depth is
sampled in a 16× 16 region. Note that since our method is based
on monocular tracking, scale information is not available to set a
threshold in metric units. The minimum and maximum depth val-
ues obtained during the bootstrapping phase of the pose tracker are
used to determine the threshold in our experiments, and therefore,
reconstruction resolution is tied to the arbitrary scale factor applied
during this bootstrap phase.

Spatial Propagation. After the random initialization step some
pixels in the image will already be assigned to depth values with low
matching cost. The idea of the spatial propagation is to pass these
depth values to spatially neighboring pixels since these are likely
to have the same depth (but might currently be assigned to a differ-
ent depth). To this end, we traverse the image in row-major order
starting from the upper-left corner. For the current pixel i = (u,v)
being scanned we look up the depth assigned to the left and upper
spatial neighbor q = (u−1,v) and r = (u,v−1). The depth at pixel
i is then given by di := argmind∈{di,dq,dr}C(i,d). After processing
every pixel, we reverse the propagation: we start in the lower-right
corner and propagate the depth values from the pixels right and
lower neighbors. The spatial propagation can be regarded as GPU
friendly region-growing process since each pixel along a diagonal
can be processed in parallel (see [1]).

4.2 Post-processing
The computed depth map can contain artifacts due to the lack of
texture or because of occlusions. Therefore we apply two filters
that remove erroneous matches.

Matching Cost Filter. The first filter removes pixels with depth
values that generate large costs according to Eq. 6. The costs are
typically large for pixels whose patches contain little texture or that
are affected by occlusions. We mark pixel i as an outlier if its
matching costs according to Eq. 6 are larger than TZNCC = 0.5.

Minimum Region Filter. The second filter removes small iso-
lated regions of similar depth (see e.g. Hirschmüller et al. [9]). We
first segment the image by grouping spatially neighboring pixels
whose depth values differs by less than Tdepth. The value of Tdepth
is chosen based on the minimum and maximum depth values in the
first depth map. We then mark a pixel i as an outlier if it belongs to
a segment that contains less than Tminsize = 50 pixels.

4.3 Keyframe Selection
From the above discussion, it is clear that the quality of depth map
computed for the current frame I is closely tied to how we select
the matching image I′ from the tracker’s cached list of keyframes.
For stereo matching to work well, we have to guarantee sufficient
image overlap while maintaining a good baseline between the two
frames that determines depth accuracy. A naive approach is, given
the current frame’s position vector and those of all keyframes, set I′
to be the one that minimizes the Euclidean distance. This guaran-
tees the largest overlap possible, and since keyframes are generated
only when the tracker runs of visible map points, a reasonable base-
line can be expected. However, due to camera rotation keyframes
can be sampled from viewpoints that are in very close proximity
to each other and as a consequence we cannot guarantee a suffi-
cient baseline. To overcome this, we collect a group of keyframes

Figure 3: Real-time reconstruction results. Top left: Reconstruction of a set of shoes. Bottom left: A reconstruction of a desktop scene. Note the
fine details, such as the embossing on the board rubber. Right: A 3D reconstruction of a mannequin head with minimal texture.

that are within a baseline distance B of the current frame. Since
the tracker provides no metric scale, B is determined by the cam-
era translation vector and scale factor estimated during bootstrap.
Simply selecting the farthest keyframe may result in a too large
baseline. Also, keyframes with a large relative rotation can fall in
this neighborhood, and pose significant challenges for dense match-
ing. To weigh the candidates, we plot a histogram of the ratio of all
landmarks originally detected in each keyframe to those that can be
successfully matched in I. Ultimately, the farthest keyframe with a
score above a threshold (0.65 in our experiments) is selected as I′.

5 VOLUMETRIC FUSION

We adopt the method of Curless and Levoy [4], and encode sur-
faces implicitly as a signed distance field (SDF). This part of the
pipeline is based on the standard KinectFusion system [11, 20] but
uses depth maps derived from the moving passive RGB camera.
Our system takes these sequence of noisy depth images. We ini-
tialize the camera to the origin, which is also the center of the vir-
tual volume’s front face. For each frame, we incrementally update
the volume by integrating (or fusing) surface observations into the
stored SDF, adding new data into empty regions or denoising ex-
isting data. Next, we raycast the volume (using the current cam-
era pose estimate), marching individual rays through the grid, to
find sign changes in the SDF (the zero-crossing) and extract sur-
face points and normals.

A clear advantage of our local, L2-based volumetric fusion ap-
proach over potentially more robust global optimization techniques
(such as TV-L1 fusion [35] targeting sparser and noiser sets of depth

images) is the achieved speed and the ability to process incoming
depth maps in an incremental manner. Our approach just maintains
a running average of SDF samples during the integration step, and
the level of redundancy in our data, the speed of our system, and
the quality of our depth maps leads to compelling results despite
adopting a far simpler L2-based SDF denoising approach.

6 RESULTS

In the following examples and the supplementary video we demon-
strate compelling reconstructions of a variety of scenes, based on
just input from a Microsoft Lifecam. Our implementation runs on
a NVidia GTX580 at 30Hz for the full pipeline including tracking
and reconstruction. Figures 3 and 1 show how small scenes can
be reconstructed in real-time and finally texture mapped using the
RGB data. Whilst these scenes require some texture, given that our
algorithm allows matching across larger images, we can find cor-
respondences even in parts of the image that appear texture-less at
lower resolutions. Another benefit over active triangulation-based
sensors such as Kinect is our ability image objects at closer ranges,
reconstructing finer details such as the detailing on the shoes and
embossing on the board rubber in Figure 3.

As the accompanying video shows these reconstructions can be
performed rapidly in real-time. As such this opens up AR scenarios
that cannot be directly addressed by active sensors such as ones that
require lower power devices or outdoor use. As shown in Figures 1
and 3 the quality of reconstructions is visibly comparable to Kinect-
based reconstruction systems such as KinectFusion.

7 DISCUSSION AND CONCLUSIONS

We have presented MonoFusion a system for markerless tracking
and 3D reconstruction in small scenes using just a cheap RGB cam-
era. Compared to existing approaches, our system does not require
maintaining a compute and memory intensive cost volume or us-
ing expensive TV-L1 fusion. It tracks and relocalizes the camera
pose and allows for high quality 3D models to be captured using
commodity RGB sensors.

Whilst our system shows a great deal of potential for widening
the applicability of 3D reconstruction it does also raise challenges
and areas for future work. Whilst we use off-the-shelf hardware,
and could potentially migrate our system to mobile RGB cameras
(such as those on tablets and mobiles) we are currently using a GPU
which requires a desktop or high end laptop to perform efficiently.
One positive aspect of our approach is that it does open up the po-
tential for mobile and tablet cameras to be streamed to a remote
server where the computation could occur and the resulting (com-
pressed) data streamed back. This type of scenario would not be
possible for active sensors currently as they cannot be readily im-
plemented in mobile devices.

Another limiting factor of any RGB approach is that texture is
required for both tracking and depth estimation. This is a limitation
over active sensors. However, since our stereo matcher is efficient,
one interesting possibility is to experiment with increasing the reso-
lution of our input data to a level where texture begins to be exposed
in these problem areas.

Another interesting possibility for future work is to explore the
combination of our passive setup with other sensing possibilities
either active or passive stereo sensors or even time-of-flight. These
systems suffer from a variety of challenges including missing data
which could be complemented with our reconstruction approach.
Here the process of fusion becomes even more challenging, given
the different sensor characteristics.

REFERENCES

[1] C. Bailer, M. Finckh, and H. P. Lensch. Scale robust multi view stereo.
In ECCV, 2012.

[2] S. Benhimane and E. Malis. Real-time image-based tracking of planes
using efficient second-order minimization. In IROS, pages 943–948,
2004.

[3] M. Bleyer, C. Rhemann, and C. Rother. Patchmatch stereo - stereo
matching with slanted support windows. In BMVC, 2011.

[4] B. Curless and M. Levoy. A volumetric method for building complex
models from range images. In Proc. Comp. Graph. and Interactive
Techn., pages 303–312, 1996.

[5] L. De-Maeztu, S. Mattoccia, A. Villanueva, and R. Cabeza. Linear
stereo matching. In ICCV, 2011.

[6] I. Ernst and H. Hirschmüller. Mutual information based semi-global
stereo matching on the gpu. In ISVC, 2008.

[7] M. A. Fischler and R. C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography. Comm. of the ACM, 24(6):381–395.

[8] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D map-
ping: Using depth cameras for dense 3d modeling of indoor environ-
ments. In Proc. Int. Symp. Experimental Robotics, volume 20, pages
22–25, 2010.

[9] H. Hirschmüller. Accurate and efficient stereo processing by semi-
global matching and mutual information. In CVPR, 2005.

[10] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard. OctoMap: An efficient probabilistic 3D mapping framework
based on octrees. Autonomous Robots, 34(3):189–206, 2013.

[11] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon.
KinectFusion: real-time 3D reconstruction and interaction using a
moving depth camera. In Proc. ACM Symp. User Interface Software
and Technology, pages 559–568, 2011.

[12] M. Ju and H. Kang. Constant time stereo matching. In MVIP, 2009.

[13] G. Klein and D. Murray. Parallel tracking and mapping for small ar
workspaces. In ISMAR, 2007.

[14] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, et al. The digital
michelangelo project: 3D scanning of large statues. In Proc. Com-
puter Graphics and Interactive Techniques, pages 131–144, 2000.

[15] M. A. Lourakis and A. Argyros. SBA: A Software Package for
Generic Sparse Bundle Adjustment. ACM Trans. Math. Software,
36(1):1–30, 2009.

[16] D. G. Lowe. Distinctive image features from scale-invariant key-
points. IJCV, pages 91–110, 2004.

[17] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J. Frahm, R. Yang,
D. Nistér, and M. Pollefeys. Real-time visibility-based fusion of depth
maps. In Computer Vision, 2007. ICCV 2007. IEEE 11th International
Conference on, pages 1–8. IEEE, 2007.

[18] M. Michael, J. Salmen, J. Stallkamp, and M. Schlipsing. Real-time
stereo vision: Optimizing semi-global matching. In IEEE Intelligent
Vehicles Symposium, 2013.

[19] R. Newcombe and A. Davison. Live dense reconstruction with a single
moving camera. In Proc. IEEE Conf. Comp. Vision and Pat. Rec.,
pages 1498–1505, 2010.

[20] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davi-
son, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFu-
sion: Real-time dense surface mapping and tracking. In Proc. IEEE
Int. Symp. Mixed and Augmented Reality, pages 127–136, 2011.

[21] R. Newcombe, S. Lovegrove, and A. Davison. DTAM: Dense tracking
and mapping in real-time. In Proc. IEEE Int. Conf. Comp. Vision,
pages 2320–2327, 2011.

[22] D. Nister. An efficient solution to the five-point relative pose problem.
In CVPR, pages 195–202, 2003.

[23] M. Pollefeys, D. Nistér, J. Frahm, A. Akbarzadeh, P. Mordohai,
B. Clipp, C. Engels, D. Gallup, S. Kim, P. Merrell, et al. Detailed
real-time urban 3D reconstruction from video. Int. J. Comp. Vision,
78(2):143–167, 2008.

[24] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis,
J. Tops, and R. Koch. Visual modeling with a hand-held camera. IJCV
2004, 59(3):207–232, 2004.

[25] C. Rhemann, A. Hosni, M. Bleyer, and C. Rother. Fast cost-volume
filtering for visual correspondence and beyond. In CVPR, 2011.

[26] C. Richardt, D. Orr, I. Davies, A. Criminisi, and N. Dodgson. Real-
time spatiotemporal stereo matching using the dualcross-bilateral grid.
In ECCV, 2010.

[27] I. D. Rosenberg, P. L. Davidson, C. M. Muller, and J. Y. Han.
Real-time stereo vision using semi-global matching on programmable
graphics hardware. In SIGGRAPH Sketches, 2006.

[28] E. Rosten and T. Drummond. Machine learning for high-speed corner
detection. In ECCV, 2006.

[29] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. IJCV, 2002.

[30] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A com-
parison and evaluation of multi-view stereo reconstruction algorithms.
In Proc. IEEE Conf. Comp. Vision and Pat. Rec., volume 1, pages
519–528. IEEE, 2006.

[31] J. Stückler and S. Behnke. Robust real-time registration of RGB-D im-
ages using multi-resolution surfel representations. In Proc. ROBOTIK
2012, pages 1–4. VDE, 2012.

[32] O. Veksler. Stereo correspondence by dynamic programming on a
tree. In CVPR, 2005.

[33] T. Weise, T. Wismer, B. Leibe, and L. Van Gool. In-hand scanning
with online loop closure. In Proc. IEEE Int. Conf. Computer Vision
Workshops, pages 1630–1637, 2009.

[34] C. Zach. Fast and high quality fusion of depth maps. In Proceedings
of the International Symposium on 3D Data Processing, Visualization
and Transmission (3DPVT), volume 1, 2008.

[35] C. Zach, T. Pock, and H. Bischof. A globally optimal algorithm for
robust tv-l1 range image integration. In Computer Vision, 2007. ICCV
2007. IEEE 11th International Conference on, pages 1–8. IEEE, 2007.

[36] K. Zhang, G. Lafruit, R. Lauwereins, and L. Gool. Joint integral his-
tograms and its application in stereo matching. In ICIP, 2010.

