
XML-IS

Our reference: NEUCOM 13731 P-authorquery-vx

AUTHOR QUERY FORM

Journal: NEUCOM

Please e-mail or fax your responses and any corrections to:

Article Number: 13731

E-mail: corrections.esch@elsevier.macipd.com

Fax: +44 1392 285878

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in

the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please

also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48

hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the

proof. Click on the Q link to go to the location in the proof.

Location in

article

Query / Remark: click on the Q link to go

Please insert your reply or correction at the corresponding line in the proof

Q1 Please confirm that given names and surnames have been identified correctly and are presented in the desired order.

Q2 Please check the telephone number and e-mail address (ksyao@hotmail.com) of the corresponding author, and

correct if necessary.

Q3 Please check the years 2011 and 2013 in the biography of author Dong Yu.

Q4 Please provide biography for the author “Yifan Gong”.

Q5 Please provide heading for the first column in Tables 4 and 5.

Thank you for your assistance.

Please check this box or indicate your approval
if you have no corrections to make to the PDF file ZQBX



A fast maximum likelihood nonlinear feature transformation method
for GMM–HMM speaker adaptation

Kaisheng Yao a,n, Dong Yu b, Li Deng b, Yifan Gong a
Q1

a Online Service Division, Microsoft Corporation, One Redmond Way, Redmond 98052, WA, USA
b Microsoft Research, One Redmond Way, Redmond 98052, WA, USA

a r t i c l e i n f o

Article history:
Received 4 September 2012
Received in revised form
22 December 2012
Accepted 12 February 2013

Keywords:
Extreme learning machine
Neural networks
Maximum likelihood
Speech recognition
Speaker adaptation
Hidden Markov models

a b s t r a c t

We describe a novel maximum likelihood nonlinear feature bias compensation method for Gaussian
mixture model–hidden Markov model (GMM–HMM) adaptation. Our approach exploits a single-hidden-
layer neural network (SHLNN) that, similar to the extreme learning machine (ELM), uses randomly
generated lower-layer weights and linear output units. Different from the conventional ELM, however,
our approach optimizes the SHLNN parameters by maximizing the likelihood of observing the features
given the speaker-independent GMM–HMM. We derive a novel and efficient learning algorithm for
optimizing this criterion. We show, on a large vocabulary speech recognition task, that the proposed
approach can cut the word error rate (WER) by 13% over the feature maximum likelihood linear
regression (fMLLR) method with bias compensation, and can cut the WER by more than 5% over the
fMLLR method with both bias and rotation transformations if applied on top of the fMLLR. Overall, it can
reduce the WER by more than 27% over the speaker-independent system with 0.2 real-time
adaptation time.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Automatic speech recognition (ASR) systems rely on powerful
statistical techniques such as Gaussian mixture model–hidden
Markov models (GMM–HMMs) [1] and deep neural network
(DNN)-HMMs [2] to achieve good performance. Even though ASR
systems are trained on large amounts of data, mismatches
between the training and testing conditions are still unavoidable
due to speaker and environment differences. Much like other
systems built upon statistical techniques, ASR systems often fail
to produce the same level of performance when tested under
mismatched conditions.

A substantial amount of work has been conducted to improve
ASR systems' performance under mismatched conditions. A com-
prehensive review of existing techniques can be found in [3].
The key idea of these techniques is to adapt either the model or
the feature so that the mismatch between the training and testing
conditions can be reduced. Here we briefly review the three
techniques that motivated this work.

The first class of techniques adapts the model or feature by
applying the physical model that causes the mismatch [4–6].
For example, the parallel model combination (PMC) method [4]
adapts the speech models under noisy environment by combining

clean speech models and noise models. The joint additive and
convolutive noise compensation (JAC) [5] method jointly compen-
sates for the additive background noise and channel distortion by
applying the vector Taylor series expansion of the physical distor-
tion model around the mean vectors of clean speech, noise and
channel. Methods in this category differ on the type of physical
models used and the approximation applied. For instance, the JAC
method may be further improved by including both the magni-
tude and phase terms in the physical model that describes the
relationship between speech and noise [6].

The second class of techniques [7,8] adapts the model or feature
by learning the distortion model from stereo data, i.e., data recorded
simultaneously over a “clean” and “noisy” channel. Methods in this
category differ in how the distortion model is estimated and used to
compensate for the mismatches during testing.

In contrast to the above techniques, the third class of technique
does not need an explicit model that describes how speech is
distorted. Instead it learns a transformation directly from the
adaptation data and the associated transcriptions that may contain
errors. This transformation is then used either to modify the test
features to make it closer to the training data or to adjust the
HMM model so that it better represents the test data. Example
methods in this category include stochastic matching [9] and the
popular maximum likelihood linear regression (MLLR) [10]. This
class of techniques is more flexible than the first class of techni-
ques since it does not rely on a physical model, which may not
be available when, for instance, the HMMs are trained on noisy

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.neucom.2013.02.050

n Corresponding author. Tel.: þ1 469 360 6986.Q2
E-mail addresses: kaisheny@microsoft.com, ksyao@hotmail.com (K. Yao).

Please cite this article as: K. Yao, et al., A fast maximum likelihood nonlinear feature transformation method for GMM–HMM
speaker adaptation, Neurocomputing (2013), http://dx.doi.org/10.1016/j.neucom.2013.02.050i

Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
mailto:kaisheny@microsoft.com
mailto:ksyao@hotmail.com
http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
Original Text:
GMM- 

Original Text:
givenname

Original Text:
surname

Original Text:
givenname

Original Text:
surname

Original Text:
givenname

Original Text:
surname

Original Text:
givenname

Original Text:
surname

Original Text:
model- 

Original Text:
GMM- 

Original Text:
GMM- 

Original Text:
model- 

Original Text:
GMM- 

Original Text:
Please confirm that given names and surnames have been identified correctly and are presented in the desired order.

Original Text:
Please check the telephone number and e-Â—mail address (ksyao@hotmail.com) of the corresponding author, and correct if necessary.



speech. This class of techniques is also less demanding than the
second class of techniques since it does not require stereo data
which are rarely available. For these reasons this class of techni-
ques has been widely used in real world large vocabulary speech
recognition (LVSR) systems while the first and second class of
techniques are mainly successful in small tasks such as digits
recognition in noisy conditions [11,12]. Due to the large amount
of HMM parameters involved in LVSR systems, feature transfor-
mation is preferred over model adaptation [10] to reduce
computational cost.

Effort has been made to extend the third class of techniques to
deal with nonlinear distortions. For example, in [13] a single-
hidden-layer neural network (SHLNN) was used to estimate the
nonlinear transformations to adapt the HMM model or feature.
A gradient ascent method was developed to estimate both the
upper- and lower-layer weights of the neural network, which
unfortunately, was slow to convergence and easy to overfit to
the training data [13] especially since the adaptation dataset is
typically very small. Furthermore, the neural network in [13] was
trained to maximize the likelihood of the transformed feature
instead of the observed feature, which requires considering the
Jacobian of the feature transformation.

Recently, extreme learning machine (ELM) [14] was proposed
to address the difficulty and inefficiency in training single-hidden-
layer neural networks. There are two core components in the ELM:
using randomly generated “fixed” connection between the input
and hidden layer (called lower-layer weights) and using linear
output units so that for minimum mean square error criterion
closed-form solution is available when the lower-layer weights are
fixed. The randomly generated lower-layer weights are indepen-
dent of the training data and so ELM is less likely to overfit to the
training data than the conventional neural networks. ELM has
been used as building blocks for example in the deep convex
network (DCN) [15,16].

In this paper we propose a novel nonlinear feature adaptation
framework for LVSR exploiting the core ideas in ELM. More
specifically, we estimate a nonlinear time-dependent bias using
an ELM-like SHLNN to compensate for the mismatch between the
training and testing data. In this SHLNN, the lower-layer weights
are randomly generated and the output layer contains only linear
units just as in the ELM. Different from ELM, however, the SHLNN
in our task is optimized to maximize the likelihood of either the
transformed feature, for which a closed-form solution is derived,
or the observed feature, for which an efficient second-order
Gauss–Newton method is developed.

Our approach belongs to the third class of adaptation technique
just reviewed. It requires neither physical models nor stereo data
and can be easily applied to LVSR tasks. Our proposed approach is
also more powerful than the previously developed approaches
because it can take advantage of the neighboring frames (e.g.,
[4,6,5,10,13] cannot) and uses nonlinear transformations (e.g., [17]
does not). We show, on a large vocabulary speech recognition task,
that the proposed approach can cut the word error rate (WER) by
13% over the feature maximum likelihood linear regression
(fMLLR) method with bias compensation, and can cut the WER
by more than 5% over the fMLLR method with both bias and
rotation transformations if applied on top of the fMLLR. Overall,
it can reduce the WER by more than 27% over the speaker-
independent system.

The rest of the paper is organized as follows: in Section 2, we
discuss the problem of feature space transformation for speaker
adaptation. In Section 3 we present the training algorithms of the
ELM-like SHLNN for maximizing the likelihood of the transformed
feature and observed feature and describe a tandem scheme that
applies the nonlinear transformation on top of the linearly trans-
formed feature. Experimental results are reported in Section 4 to

demonstrate how hidden layer size and context window lengths
affect the adaptation effectiveness and how the proposed approach
outperforms fMLLR on an LVSR task. We conclude the paper in
Section 5.

2. Speaker adaptation through nonlinear
feature transformation

In contrast to the traditional feature space transformation
[9,10,17] that is a linear transform of observation vector xt at time
t, the method presented in this paper is a nonlinear feature
transformation method.

The nonlinear feature transformation can be defined as f ðx t ;ϕtÞ,
where ϕt is a meta feature vector that contains information such as
signal-to-noise ratio and utterance length, x tARLD is an expanded
observation vector centered at xtARD with a context length of L. For
example, for a context length of L¼3, x t ¼ ðxT

t�1x
T
t x

T
tþ1ÞT , where

superscript T denotes transpose. Usually, x t is augmented with
element 1 to become ðxT

t 1ÞT .
For speech recognition, the transformation f ðx t ;ϕtÞ is typically

optimized to improve the likelihood of the observed feature
pðxt jΘ;ΛxÞ. Here Θ denotes parameters of the nonlinear transforma-
tion and Λx denotes speaker independent HMM parameters that
include (GMM) parameters fπm;μm;Σm;m¼ 1;…;Mg and state tran-
sition probabilities fcij; i; j¼ 1;…; Sg, where M is the total number of
Gaussian components, S is the number of states, and πm, μm and Σm

are the weight, mean vector and diagonal covariance matrix, respec-
tively, of the m-th Gaussian component.

Directly improving the above likelihood is difficult. We instead
iteratively estimate Θ through the following auxiliary function:

Q ðΘ; eΘÞ

¼ � 1
2
∑
m;t
γmðtÞðf ðx t ;ϕtÞ�μmÞTΣ�1

m ðf ðx t ;ϕtÞ�μmÞ

þ∑
m;t
γmðtÞ log jJt j ð1Þ

where eΘ is the previous estimate of Θ, γmðtÞ is the posterior
probability of Gaussian m at time t, given HMM parameters Λx

and the previous estimates of the nonlinear transformation para-
meters eΘ. Jt ¼ ð∂f ðx t ;ϕtÞÞ=∂xt is the Jacobian of the feature
transformation at time t. Note that we assume that the feature
transformation is not dependent on a particular Gaussian m.

For speaker adaptation, observation vectors xt are from a particular
speaker. Increasing the above auxiliary function scores corresponds to
learning a speaker dependent transformation that increases the like-
lihood of observation xt, given the GMM parameters.

Theoretically the transformation function f ðx t ;ϕt) can be any
function. In this paper we focus on compensating for the bias
change, i.e.,

yt ¼ f ðx t ;ϕtÞ ¼ xtþgðx t ;ϕtÞ; ð2Þ
where gðx t ;ϕtÞ is a nonlinear function compensating for the bias
and is defined by the SHLNN shown in Fig. 1. Similar to the ELM,
the SHLNN consists of a linear input layer, a sigmoid nonlinear
hidden layer, and a linear output layer. The SHLNN parameters Θ
include a D� K matrix U, a K � LD matrix W and a scalar value α,
where U is the upper layer weights connecting the hidden layer
and the output layer, W is the lower layer weights connecting the
input layer and the hidden layer, and α is the parameter to control
steepness of the sigmoid function at the hidden layer. Since ϕt can
be considered as part of the observation we merge ϕt into x t from
now on to simplify notation.

Eq. (2) can be further rewritten and simplified to

yt ¼ xtþUht ð3Þ

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

K. Yao et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: K. Yao, et al., A fast maximum likelihood nonlinear feature transformation method for GMM–HMM
speaker adaptation, Neurocomputing (2013), http://dx.doi.org/10.1016/j.neucom.2013.02.050i

http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
Original Text:
esp. 

Original Text:
In 

Original Text:
The equation 



where ht ¼ θðαW x tÞ is the hidden layer output and θðxÞ ¼ 1=
ð1þexpð�xÞÞ ¼ expðxÞ=ð1þexpðxÞÞ is the sigmoid function, by not-
ing that, following ELM, the lower-layer weight W is randomly
generated and is independent of the adaptation data and the
training criterion. The scalar value α is typically set to a value
around 1.0. In this paper, it is set to 0.6.1

3. The algorithms for maximum likelihood estimation

As we discussed in the last section, the only parameter set we
need to learn is U, whose algorithm will be derived in this section.

Substituting (3) into (1), we have

Q ðΘ; eΘÞ

¼ � 1
2
∑
mt
γmðtÞðUht�ρmtÞTΣ�1

m ðUht�ρmtÞ

þ∑
t
γmðtÞ log jJt j; ð4Þ

where ρmt ¼ μm�xt . The Jacobian Jt ¼ ð∂yt=∂xtÞARD�D is

Jt ¼ ID�DþαUHtðIK�K �HtÞWc ð5Þ

where WcARK�D is a submatrix of W, whose rows correspond to
the center observation xt in the context window, HtARK�K is a
diagonal matrix with element θðαW x tÞ, and Il�lARl�l is an
identity matrix.

U can be learned with the gradient ascent algorithm, which
iteratively updates an estimate of U as

U←Uþη
∂Q
∂U

; ð6Þ

where η is the step size,

∂Q
∂U

¼ �∑
m;t
γmðtÞΣ�1

m ðUht�ρmtÞhT
t þ∑

m;t
γmðtÞ

∂ log jJt j
∂U

ð7Þ

and

vec
∂ log jJt j

∂U

� �T

¼ vecðJ�T
t ÞT ∂Jt

∂U

¼ vecðJ�T
t ÞT ½αðHtðIK�K �HtÞWcÞT � ID�D� ð8Þ

where vecð�Þ is a vectorization operation to stack columns of a matrix.
To obtain ð∂ log jJt j=∂UÞARD�K , we need to reshape the above vector
to a D�K matrix.

3.1. Maximum likelihood estimation on transformed features

We rewrite the auxiliary function as

Q ðU; eUÞ ¼ � 1
2
∑
m;t
γmðtÞðUht�ρmtÞTΣ�1

m ðUht�ρmtÞ ð9Þ

by ignoring the Jacobian, where eU is the previous estimate of the
upper layer weights U. This simplified auxiliary function max-
imizes the likelihood of the transformed data pðyt jU;ΛxÞ, rather
than the observed data pðxt jU;ΛxÞ.

A closed-form solution can be obtained for the above optimiza-
tion problem by running one iteration of Gauss–Newton update
and setting the initial U¼ 0. This is because the criterion (9) is a
quadratic function of U and its gradient is linear. Using the Gauss–
Newton method, we have

vecðUÞ ¼ � ∂2Q
∂U2

� ��1

vec
∂Q
∂U

� �����
U ¼ 0

¼ � ∂2Q
∂U2

� ��1

vec ∑
mt
γmðtÞΣ�1

m ρmth
T
t

� �����
U ¼ 0

ð10Þ

where

∂2Q
∂U2

����
U ¼ 0

¼ �∑
mt
γmðtÞðhth

T
t � Σ�1

m Þ ð11Þ

using matrix calculus [18] and � is the Kronecker product.
The term (11) can be written in detail as

∑
mt
γmðtÞðhth

T
t � Σ�1

m Þ

¼∑
mt
γmðtÞ

ht1ht1
1

s2m1
⋯ 0 ⋯ ht1htK 1

s2m1
⋯ 0

⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮
0 ⋯ ht1ht1

1
s2mD

⋯ 0 ⋯ ht1htK 1
s2mD

ht2ht1
1

s2m1
⋯ 0 ⋯ ht2htK 1

s2m1
⋯ 0

⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮
0 ⋯ ht2ht1

1
s2mD

⋯ 0 ⋯ ht2htK 1
s2mD

⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋮
htKht1 1

s2m1
⋯ 0 ⋯ htKhtK

1
s2m1

⋯ 0

⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮
0 ⋯ htKht1 1

s2mD
⋯ 0 ⋯ htKhtK

1
s2mD

0BBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCA
ð12Þ

where hti denotes the i-th element in the hidden layer output ht.
The memory for evaluating this term is OðDK � DKÞ. For a setup
with D¼39 and K¼2000, the cost is 6:09� 109

floating points,
which corresponds to 48 G byte of memory. A typical computer
cannot hold such large memory.

Notice that the above terms (11) and (14) are full but sparse
matrices because Σm is diagonal. Fortunately a memory and CPU
efficient algorithm can be derived by using the permutation
matrix [18]. The intuition behind the algorithm is re-arranging
the above full but sparse matrices in (14) to be block-diagonal.
A permutation matrix Tm;nARmn�mn is a matrix operator composed
of 0s and 1s, with a single 1 on each row and column. It has a
number of special properties. Particularly, T�1

m;n ¼ Tn;m ¼ TT
m;n and

Tm;nvecðAÞ ¼ vecðAT Þ.
Note that

hth
T
t � Σ�1

m ¼ TK;DΣ�1
m � hth

T
t TD;K : ð13Þ

Substituting this to (11), we have

∂2Q
∂U2

����
U ¼ 0

¼ �TK ;D ∑
mt
γmðtÞΣ�1

m � hth
T
t

� �
TD;K ð14Þ

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Fig. 1. Neural network architecture.

1 The scalar value α was experimented with 0.6 and 1.0. We did not observe
much performance differences. Hence, this paper only reports results in Section 4
with α¼ 0:6.

K. Yao et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3

Please cite this article as: K. Yao, et al., A fast maximum likelihood nonlinear feature transformation method for GMM–HMM
speaker adaptation, Neurocomputing (2013), http://dx.doi.org/10.1016/j.neucom.2013.02.050i

http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
Original Text:
Gauss- 



By applying (14) to (10) we get

vecðUÞ ¼ TK ;D ∑
mt
γmðtÞΣ�1

m � hth
T
t

� ��1

TD;Kvec
∂Q
∂U

� �
U ¼ 0j

After some manipulations detailed in Appendix A.1, we get the
closed-form solution at d-th row of U, Ud;:, for d¼ f1;⋯;Dg as

vecðUd;:Þ ¼ ∑
mt
γmðtÞ

1
s2md

hth
T
t

 !�1

vec
∂Q
∂Ud;:

� �����
U ¼ 0

; d¼ f1;…;Dg

ð15Þ
where s2md is the (d,d)-th element of the diagonal covariance
matrix Σm.

This corresponds to re-arranging the term (14) into the follow-
ing block diagonal matrix:

∑
mt
γmðtÞ

ht1ht1
1

s2m1
⋯ ht1htK 1

s2m1
⋯ 0 ⋯ 0

⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮
htKht1 1

s2m1
⋯ htKhtK

1
s2m1

⋯ 0 ⋯ 0

0 ⋯ 0 ⋱ 0 ⋯ 0
⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ ht1ht1

1
s2mD

⋯ ht1htK 1
s2mD

⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ htKht1 1

s2mD
⋯ htKhtK 1

s2mD

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
:

ð16Þ
Keeping only the nonzero block diagonal matrices, now the

total memory cost is OðD� K � KÞ. In terms of the computational
cost, the matrix inversion ð∂2Q=∂U2Þ�1 in (10) is on a matrix of
dimension KD� KD. Using the new algorithm, the matrix inver-
sion ð∑mtγmðtÞð1=s2mdÞhth

T
t Þ�1 in (15) is on block diagonal matrices

with dimension of K � K . Notice that the computational cost of a
typical matrix inversion algorithm such as Gauss-Jordan elimina-
tion [19] is Oðn3Þ for a matrix of dimension n� n. Therefore, the
new algorithm has the computational cost of OðD� K3Þ for the
matrix inversion whereas the matrix inversion in (10) costs OðD3 �
K3Þ operations.

3.2. Maximum likelihood estimation on observed features

To optimize for the observed features we cannot drop the
Jacobian term in (4) and need to solve it using an iterative Gauss–
Newton procedure

U←eU�η
∂Q2

∂2U

 !�1
∂Q
∂U U ¼ eU��� ð17Þ

This procedure starts from some initial estimates, such as U¼ 0,
until a certain number of iterations is reached.

We keep the Hessian term from (11) unchanged, but include a
first order differential term from (8). Applying permutation
matrices as shown in Appendix A.2, we can rewrite (8) as

vecðJ�T
t ÞT ½αðHtðIK�K �HtÞWcÞT � ID�D�
¼ αðvecðJ�1

t ÞT ID�D � ðHtðIK�K �HtÞWcÞT ÞT ð18Þ
which is a vector of dimension 1� DK . Its d-th subvector with
dimension K is αðJ�1

t ÞT:;dðHtðIK�K �HtÞWcÞT .
Applying permutation matrices similarly as in the above sec-

tion, we can write (17) as follows:

vecðUd;:Þ ¼ vecðeUd;:Þþη ∑
mt
γmðtÞ

1
s2md

hth
T
t

 !�1

�vec
∂Q
∂Ud;:

� �
U ¼ eU ; d¼ f1;…;Dg
��� ð19Þ

To obtain vecð∂Q=∂Ud;:Þ, we substitute (18) into (7); i.e.

vec
∂Q
∂Ud;:

� �
¼ �∑

mt
γmðtÞðΣ�1

m ðUht�ρmtÞhT
t Þ:;d

þ∑
mt
γmðtÞαðJ�1

t ÞT:;dðHtðIK�K �HtÞWcÞT ð20Þ

Note that here we assume that Hessian ∂2Q=∂U2 is unchanged
once it is estimated from the point U¼ 0 to speed up computation.
The Gauss–Newton estimate can be initialized from either U¼ 0 or
the closed-form solution (15). The latter provides a better initial
estimate and requires fewer iterations to estimate U.

3.3. A tandem scheme

The proposed nonlinear bias compensation approach can be
applied on top of the affine fMLLR [10]

x̂ t ¼Axtþb¼Ψξt ð21Þ
to further improve the performance, where AARD�D is the
transformation that does rotation on the input xt at time t,
bARD is the bias to the input, and Ψ¼ ½A;b�ARD�ðDþ1Þ is the
combined affine transformation. ξt ¼ ½xT

t 1�T is the augmented
observation vector at time t. This tandem scheme can take
advantage of neighboring frames and compensate for remaining
nonlinear mismatches after the affine fMLLR.

3.4. Computational costs

We list the computational costs to implement our algorithms
in Table 1. The forward propagation process in each method
estimates values such as Uht . The backward propagation process
re-estimates neural network parameters U and W. We use N to
denote the number of observation frames. As described in Section
3.1, solution in (15) is not an iterative algorithm. Therefore it costs
OðN � L� D� KÞ for the forward process. The cost for solution (15)
in the backward process to estimate the neural network para-
meters is OðD� K3Þ. Our second solution (19) using Eq. (20) needs
to compute, at each time frame t, an inversion matrix J�1

t . Since
inversion operations costs OðD3Þ, which dominates the computa-
tional costs at each time frame, the cost to compute solution (19)
takes OðN � D3Þ. Considering the solution (19) may take J iterations
to converge, the total computational cost for (19) is therefore
OðJ � N � D3Þ, which is larger than the cost for solution (15). In the
forward process of solution (19), the cost to compute Uht is OðJ �
N � L� D� KÞ which is higher than the forward-pass cost in
solution (15) because solution (19) takes J iterations.

Other methods in [13] use iterative forward and backward
propagation algorithms to estimate both the lower- and upper-
layer weights, each costs OðJ � N � L� D� KÞ operations to con-
verge. According to Table 1, the cost of forward process in [13] is
higher than the costs for solution (15). Moreover, since L is usually
larger than D and K is approximately the same as D, the cost for
backward propagation in [13] is also higher than our solutions (15)
and (19). It is worth mentioning that the number of iterations J in
our solutions might be smaller than that used in [13] because our
solutions use Gauss–Newton method, which converges faster than

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Table 1
The computational costs to implement our algorithms. D is the feature dimension,
L is the context length, K is the hidden layer size, N is the number of observation
frames, and J is the number of iterations.

Method Forward prop. Backward prop.

Solution (15) in Section 3.1 OðN � L� D� KÞ OðD� K3Þ
Solution (19) in Section 3.2 OðJ � N � L� D� KÞ OðJ � N � D3Þ
Method in [13] OðJ � N � L� D� KÞ OðJ � N � L� D� KÞ

K. Yao et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎4

Please cite this article as: K. Yao, et al., A fast maximum likelihood nonlinear feature transformation method for GMM–HMM
speaker adaptation, Neurocomputing (2013), http://dx.doi.org/10.1016/j.neucom.2013.02.050i

http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
Original Text:
Computational Costs --

Original Text:
Feature Dimension, --

Original Text:
Context Length, --

Original Text:
Hidden Layer Size, --

Original Text:
Number --

Original Text:
Observation Frames, --

Original Text:
Number --

Original Text:
Gauss- 

Original Text:
Gauss- 

Original Text:
Gauss- 



the gradient descent method used in [13]. Specifically, the solution
(15) is a closed-form solution and converges in one iteration.

3.5. Other implementation considerations

Note that we have γmðtÞ, the posterior probability of Gaussianm
at time t, in the above algorithm. In practice, we use Viterbi
alignment at the Gaussian level, so γmðtÞ is either 1 or 0.

For completeness, we list in Appendix A.3 auxiliary functions
for fMLLR [10]. To debug our implementations, we use the scores
of these auxiliary functions to compare against the scores by the
proposed algorithm.

To replicate results, the randomization of W starts from a fixed
seed. The random values for the lower layer weights W are in the
range of �2.0 to 2.0.

Inputs vectors need to be normalized to be zero mean and unit
variance in each input feature dimension. This improves conver-
gence of the neural network learning.

The step size η is important for Gauss–Newton algorithm.
The step size starts from a small value, usually 1� 10�2. If one
iteration does not increase auxiliary score, the current estimate is
backed to its previous estimate and the step size η is halved for the
next iteration.

For numerical issues, the inversion of Jacobian in (8) may be
implemented using singular value decomposition (SVD).

4. Experiments

4.1. System descriptions

We conduct automatic speech recognition (ASR) experiments
on an internal Xbox voice search data set. The scenario supports
distant talking voice search (of music catalog, games, movies, etc.)
using a microphone array. The training set of the speaker-
independent (SI) GMM–HMM system contains 40 h of Xbox voice
search commands. The evaluation was conducted on data from 25
speakers. For each speaker 200 utterances are used for adaptation
and 100 utterances are used for testing. The total number of test
sentences is 2500 with 10,563 words. There are no overlap among
training, adaptation and test sets. We use Kaldi [20] to train
a weighted finite state transducer (WFST)-based recognition
system [21]. The features are 13-dimension Mel filter-bank ceps-
tral coefficients (MFCC) with delta and delta–delta coefficients.
Per-device cepstral mean subtraction is applied. The SI acoustic
model has 7.5 k Gaussian components trained with the standard
maximum likelihood estimation (MLE) [1] procedure. We compare
the proposed approaches with the baseline system without
adaptation and the system using fMLLR [10].

4.2. Effects of hidden layer and context window size

4.2.1. Hidden layer size
We first conducted experiments to investigate how the hidden

layer size K affects the performance using a development set.
Notice that there are methods [22,23] to automatically decide
hidden layer size. The method in [22] selects the hidden layer size
by reducing its regression error to a predefined threshold. The
method in [23] proposes a bound of the generalization error. The
method selects the hidden layer size by maximizing the coverage
of unseen samples with a constraint or by thresholding on the
bound. For speech recognition task, the most direct measure of
error is the word error rate. However, to our knowledge, there is
not yet a method to directly relate word error rate to neural
network size.

We therefore empirically investigated effects of the hidden
layer size to speech recognition performance. In these experiments
we used the solution (15) (i.e., optimize for the transformed
features) to estimate the upper layer weights U. Fig. 2 summarizes
the experimental results under the condition that the input
dimension is set to 351 (or L¼9 frames) and α is set to 0.6.
It can be observed that we achieved the lowest WER of 25.73%
when 39 hidden units were used. Additional experiments using
different input layer size indicate that the lowest WERs were
typically obtained when 20–40 hidden units were used. This
suggests that the optimal hidden layer size is not sensitive to the
input layer size. The relatively small optimal hidden layer size is
attributed to the small adaptation set used.

4.2.2. Context window size
Other experiments on neural network speech recognition

[2,24] suggest using 9–11 frames of context window. Notice that
9–11 frames correspond to 90–110 ms, approximately the average
duration of a phone in speech signal. We therefore conducted
experiments to cross validate the above recommendation using
the same development set. We evaluated the impact of the context
window size L to the word error rate (WER) when the hidden layer
size K is fixed using the same procedure described above. Table 2
summarizes our results. From Table 2 we observe that lowest
WERs can be obtained with L¼9 context windows if the hidden
layer size is large enough to take advantage of it.

Similar experiments were conducted using the solution (19)
(i.e., optimize for the observed data), which was initialized from
the closed-form solution (15) and was run for 10 iterations. In
Table 3 WER results with context window size L set to 1, 9, and 11

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Fig. 2. The effect of hidden layer size on word error rate (WER) with solution (15).
The horizontal axis is the hidden layer size.

Table 2
The effect of context window size on word error rate (WER) with solution (15).

Context window size K¼20 K¼39

1 28.80 31.91
3 27.09 28.66
9 27.22 25.73
11 28.08 25.91

Table 3
Effect of context window size and hidden layer size on WERs with solution (19).

Context window size K¼20 K¼39

1 28.66 31.49
9 27.06 25.68
11 28.41 25.73

K. Yao et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 5

Please cite this article as: K. Yao, et al., A fast maximum likelihood nonlinear feature transformation method for GMM–HMM
speaker adaptation, Neurocomputing (2013), http://dx.doi.org/10.1016/j.neucom.2013.02.050i

http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
Original Text:
Effect --

Original Text:
Hidden Layer Size --

Original Text:
Word Error Rate (--

Original Text:
Solution --

Original Text:
Horizontal Axis --

Original Text:
Effect --

Original Text:
Context Window Size --

Original Text:
Word Error Rate (--

Original Text:
Solution --

Original Text:
Hidden Layer Size --

Original Text:
Solution --

Original Text:
Gauss- 

Original Text:
GMM- 

Original Text:
10563 

Original Text:
delta- 

Original Text:
20 to 

Original Text:
9- 



and hidden layer size K set to 20 and 39 are reported. The step size
η was, respectively, set to 1� 10�2 for context window L¼1, 5�
10�3 for context window LAf9;11g with K¼20, and 1� 10�3 for
context window LAf9;11g with K¼39. In all these cases, using
9-frame context provides the best WER. These experiments cross
validate the recommendation of using 9–11 frames for neural
network speech recognition [2,24].

Remark 1. It is worthwhile to point out that most previously
developed methods [4,6,5,10,13] cannot take advantage of the
neighboring frames, which, indicated by Tables 2 and 3, to have
positive effect. [17] also benefits from the neighboring frames but
uses linear model.

Remark 2. Notice that the closed-form solution (15) converges in
one iteration and has similar performances as the iterative solu-
tion (19), which takes 10 iterations. Other existing methods [13]
use the gradient descent method, therefore is even slower than
the Gauss–Newton method used in the iterative solution (19).
We measured the real time factor (RTF) on one speaker with the
setup K¼39 and L¼9 that has the lowest WER. The solution (15)
has RTF of 0.22 and is real time. The solution (19) has RTF of 1.21.
The closed-form solution (15) therefore is desirable in conditions
such as fast adaptation.

4.3. Main results

Table 4 compares our proposed bias compensation approaches
with the SI system and fMLLR with bias compensation [10].
In these experiments we used 9-frames of input (351 input units),
20 hidden units and 39 output units. The α was set to 0.6 for the
proposed approaches. The step size η was set to 5� 10�3 and 1�
10�3 for hidden layer size K set to 20 and 39, respectively.

From Table 4 we observe that fMLLR with bias compensation
reduced WERs from 31.52%, achieved by the SI system, to 29.49%.
This reduction is statistically significant with significance level of
1:3� 10�3. With the hidden layer size K set to 20, using our
proposed approaches we can further reduce the WER to 27.22%
and 27.06%, respectively, with and without dropping the Jacobian
term. Compared to the fMLLR with bias compensation, our
approaches cut errors by 7.7% and 8.2%. These reductions are
significant, each with a significance level of 2:5� 10�4 and
8:7� 10�5.

Note that the method with closed-form solution (15) without
considering the Jacobian term achieved the similar performance as
that with Gauss–Newton method (19). This provides a significant
gain in efficiency since the closed-form solution is much faster
than the Gauss–Newton method. In fact, as shown in the table,
WER can be further reduced to 25.73% using the closed-form
solution (15) if 39, instead of 20, hidden units are used. This
translates to a relative WER reduction of 13.0% over the fMLLR
with bias compensation system and is statistically significant with
significance level of 9:5� 10�10 [25]. The method with Jacobian
term further reduced the WER to 25.68%, with the significance
level of 5:6� 10�10.

The tandem scheme proposed in Section 3.3 applies both bias
and rotation compensation. Table 5 compares the tandem scheme
with the closed-form and the Gauss–Newton method with affine
fMLLR. In these experiments a SHLNN with 9-frame input feature,
39 hidden units and 39 output units were used. The step size η
was set to 1� 10�3. As shown in this table, our proposed
approaches reduced WER to 22.80% and 22.68%, respectively, with
and without dropping the Jacobian term, from 24.03% achieved by
affine fMLLR. These results correspond to 5.1% and 5.6% relative
WER reductions with significance level of 3:5� 10�2 and
2:0� 10�2, respectively. Compared to the SI model, our proposed
methods cut WERs significantly by more than 27% with signifi-
cance level of zero.

5. Conclusions and discussions

In this paper, we have introduced a novel approach to train
single-hidden-layer neural networks to reduce mismatch between
training and testing for speaker adaptation of GMM–HMMs. The
neural network may be considered as a case of the recently proposed
extreme learning machine which uses randomly generated lower-
layer weights and linear output units. To estimate upper layer
weights, we have developed efficient closed-form solution and
Gauss–Newton methods. Our proposed approach enables compen-
sating for a time dependent bias and takes advantages of neighboring
observation frames. On a large vocabulary speech recognition task,
we show that the proposed approach can reduce word error rates by
more than 27% over a speaker-independent system. Our proposed
nonlinear adaptation approach, which uses a closed-form solution, is
also significantly faster than prior arts [13] that use gradient-based
methods such as back-propagation [26].

To speed up the adaptation process we have used randomly
generated lower-layer weights similar to the ELM. However, trade-
off may be made between the adaptation speed and the power of
the model. For example, instead of using random values we may
learn the lower-layer weights as well, possibly by exploiting the
constraint imposed by the closed-form relationship between the
weights of upper- and lower-layers. Alternatively we may stack
one ELM on top of another [16,15] via input–output concatenation
to increase the modeling power, which has been shown to
improve phone recognition accuracy over ELM [27,28]. We believe
that these extensions may further decrease the recognition error
rate, at the cost of increased adaptation time.

Appendix A

A.1. Derivation of an efficient closed-form solution

Since Σ�1
m is a diagonal matrix, Σ�1

m � hth
T
t is a block diagonal

matrix. We therefore have

vecðUÞ

¼ TK;D

∑mtγmðtÞs�1
m1 hth

T
t ⋯ 0

⋮ ⋱ ⋮
0 ⋯ ∑mtγmðtÞs�1

mDhth
T
t

0BB@
1CCA

�1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Table 4
Compare the proposed approaches with SI model and the fMLLR with bias
compensation.Q5

WERs (%)

SI model (w/o adaptation) 31.52
fMLLR with bias compensation 29.49
Proposed approach with closed-form solution (K¼20) 27.22
Proposed approach with Gauss–Newton method (K¼20) 27.06
Proposed approach with closed-form solution (K¼39) 25.73
Proposed approach with Gauss–Newton method (K¼39) 25.68

Table 5
Compare the tandem scheme and the affine fMLLR.

WERs (%)

Affine fMLLR 24.03
Tandem scheme with closed-form solution 22.80
Tandem scheme with Gauss–Newton method 22.68

K. Yao et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎6

Please cite this article as: K. Yao, et al., A fast maximum likelihood nonlinear feature transformation method for GMM–HMM
speaker adaptation, Neurocomputing (2013), http://dx.doi.org/10.1016/j.neucom.2013.02.050i

http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
Original Text:
Proposed Approaches --

Original Text:
proposed --

Original Text:
proposed --

Original Text:
Gauss- --

Original Text:
proposed --

Original Text:
proposed --

Original Text:
Gauss- --

Original Text:
Tandem Scheme --

Original Text:
Affine --

Original Text:
affine --

Original Text:
tandem --

Original Text:
tandem --

Original Text:
Gauss- --

Original Text:
was respectively 

Original Text:
9- 

Original Text:
Gauss- 

Original Text:
Gauss- 

Original Text:
Gauss- 

Original Text:
Gauss- 

Original Text:
was 

Original Text:
backpropogation 

Original Text:
input- 

Original Text:
Please provide heading for the first column in Tables 4 and 5.



�TD;Kvec
∂Q
∂U

� �
U ¼ 0j

¼ TK;D

∑mtγmðtÞs�1
m1 hth

T
t ⋯ 0

⋮ ⋱ ⋮
0 ⋯ ∑mtγmðtÞs�1

mDhth
T
t

0BB@
1CCA

�1

�vec
∂Q
∂U

� �T
 !

U ¼ 0j ð22Þ

Multiplying the above equation with T�1
K ;D on both sides, we get

T�1
K ;DvecðUÞ

¼
∑mtγmðtÞs�1

m1 hth
T
t ⋯ 0

⋮ ⋱ ⋮
0 ⋯ ∑mtγmðtÞs�1

mDhth
T
t

0BB@
1CCA

�1

�vec
∂Q
∂U

� �T
 !

U ¼ 0j

¼ TD;KvecðUÞ
¼ vecðUT Þ ð23Þ

We therefore have

vecðUT Þ

¼
∑mtγmðtÞs�1

m1 hth
T
t ⋯ 0

⋮ ⋱ ⋮
0 ⋯ ∑mtγmðtÞs�1

mDhth
T
t

0BB@
1CCA

�1

�vec
∂Q
∂U

� �T
 !

U ¼ 0j

¼
∑mtγmðtÞs�1

m1 hth
T
t

� ��1
⋯ 0

⋮ ⋱ ⋮

0 ⋯ ∑mtγmðtÞs�1
mDhth

T
t

� ��1

0BBBB@
1CCCCA

�vec
∂Q
∂U

� �T
 !�����

U ¼ 0

ð24Þ

This indicates that each row of U, which is a vector of dimension K,
can be updated independently from other rows as in (15).

A.2. Derivation of an efficient Gauss–Newton algorithm when
considering Jacobian term

Using permutation matrix, we rewrite the right hand side
of (8) as

vecðJ�T
t ÞT ½αðHtðIK�K �HtÞWcÞT � ID�D�
¼ vecðJ�T

t ÞT ½αTDDID�D � ðHtðIK�K �HtÞWcÞT �TDK

¼ αðTT
DDvecðJ�T

t ÞÞT ½ID�D � ðHtðIK�K �HtÞWcÞT �TDK

¼ αvecðJ�1
t ÞT ½ID�D � ðHtðIK�K�HtÞWcÞT �TDK

¼ αðTT
DK ðvecðJ�1

t ÞT ID�D � ðHtðIK�K �HtÞWcÞT ÞT ÞT

¼ αðTKDðvecðJ�1
t ÞT ID�D � ðHtðIK�K �HtÞWcÞT ÞT ÞT

¼ αðvecðJ�1
t ÞT ID�D � ðHtðIK�K �HtÞWcÞT ÞT ð25Þ

where TDK is a permutation matrix. The above is a vector
of dimension 1� DK .

A.3. Auxiliary scores by fMLLR

fMLLRs can be implemented either as a bias transformation or
an affine transformation. In the case of bias transformation, its

auxiliary score is

Q ¼ � 1
2
∑
mt
ðb�ρmtÞTΣ�1

m ðb�ρmtÞ ð26Þ

where b is a global bias to be added to the input observation xt.
In the case of affine transformation, its auxiliary score is as

follows:

Q ¼ β log ðjAjÞ� 1
2
∑
d
ðwjGjwT

j �2wjkjÞ�
1
2
∑
mt
γmðtÞμT

mΣ�1
m μm ð27Þ

where wj is the j-th row of the transformation ½A;b�. Gj and kj are
the second and first order statistics for fMLLR estimations [10].

References

[1] L.R. Rabiner, A tutorial on Hidden Markov Models and selected applications in
speech recognition, Proc. IEEE 77 (February) (1989) 257–286.

[2] G.E. Dahl, D. Yu, L. Deng, A. Acero, Context-dependent pre-trained deep neural
networks for large vocabulary speech recognition, IEEE Trans. Audio Speech
Lang. Process. 20 (1) (2012) 30–42.

[3] X. Huang, A. Acero, H.-W. Hong, Spoken Language Processing: A Guide to
Theory, Algorithm, and System Development, Prentice Hall, 2001.

[4] M. Gales, S. Young, S.J. Young, Robust continuous speech recognition using
parallel model combination, IEEE Trans. Speech Audio Process. 4 (1996)
352–359.

[5] Y. Gong, A method of joint compensation of additive and convolutive
distortions for speaker-independent speech recognition, IEEE Trans. Speech
Audio Process. 13 (5) (2005) 975–983.

[6] L. Deng, J. Droppo, A. Acero, Enhancement of log-spectra of speech using a
phase-sensitive model of the acoustic environment, IEEE Trans. Speech Audio
Process. 12 (13) (2004) 133–143.

[7] L. Deng, A. Acero, L. Jiang, J. Droppo, X. Huang, High-performance robust
speech recognition using stereo training data, in: Proceedings of the ICASSP,
2001, pp. 301–304.

[8] M. Afify, X. Cui, Y. Gao, Stereo-based stochastic mapping for robust speech
recognition, IEEE Trans. Audio Speech Lang. Process. 17 (7) (2009) 1325–1334.

[9] A. Sankar, C.-H. Lee, A maximum-likelihood approach to stochastic matching
for robust speech recognition, IEEE Trans. Speech Audio Process. 4 (1996)
190–202.

[10] M.J.F. Gales, Maximum likelihood linear transformations for HMM-based
speech recognition, Comput. Speech Lang. 12 (1998) 75–98.

[11] K. Yao, L. Netsch, V. Viswanathan, Speaker-independent name recognition
using improved compensation and acoustic modeling methods for mobile
applications, in: Proceedings of the ICASSP, 2006, pp. 173–176.

[12] J. Li, L. Deng, D. Yu, Y. Gong, A. Acero, High-performance HMM adaptation with
joint compensation of additive and convolutive distortions via vector Taylor
serirs, in: ASRU, 2007, pp. 67–70.

[13] A.C. Surendran, C.-H. Lee, M. Rahim, Nonlinear compensation for stochastic
matching, IEEE Trans. Audio Speech Lang. Process. 7 (6) (1999) 643–655.

[14] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and
applications, Neurocomputing 70 (1) (2006) 489–501.

[15] D. Yu, L. Deng, Accelerated parallelizable neural network learning algorithm
for speech recognition, in: INTERSPEECH, 2011, pp. 2281–2284.

[16] L. Deng, D. Yu, Deep convex net: a scalable architecture for speech pattern
classification, in: INTERSPEECH, 2011, pp. 2285–2288.

[17] J. Huang, K. Visweswariah, P. Olsen, V. Goel, Front–end feature transforms with
context filtering for speaker adaptation, in: ICASSP, 2011, pp. 4440–4443.

[18] P. Fackler, Notes on Matrix Calculus, North Carolina State University, 2005.
[19] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Gauss–Jordan

elimination, in: Numerical Recipes in FORTRAN: The Art of Scientific Comput-
ing, 2 edition, Chapter 2.1, Cambridge University Press, 1992, pp. 27–32.

[20] D. Povey, A. Ghoshal, The Kaldi speech recognition toolkit, in: IEEE ASRU, 2011.
[21] M. Mohri, F. Pereira, M. Riley, Weighted finite-state transducers in speech

recognition, Comput. Speech Lang. 16 (1) (2002) 69–88.
[22] G. Feng, G.-B. Huang, Q. Lin, R. Gay, Error minimized extreme learning

machine with growth of hidden nodes and incremental learning, IEEE Trans.
Neural Networks 20 (2009) 1352–1357.

[23] D.S. Yeung, W.W. Ng, D. Wang, E.C.C. Tsang, X.-Z. Wang, Localized general-
ization error model and its application to architecture selection for radial basis
function neural network, IEEE Trans. Neural Networks 18 (2007) 1294–1305.

[24] A.-R. Mohamed, D. Yu, L. Deng, Investigation of full-sequence training of deep
belief networks for speech recognition, in: INTERSPEECH, 2010, pp. 2846–
2849.

[25] L. Gillick, S. Cox, Some statistical issues in the comparison of speech
recognition algorithms, in: ICASSP, 1989, pp. 532–535.

[26] A.E. Bryson, Y.-C. Ho, Applied Optimal Control: Optimization, Estimation,
and Control, Blaisdell Publishing Company or Xerox College Publishing,
1969, p. 481.

[27] L. Deng, D. Yu, J. Platt, Scalable stacking and learning for building deep
architectures, in: ICASSP, 2012, pp. 2133–2136.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

K. Yao et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7

Please cite this article as: K. Yao, et al., A fast maximum likelihood nonlinear feature transformation method for GMM–HMM
speaker adaptation, Neurocomputing (2013), http://dx.doi.org/10.1016/j.neucom.2013.02.050i

http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref1
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref1
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref2
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref2
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref2
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref3
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref3
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref4
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref4
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref4
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref5
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref5
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref5
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref6
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref6
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref6
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0005
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0005
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0005
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref8
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref8
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref9
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref9
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref9
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref10
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref10
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0010
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0010
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0010
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0015
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0015
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0015
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref13
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref13
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref14
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref14
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0020
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0020
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0025
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0025
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0030
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0030
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref18
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0035
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0035
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0035
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0040
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref21
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref21
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref22
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref22
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref22
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref23
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref23
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref23
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0045
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0045
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0045
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0050
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0050
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref26
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref26
http://refhub.elsevier.com/S0925-2312(13)01007-2/sbref26
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0055
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0055
http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
Original Text:
Gauss- 

Original Text:
Proceedings of the 

Original Text:
on Audio, Speech, and Language Processing

Original Text:
Transactions on 

Original Text:
and 

Original Text:
Processing

Original Text:
on 

Original Text:
Processing

Original Text:
on 

Original Text:
and 

Original Text:
on Audio, 

Original Text:
and Language Processing

Original Text:
on 

Original Text:
and 

Original Text:
Processing

Original Text:
Computer, 

Original Text:
and Language

Original Text:
on Audio, 

Original Text:
and Language Processing

Original Text:
Theory 

Original Text:
Front- 

Original Text:
Gauss- 

Original Text:
Computer, 

Original Text:
and Language

Original Text:
on 



[28] B. Hutchinson, L. Deng, D. Yu, A deep architecture with bilinear modeling of
hidden representations: applications to phonetic recognition, in: ICASSP, 2012,
pp. 4805–4808.

Kaisheng Yao received his Ph.D. degree on Communica-
tion and Information Systems from Tsinghua University,
China, in 2000. From 2000 to 2002, he worked as an
invited researcher at Advanced Telecommunication
Research Lab in Japan. From 2002 to 2004, he was a
post-doc researcher at University of California at San
Diego. From 2004 to 2008, he was with Texas Instruments.
Since 2008, he has been with Microsoft. His research and
development interests include speech, language, and
image processing, machine learning, data mining, pattern
recognition and signal processing. He has published 50
papers in these areas and is the inventor/coinventor of
more than 20 granted/pending patents.

Dong Yu joined Microsoft Corporation in 1998 and
Microsoft Speech Research Group in 2002, where he is
currently a senior researcher. His research interests
include speech processing, robust speech recognition,
discriminative training, and machine learning. His most
recent work focuses on deep learning and its applica-
tions to large vocabulary speech recognition. He has
published over 100 papers in these areas and is the
inventor/coinventor of more than 40 granted/pending
patents.

He is a senior member of IEEE. He is currently serving
as a member of the IEEE Speech and Language Proces-
sing Technical Committee (2013) and an associate

editor of IEEE transactions on audio, speech, and language processing (2011)Q3 . He
has served as an associate editor of IEEE signal processing magazine (2008–2011)
and the lead guest editor of IEEE transactions on audio, speech, and language
processing – special issue on deep learning for speech and language processing
(2010–2011)Q4 .

Li Deng received the Bachelor degree from the Uni-
versity of Science and Technology of China, and
received the Master and Ph.D. degrees from the Uni-
versity of Wisconsin, Madison. He joined the Depart-
ment of Electrical and Computer Engineering,
University of Waterloo, Ontario, Canada in 1989 as an
Assistant Professor, where he became a Full Professor
with tenure in 1996. In 1999, he joined Microsoft
Research, Redmond, WA as a Senior Researcher, where
he is currently a Principal Researcher. Since 2000, he
has also been an Affiliate Full Professor and graduate
committee member in the Department of Electrical
Engineering at University of Washington, Seattle. Prior

to MSR, he also worked or taught at Massachusetts Institute of Technology, ATR
Interpreting Telecom. Research Lab. (Kyoto, Japan), and HKUST. His current (and
past) research activities include deep learning and machine intelligence, deep
neural networks for speech and related information processing, automatic speech
and speaker recognition, spoken language identification and understanding,
speech-to-speech translation, machine translation, language modeling, information
retrieval, neural information processing, dynamic systems, machine learning and
optimization, parallel and distributed computing, graphical models, audio and
acoustic signal processing, image analysis and recognition, compressive sensing,
statistical signal processing, digital communication, human speech production and
perception, acoustic phonetics, auditory speech processing, auditory physiology
and modeling, noise robust speech processing, speech synthesis and enhancement,
multimedia signal processing, and multimodal human-computer interaction. In
these areas, he has published over 300 refereed papers in leading journals and
conferences and 3 books, and has given keynotes, tutorials, and distinguished
lectures worldwide. His recent technical work (since 2009) on industry-scale deep
learning with colleagues and collaborators and his leadership in this emerging area
have created significant impact on speech recognition, signal processing, and
related applications with high practical value.

He has been granted over 60 US or international patents in acoustics/audio,
speech/language technology, machine learning (deep learning), and related fields.
He received numerous awards/honors bestowed by IEEE, ISCA, ASA, Microsoft, and
other organizations. He is a Fellow of the Acoustical Society of America, a Fellow of
the IEEE, and a Fellow of ISCA. He served on the Board of Governors of the IEEE
Signal Processing Society (2008–2010). More recently, he served as Editor-in-Chief
for the IEEE Signal Processing Magazine (2009–2011), which, according to the
Thomson Reuters Journal Citation Report released on June 2010 and 2011, ranks
first in both years among all IEEE publications (127 in total) and all publications
within the Electrical and Electronics Engineering Category worldwide (247 in total)
in terms of its impact factor: 4.9 and 6.0, and for which he received the 2011 IEEE
SPS Meritorious Service Award. He currently serves as an Editor-in-Chief for the
IEEE Transactions on Audio, Speech and Langauge Processing 2012–2014.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

K. Yao et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎8

Please cite this article as: K. Yao, et al., A fast maximum likelihood nonlinear feature transformation method for GMM–HMM
speaker adaptation, Neurocomputing (2013), http://dx.doi.org/10.1016/j.neucom.2013.02.050i

http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0060
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0060
http://refhub.elsevier.com/S0925-2312(13)01007-2/othref0060
http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
http://dx.doi.org/10.1016/j.neucom.2013.02.050
Original Text:
 

Original Text:
Please check the years 2011 and 2013 in the biography of author Dong Yu.

Original Text:
Please provide biography for the author â•œYifan Gongâ•š.


	A fast maximum likelihood nonlinear feature transformation method for GMM–HMM speaker adaptation
	Introduction
	Speaker adaptation through nonlinear feature transformation
	The algorithms for maximum likelihood estimation
	Maximum likelihood estimation on transformed features
	Maximum likelihood estimation on observed features
	A tandem scheme
	Computational costs
	Other implementation considerations

	Experiments
	System descriptions
	Effects of hidden layer and context window size
	Hidden layer size
	Context window size

	Main results

	Conclusions and discussions
	Derivation of an efficient closed-form solution
	Derivation of an efficient Gauss–Newton algorithm when considering Jacobian term
	Auxiliary scores by fMLLR

	References


	myCheckbox1: Off


