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Abstract
Minwise hashing is a standard technique in the context of search for efficiently
computing set similarities. The recent development of b-bit minwise hashing pro-
vides a substantial improvement by storing only the lowest b bits of each hashed
value. In this paper, we demonstrate that b-bit minwise hashing can be natu-
rally integrated with linear learning algorithms such as linear SVM and logistic
regression, to solve large-scale and high-dimensional statistical learning tasks, es-
pecially when the data do not fit in memory. We compare b-bit minwise hashing
with the Count-Min (CM) and Vowpal Wabbit (VW) algorithms, which have es-
sentially the same variances as random projections. Our theoretical and empirical
comparisons illustrate that b-bit minwise hashing is significantly more accurate (at
the same storage cost) than VW (and random projections) for binary data.

1 Introduction
With the advent of the Internet, many machine learning applications are faced with very large and
inherently high-dimensional datasets, resulting in challenges in scaling up training algorithms and
storing the data. Especially in the context of search and machine translation, corpus sizes used in
industrial practice have long exceeded the main memory capacity of single machine. For example,
[24] discusses training sets with 1011 items and 109 distinct features, requiring novel algorithmic
approaches and architectures. As a consequence, there has been a renewed emphasis on scaling up
machine learning techniques by using massively parallel architectures; however, methods relying
solely on parallelism can be expensive (both with regards to hardware requirements and energy
costs) and often induce significant additional communication and data distribution overhead.

This work approaches the challenges posed by large datasets by leveraging techniques from the area
of similarity search [1], where similar increases in data sizes have made the storage and computa-
tional requirements for computing exact distances prohibitive, thus making data representations that
allow compact storage and efficient approximate similarity computation necessary.

The method of b-bit minwise hashing [18–20] is a recent progress for efficiently (in both time and
space) computing resemblances among extremely high-dimensional (e.g., 264) binary vectors. In
this paper, we show that b-bit minwise hashing can be seamlessly integrated with linear Support
Vector Machine (SVM) [9, 13, 14, 23, 26] and logistic regression solvers.

2 Review of Minwise Hashing and b-Bit Minwise Hashing
Minwise hashing [4, 5] has been successfully applied to a wide range of real-world problems [2, 4–
8, 11, 12, 22], for efficiently computing set similarities. Minwise hashing mainly works well with
binary data, which can be viewed either as 0/1 vectors or as sets. Given two sets, S1, S2 ⊆ Ω =
{0, 1, 2, ..., D − 1}, a widely used measure of similarity is the resemblance R:

R =
|S1 ∩ S2|
|S1 ∪ S2| =

a

f1 + f2 − a
, where f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2|. (1)

Applying a random permutation π : Ω → Ω on S1 and S2, the collision probability is simply

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|
|S1 ∪ S2| = R. (2)

One can repeat the permutation k times: π1, π2, ..., πk to estimate R without bias. The common
practice is to store each hashed value, e.g., min(π(S1)) and min(π(S2)), using 64 bits [10]. The
storage (and computational) cost will be prohibitive in truly large-scale (industry) applications [21].

∗A longer version will appear in the NIPS 2011 main conference. This work is supported by NSF (DMS-
0808864), ONR (YIP-N000140910911), and a grant from Microsoft.
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b-bit minwise hashing [18] provides a strikingly simple solution to this (storage and computational)
problem by storing only the lowest b bits (instead of 64 bits) of each hashed value.

For convenience, denote z1 = min (π (S1)) and z2 = min (π (S2)), and denote z
(b)
1 (z(b)

2 ) the
integer value corresponding to the lowest b bits of of z1 (z2). For example, if z1 = 7, then z

(2)
1 = 3.

Theorem 1 [18] Assume D is large.

Pb = Pr
(
z
(b)
1 = z

(b)
2

)
= C1,b + (1− C2,b) R (3)

r1 =
f1

D
, r2 =

f2

D
, f1 = |S1|, f2 = |S2|

C1,b = A1,b
r2

r1 + r2
+ A2,b

r1

r1 + r2
, C2,b = A1,b

r1

r1 + r2
+ A2,b

r2

r1 + r2
,

A1,b =
r1 [1− r1]

2b−1

1− [1− r1]
2b

, A2,b =
r2 [1− r2]

2b−1

1− [1− r2]
2b

.¤

This (approximate) formula (3) is remarkably accurate, even for very small D; see Figure 1 in [16].

We can then estimate Pb (and R) from k independent permutations:

R̂b =
P̂b − C1,b

1− C2,b
, Var

(
R̂b

)
=

Var
(
P̂b

)

[1− C2,b]
2 =

1

k

[C1,b + (1− C2,b)R] [1− C1,b − (1− C2,b)R]

[1− C2,b]
2 (4)

It turns out that our method only needs P̂b for linear learning, i.e., no need to explicitly estimate R.

3 Kernels from Minwise Hashing b-Bit Minwise Hashing
Definition: A symmetric n×n matrix K satisfying

∑
ij cicjKij ≥ 0, for all real vectors c is called

positive definite (PD). Note that here we do not differentiate PD from nonnegative definite.

Theorem 2 Consider n sets S1, ..., Sn ⊆ Ω = {0, 1, ..., D − 1}. Apply one permutation π to each
set. Define zi = min{π(Si)} and z

(b)
i the lowest b bits of zi. The following three matrices are PD.

1. The resemblance matrix R ∈ Rn×n, whose (i, j)-th entry is the resemblance between set
Si and set Sj: Rij = |Si∩Sj |

|Si∪Sj | = |Si∩Sj |
|Si|+|Sj |−|Si∩Sj | .

2. The minwise hashing matrix M ∈ Rn×n: Mij = 1{zi = zj}.

3. The b-bit minwise hashing matrix M(b) ∈ Rn×n: M
(b)
ij = 1

{
z
(b)
i = z

(b)
j

}
.

Consequently, consider k independent permutations and denote M(b)
(s) the b-bit minwise hashing

matrix generated by the s-th permutation. Then the summation
∑k

s=1 M(b)
(s) is also PD.¤

4 Integrating b-Bit Minwise Hashing with (Linear) Learning Algorithms
Linear algorithms such as linear SVM and logistic regression have become very powerful and ex-
tremely popular. Representative software packages include SVMperf [14], Pegasos [23], Bottou’s
SGD SVM [3], and LIBLINEAR [9]. Given a dataset {(xi, yi)}n

i=1, xi ∈ RD, yi ∈ {−1, 1}. The
L2-regularized linear SVM solves the following optimization problem):

min
w

1

2
wTw + C

n∑
i=1

max
{

1− yiw
Txi, 0

}
, (5)

and the L2-regularized logistic regression solves a similar problem:

min
w

1

2
wTw + C

n∑
i=1

log
(
1 + e−yiw

Txi

)
. (6)

Here C > 0 is a regularization parameter. Since our purpose is to demonstrate the effectiveness of
our proposed scheme using b-bit hashing, we simply provide results for a wide range of C values
and assume that the best performance is achievable if we conduct cross-validations.
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In our approach, we apply k random permutations on each feature vector xi and store the lowest b
bits of each hashed value. This way, we obtain a new dataset which can be stored using merely nbk
bits. At run-time, we expand each new data point into a 2b × k-length vector with exactly k 1’s.

For example, suppose k = 3 and the hashed values are originally {12013, 25964, 20191}, whose bi-
nary digits are {010111011101101, 110010101101100, 100111011011111}. Consider b = 2. Then
the binary digits are stored as {01, 00, 11} (which corresponds to {1, 0, 3} in decimals). At run-time,
we need to expand them into a vector of length 2bk = 12, to be {0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0},
which will be the new feature vector fed to a solver such as LIBLINEAR. Clearly, this expansion is
directly inspired by the proof that the b-bit minwise hashing matrix is PD in Theorem 2.

5 Experimental Results on Webspam Dataset
Our experiment settings closely follow the work in [26]. They conducted experiments on three
datasets, of which only the webspam dataset is public and reasonably high-dimensional (n =
350000, D = 16609143). Therefore, our experiments focus on webspam. Following [26], we
randomly selected 20% of samples for testing and used the remaining 80% samples for training.

We chose LIBLINEAR as the workhorse to demonstrate the effectiveness of our algorithm. All
experiments were conducted on workstations with Xeon(R) CPU (W5590@3.33GHz) and 48GB
RAM, under Windows 7 System. Thus, in our case, the original data (about 24GB in LIBSVM
format) fit in memory. In applications when the data do not fit in memory, we expect that b-bit
hashing will be even more substantially advantageous, because the hashed data are relatively very
small. In fact, our experimental results will show that for this dataset, using k = 200 and b = 8 can
achieve similar testing accuracies as using the original data. The effective storage for the reduced
dataset (with 350K examples, using k = 200 and b = 8) would be merely about 70MB.

5.1 Experimental Results on Nonlinear (Kernel) SVM
We implemented a new resemblance kernel function and tried to use LIBSVM to train an SVM using
the webspam dataset. The training time well exceeded 24 hours. Fortunately, using b-bit minswise
hashing to estimate the resemblance kernels provides a substantial improvement. For example, with
k = 150, b = 4, and C = 1, the training time is about 5185 seconds and the testing accuracy is quite
close to the best results given by LIBLINEAR on the original webspam data.

5.2 Experimental Results on Linear SVM
There is an important tuning parameter C. To capture the best performance and ensure repeatability,
we experimented with a wide range of C values (from 10−3 to 102) with fine spacings in [0.1, 10].

We experimented with k = 10 to k = 500, and b = 1, 2, 4, 6, 8, 10, and 16. Figure 1 (average)
and Figure 2 (std, standard deviation) provide the test accuracies. Figure 1 demonstrates that using
b ≥ 8 and k ≥ 200 achieves similar test accuracies as using the original data. Since our method
is randomized, we repeated every experiment 50 times. We report both the mean and std values.
Figure 2 illustrates that the stds are very small, especially with b ≥ 4. In other words, our algorithm
produces stable predictions. For this dataset, the best performances were usually achieved at C ≥ 1.
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Figure 1: SVM test accuracy (averaged over 50 repetitions). With k ≥ 200 and b ≥ 8. b-bit
hashing achieves very similar accuracies as using the original data (dashed, red if color is available).
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Figure 2: SVM test accuracy (std). The standard deviations are computed from 50 repetitions.
When b ≥ 8, the standard deviations become extremely small (e.g., 0.02%).

Compared with the original training time (about 100 seconds), Figure 3 (upper panels) shows that
our method only needs about 3 seconds (near C = 1). Note that our reported training time did not
include data loading (about 12 minutes for the original data and 10 seconds for the hashed data).

Compared with the original testing time (about 150 seconds), Figure 3 (bottom panels) shows that
our method needs merely about 2 seconds. Note that the testing time includes both the data loading
time, as designed by LIBLINEAR. The efficiency of testing may be very important in practice, for
example, when the classifier is deployed in a user-facing application (such as search), while the cost
of training or preprocessing may be less critical and can be conducted off-line.
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Figure 3: SVM training time (upper panels) and testing time (bottom panels). The original costs
are plotted using dashed (red, if color is available) curves.

5.3 Experimental Results on Logistic Regression
Figure 4 presents the test accuracies and training time using logistic regression. Again, with k ≥ 200
and b ≥ 8, b-bit minwise hashing can achieve similar test accuracies as using the original data. The
training time is substantially reduced, from about 1000 seconds to about 30 seconds only.
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Figure 4: Logistic regression test accuracy (upper panels) and training time (bottom panels).

In summary, it appears b-bit hashing is highly effective in reducing the data size and speeding up the
training (and testing), for both SVM and logistic regression. We notice that when using b = 16, the
training time can be much larger than using b ≤ 8. Interestingly, we find that b-bit hashing can be
easily combined with Vowpal Wabbit (VW) [25] to further reduce the training time when b is large.
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6 Comparing b-Bit Minwise Hashing with VW (and Random Projections)
We implemented the VW hashing algorithm [25] (not the VW online learning platform) and exper-
imented it on the same webspam dataset. Figure 5 shows that b-bit minwise hashing is substantially
more accurate (at the same sample size k) and requires significantly less training time (to achieve
the same accuracy). Basically, for 8-bit minwise hashing with k = 200 achieves about the same test
accuracy as VW with k = 104 ∼ 106 (note that we only stored the non-zeros).
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Figure 5: The dashed (red if color is available) curves represent b-bit minwise hashing results (only
for k ≤ 500) while solid curves for VW. We display results for C = 0.01, 0.1, 1, 10, 100.

This empirical finding is not surprising, because the variance of b-bit hashing is usually substantially
smaller than the variance of VW (and random projections).

7 More Recent Work
A technical report [17] studied a number of key issues concerning the deployment of b-bit minwise
hashing in the context of similarity computation and learning for large-scale industrial applications.

The first issue we studied was the effect of using practical hash functions in place of the fully ran-
dom permutations assumed in the theoretical results. While this issue has been studied in theory
(mostly for the derivation of worst-case results that do not necessarily reflect behavior in practice),
this work examined the resulting effects on the accuracy of learning and similarity computation in
practice. For this purpose, we conducted an extensive experimental evaluation using large-scale data
sets and a number of different hash functions as well as full permutations. We first experimented
with the original resemblance estimator of b-bit minwise hashing on English word vectors using 2U
(2-universal) and 4U hash functions and observed that, as long as the data are not too dense, the esti-
mates can match the performance predicted under the assumption of perfectly random permutations.
Then we experimented with linear SVM and logistic regression on the webspam dataset as well as
the (expanded) rcv1 dataset (of about 200GB in LIBSVM format and 1 billion features). For small
b (e.g., 1 or 2), the limited randomness has some noticeable (albeit quite small) impact on the test
accuracies of the learning algorithms. 2U hashing and 4U hashing produced very similar accuracy
results, while 4U requires substantially more computational overhead than 2U.

The second issue we explored was the fast computation of minwise hashes using graphics proces-
sors. As we were able to show, the minwise hashing algorithm itself is very well suited towards the
properties of current GPU architectures, in particular their massive parallelism and SIMD instruction
processing, while minimizing the impact of their constraints (most notably the limited bandwidth
available for main memory data transfer). We observed that the new GPU-based implementation
resulted in speed-ups of > 20 folds for the minwise hashing computation, thereby making the data
loading time the main bottleneck. The observed gains are relevant for any large-scale instance of the
numerous applications of (b-bit) minwise hashing.

The final issue we studied was the application of b-bit minwise hashing to online learning tech-
niques, which are gaining momentum in the web context, as the size of training sets often exceed
the available main memory capacity; we were able to show that b-bit minwise hashing provides
an effective dimensionality reduction scheme, thereby allowing applications to store models that
would otherwise not fit the available memory (note that the memory requirements of models are an
important concern in search as the user-facing web servers typically have to host a number of differ-
ent machine-learning models which are invoked for incoming queries). More importantly, the use
of b-minwise hashing substantially reduced data loading time during training, thereby speeding up
training times significantly (which is important, as many online learning algorithms require a large
number of training epochs until they reach sufficient accuracy).
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8 Conclusion
As data sizes continue to grow faster than the memory and computational power, statistical learning
tasks in industrial practice are increasingly faced with training datasets that exceed the resources on
a single server. A number of approaches have been proposed that address this by either scaling out
the training process or partitioning the data, but both solutions can be expensive.

In this paper, we propose a compact representation of sparse, binary data sets based on b-bit minwise
hashing, which can be naturally integrated with linear learning algorithms such as linear SVM and
logistic regression, leading to dramatic improvements in training time and/or resource requirements.
We also compare b-bit minwise hashing with the Count-Min (CM) sketch and Vowpal Wabbit (VW)
algorithms, which, according to our analysis, all have (essentially) the same variances as random
projections [15]. Our theoretical and empirical comparisons illustrate that b-bit minwise hashing is
significantly more accurate (at the same storage) for binary data. There are various limitations (e.g.,
expensive preprocessing) in our proposed method, leaving ample room for future research. Some of
these issues have been studied in a very recent technical report [17].
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