
Hashing Algorithms for Large-Scale Learning

Ping Li
Cornell University

pingli@cornell.edu

Anshumali Shrivastava
Cornell University

anshu@cs.cornell.edu

Joshua Moore
Cornell University

jlmo@cs.cornell.edu

Arnd Christian König
Microsoft Research

chrisko@microsoft.com

Abstract
Minwise hashing is a standard technique in the context of search for efficiently
computing set similarities. The recent development of b-bit minwise hashing pro-
vides a substantial improvement by storing only the lowest b bits of each hashed
value. In this paper, we demonstrate that b-bit minwise hashing can be natu-
rally integrated with linear learning algorithms such as linear SVM and logistic
regression, to solve large-scale and high-dimensional statistical learning tasks, es-
pecially when the data do not fit in memory. We compare b-bit minwise hashing
with the Count-Min (CM) and Vowpal Wabbit (VW) algorithms, which have es-
sentially the same variances as random projections. Our theoretical and empirical
comparisons illustrate that b-bit minwise hashing is significantly more accurate (at
the same storage cost) than VW (and random projections) for binary data.

1 Introduction
With the advent of the Internet, many machine learning applications are faced with very large and
inherently high-dimensional datasets, resulting in challenges in scaling up training algorithms and
storing the data. Especially in the context of search and machine translation, corpus sizes used in
industrial practice have long exceeded the main memory capacity of single machine. For example,
[33] discusses training sets with 1011 items and 109 distinct features, requiring novel algorithmic
approaches and architectures. As a consequence, there has been a renewed emphasis on scaling up
machine learning techniques by using massively parallel architectures; however, methods relying
solely on parallelism can be expensive (both with regards to hardware requirements and energy
costs) and often induce significant additional communication and data distribution overhead.

This work approaches the challenges posed by large datasets by leveraging techniques from the area
of similarity search [2], where similar increases in data sizes have made the storage and computa-
tional requirements for computing exact distances prohibitive, thus making data representations that
allow compact storage and efficient approximate similarity computation necessary.

The method of b-bit minwise hashing [26–28] is a recent progress for efficiently (in both time and
space) computing resemblances among extremely high-dimensional (e.g., 264) binary vectors. In
this paper, we show that b-bit minwise hashing can be seamlessly integrated with linear Support
Vector Machine (SVM) [13, 18, 20, 31, 35] and logistic regression solvers.

1.1 Ultra High-Dimensional Large Datasets and Memory Bottlenecks

In the context of search, a standard procedure to represent documents (e.g., Web pages) is to use
w-shingles (i.e., w contiguous words), where w ≥ 5 in several studies [6,7,14]. This procedure can
generate datasets of extremely high dimensions. For example, suppose we only consider 105 com-
mon English words. Using w = 5 may require the size of dictionary Ω to be D = |Ω| = 1025 = 283.
In practice, D = 264 often suffices, as the number of available documents may not be large enough
to exhaust the dictionary. For w-shingle data, normally only abscence/presence (0/1) information
is used, as it is known that word frequency distributions within documents approximately follow
a power-law [3], meaning that most single terms occur rarely, thereby making a w-shingle is un-
likely to occur more than once in a document. Interestingly, even when the data are not too high-
dimensional, empirical studies [8, 17, 19] achieved good performance with binary-quantized data.

When the data can fit in memory, linear SVM training is often extremely efficient after the data are
loaded into the memory. It is however often the case that, for very large datasets, the data loading

1

time dominates the computing time for solving the SVM problem [35]. A more severe problem
arises when the data can not fit in memory. This situation can be common in practice. The publicly
available webspam dataset (in LIBSVM format) needs about 24GB disk space, which exceeds the
memory capacity of many desktop PCs. Note that webspam, which contains only 350,000 docu-
ments represented by 3-shingles, is still very small compared to industry applications [33].

1.2 Our Proposal
We propose a solution which leverages b-bit minwise hashing. Our approach assumes the data
vectors are binary, high-dimensional, and relatively sparse, which is generally true of text documents
represented via shingles. We apply b-bit minwise hashing to obtain a compact representation of the
original data. In order to use the technique for efficient learning, we have to address several issues:

• We need to prove that the matrices generated by b-bit minwise hashing are positive definite,
which will provide the solid foundation for our proposed solution.

• If we use b-bit minwise hashing to estimate the resemblance, which is nonlinear, how can
we effectively convert this nonlinear problem into a linear problem?

• Compared to other hashing techniques such as random projections, Count-Min (CM)
sketch [11], or Vowpal Wabbit (VW) [32, 34], does our approach exhibits advantages?

It turns out that our proof in the next section that b-bit hashing matrices are positive definite naturally
provides the construction for converting the otherwise nonlinear SVM problem into linear SVM.

2 Review of Minwise Hashing and b-Bit Minwise Hashing
Minwise hashing [6,7] has been successfully applied to a wide range of real-world problems [4,6,7,
9, 10, 12, 15, 16, 30], for efficiently computing set similarities. Minwise hashing mainly works well
with binary data, which can be viewed either as 0/1 vectors or as sets. Given two sets, S1, S2 ⊆
Ω = {0, 1, 2, ..., D − 1}, a widely used measure of similarity is the resemblance R:

R =
|S1 ∩ S2|
|S1 ∪ S2| =

a

f1 + f2 − a
, where f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2|. (1)

Applying a random permutation π : Ω → Ω on S1 and S2, the collision probability is simply

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|
|S1 ∪ S2| = R. (2)

One can repeat the permutation k times: π1, π2, ..., πk to estimate R without bias. The common
practice is to store each hashed value, e.g., min(π(S1)) and min(π(S2)), using 64 bits [14]. The
storage (and computational) cost will be prohibitive in truly large-scale (industry) applications [29].
b-bit minwise hashing [27] provides a strikingly simple solution to this (storage and computational)
problem by storing only the lowest b bits (instead of 64 bits) of each hashed value.

For convenience, denote z1 = min (π (S1)) and z2 = min (π (S2)), and denote z
(b)
1 (z(b)

2) the
integer value corresponding to the lowest b bits of of z1 (z2). For example, if z1 = 7, then z

(2)
1 = 3.

Theorem 1 [27] Assume D is large.

Pb = Pr
(
z
(b)
1 = z

(b)
2

)
= C1,b + (1− C2,b) R (3)

r1 =
f1

D
, r2 =

f2

D
, f1 = |S1|, f2 = |S2|

C1,b = A1,b
r2

r1 + r2
+ A2,b

r1

r1 + r2
, C2,b = A1,b

r1

r1 + r2
+ A2,b

r2

r1 + r2
,

A1,b =
r1 [1− r1]

2b−1

1− [1− r1]
2b

, A2,b =
r2 [1− r2]

2b−1

1− [1− r2]
2b

.¤

This (approximate) formula (3) is remarkably accurate, even for very small D; see Figure 1 in [25].

We can then estimate Pb (and R) from k independent permutations:

R̂b =
P̂b − C1,b

1− C2,b
, Var

(
R̂b

)
=

Var
(
P̂b

)

[1− C2,b]
2 =

1

k

[C1,b + (1− C2,b)R] [1− C1,b − (1− C2,b)R]

[1− C2,b]
2 (4)

It turns out that our method only needs P̂b for linear learning, i.e., no need to explicitly estimate R.

2

3 Kernels from Minwise Hashing b-Bit Minwise Hashing
Definition: A symmetric n×n matrix K satisfying

∑
ij cicjKij ≥ 0, for all real vectors c is called

positive definite (PD). Note that here we do not differentiate PD from nonnegative definite.
Theorem 2 Consider n sets S1, ..., Sn ⊆ Ω = {0, 1, ..., D − 1}. Apply one permutation π to each
set. Define zi = min{π(Si)} and z

(b)
i the lowest b bits of zi. The following three matrices are PD.

1. The resemblance matrix R ∈ Rn×n, whose (i, j)-th entry is the resemblance between set
Si and set Sj: Rij = |Si∩Sj |

|Si∪Sj | = |Si∩Sj |
|Si|+|Sj |−|Si∩Sj | .

2. The minwise hashing matrix M ∈ Rn×n: Mij = 1{zi = zj}.

3. The b-bit minwise hashing matrix M(b) ∈ Rn×n: M
(b)
ij = 1

{
z
(b)
i = z

(b)
j

}
.

Consequently, consider k independent permutations and denote M(b)
(s) the b-bit minwise hashing

matrix generated by the s-th permutation. Then the summation
∑k

s=1 M(b)
(s) is also PD.

Proof: A matrix A is PD if it can be written as an inner product BTB. Because

Mij = 1{zi = zj} =

D−1∑
t=0

1{zi = t} × 1{zj = t}, (5)

Mij is the inner product of two D-dim vectors. Thus, M is PD. Similarly, M(b) is PD because
M

(b)
ij =

∑2b−1
t=0 1{z(b)

i = t} × 1{z(b)
j = t}. R is PD because Rij = Pr{Mij = 1} = E (Mij) and

Mij is the (i, j)-th element of the PD matrix M. Note that the expectation is a linear operation. ¤

4 Integrating b-Bit Minwise Hashing with (Linear) Learning Algorithms
Linear algorithms such as linear SVM and logistic regression have become very powerful and ex-
tremely popular. Representative software packages include SVMperf [20], Pegasos [31], Bottou’s
SGD SVM [5], and LIBLINEAR [13]. Given a dataset {(xi, yi)}n

i=1, xi ∈ RD, yi ∈ {−1, 1}. The
L2-regularized linear SVM solves the following optimization problem):

min
w

1

2
wTw + C

n∑
i=1

max
{

1− yiw
Txi, 0

}
, (6)

and the L2-regularized logistic regression solves a similar problem:

min
w

1

2
wTw + C

n∑
i=1

log
(
1 + e−yiw

Txi

)
. (7)

Here C > 0 is a regularization parameter. Since our purpose is to demonstrate the effectiveness of
our proposed scheme using b-bit hashing, we simply provide results for a wide range of C values
and assume that the best performance is achievable if we conduct cross-validations.

In our approach, we apply k random permutations on each feature vector xi and store the lowest b
bits of each hashed value. This way, we obtain a new dataset which can be stored using merely nbk
bits. At run-time, we expand each new data point into a 2b × k-length vector with exactly k 1’s.

For example, suppose k = 3 and the hashed values are originally {12013, 25964, 20191}, whose bi-
nary digits are {010111011101101, 110010101101100, 100111011011111}. Consider b = 2. Then
the binary digits are stored as {01, 00, 11} (which corresponds to {1, 0, 3} in decimals). At run-time,
we need to expand them into a vector of length 2bk = 12, to be {0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0},
which will be the new feature vector fed to a solver such as LIBLINEAR. Clearly, this expansion is
directly inspired by the proof that the b-bit minwise hashing matrix is PD in Theorem 2.

5 Experimental Results on Webspam Dataset
Our experiment settings closely follow the work in [35]. They conducted experiments on three
datasets, of which only the webspam dataset is public and reasonably high-dimensional (n =
350000, D = 16609143). Therefore, our experiments focus on webspam. Following [35], we
randomly selected 20% of samples for testing and used the remaining 80% samples for training.

We chose LIBLINEAR as the workhorse to demonstrate the effectiveness of our algorithm. All
experiments were conducted on workstations with Xeon(R) CPU (W5590@3.33GHz) and 48GB

3

RAM, under Windows 7 System. Thus, in our case, the original data (about 24GB in LIBSVM
format) fit in memory. In applications when the data do not fit in memory, we expect that b-bit
hashing will be even more substantially advantageous, because the hashed data are relatively very
small. In fact, our experimental results will show that for this dataset, using k = 200 and b = 8 can
achieve similar testing accuracies as using the original data. The effective storage for the reduced
dataset (with 350K examples, using k = 200 and b = 8) would be merely about 70MB.

5.1 Experimental Results on Nonlinear (Kernel) SVM
We implemented a new resemblance kernel function and tried to use LIBSVM to train an SVM using
the webspam dataset. The training time well exceeded 24 hours. Fortunately, using b-bit minswise
hashing to estimate the resemblance kernels provides a substantial improvement. For example, with
k = 150, b = 4, and C = 1, the training time is about 5185 seconds and the testing accuracy is quite
close to the best results given by LIBLINEAR on the original webspam data.

5.2 Experimental Results on Linear SVM
There is an important tuning parameter C. To capture the best performance and ensure repeatability,
we experimented with a wide range of C values (from 10−3 to 102) with fine spacings in [0.1, 10].

We experimented with k = 10 to k = 500, and b = 1, 2, 4, 6, 8, 10, and 16. Figure 1 (average)
and Figure 2 (std, standard deviation) provide the test accuracies. Figure 1 demonstrates that using
b ≥ 8 and k ≥ 200 achieves similar test accuracies as using the original data. Since our method
is randomized, we repeated every experiment 50 times. We report both the mean and std values.
Figure 2 illustrates that the stds are very small, especially with b ≥ 4. In other words, our algorithm
produces stable predictions. For this dataset, the best performances were usually achieved at C ≥ 1.

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6
8

b = 10,16

svm: k = 30
Spam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6b = 8,10,16

svm: k = 50
Spam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

Spam: Accuracy

svm: k = 100

b = 1

b = 2

b = 4
b = 8,10,16

4

6

6

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

svm: k = 150

Spam: Accuracy

b = 1

b = 2

b = 4
b = 6,8,10,16

4

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 6,8,10,16

b = 1

svm: k = 200

b = 24

b = 4

Spam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

Spam: Accuracy

svm: k = 300

b = 1

b = 2
4

b = 4
b = 6,8,10,16

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

svm: k = 400

Spam: Accuracy

b = 1

b = 2

4

b = 4b = 6,8,10,16

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

b = 1

b = 2
4

b = 6,8,10,16

C

A
cc

ur
ac

y
(%

)

svm: k = 500

Spam: Accuracy

b = 4

Figure 1: SVM test accuracy (averaged over 50 repetitions). With k ≥ 200 and b ≥ 8. b-bit
hashing achieves very similar accuracies as using the original data (dashed, red if color is available).

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

C

A
cc

ur
ac

y
(s

td
 %

)

b = 1

b = 2

b = 4

b = 6
b = 8

b = 16
10

svm: k = 50
Spam accuracy (std)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

C

A
cc

ur
ac

y
(s

td
 %

)

b = 1

b = 2

b = 4

b = 6
b = 8

b = 10,16svm: k = 100
Spam accuracy (std)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

C

A
cc

ur
ac

y
(s

td
 %

)

b = 1

b = 2

b = 4

b = 6

b = 8,10,16
svm: k = 200
Spam accuracy (std)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

b = 1

b = 2

b = 4

b = 6,8,10,16Spam accuracy (std)

C

A
cc

ur
ac

y
(s

td
 %

)

svm: k = 500

Figure 2: SVM test accuracy (std). The standard deviations are computed from 50 repetitions.
When b ≥ 8, the standard deviations become extremely small (e.g., 0.02%).

Compared with the original training time (about 100 seconds), Figure 3 (upper panels) shows that
our method only needs about 3 seconds (near C = 1). Note that our reported training time did not
include data loading (about 12 minutes for the original data and 10 seconds for the hashed data).

Compared with the original testing time (about 150 seconds), Figure 3 (bottom panels) shows that
our method needs merely about 2 seconds. Note that the testing time includes both the data loading
time, as designed by LIBLINEAR. The efficiency of testing may be very important in practice, for
example, when the classifier is deployed in a user-facing application (such as search), while the cost
of training or preprocessing may be less critical and can be conducted off-line.

4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

svm: k = 50
Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

svm: k =100
Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

b = 16

svm: k = 200
Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Spam: Training time

b = 10

b = 16

C

T
ra

in
in

g
tim

e
(s

ec
)

svm: k = 500

10
−3

10
−2

10
−1

10
0

10
1

10
2

1
2

10

100

1000

C

T
es

tin
g

tim
e

(s
ec

)

svm: k = 50
Spam: Testing time

10
−3

10
−2

10
−1

10
0

10
1

10
2

1
2

10

100

1000

C

T
es

tin
g

tim
e

(s
ec

)

svm: k = 100
Spam: Testing time

10
−3

10
−2

10
−1

10
0

10
1

10
2

1
2

10

100

1000

C

T
es

tin
g

tim
e

(s
ec

)

svm: k = 200
Spam: Testing time

10
−3

10
−2

10
−1

10
0

10
1

10
2

1
2

10

100

1000

C

T
es

tin
g

tim
e

(s
ec

)

svm: k = 500
Spam: Testing time

Figure 3: SVM training time (upper panels) and testing time (bottom panels). The original costs
are plotted using dashed (red, if color is available) curves.

5.3 Experimental Results on Logistic Regression
Figure 4 presents the test accuracies and training time using logistic regression. Again, with k ≥ 200
and b ≥ 8, b-bit minwise hashing can achieve similar test accuracies as using the original data. The
training time is substantially reduced, from about 1000 seconds to about 30 seconds only.

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

logit: k = 50
Spam: Accuracy

b = 1

b = 2

b = 4

b = 6b = 8,10,16

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

logit: k = 100

Spam: Accuracy

b = 1

b = 2

b = 4
b = 6

b = 8,10,16

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

Spam: Accuracy

logit: k = 200

b = 6,8,10,16

b = 1

b = 2

b = 4

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

logit: k = 500

Spam: Accuracy

b = 1

b = 2
b = 4

4

b = 6,8,10,16

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

logit: k = 50

Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

logit: k = 100

Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

logit: k = 200

Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
) b = 16

logit: k = 500

Spam: Training time

Figure 4: Logistic regression test accuracy (upper panels) and training time (bottom panels).

In summary, it appears b-bit hashing is highly effective in reducing the data size and speeding up the
training (and testing), for both SVM and logistic regression. We notice that when using b = 16, the
training time can be much larger than using b ≤ 8. Interestingly, we find that b-bit hashing can be
easily combined with Vowpal Wabbit (VW) [34] to further reduce the training time when b is large.

6 Random Projections, Count-Min (CM) Sketch, and Vowpal Wabbit (VW)
Random projections [1, 24], Count-Min (CM) sketch [11], and Vowpal Wabbit (VW) [32, 34], as
popular hashing algorithms for estimating inner products for high-dimensional datasets, are naturally
applicable in large-scale learning. In fact, those methods are not limited to binary data. Interestingly,
the three methods all have essentially the same variances. Note that in this paper, we use ”VW“
particularly for the hashing algorithm in [34], not the influential “VW” online learning platform.

6.1 Random Projections
Denote the first two rows of a data matrix by u1, u2 ∈ RD. The task is to estimate the inner
product a =

∑D
i=1 u1,iu2,i. The general idea is to multiply the data vectors by a random matrix

{rij} ∈ RD×k, where rij is sampled i.i.d. from the following generic distribution with [24]

E(rij) = 0, V ar(rij) = 1, E(r3
ij) = 0, E(r4

ij) = s, s ≥ 1. (8)

Note that V ar(r2
ij) = E(r4

ij)−E2(r2
ij) = s− 1 ≥ 0. This generates two k-dim vectors, v1 and v2:

v1,j =
D∑

i=1

u1,irij , v2,j =
D∑

i=1

u2,irij , j = 1, 2, ..., k (9)

5

The general family of distributions (8) includes the standard normal distribution (in this case, s = 3)

and the “sparse projection” distribution specified as rij =
√

s×

1 with prob. 1
2s

0 with prob. 1− 1
s−1 with prob. 1

2s

[24] provided the following unbiased estimator ârp,s of a and the general variance formula:

ârp,s =
1
k

k∑

j=1

v1,jv2,j , E(ârp,s) = a =
D∑

i=1

u1,iu2,i, (10)

V ar(ârp,s) =
1
k

[
D∑

i=1

u2
1,i

D∑

i=1

u2
2,i + a2 + (s− 3)

D∑

i=1

u2
1,iu

2
2,i

]
(11)

which means s = 1 achieves the smallest variance. The only elementary distribution we know that
satisfies (8) with s = 1 is the two point distribution in {−1, 1} with equal probabilities.

[23] proposed an improved estimator for random projections as the solution to a cubic equation.
Because it can not be written as an inner product, that estimator can not be used for linear learning.

6.2 Count-Min (CM) Sketch and Vowpal Wabbit (VW)
Again, in this paper, “VW” always refers to the hashing algorithm in [34]. VW may be viewed as
a “bias-corrected” version of the Count-Min (CM) sketch [11]. In the original CM algorithm, the
key step is to independently and uniformly hash elements of the data vectors to k buckets and the
hashed value is the sum of the elements in the bucket. That is h(i) = j with probability 1

k , where

j ∈ {1, 2, ..., k}. By writing Iij =
{

1 if h(i) = j
0 otherwise , we can write the hashed data as

w1,j =
D∑

i=1

u1,iIij , w2,j =
D∑

i=1

u2,iIij (12)

The estimate âcm =
∑k

j=1 w1,jw2,j is (severely) biased for estimating inner products. The original
paper [11] suggested a “count-min” step for positive data, by generating multiple independent esti-
mates âcm and taking the minimum as the final estimate. That step can reduce but can not remove
the bias. Note that the bias can be easily removed by using k

k−1

(
âcm − 1

k

∑D
i=1 u1,i

∑D
i=1 u2,i

)
.

[34] proposed a creative method for bias-correction, which consists of pre-multiplying (element-
wise) the original data vectors with a random vector whose entries are sampled i.i.d. from the two-
point distribution in {−1, 1} with equal probabilities. Here, we consider the general distribution (8).
After applying multiplication and hashing on u1 and u2, the resultant vectors g1 and g2 are

g1,j =
D∑

i=1

u1,iriIij , g2,j =
D∑

i=1

u2,iriIij , j = 1, 2, ..., k (13)

where E(ri) = 0, E(r2
i) = 1, E(r3

i) = 0, E(r4
i) = s. We have the following Lemma.

Theorem 3

âvw,s =
k∑

j=1

g1,jg2,j , E(âvw,s) =
D∑

i=1

u1,iu2,i = a, (14)

V ar(âvw,s) = (s− 1)
D∑

i=1

u2
1,iu

2
2,i +

1
k

[
D∑

i=1

u2
1,i

D∑

i=1

u2
2,i + a2 − 2

D∑

i=1

u2
1,iu

2
2,i

]
¤ (15)

Interestingly, the variance (15) says we do need s = 1, otherwise the additional term (s −
1)

∑D
i=1 u2

1,iu
2
2,i will not vanish even as the sample size k → ∞. In other words, the choice of

random distribution in VW is essentially the only option if we want to remove the bias by pre-
multiplying the data vectors (element-wise) with a vector of random variables. Of course, once we
let s = 1, the variance (15) becomes identical to the variance of random projections (11).

6

7 Comparing b-Bit Minwise Hashing with VW (and Random Projections)
We implemented VW and experimented it on the same webspam dataset. Figure 5 shows that b-bit
minwise hashing is substantially more accurate (at the same sample size k) and requires significantly
less training time (to achieve the same accuracy). Basically, for 8-bit minwise hashing with k = 200
achieves similar test accuracies as VW with k = 104 ∼ 106 (note that we only stored the non-zeros).

10
1

10
2

10
3

10
4

10
5

10
6

80
82
84
86
88
90
92
94
96
98

100

C = 0.01

1,10,100

0.1

k

A
cc

ur
ac

y
(%

)

svm: VW vs b = 8 hashing

C = 0.01

C = 0.1
C = 1

10,100

Spam: Accuracy

10
1

10
2

10
3

10
4

10
5

10
6

80
82
84
86
88
90
92
94
96
98

100

k

A
cc

ur
ac

y
(%

)

1

C = 0.01

C = 0.1

C = 1
10

C = 0.01

C = 0.1

10,100

logit: VW vs b = 8 hashing
Spam: Accuracy

100

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

k

T
ra

in
in

g
tim

e
(s

ec
) C = 100

C = 10

C = 1,0.1,0.01
C = 100

C = 10

C = 1,0.1,0.01

Spam: Training time

svm: VW vs b = 8 hashing

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

k

T
ra

in
in

g
tim

e
(s

ec
)

C = 0.01

10,1.0,0.1

100

logit: VW vs b = 8 hashing
Spam: Training time

C = 0.1,0.01

C = 100,10,1

Figure 5: The dashed (red if color is available) curves represent b-bit minwise hashing results (only
for k ≤ 500) while solid curves for VW. We display results for C = 0.01, 0.1, 1, 10, 100.

This empirical finding is not surprising, because the variance of b-bit hashing is usually substantially
smaller than the variance of VW (and random projections). In the technical report (arXiv:1106.0967,
which also includes the complete proofs of the theorems presented in this paper), we show that, at
the same storage cost, b-bit hashing usually improves VW by 10- to 100-fold, by assuming each
sample of VW needs 32 bits to store. Of course, even if VW only stores each sample using 16 bits,
an improvement of 5- to 50-fold would still be very substantial.

There is one interesting issue here. Unlike random projections (and minwise hashing), VW is a
sparsity-preserving algorithm, meaning that in the resultant sample vector of length k, the number
of non-zeros will not exceed the number of non-zeros in the original vector. In fact, it is easy to see
that the fraction of zeros in the resultant vector would be (at least)

(
1− 1

k

)c ≈ exp
(− c

k

)
, where c

is the number of non-zeros in the original data vector. In this paper, we mainly focus on the scenario
in which c À k, i.e., we use b-bit minwise hashing or VW for the purpose of data reduction.

However, in some cases, we care about c ¿ k, because VW is also an excellent tool for compact
indexing. In fact, our b-bit minwise hashing scheme for linear learning may face such an issue.

8 Combining b-Bit Minwise Hashing with VW
In Figures 3 and 4, when b = 16, the training time becomes substantially larger than b ≤ 8. Recall
that in the run-time, we expand the b-bit minwise hashed data to sparse binary vectors of length 2bk
with exactly k 1’s. When b = 16, the vectors are very sparse. On the other hand, once we have
expanded the vectors, the task is merely computing inner products, for which we can use VW.

Therefore, in the run-time, after we have generated the sparse binary vectors of length 2bk, we hash
them using VW with sample size m (to differentiate from k). How large should m be? Theorem 4
may provide an insight. Recall Section 2 provides the estimator, denoted by R̂b, of the resemblance
R, using b-bit minwise hashing. Now, suppose we first apply VW hashing with size m on the binary
vector of length 2bk before estimating R, which will introduce some additional randomness. We
denote the new estimator by R̂b,vw. Theorem 4 provides its theoretical variance.

10
−3

10
−2

10
−1

10
0

10
1

10
2

85

90

95

100

0

1

2
3

8

C

A
cc

ur
ac

y
(%

)

SVM: 16−bit hashing + VW, k = 200

Spam:Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

85

90

95

100

C

A
cc

ur
ac

y
(%

)

1

2
3

8

0

Logit: 16−bit hashing +VW, k = 200

Spam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

0

1 8

C

T
ra

in
in

g
tim

e
(s

ec
)

Spam:Training Time

SVM: 16−bit hashing + VW, k = 200

1

2

8

3

0

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

C

T
ra

in
in

g
tim

e
(s

ec
)

1

8

Logit: 16−bit hashing +VW, k = 200

Spam: Training Time

8

0

0

Figure 6: We apply VW hashing on top of the binary vectors (of length 2bk) generated by b-bit
hashing, with size m = 20k, 21k, 22k, 23k, 28k, for k = 200 and b = 16. The numbers on the solid
curves (0, 1, 2, 3, 8) are the exponents. The dashed (red if color if available) curves are the results
from only using b-bit hashing. When m = 28k, this method achieves similar test accuracies (left
panels) while substantially reducing the training time (right panels).

7

Theorem 4

Var
(
R̂b,vw

)
= V ar

(
R̂b

)
+

1
m

1
[1− C2,b]

2

(
1 + P 2

b −
Pb(1 + Pb)

k

)
, (16)

where V ar
(
R̂b

)
= 1

k
Pb(1−Pb)

[1−C2,b]
2 is given by (4) and C2,b is the constant defined in Theorem 1. ¤

Compared to the original variance V ar
(
R̂b

)
, the additional term in (16) can be relatively large, if

m is small. Therefore, we should choose m À k and m ¿ 2bk. If b = 16, then m = 28k may be a
good trade-off. Figure 8 provides an empirical study to verify this intuition.

9 Limitations
While using b-bit minwise hashing for training linear algorithms is successful on the webspam
dataset, it is important to understand the following three major limitations of the algorithm:

(A): Our method is designed for binary (0/1) sparse data. (B): Our method requires an expensive
preprocessing step for generating k permutations of the data. For most applications, we expect the
preprocessing cost is not a major issue because the preprocessing can be conducted off-line (or com-
bined with the data-collection step) and is easily parallelizable. However, even if the speed is not a
concern, the energy consumption might be an issue, especially considering (b-bit) minwise hashing
is mainly used for industry applications. In addition, testing an new unprocessed data vector (e.g.,
a new document) will be expensive. (C): Our method performs only reasonably well in terms of
dimension reduction. The processed data need to be mapped into binary vectors in 2b × k dimen-
sions, which is usually not small. (Note that the storage cost is just bk bits.) For example, for the
webspam dataset, using b = 8 and k = 200 seems to suffice and 28 × 200 = 51200 is quite large,
although it is much smaller than the original dimension of 16 million. It would be desirable if we
can further reduce the dimension, because the dimension determines the storage cost of the model
and (moderately) increases the training time for batch learning algorithms such as LIBLINEAR.

In hopes of fixing the above limitations, we experimented with an implementation using another
hashing technique named Conditional Random Sampling (CRS) [21, 22], which is not limited to
binary data and requires only one permutation of the original data (i.e., no expensive preprocessing).
We achieved some limited success. For example, CRS compares favorably to VW in terms of stor-
age (to achieve the same accuracy) on the webspam dataset. However, so far CRS can not compete
with b-bit minwise hashing for linear learning (in terms of training speed, storage cost, and model
size). The reason is because even though the estimator of CRS is an inner product, the normaliza-
tion factors (i.e, the effective sample size of CRS) to ensure unbiased estimates substantially differ
pairwise (which is a significant advantage in other applications). In our implementation, we could
not use fully correct normalization factors, which lead to severe bias of the inner product estimates
and less than satisfactory performance of linear learning compared to b-bit minwise hashing.

10 Conclusion
As data sizes continue to grow faster than the memory and computational power, statistical learning
tasks in industrial practice are increasingly faced with training datasets that exceed the resources on
a single server. A number of approaches have been proposed that address this by either scaling out
the training process or partitioning the data, but both solutions can be expensive.

In this paper, we propose a compact representation of sparse, binary data sets based on b-bit minwise
hashing, which can be naturally integrated with linear learning algorithms such as linear SVM and
logistic regression, leading to dramatic improvements in training time and/or resource requirements.
We also compare b-bit minwise hashing with the Count-Min (CM) sketch and Vowpal Wabbit (VW)
algorithms, which, according to our analysis, all have (essentially) the same variances as random
projections [24]. Our theoretical and empirical comparisons illustrate that b-bit minwise hashing is
significantly more accurate (at the same storage) for binary data. There are various limitations (e.g.,
expensive preprocessing) in our proposed method, leaving ample room for future research.

Acknowledgement
This work is supported by NSF (DMS-0808864), ONR (YIP-N000140910911), and a grant from
Microsoft. We thank John Langford and Tong Zhang for helping us better understand the VW hash-
ing algorithm, and Chih-Jen Lin for his patient explanation of LIBLINEAR package and datasets.

8

References
[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of Computer and System

Sciences, 66(4):671–687, 2003.

[2] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In Commun.
ACM, volume 51, pages 117–122, 2008.

[3] Harald Baayen. Word Frequency Distributions, volume 18 of Text, Speech and Language Technology. Kulver Academic Publishers,
2001.

[4] Michael Bendersky and W. Bruce Croft. Finding text reuse on the web. In WSDM, pages 262–271, Barcelona, Spain, 2009.

[5] Leon Bottou. http://leon.bottou.org/projects/sgd.

[6] Andrei Z. Broder. On the resemblance and containment of documents. In the Compression and Complexity of Sequences, pages 21–29,
Positano, Italy, 1997.

[7] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syntactic clustering of the web. In WWW, pages 1157 –
1166, Santa Clara, CA, 1997.

[8] Olivier Chapelle, Patrick Haffner, and Vladimir N. Vapnik. Support vector machines for histogram-based image classification. IEEE
Trans. Neural Networks, 10(5):1055–1064, 1999.

[9] Ludmila Cherkasova, Kave Eshghi, Charles B. Morrey III, Joseph Tucek, and Alistair C. Veitch. Applying syntactic similarity algorithms
for enterprise information management. In KDD, pages 1087–1096, Paris, France, 2009.

[10] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessandro Panconesi, and Prabhakar Raghavan. On com-
pressing social networks. In KDD, pages 219–228, Paris, France, 2009.

[11] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and its applications. Journal of
Algorithm, 55(1):58–75, 2005.

[12] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. Extraction and classification of dense implicit communities in the web graph.
ACM Trans. Web, 3(2):1–36, 2009.

[13] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A library for large linear classification.
Journal of Machine Learning Research, 9:1871–1874, 2008.

[14] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet L. Wiener. A large-scale study of the evolution of web pages. In WWW, pages
669–678, Budapest, Hungary, 2003.

[15] George Forman, Kave Eshghi, and Jaap Suermondt. Efficient detection of large-scale redundancy in enterprise file systems. SIGOPS
Oper. Syst. Rev., 43(1):84–91, 2009.

[16] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result diversification. In WWW, pages 381–390, Madrid, Spain,
2009.

[17] Matthias Hein and Olivier Bousquet. Hilbertian metrics and positive definite kernels on probability measures. In AISTATS, pages
136–143, Barbados, 2005.

[18] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and S. Sundararajan. A dual coordinate descent method for large-scale
linear svm. In Proceedings of the 25th international conference on Machine learning, ICML, pages 408–415, 2008.

[19] Yugang Jiang, Chongwah Ngo, and Jun Yang. Towards optimal bag-of-features for object categorization and semantic video retrieval. In
CIVR, pages 494–501, Amsterdam, Netherlands, 2007.

[20] Thorsten Joachims. Training linear svms in linear time. In KDD, pages 217–226, Pittsburgh, PA, 2006.

[21] Ping Li and Kenneth W. Church. Using sketches to estimate associations. In HLT/EMNLP, pages 708–715, Vancouver, BC, Canada,
2005 (The full paper appeared in Commputational Linguistics in 2007).

[22] Ping Li, Kenneth W. Church, and Trevor J. Hastie. Conditional random sampling: A sketch-based sampling technique for sparse data. In
NIPS, pages 873–880, Vancouver, BC, Canada, 2006 (Newer results appeared in NIPS 2008.

[23] Ping Li, Trevor J. Hastie, and Kenneth W. Church. Improving random projections using marginal information. In COLT, pages 635–649,
Pittsburgh, PA, 2006.

[24] Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very sparse random projections. In KDD, pages 287–296, Philadelphia, PA, 2006.

[25] Ping Li and Arnd Christian König. Theory and applications b-bit minwise hashing. In Commun. ACM, 2011.

[26] Ping Li and Arnd Christian König. Accurate estimators for improving minwise hashing and b-bit minwise hashing. Technical report,
2011 (arXiv:1108.0895).

[27] Ping Li and Arnd Christian König. b-bit minwise hashing. In WWW, pages 671–680, Raleigh, NC, 2010.

[28] Ping Li, Arnd Christian König, and Wenhao Gui. b-bit minwise hashing for estimating three-way similarities. In NIPS, Vancouver, BC,
2010.

[29] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. Detecting Near-Duplicates for Web-Crawling. In WWW, Banff, Alberta,
Canada, 2007.

[30] Marc Najork, Sreenivas Gollapudi, and Rina Panigrahy. Less is more: sampling the neighborhood graph makes salsa better and faster.
In WSDM, pages 242–251, Barcelona, Spain, 2009.

[31] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In ICML, pages
807–814, Corvalis, Oregon, 2007.

[32] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, and S.V.N. Vishwanathan. Hash kernels for structured data.
Journal of Machine Learning Research, 10:2615–2637, 2009.

[33] Simon Tong. Lessons learned developing a practical large scale machine learning system.
http://googleresearch.blogspot.com/2010/04/lessons-learned-developing-practical.html, 2008.

[34] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature hashing for large scale multitask
learning. In ICML, pages 1113–1120, 2009.

[35] Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin. Large linear classification when data cannot fit in memory. In KDD,
pages 833–842, 2010.

9

