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ABSTRACT

We propose speaker clustering methods based on the vocal-
tract-size related articulatory parameters associated with
individual speakers. Two parameters characterizing gross
vocal-tract dimensions are first derived from formants of
speaker-specific Japanese vowels, and are then used to clus-
ter a total of 148 male Japanese speakers. The resultant
speaker clusters are found to be significantly different from
the speaker clusters obtained by conventional acoustic cri-
teria. Japanese phoneme recognition experiments are car-
ried out using speaker-clustered tied-state HMMs(HMNets)
trained for each cluster. Compared with the baseline gen-
der dependent model, 5.7% of recognition error reduction
has been achieved based on the clustering method using
vocal-tract parameters.
1. INTRODUCTION

Use of speaker-clustered models is a simple but effective
way to improve the accuracy of speaker-independent speech
recognition, which has been clearly exemplified by use of
Gender-Dependent (GD) models. However, within each
-gender, there is still a wide variety of speakers. To obtain
more detailed speaker clusters, several researchers have pro-
posed several methods. Kosaka and Sagayama, for exam-
ple, proposed a tree-structured speaker clustering algorithm
and a fast speaker adaptation method based on selection of
appropriate speaker clusters defined on the tree [5]. The ef-
fectiveness of this method was reported as an initialization
model for speaker adaptation in [8]. Nearly all the previ-
ous work on speaker clustering was based on similarities
across speakers defined by acoustic distances. In particu-
lar, the acoustic distances across speakers were quantified
according to the speaker-dependent models used for speech
recognition (e.g. HMMs}).

We believe that characterization of speaker differences
should be more effective using articulatory parameters than
acoustic ones, and that this should be especially so within a
gender group where the acoustic differences across genders
have been drastically reduced. One reason, among several
others, for this is that the vocal-tract (VT) geometric differ-
ences across speakers, which account for a large portion of
the overall speaker differences, can be easily and naturally
characterized by intuitions using low-dimensional parame-
ters. On the other hand, the acoustic differences, which
reflect (although not all} the VT geometric differences in
a highly nonlinear fashion, must be characterized by high-
dimensional parameters not easily subject to physical in-
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terpretation but easily giving rise to local optimum during
cluster training. This consideration forms the motivation
of the work reported in this paper, where VT parameters
related to gross VT dimensions are used to cluster a total of
148 male Japanese speakers in our database. Two cluster-
ing methods, with and without a tree structure, are imple-
mented using either acoustic parameters (baseline) and the
VT parameters. The clustering methods have been eval-
uated in Japanese phoneme recognition experiments using
speaker clustering tied-state HMMs (SC-HMNet)[7]. The
results show that the performance of SC-HMNets based on
VT parameters is higher than those of GD-HMNet and of
the SC-HMNets for clusters based on acoustic parameters.

Use of the VT parameters as reported in this paper will
offers a way of quick adaptation since potentially two vowel
tokens are sufficient to estimate these parameters and to
select the most appropriate speaker cluster. There is no
need to use large data as are required for acoustics-based
schemes. This work represents our initial effort in pursuing .
production-based modeling for speech recognition, and can
be seen as a simple extension of previous works on use of
one-dimensional VT-length (e.g. [2]) to two-dimensional
VT parameters. Although the gain obtained so far has not
as striking as expected, it is promising enough to warrant
further extension of this work to more sophisticated speaker
adaptation schemes.

2. SPEAKER CLUSTERING METHODS
In this section, we describe two types of speaker clustering
methods (together with the distance measures) used in this
work, one with use of a tree structure, the other with use
of a flat, plain structure in organizing the clustered speak-
ers. Both methods have been used for acoustic and VT
parameters.

2.1. Plain speaker-clustering algorithm

In this clustering method, all the distances (Bhattacharyya
or Euclidean; see details later) between speakers are calcu-
lated in advance and a distance table is created. The clus-
ter with the maximum sum of distances is divided -using
the distance table[6]. In this algorithm, the fixed number
of clusters or a distance threshold value is required to stop
the flat-structured cluster splitting and growing.

2.2. Tree-structured speaker clustering algorithm
In the tree-structured clustering algorithm, a fixed number
K controls the number of sub-clusters at each node., This
procedure enables all speakers to be hierarchically clustered.
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Details of the algorithm are:

STEP 1 Set § = 1. All speakers are clustered by the
plain clustering method, and then K centroid speak-
ers {mi(7),...,mx(j)} are obtained (j denotes the
hierarchical level of the tree).

STEP 2 If the number of speakers satisfying s € Si(j)
becomes fewer than K, quit clustering for cluster l.

STEP 3 For the I-th cluster S;(j), except those that quit-
ted in the previous step, the speakers satisfying s €
Si(j) are clustered to produce K sub-clusters. This
creates the next-level, new K speaker clusters M+
1) = {mi(G +1),...,mh(i + 1D}

STEP 4 j « j + 1. Return to STEP 2.

2.3. .Distance measures

We use two distance measures between speakers: one suit-
able for acoustic parameters (Bhattacharyya), the other
suitable for VT parameters (Euclidean). For the first case,
speaker-dependent HMNets (SD-HMNets) of an identical
structure are trained first by the Baum-Welch algorithm.
Then the distance between two speakers is defined as aver-
age of the Bhattacharyya distance between output proba-
bility functions of each speaker’s SD-HMNet [5}; that is, for
two different SD-HMNets, M1 and M., the distance is

ZZd(b“’(k),bE?(k)), (1)
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N is the total number of the HMNet states, and M
the total number of the output distributions. Estimation
of the VT parameters is performed by a functional map-
ping method described in Section3. The distance between
two speakers used in clustering methods is defined as the
Euclidean distance between the two speaker-specific low-
dimensional vectors consisting of the VT parameters.

2.4. Speaker cluster selection
After speaker clustering is accomplished, SC-HMNets are
trained using the Baum-Welch algorithm. Fast speaker
adaptation is then performed by selecting a most suitable
SC-HMNet for the target speaker.

Speaker cluster selection is based on the maximum like-
lihood criterion. The likelihood of a SC-HMret is calculated
according to a Viterbi procedure that uses short speech
acoustic and transcription data (adaptation information)
of each speaker. In the case of plain clustering model, the
SC-HMnet that gives the maximum likelihood score is se-
lected for the target speaker. In the case of tree-structured
clustering model, the likelihood of each SC-HMNet is cal-
culated at each level of the tree structure. The tree is then
traced by selecting the SC-HMnet that gives the maximum
likelihood score. At each level of the tree, the likelihood of
the selected SC-HMNet is memorized. After the tree trac-
ing, the SC-HMnet that gives the overall maximal likelihood
score is selected by comparing the memorized likelihood at
each tree level.

3. ESTIMATION OF VT PARAMETERS
The VT parameters used in this study for speaker clustering
are of two types: 1) the length of the oral section of the VT
(I1) together with the length of the pharyngeal section of the
VT (I2) (two parameters); and 2) the total VT length (VTL;
single parameter) which is sum of {; and & (VTL =1, +12).
The reason why we need to have more than a single VT
length to characterize the VT comes from the clear evidence
of non-uniform formant scaling over a frequency range much
greater than what can be accounted for by a single factor of
VT-length variation [3]. The reasons why we choose l; and
I parameters in this study are: 1) two dimensions are a
most straightforward extension from earlier one-dimension
VT-length normalization work conducted by many research
groups (cf. [2]); 2) the ratio of oral and pharyngeal section
lengths of the VT is a significant factor shaping acoustic
outputs of speech; this is so because phonetically significant
VT constrictions are usually made with reference to the
oral-section length of the VT (11} but the formants depend
on the entire VT length including pharyngeal length I,; and
3) methods for estimating l; and > are relatively easy. In
this section, we describe how Japanese vowel formant data
from our evaluation database ! are used to estimate the VT
parameters I; and Il , which are then used to determine
the Euclidean distance between any pair of speaker-specific
two-dimensional vectors of {l1, Iz} (and between any pair
of speaker-specific scalars of VTL).

The estimation method for l; and I, parameters is based
on an articulatory model developed previously for speaker
normalization purposes (cf. [4]). The model characterizes
the gross VT geometry of a speaker (which is independent
of phonetic units) by two parameters: the length of the
oral section (l;) and the length of the pharyngeal section
(I2). The l; and I, values are fixed for a stylized refer-
ence speaker’s VT. Given information about VT constric-
tion and a related approximate area function for a particu-
lar vowel with the stylized reference speaker’s VT geometry,
the model is capable of computing the formant frequencies
of that vowel for any new VT geometry obtained artificially
by independent linear stretch {or shrink) of the reference
speaker’s I; and I, lengths. 2

Given a vowel, two independent stretch (or shrink) fac-
tors (for {; and l;, respectively) are mapped to a set of
formants according to the model computation. The for-
mant space is generated by a chosen set of vowels and by
a full range of stretch (or shrink) factors (limited by possi-
ble vowel phonetic-identity changes). To facilitate inverse
mapping from formants to the stretch factors, the formant
space is approximated by piecewise linear functions built
from a large number of points computed from the model.
Each piecewise linear function is confined within a corre-
sponding triangle grid of points in the domain of stretch
factors.

In our work, formant frequencies (F1,F2,F3) of two Japanese
vowels /a/ and /i/ are obtained for each speaker. Each vowel is
extracted from two words of speech database uttered phrase-by-
phrase. The vowel /a/ is extracted from Japanese word "b-a-a-i”,
and /i/ from "f-a~-m-i-r-i-i".

2The limit of the linear stretch is 130%, and that of the linear
shrink is 70%. Beyond these limits, some vowels will change
their phonetic identities (according to informal listening of the
synthesized vowels) after the stretch or shrink.
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Once the mapping function between the formant space
and the stretch factors is formed (all based on the artic-
ulatory model computation), then given the formant data
{target vector) of vowels from any new speaker, a search
is conducted to find the stretch factors whose mapped for-
mant vector will be as close to the target formant vector as
possible. The stretch factors thus found are multiplied by
the Iy and l» values of the reference speaker to give the I
and I> values for the new speaker.

4. RESULTS OF SPEAKER CLUSTERING

A total of 148 male speakers were clustered based on both
the acoustic data and on the VT parameters. Before we
show clustering results, we first show the distributions (over
all 148 male speakers) of the estimated VT parameters, in-
cluding I; and I, as well as their sum VI'L =1l; + L5, in
Figs.(1),(2), and (3), respectively. The means of these pa-
rameters over the speakers are Iy =9.01 cm, I =7.10 cm,
and VT'L =16.11cm, respectively. We note that the dis-
tributions are fairly smooth over the VT parameters, with
no signs of bimodal distributions. This is consistent with
earlier results on English speech for gender-specific VTL-
related parameters (cf. [9] for frequency warping factors).
Properties of I; and I, distributions have not been studied
in the past, and it is interesting to observe also the smcoth
distributions illustrated in Figs.(1) and (2).

To calculate the acoustic distance between speakers,
200-state unimodal Gaussian SD-HMNet is trained. Each
SD-HMNet is trained individually (i.e. speaker by speaker)
with 50 common Japanese phonetically balanced sentences.
The Baum-Welch algorithm with controlled variance is then
used for training each SD-HMNet.

In the case of plain clustering, all 148 male speakers are
clusiered into 3, 5, 10, 20, or 40 clusters. In the case of tree
structured clustering, these speakers are clustered into five
clusters at each node of the clustering tree. Plain-clustering
results for the five-cluster case are shown in Fig.(4), (5),
and (6), respectively, based on the estimated VTL informa-
tion (Euclidean distance), the estimated l; plus l; informa-
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Figure 6: Clusters obtained using acoustic data

tion (Euclidean distance), and acoustic information (Bhat-
tacharyya distance). Each point in these figures represents
a distinct speaker specified by his I; and I, dimensions. All
the speakers belonging to the same cluster are represented
by the same symbol.

From the results shown in Figs. (4) (5), and (6), we ob-
serve drastically different clusters using acoustic and vocal-
tract parameters. Fig.(6) demonstrates that the acousti-
cally clustered speaker groups do not correlate with the
geometrical differences of the speakers. On the other hand,
the clusters obtained from the VTL information (Fig. 4)
and those from the I; plus I; information are highly related
to each other (Fig.5). The latter is expected since one set of
information is derived from the other, and the consistency
shown here verifies correct implementation of the clustering
procedure.



Sampling frequency 12kHz

Hamming window 20ms

Frame period -‘ms

16-th LPC Cepstrum

416-thALPC Cepstrum+ Alog power
148 males (50 sentences per person)
6 males

Analysis

Training data
Recognition data
. Cluster Selection 7 phrases per person (SB1 task)
- Recognition 249 phrases (SB1 task)

Table 1: Experimental Conditions

5. SPEECH RECOGNITION EXPERIMENTS

5.1. Experimental conditions and data sets

In this section, we report our evaluation experiments on the
various speaker clustering methods described in this paper
on a Japanese 26-phone recognition task. The experimen-
tal conditions are listed in Table 1. Given the clusters de-
termined as described in earlier sections, each SC-HMNet
(containing 200 states of unimodal Gaussian) is trained us-
ing the Baum-Welch algorithm (with variance controlled)
with 50 Japanese phonetically balanced sentences (a total
of 2774 phones) uttered by all 148 male speakers. The GD-
HMNet (i.e., single-cluster HMNet) is trained with the same
data. Speech data consisting of seven phrases (containing
51 phones) are used to select speaker cluster. The test data
consist of 249 phrases (a total of 1963 phones) in phoneme
recognition experiments.

5.2. Recognition results
Table 2 presents the comparative results of phoneme recog-
nition accuracy obtained by using the SC-models. Horizon-
tally arranged performance numbers are associated with the
following speaker-cluster conditions: 1) Gender Dependent
model (GD); 2) 3, 5, 10, 20, and 40 speaker clusters by
plain clustering algorithm; and 3) tree-structured speaker
clustering. Vertically arranged performance numbers de-
note the following information used for clustering: 1) acous-
tics (Acoust); 2) vocal tract length (VTL); and 3) vocal
tract length of oral section and pharyngeal section {I; /15).
These results demonstrate that use of the SC models
reduces phoneme recognition errors by 0.2-5.7% compared
with the GD model. The greatest error reduction (5.7%)
comes from the SC-HMNets trained for five plain speaker
clusters based on two-dimensional VT parameters !; plus
12, In general, use of I; plus l; parameters gives the highest
performance, followed by use of VTL parameter. Use of
acoustic information gives the least amount of performance
improvement.

6. DISCUSSIONS AND SUMMARY
Earlier results have shown the effectiveness in speech recog-
nition of using general articulatory parameters to provide a
natural means of modeling contextual variations of speech
[1]. This work shows how the articulatory parameters which
specify gross VT dimensions can be used to naturally and
economically tepresent speaker variations in the speech.
The specific scheme used in this work is to cluster speaker
groups according to their VI-dimension parameters. Vari-
abilities in these parameters reflect one significant physical
cause accounting for the observed acoustic differences in the
speech signal which is generated from the VT.

We have proposed a speaker clustering method using the
VT parameters. In this method, the VT parameters are es-
timated from formants of only two Japanese vowels based

plain clustering (# of cluster)
Methods | GD [™3 5 10 | 20 | 40 | tree
Acoust. 66.5 | 67.9 | 67.0 | 66.6 | 66.9 | 66.2 | 67.2
VTL 66.5 | 67.7 | 67.5 | 68.0 | 67.2 | 66.7 | 68.2
I/l 66.5 | 67.7 | 684 | 683 | 68.0 | 67.5 | 67.2

Table 2: Recognition results using SC-HMNets {%)

on functional mapping from the formant space to the VT
parameter space. Both plain and tree-structured speaker
clusterings are created based on the estimated VT param-
eters. The results of speaker clustering show that there
is little correlation between the obtained clusters based on
acoustic data and those on VT parameters.

The effectiveness of our speaker clustering method has
been shown in Japanese phoneme recognition experiments
using the SC-HMNets. Compared with the baseline GD
model, 5.7% recognition error reduction is obtained by us-
ing the SC-HMNets which are trained for the clusters con-
structed based on the VT parameters. This performance is
also higher than that of the SC-HMNets obtained by clus-
tering based on the acoustic distance measure.

We are planning to expand the number of speakers used
for clustering (including female speakers), and investigate
other parameters specifying VT shapes rather than those
specifying only the gross VT geometry as reported in this
paper. Further, use of the VT parameters for speaker nor-
malization and adaptation will be investigated.
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