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ABSTRACT 
We propose speaker clustering methods based on the vocal- 
tract-size related articulatory parameters associated with 
individual speakers. Two parameters characterizing gross 
vocal-tract dimensions are first derived from formants of 
speaker-specific Japanese vowels, and are then used tc  clus- 
ter a total of 148 male Japanese speakers. The resultant 
speaker clusters are found to  be significantly different from 
the  speaker clusters obtained by conventional acoustic cri- 
teria. Japanese phoneme recognition experiments are car- 
ried out using speaker-clustered tied-state HMMs(HMNets) 
trained for each cluster. Compared with the baseline gen- 
der dependent model, 5.7% of recognition error reduction 
has been achieved based on the clustering method using 
vocal-tract parameters. 

1. INTRODUCTION 
Use of speaker-clustered models is a simple but effective 
way to  improve the accuracy of speaker-independent speech 
recognition, which has been clearly exemplified by m e  of 
Gender-Dependent (GD) models. However, within each 
gender, there is still a wide variety of speakers. To obtain 
more detailed speaker clusters, several researchers have pro- 
posed several methods. Kosaka and Sagayama, for exam- 
ple, proposed a tree-structured speaker clustering algorithm 
and a fast speaker adaptation method based on selection of 
appropriate speaker clusters defined on the tree [5] .  The  ef- 
fectiveness of this method was reported as an initialization 
model for speaker adaptation in [8]. Nearly all the previ- 
ous work on speaker clustering was based on similarities 
across speakers defined by acoustic distances. In paxticu- 
lar, the  acoustic distances across speakers were quantified 
according to the speaker-dependent models used for speech 
recognition (e.g. HMMs). 

We believe that  characterization of speaker differences 
should be more effective using articulatory parameters than  
acoustic ones, and that  this should be especially so within a 
gender group where the acoustic differences across genders 
have been drastically reduced. One reason, among several 
others, for this is that  the vocal-tract (VT) geometric differ- 
ences across speakers, which account for a large portion of 
the overall speaker differences, can be easily and naturally 
characterized by intuitions using low-dimensional parsme- 
ters. On the other hand, the acoustic differences, which 
reflect (although not all) the VT geometric differences in 
a highly nonlinear fashion, must be characterized by high- 
dimensional parameters not easily subject to physical in- 

terpretation but  easily giving rise to  local optimum during 
cluster training. This consideration forms the motivation 
of the work reported in this paper, where VT parameters 
related to gross V T  dimensions are used to  cluster a total of 
148 male Japanese speakers in our database. Two cluster- 
ing methods, with and without a tree structure, are imple- 
mented using either acoustic parameters (baseline) and the 
V T  parameters. The clustering methods have been eval- 
uated in Japanese phoneme recognition experiments using 
speaker clustering tied-state HMMs (SC-HMNet)[7]. The 
results show that  the performance of SC-HMNets based on 
VT parameters is higher than those of GD-HMMet and of 
the SC-HMNets for clusters based on acoustic parameters. 

Use of the V T  parameters as reported in this paper will 
offers a way of quick adaptation since potentially two vowel 
tokens are sufficient to estimate these parameters and to  
select the most appropriate speaker cluster. There is no 
need to  use large data as are required for acoustics-based 
schemes. This work represents our initial effort in pursuing 
production-based modeling for speech recognition, and can 
be seen as a simple extension of previous works on use of 
one-dimensional VT-length (e.g. [2]) to  two-dimensional 
V T  parameters. Although the gain obtained so far has not 
as striking as expected, it is promising enough to  warrant 
further extension of this work to  more sophisticated speaker 
adaptation schemes. 

2. SPEAKER CLUSTERING METHODS 
In this section, we describe two types of speaker clustering 
methods (together with the distance measures) used in this 
work, one with use of a tree structure, the other with use 
of a flat, plain structure in organizing the clustered speak- 
ers. Both methods have been used for acoustic and VT 
parameters. 
2.1. Plain speaker-clustering algorithm 
In this clustering method, all the distances (Bhattacharyya 
or Euclidean; see details later) between speakers are calcu- 
lated in advance and a distance table is created. The  clus- 
ter with the maximum sum of distances is divided using 
the  distance table[b]. In this algorithm, the fixed number 
of clusters or a distance threshold value is required to  stop 
the  flat-structured cluster splitting and growing. 
2.2. Tree-structured speaker clustering algorithm 
In the tree-structured clustering algorithm, a fixed number 
M controls the number of sub-clusters at each node. This 
procedure enables all speakers to  be hierarchically clustered. 
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Details of the  algorithm are: 

STEP 1 Set j = 1. All speakers are clustered by the  
plain clustering method, and then K centroid speak- 
ers {ml ( j ) ,  . . . , m ~ ( j ) }  are obtained ( j  denotes the  
hierarchical level of the tree). 

STEP 2 If the  number of speakers satisfying s E S ( j )  
becomes fewer than K ,  quit clustering for cluster 1. 

STEP 3 For the I-th cluster Sl(j), except those that quit- 
ted in the previous step, the speakers satisfying s E 
SI($ are clustered to produce K sub-clusters. This  
creates the  next-level, new K speaker clusters M ' ( j +  
1) = {m:(j + I), . . . ,mfK(j + I)}. 

STEP 4 j t j + 1. Return to  S T E P  2. 

2.3. Distance measures 
We use two distance measures between speakers: one suit- 
able for acoustic parameters (Bhattacharyya), the other 
suitable for V T  parameters (Euclidean). For the first case, 
speaker-dependent HMNets (SD-HMNets) of an identical 
structure are trained first by the Baum-Welch algorithm. 
Then the distance between two speakers is defined as aver- 
age of the Bhattacharyya distance between output proba- 
bility functions of each speaker's SD-HMNet [5]; that  is, for 
two different SD-HMNets, MI and M2, the distance is 

N M  

N is the total number of the HMNet states, and M 
t h e  total number of the output distributions. Estimation 
of the  VT parameters is performed by a functional map- 
ping method described in SectionS. The distance between 
two speakers used in clustering methods is defined as the  
Euclidean distance between the two speaker-specific low- 
dimensional vectors consisting of the V T  parameters. 

2.4. Speaker cluster selection 
After speaker clustering is accomplished, SCHMNets are 
trained using the  Baum-Welch algorithm. Fast speaker 
adaptation is then performed by selecting a most suitable 
SCHMNet  for the  target speaker. 

Speaker cluster selection is based on the maximum like- 
lihood criterion. The likelihood of a SC-HMnet is calculated 
according to  a Viterbi procedure that uses short speech 
acoustic and transcription da ta  (adaptation information) 
of each speaker. In the case of plain clustering model, t he  
S C H M n e t  tha t  gives the maximum likelihood score is se- 
lected for the target speaker. In the case of tree-structured 
clustering model, the likelihood of each SC-HMNet is cal- 
culated a t  each level of the tree structure. The tree is then 
traced by selecting the SC-HMnet that gives the maximum 
likelihood score. At  each level of the tree, the likelihood of 
t h e  selected SC-HMNet is memorized. After the tree trac- 
ing, the SC-HMnet that gives the overall maximal likelihood 
score is selected by comparing the memorized likelihood at 
each tree level. 

3. ESTIMATION OF VT PARAMETERS 
T h e  V T  parameters used in this study for speaker clustering 
are of two types: 1) the length of the oral section of the V T  
(11) together with thelength of the  pharyngeal section of the  
V T  (12)  (two parameters); and 2) the  total VTlength (VTL; 
single parameter) which is sum of 11 and 12 (VTL = 11 +12) .  

T h e  reason why we need to have more than a single VT 
length to characterize the V T  comes from the clear evidence 
of non-uniform formant scaling over a frequency range much 
greater than what can be accounted for by a single factor of 
VT-length variation [3]. The reasons why we choose I 1  and 
12 parameters in this study are: 1) two dimensions are a 
most straightforward extension from earlier one-dimension 
VT-length normalization work conducted by many research 
groups (cf. [2]); 2) the ratio of oral and pharyngeal section 
lengths of the  V T  is a significant factor shaping acoustic 
outputs of speech; this is so because phonetically significant 
V T  constrictions are usually made with reference to the  
oral-section length of the V T  ( 1 1 )  but  the formants depend 
on the entire VT length including pharyngeal length 12; and 
3) methods for estimating 11 and 12 are relatively easy. In  
this section, we describe how Japanese vowel formant da t a  
from our evaluation database are used to estimate the V T  
parameters lI  and 12 , which are then used to determine 
the  Euclidean distance between any pair of speaker-specific 
two-dimensional vectors of {ZI, 1 2 )  (and between any pair 
of speaker-specific scalars of VTL). 

T h e  estimation method for 11 and 12 parameters is based 
on a n  articulatory model developed previously for speaker 
normalization purposes (cf. [4]). The  model characterizes 
the  gross VT geometry of a speaker (which is independent 
of phonetic units) by two parameters: the length of the  
oral section (11) and the length of the pharyngeal section 
( h ) .  The  I1 and 12 values are fixed for a stylized refer- 
ence speaker's VT. Given information about VT constric- 
tion and a related approximate area function for a particu- 
lar vowel with the  stylized reference speaker's VT geometry, 
the model is capable of computing the formant frequencies 
of t ha t  vowel for any new V T  geometry obtained artificially 
by independent linear stretch (or shrink) of the reference 
speaker's 11 and 12 lengths. 

Given a vowel, two independent stretch (or shrink) fac- 
tors (for 11 and 12 ,  respectively) are mapped to a set of 
formants according to the model computation. The for- 
mant  space is generated by a chosen set of vowels and by 
a full range of stretch (or shrink) factors (limited by possi- 
ble vowel phonetic-identity changes). T o  facilitate inverse 
mapping from formants to the  stretch factors, the formant 
space is approximated by piecewise linear functions built 
from a large number of points computed from the model. 
Each piecewise linear function is confined within a corre- 
sponding triangle grid of points in the domain of stretch 
factors. 

'In our work, formant frequencies (Fl,F2,F3) of two Japanese 
vowels /a/ and /i/ are obtained for each speaker. Each vowel is 
extracted from two words of speech database uttered phrase-by- 
phrase. The vowel /a/ is extracted from Japanese word "b-a-a-i", 
and fi/ Gom "f-a-m-i-r-i-i". 

'The limit of the linear stretch is 130010, and that of the linear 
shrink is 70%. Beyond these l i m i t s ,  some vowels will change 
their phonetic identities (according to informal listening of the 
synthesized vowels) after the stretch or shrink. 
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Figure 3: Distribution of the V T  length (VTL) 
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Once the mapping function between the formant space 
and the stretch factors is formed (all based on the artic- 
ulatory model computation), then given the formant data 
(target vector) of vowels from any new speaker, a search 
is conducted to  find the stretch factors whose mapped for- 
mant vector will be as close to the target formant vectcir as 
possible. The stretch factors thus found are multiplied by 
the I 1  and 12 values of the reference speaker to give the  11 
and 22 values for the  new speaker. 
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4. RESULTS OF SPEAKER CLUSTERING; 

n 

A total of 148 male speakers were clustered based on both 
the acoustic da t a  and on the V T  parameters. Before we 
show clustering results, we first show the distributions (over 
all 148 male speakers) of the estimated VT parameters, in- 
cluding 11 and 12 ,  as well as their sum V T L  = 11 + 12,  in 
Figs.(l),(2), and (3),  respectively. The means of these pa- 
rameters over the  speakers are 21 =9.01 cm, 12 =7.10 cm, 
and VTL =16.11cm, respectively. We note that the dis- 
tributions are fairly smooth over the V T  parameters, with 
no signs of bimodal distributions. This is consistent with 
earlier results on English speech for gender-specific VTL- 
related parameters (cf. [9] for frequency warping factors). 
Properties of 11 and 12 distributions have not been studied 
in the  past, and it is interesting to observe also the smooth 
distributions illustrated in Figs.( 1) and (2). 

To calculate the  acoustic distance between speakers, 
200-state unimodal Gaussian SD-HMNet is trained. Each 
SD-HMNet is trained individually (i.e. speaker by speaker) 
with 50 common Japanese phonetically balanced sentences. 
The Baum-Welch algorithm with controlled variance is then 
used for training each SD-HMNet. 

In the case of plain clustering, all 148 male speakers are 
clu? ered into 3, 5, 10, 20, or 40 clusters. In the case of tree 
structured clustering, these speakers are clustered into five 
clusters at each node of the clustering tree. Plain-clustering 
results for the five-cluster case are shown in Fig.(4), (5), 
and (6), respectively, based on the estimated VTL informa- 
tion (Euclidean distance), the estimated 21 plus l~ informa- 
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Figure 4: Clusters obtained using VTL 
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Figure 5 :  Clusters obtained using 11 plus 12 
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Figure 6: Clusters obtained using acoustic da ta  

tion (Euclidean distance), and acoustic information (Bhat- 
tacharyya distance). Each point in these figures represents 
a distinct speaker specified by his 11 and 12 dimensions. All 
the speakers belonging to the same cluster are represented 
by the same symbol. 

From the results shown in Figs.(4), (5), and (6), we ob- 
serve drastically different clusters using acoustic and vocal- 
tract parameters. Fig.(6) demonstrates that  the acousti- 
cally clustered speaker groups do not correlate with the 
geometrical differences of the speakers. On the other hand, 
the clusters obtained from the VTL information (Fig. 4) 
and those from the I 1  plus 22 information are highly related 
to each other (Fig.5). The latter is expected since one set of 
information is derived from the other, and the consistency 
shown here verifies correct implementation of the clustering 
procedure. 
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Analysis Sampling frequency 12kHz 
Hamming window 20ms 
Frame period ms 
1 6 t h  LPC Cepstrum 
+16thALPC Cepstm+Alog power 
148 males (50 sentences per person) Training data 

Recognition data 6 males . Cluster Selection 
. Recognition 

7 phrases per person (SB1 task) 
249 phrases (SB1 task) 

Table 1: Experimental Conditions 

5. SPEECH RECOGNITION EXPERIMENTS 

In  this section, we report our evaluation experiments on the  
various speaker clustering methods described in this paper 
on a Japanese 26-phone recognition task. The experimen- 
tal conditions are listed in Table 1. Given the clusters de- 
termined as described in earlier sections, each SC-HMNet 
(containing 200 states of unimodal Gaussian) is trained us- 
ing the  Baum-Welch algorithm (with variance controlled) 
with 50 Japanese phonetically balanced sentences (a total 
of 2774 phones) uttered by all 148 male speakers. The GD- 
HMNet (i.e., single-cluster HMNet) is trained with the same 
data.  Speech data consisting of seven phrases (containing 
51 phones) are used to  select speaker cluster. The test da t a  
consist of 249 phrases (a total of 1963 phones) in phoneme 
recognition experiments. 

5.2. Recognition results 
Table 2 presents the comparative results of phoneme recog- 
nition accuracy obtained by using the SC-models. Horizon- 
tally arranged performance numbers are associated with the 
following speaker-cluster conditions: 1) Gender Dependent 
model (GD); 2) 3, 5, 10, 20, and 40 speaker clusters by 
plain clustering algorithm; and 3) tree-structured speaker 
clustering. Vertically arranged performance numbers de- 
note the following information used for clustering: l) acous- 
tics (Acoust); 2) vocal tract length (VTL); and 3) vocal 
tract  length of oral section and pharyngeal section ( 1 1 / 2 2 ) .  

These results demonstrate that use of the SC models 
reduces phoneme recognition errors by 0.2-5.7% compared 
with the GD model. The greatest error reduction (5.7%) 
comes from the  SC-HMNets trained for five plain speaker 
clusters based on two-dimensional V T  parameters I 1  plus 
12, In general, use of I 1  plus 12 parameters gives the highest 
performance, followed by use of VTL parameter. Use of 
acoustic information gives the  least amount of performance 
improvement. 

6. DISCUSSIONS AND SUMMARY 
Earlier results have shown the  effectiveness in speech recog- 
nition of using general articulatory parameters to provide a 
natural means of modeling contextual variations of speech 
[l]. This work shows how the  articulatory parameters which 
specify gross V T  dimensions can be used to naturally and 
economically represent speaker variations in the speech. 
T h e  specific scheme used in this work is to cluster speaker 
groups according to their VT-dimension parameters. Vari- 
abilities in these parameters reflect one significant physical 
cause accounting for the observed acoustic differences in the 
speech signal which is generated from the VT. 

We have proposed a speaker clustering method using the 
V T  parameters. In this method, the V T  parameters are es- 
timated from formants of only two Japanese vowels based 

’ 5.1. Experimental conditions and data sets 

plain ciustering (# of cluster) I Methnrls I GD I .‘i I 5 1 i n  i zn 1 4n I tree I 

Table 2: Recognition results using SC-HMNets (%) 

on functional mapping from the formant space to  the V T  
parameter space. Both plain and tree-structured speaker 
clusterings are created based on the estimated V T  param- 
eters. The  results of speaker clustering show that there 
is little correlation between the obtained clusters based on 
acoustic da t a  and those on V T  parameters. 

The effectiveness of our speaker clustering method has 
been shown in Japanese phoneme recognition experiments 
using the SC-HMNets. Compared with the baseline GD 
model, 5.7% recognition error reduction is obtained by us- 
ing the  SCHMNets  which are trained for the clusters con- 
structed based on the V T  parameters. This performance is 
also higher than that of the SC-HMNets obtained by clus- 
tering based on the acoustic distance measure. 

We are planning to expand the number of speakers used 
for clustering (including female speakers), and investigate 
other parameters specifying V T  shapes rather than those 
specifying only the gross V T  geometry as reported in this 
paper. Further, use of the  V T  parameters for speaker nor- 
malization and adaptation will be investigated. 
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