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a b s t r a c t

In recent years deep neural networks (DNNs) – multilayer perceptrons (MLPs) with many hidden layers
– have been successfully applied to several speech tasks, i.e., phoneme recognition, out of vocabulary
word detection, confidence measure, etc. In this paper, we show that DNNs can be used to boost the
classification accuracy of basic speech units, such as phonetic attributes (phonological features) and
phonemes. This boosting leads to higher flexibility and has the potential to integrate both top-down
and bottom-up knowledge into the Automatic Speech Attribute Transcription (ASAT) framework. ASAT
is a new family of lattice-based speech recognition systems grounded on accurate detection of speech
attributes. In this paper we compare DNNs and shallow MLPs within the ASAT framework to classify
phonetic attributes and phonemes. Several DNN architectures ranging from five to seven hidden layers
and up to 2048 hidden units per hidden layer will be presented and evaluated. Experimental evidence
on the speaker-independent Wall Street Journal corpus clearly demonstrates that DNNs can achieve
significant improvements over the shallow MLPs with a single hidden layer, producing greater than 90%
frame-level attribute estimation accuracies for all 21 phonetic features tested. Similar improvement is
also observed on the phoneme classification task with excellent frame-level accuracy of 86.6% by using
DNNs. This improved phoneme prediction accuracy, when integrated into a standard large vocabulary
continuous speech recognition (LVCSR) system through a word lattice rescoring framework, results in
improved word recognition accuracy, which is better than previously reported word lattice rescoring
results.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

State-of-the-art automatic speech recognition (ASR) systems
often rely on a pattern matching framework that expresses
spoken utterances as sequences of stochastic patterns [1]. Top-
down approaches are usually adopted to represent all constraints
in a single, compact probabilistic finite state network (FSN),
composed of acoustic hidden Markov model (HMM) states with
emission probabilities generated by Gaussian mixture models
(GMMs), phones, lexicon, grammar nodes, and their connecting
arcs [2]. For a given input utterance, the maximum a posteriori
decoding [1] procedure is used to find the most possible sequence
of words embedded in the FSN as the recognized sentence. This
search technique, known as the top-down integrated search
strategy, has attained remarkable results in many ASR tasks.

Nonetheless, recognition error rates for difficult tasks, such as
spontaneous and unconstrained speech recognition, are still
unacceptably high. In contrast, there is evidence to show that
bottom-up, stage-by-stage ASR paradigm may do better under
some spontaneous speech phenomena [3]. Automatic speech
attribute transcription (ASAT) [4], a promising alternative ASR
paradigm, is a bottom-up framework that first detects a collection
of speech attribute cues and then integrates such cues to make
linguistic validations. A typical ASAT system uses the articulatory-
based phonological features studied earlier [5–9] in a new
detection-based framework. ASAT has been extended and applied
to a number of tasks including rescoring of word lattices gener-
ated by state-of-the-art HMM systems [10], continuous phoneme
recognition [11], cross-language attribute detection and phoneme
recognition [12] and spoken language recognition [13]. The
speech cues detected in ASAT are referred to as speech attributes.
The terms phonological features and speech attributes will be
used interchangeably in this work.

In recent years there has also been a considerable resurgence
of interest in neural network approaches to speech recognition.
Neural networks are powerful pattern recognition tools that have
been used for several real world applications [14], and different
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successful techniques have been developed around them since
the early ‘80s in the speech community. For example, in connec-
tionist speech recognition systems [15], neural networks are used
to estimate the state emission probabilities of a HMM. In the
TANDEM approach [16], a neural network extracts discriminative
speech features that are fed into conventional GMM-HMM-based
speech recognizers. In detection-based ASR paradigms (e.g., [11]),
a set of neural networks learns the mapping from a spectral-based
feature space to a phonetic feature space. Neural networks have
also been used to model state and transition features in condi-
tional random field (CRF) based ASR systems (e.g., [17]), in beam
search pruning [18] and confidence measure estimation [19,20].
Although several architectures have been proposed to tackle
different speech recognition tasks, such as recurrent neural net-
works (e.g., [21,22]) and time-delay neural network [23], the
stylistic characteristics of the MLPs is by far the most popular due
to the compromise realized between recognition rate, recognition
speed, and memory resources. Furthermore, it has been shown
that feed-forward neural architectures can approximate any
function defined on compact sets in Rn [24], that is, they are
universal approximators [14].

More recently, a major advance has been made in training
densely connected, generative deep belief nets (DBNs) with many
hidden layers. The core idea of the DBN training algorithm
suggested in [25] is to first initialize the weights of each layer
greedily in a purely unsupervised way by treating each pair of the
layers as a restricted Boltzmann machine (RBM) and then fine-
tune all the weights jointly to further improve the likelihood. The
resulting DBN can be considered as a hierarchy of nonlinear
feature detectors that can capture complex statistical patterns
in data. For classification tasks, the same DBN pre-training
algorithm can be used to initialize the weights in deep neural
networks (DNNs) – MLPs with many hidden layers. The weights
in the entire DNN can then be fine-tuned using labeled data.
DNNs have been proven to be effective in a number of applica-
tions, including coding and classification of speech, audio, text,
and image data [26–30]. These advances triggered interest in
developing acoustic models based on DNNs and other deep
learning techniques for ASR. For example, the context-
independent DNN-HMM hybrid architectures have recently been
proposed for phoneme recognition [31,32] and have achieved
very competitive performance. A novel acoustic model, the
context-dependent (CD)-DNN-HMM proposed in [33] has been
successfully applied to large vocabulary speech recognition tasks
and can cut word error rate by up to one third on the challenging
conversational speech transcription tasks compared to the dis-
criminatively trained conventional CD-GMM-HMM systems [34].

In this study1, elements of both of these two research direc-
tions, namely ASAT and DNN, are merged together, and the
conventional shallow MLPs used in [36] are replaced with DNNs,
which has been shown to have very good theoretical properties
[37] and demonstrated superior performances for both phoneme
[31,32] and word recognition [33,34,38,39]. Following the ASAT
paradigm, a bank of speech attribute detectors that assign prob-
abilistic scores to manner and place of articulation events is built
using DNNs. Then a DNN is designed to (1) combine together the
output of these detectors and (2) generate phoneme posterior
probability. A wide range of DNN architectures will be built by
extending the conventional single hidden layer MLPs to five and
seven layers. Experimental evidence on the speaker independent
Wall Street Journal dataset [40] demonstrates that the proposed
solution outperforms conventional shallow MLPs in both attribute
and phoneme classification. Furthermore, by re-scoring the set of

most likely hypotheses embedded in the word lattices generated
by a conventional HMM-based LVCSR system using the DNN
phoneme posterior probabilities, a two-stage LVCSR recognizer
gave relative word error rate (WER) reductions ranging from 8.7%
to 13.0% over the initial result and improves over previous studies
on word lattice rescoring [10].

This result along with the significantly boosted quality in
attribute and phoneme estimation makes it highly promising to
advance bottom-up LVCSR with DNNs and with new ways of
incorporating the key asynchrony properties of the articulatory-
motivated phonetic attributes. This also opens doors to new
flexibility in combining top-down and bottom-up ASR. Further-
more, it should be noted that modeling of articulatory-based
phonetic features and phoneme is an active research filed in
automatic speech recognition. Therefore, the current investigation
can also impact research areas beyond the ASAT framework. For
instance, several researchers have argued that better results can be
achieved by modeling the underlying processes of co-articulation
and assimilation rather than simply describing their effects on the
speech signal (e.g., [7]). It is also believed that by integrating
articulatory-motivated information into the speech recognition
engine most of the problems of the current technology can be
addressed. Finally, phoneme estimation also plays a very important
role in many speech processing applications, such as out-of-
vocabulary detection [41] and language identification (e.g., [42]).

The remainder of the paper is organized as follows. A brief
survey on the ASAT paradigm for speech recognition is given in
Section 2. Section 3 gives a light overview of related works on
articulatory-motivated phonological attributes and phoneme esti-
mation. The DNN architecture and training scheme are discussed
in Section 4. The word lattice rescoring procedure adopted in this
study is outlined in Section 5. Next, the experimental setup is
given in Section 6 in which experimental results on attributes and
phoneme classification, and word lattice rescoring are presented
and discussed. Finally, we discuss our findings and conclude our
work in Section 7.

2. ASAT in a nutshell

It is well known that the speech signal contains a rich set of
information that facilitates human auditory perception and com-
munication, beyond a simple linguistic interpretation of the
spoken input. In order to bridge the performance gap between
ASR systems and human speech recognition (HSR), the narrow
notion of speech-to-text in ASR has to be expanded to incorporate
all related information ‘‘embedded’’ in speech utterances. This
collection of information includes a set of fundamental speech
sounds with their linguistic interpretations, a speaker profile
encompassing gender, accent, emotional state and other speaker
characteristics, the speaking environment, etc. Collectively, we
call this superset of speech information the attributes of speech.
They are not only critical for high performance speech recogni-
tion, but also useful for many other applications, such as speaker
recognition, language identification, speech perception, speech
synthesis, etc. ASAT therefore promises to be knowledge-rich and
capable of incorporating multiple levels of information in the
knowledge hierarchy into attribute detection, evidence verifica-
tion and integration, i.e., all modules in the ASAT system [4]. Since
speech processing in ASAT is highly parallel, a collaborative
community effort can be built around a common sharable plat-
form to enable a ‘‘divide-and-conquer’’ ASR paradigm that facil-
itates tight coupling of interdisciplinary studies of speech science
and speech processing [4]. A block diagram of the ASAT approach
to ASR is shown in Fig. 1. The top panel shows the general ASAT
front end that performs a collection of speech analyses geared to1 This work re-organizes, expands, and completes our study reported in [35].
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generate discriminative parameters. This ensemble of speech
parameters are then used for further processing, including the
design of a bank of speech attribute detectors to produce
probabilistic scores for each of the key acoustic cues needed to
generate evidences for making linguistic decisions. The bottom
panel of Fig. 1 shows the ASAT backend knowledge integration
that produces all the intermediate sources of information in the
speech knowledge hierarchy.

The ASAT system is still under development, and the inter-
ested reader is referred to [4] for more details. In this study, we
focus on the front-end of the ASAT framework, namely the bank
of attribute detectors and the attribute-to-phoneme merger. The
ASAT detection-based front-end as implemented in this paper is
shown in Fig. 2 and consists of two main blocks: (a) a bank of
attribute detectors that can produce detection results together
with confidence scores and (b) an evidence merger that combines
low level events (attribute scores) into higher level evidence, such
as phoneme posteriors. The ‘‘Append module’’ block, shown in
Fig. 2, stacks together the outputs delivered by the attribute
detectors for a given input and generates a supervector of
attribute detection scores. This supervector is fed into the merger.
Overall, the system shown in Fig. 2 maps acoustic features (e.g.,

short-time spectral features, or temporal pattern features) into
phoneme posterior probabilities. An intermediate transformation
is accomplished by a bank of speech attribute detectors that
scores events embedded into the speech signal. For English, which
is what we evaluate in this paper, an attribute detector is built for
each of the 21 phonological features listed in Table 1. The merger
discriminates among 40 phoneme classes shown in the third
column of Table 1.

In Section 6, we show that such an architecture can achieve
high-performance attribute and phoneme classification results
and will be proven useful in word lattice rescoring implemented
as described in [10].

3. Attribute and phoneme models in speech recognition

In the next two sections we survey research areas that can be
impacted by the present study.

3.1. Attribute modeling

Broadly speaking, phonological-based approaches to speech
recognition can be divided into two main categories depending on
what they try to model, namely abstract representation of articula-
tion, or physical articulators. The majority of these approaches fall
into the first category. These studies are concerned with how to
extract phonetic features and use them in the standard ASR
framework (e.g., [11,12,43–46]). One of the main supporting
arguments of these studies is that ASR engines can be improved
by using more linguistically motivated features in addition to the
standard frequency-based features. Articulatory features have

Fig. 1. A block diagram of the ASAT approach to ASR. On the top panel is the
general ASAT front-end that contains a collection of speech analyzers each of
which is geared to generate discriminative parameters. The bottom panel shows
the ASAT backend knowledge integration model that produces all the intermedi-
ate sources of information in the speech knowledge hierarchy. This figure has been
adapted from [4].

Fig. 2. The ASAT detection-based front-end. Each attribute detector analyzes any
given input frame and produces a posterior probability score. The Append module
stacks together attribute posteriors. The merger delivers phoneme posterior
probabilities.

Table 1
Phonological features (attributes) and their associated
phonemes used in this study.

Attribute Phonemes

Manner
Vowel iy ih eh ey ae aa aw ay ah

oy ow uh uw er
Fricative jh ch s sh z f th v dh hh
Nasal m n ng
Stop b d g p t k dx
Approximant w y l r er

Place
Coronal d dx l n s t z
High ch ih iy jh sh uh uw y

ey ow g k ng
Dental dh th
Glottal hh
Labial b f m p v w
Low aa ae aw ay oy ah eh
Mid ah eh ey ow
Retroflex er r
Velar g k ng

Others
Anterior b d dh dx f

l m n p s t th v z w
Back ay aa ah aw

ow oy uh uw g k
Continuant aa ae ah aw ay dh eh

er r ey l f ih iy oy ow s
sh th uh uw v w y z

Round aw ow uw uh v y oy r w
Tense aa ae aw ay ey iy ow

oy uw ch s sh f th p t k hh
Voiced aa ae ah aw ay b d dh dx eh

er ey g ih iy jh l m n ng ow
oy r uh uw v w y z

Silence sil
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proven to have several nice properties, such as robustness to
noise and cross-speaker variation [44], portability across different
languages [12], and explicit modeling of linguistic information
that makes it easier to deal with non-native and hyper-articulated
speech [45]. These phonetic features can be extracted with data-
driven techniques, and different approaches have been developed.
For instance, a bank of artificial neural networks (ANNs) are used
in [44] to score speech attributes. The attribute posterior prob-
abilities generated by each ANN are concatenated and integrated
by a higher-level ANN trained to produce phoneme posterior
probabilities. A stream architecture to augment acoustic models
based on context-dependent sub-word units with articulatory
motivated acoustic units is proposed in [45]. Frame-level classi-
fication of a set of articulatory features inspired by the vocal tract
variables of articulatory phonology is studied in [46]. In [43], it is
shown that combining the recognition hypotheses resulting from
the different articulatory specialized memories leads to signifi-
cant phoneme recognition improvements. In [10], it is demon-
strated that articulator information captured through a bank of
phonetic feature detectors can be effectively used in a lattice
rescoring process to correct utterances with errors in large
vocabulary continuous speech recognition.

A smaller number of investigations have been aiming at
modeling the physical articulators directly. Speech researchers
in this area argue that better recognition performance can be
obtained by using articulatory motivated modes, since that allows
to model the underlying processes of co-articulation and assim-
ilation directly, rather than describing their effects on the speech
signal [47]. For instance, an articulatory feature based HMM
recognizer is studied in [48]. In this system, each state represents
a particular articulatory configuration instead of representing an
acoustic portion of a phoneme. Combination with conventional
acoustic-based HMM is carried out by a weighted sum of the log-
likelihood of the models. This recognition paradigm is quite
flexible and allows the modeling of articulatory asynchrony, yet
it suffers from data sparseness problem because the articulatory
based HMMs require a large state space. In [5], it is shown that
integration of high-quality global speech production models into
the probabilistic analysis-by-synthesis strategy has the potential
to close the gap between humans and machines, which is the
ultimate goal of ASR. Finally, attempts to use articulatory knowl-
edge for visual speech recognition have been also pursued (e.g.,
[49]).

3.2. Phoneme estimation

Phoneme estimation is an active research area in speech
recognition as well, since it plays a very important role in many
speech processing applications. For instance, the out-of-
vocabulary (OOV) words detection problem is often tackled by
representing those words as phoneme sequences (e.g., [41]). In
automatic language identification (LID), it has been shown that
language recognition results are highly correlated with phoneme
recognition results [(e.g., [42]). Furthermore, phoneme recogni-
tion also plays a fundamental role in improving speaker recogni-
tion [50] and word recognition accuracy [15,51].

Designing a high-performance phoneme model is a challenge
and several researchers have proposed various phoneme archi-
tectures in the recent years. For example, high-accuracy phoneme
recognition results have been reported by using several MLPs
arranged in a hierarchical structure (e.g., [11,52,53]). A remark-
able performance has been achieved on the TIMIT task [54] using
deep belief networks [31]. In [55], the authors propose a condi-
tional augmented model as a way to incorporate generative
models in a discriminative classifier, which leads to good pho-
neme classification results. In [56], the authors further extended

this coupling between generative models and a discriminative
classifier by using HMMs as regressors in a penalized logistic
regression framework. Finally, (hidden) conditional random fields
have also been proposed [17,57].

4. Deep neural networks

A DNN is a multi-layer perceptron with many hidden layers.
The main challenge in learning DNNs is to devise efficient training
strategies in order to escape poor local optimum of the compli-
cated nonlinear error surface introduced by the large number of
hidden layers . A common practice is to initialize the parameters
of each layer greedily and generatively by treating each pair of
layers in DNNs as a restricted Boltzmann machine (RBM) before
performing a joint optimization of all the layers [37]. This learning
strategy enables discriminative training to start from well initi-
alized weights and is used in this study.

4.1. Restricted Boltzmann machines

A bipartite graph with a visible layer and a hidden layer can be
used to represent an RBM. The stochastic units in the visible layer
only connect to the stochastic units in the hidden layer. The units
in the visible layer are typically represented by Bernoulli or
Gaussian distributions and the units in the hidden layer are
commonly represented with Bernoulli distributions. Gaussian–
Bernoulli RBMs can convert real-valued stochastic variables (such
as short-term spectral features) to binary stochastic variables that
can then be further processed using the Bernoulli–Bernoulli
RBMs.

Given the model parameters y, the joint distribution pðv,h; yÞ
over the visible units v and hidden units h in the RBMs can be
defined as

pðv,h; yÞ ¼
expð$Eðv,h; yÞÞ

Z
, ð1Þ

where Eðv,h; yÞ is an energy function and Z ¼
P

v

P
hexpð$Eðv,h; yÞ

is the partition function. The marginal probability that the model
assigns to a visible vector v is

pðv;yÞ ¼
P

hexpð$Eðv,h; yÞÞ
Z

: ð2Þ

For a Bernoulli (visible)–Bernoulli (hidden) RBM, the energy is

Eðv,h; yÞ ¼$
XV

i ¼ 1

XH

j ¼ 1

wijvihj$
XV

i ¼ 1

bivi$
XH

j ¼ 1

ajhj, ð3Þ

where wij represents the symmetric interaction between visible
unit vi and hidden unit hj, bi and aj are the bias terms at the visible
and hidden layers, respectively, and V and H are the numbers of
visible and hidden units. The conditional probabilities can be
efficiently calculated as

pðhj ¼ 19v; yÞ ¼ s
XV

i ¼ 1

wijviþaj

 !
, ð4Þ

pðvi ¼ 19h; yÞ ¼ s
XH

j ¼ 1

wijhjþbi

0

@

1

A, ð5Þ

where sðxÞ ¼ 1=ð1þexpð$xÞÞ.
Similarly, for a Gaussian–Bernoulli RBM, the energy is

Eðv,h; yÞ ¼$
XV

i ¼ 1

XH

j ¼ 1

wijvihjþ
1
2

XV

i ¼ 1

ðvi$biÞ
2$
XH

j ¼ 1

ajhj: ð6Þ
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The corresponding conditional probabilities become

pðhj ¼ 19v; yÞ ¼ s
XV

i ¼ 1

wijviþaj

 !
, ð7Þ

pðvi ¼ 19h;yÞ ¼N
XH

j ¼ 1

wijhjþbi,1

0

@

1

A, ð8Þ

where vi takes real values and follows a conditional Gaussian
distribution with mean

PH
j ¼ 1 wijhjþbi and variance one.

The parameters in RBMs can be optimized to maximize log
likelihood log pðv; yÞ and can be updated as

Dwij ¼/vihjSdata%/vihjSmodel, ð9Þ

where /vihjSdata is the expectation that vi and hj occur together
in the training set and /vihjSmodel is the same expectation under
the distribution defined by the model. Because /vihjSmodel is
extremely expensive to compute exactly, the contrastive diver-
gence (CD) approximation to the gradient is used, where
/vihjSmodel is replaced by running the Gibbs sampler initialized
at the data for one full step [37].

4.2. Deep neural network training process

The last layer of a DNN transforms a number of Bernoulli
distributed units into a multinomial distribution using the soft-
max operation

pðl¼ k9h; yÞ ¼
expð

PH
i ¼ 1 likhiþakÞ
ZðhÞ

, ð10Þ

where l¼k denotes the input been classified into the kth class and
lik is the weight between hidden unit hi at the last layer and class
label k. To learn the DNNs, we first train a Gaussian–Bernoulli
RBM generatively in which the visible layer is the continuous
input vector constructed from 2nþ1 frames of speech features,
and n is the number of look-forward and look-backward frames.
We then use Bernoulli–Bernoulli RBMs for the remaining layers.
When pre-training the next layer, Eðhj9v; yÞ ¼ pðhj ¼ 19v; yÞ from
the previous layer is used as the visible input vector based on the
mean-field theory. This process continues until the last layer,
where error back-propagation (BP) is used to fine-tune all the
parameters jointly by maximizing the frame-level cross-entropy
between the true and the predicted probability distributions over
class labels.

5. Word lattice rescoring

The final step in the present study is to verify whether DNN
boosted accuracies can help improve the LVCSR performance, and
we pursued this goal by integrating the information generated at
the output of the DDN phoneme classifier, namely phoneme
posterior probability, into an existing LVCSR system through the
word lattice rescoring procedure outlined in the ASAT study
reported in [10].

Note that a conventional ASR system can output either a single
best hypothesis (that is, the decoded sentence) or a set of most
likely sentence hypotheses for a given input utterance. In the
latter case, the competing most likely hypotheses can be arranged
in the form of a word lattice. In our investigation, we adopted the
word lattice structure described in [58], which reflects the
syntactic constraints of the grammar used during recognition.
Thus, the work lattice is implemented as a direct, acyclic, and
weighed graph, G(N, A), with N nodes and A arcs. As shown in
Fig. 3, the nodes of the lattice carry the timing information (i.e.,
temporal boundaries are given by the arcs’s bounding nodes),

whereas the arcs carry the symbol along with the score informa-
tion. In particular, each arc corresponds to a recognized word. The
rescoring algorithm aims at incorporating the scores generated by
the ASAT detection-based front-end shown in Fig. 2 into speech
word lattices. These word lattices are generated by the LVCSR
baseline system to be presented in Section 6.1, and it is inspired
by decoding scheme based on a generalized confidence score
proposed in [59].

The rescoring formulation for word lattices is as follows: each
arc in a lattice corresponds to a word in a string hypothesis. A
score at the end of each word, a word-level score, WS, is obtained
by summing up the phoneme scores, PSi, of each phoneme
composing that word (see [10] for more details). Thus WS is a
linear combination of phoneme scores. In turn, PSi is computed by
summing up all of (log) posterior probabilities, optionally dis-
counted by the prior probability, generated by DNN (or MLP) for
that phoneme class. The weighted rescoring formula is defined as

Sn ¼w1Wnþw2Ln, ð11Þ

where Wn is defined as

Wn ¼
XK

i ¼ 1

PSin: ð12Þ

PSin is the score of the i-th phoneme in the n-th arc, K is the
number of phonemes in the word associated with the n-th arc, w2

is the interpolation weight of the log-likelihood score computed
by the LVCSR baseline system, Ln, and w1 is the interpolation
weight of the word-level score. Both w1 and w2 are set to 0.5 in
our experiments.

6. Experiments

In the following sections, the experimental setup is presented,
and the results on attribute and phoneme classification are
discussed. Word recognition results through lattice rescoring are
also given. Nonetheless, before delving into the experimental part
of the proposed work, the rational behind the use of neural
architectures with more than one hidden layer for speech appli-
cations is now briefly discussed.

The nature of the speech signal is such that feature vectors
extracted for different phonemic or phonetic classes greatly overlap
in the input feature (hyper-)space. In [60], for example, the authors
have found that there is a great overlap between formant frequencies
for different vowel sounds by different talkers. More recently, it has
also been demonstrated that Bhattacharyya distance distributions
between 39-dimensionMFCCs for the bilabial class and 39-dimension

Fig. 3. An example of a word lattice implemented as a direct, acyclic, and
weighted graph. The timing information is embedded in the nodes, whereas each
arc carries out information about the word identity and its likelihood. The
enlargement shows the generic ith word,Wi described as a sequence of phonemes.
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MFCCs for the alveolar class is rather small [61]. These two pieces of
experimental evidence imply that speech data lie on or near a
nonlinear manifold, as pointed out in [62].

Shallow MLPs have the potential to learn good models of data
that lie on or near a nonlinear manifold, but it has not been
possible so far to seriously address the speech problem using a
single hidden layer while avoiding over-fitting [62]. Deep neural
networks are instead better suited to learn the kind of compli-
cated functions that can represent high-level abstractions that are
typical in speech problems [63]. Moreover, DNNs can implement
arbitrary complex decision boundary with fewer overall hidden
units than single hidden layer neural networks [14], and DNNs
can learn more invariant and discriminative features at higher
hidden layers and less likely to over-fit [62]. Finally, experimental
evidence reported in [64] seems to suggest that DNNs are able to
learn more appropriate features in their lower layers than shallow
MLPs and are therefore better suited for speech applications.

6.1. Experimental setup

All experiments were conducted on the 5000-word speaker
independent WSJ0 (5k-WSJ0) task [40]. The parameters of all
classifiers presented in this study were estimated using training
material from the SI-84 set (7077 utterances from 84 speakers,
i.e., 15.3 h of speech). A cross-validation (cv) set was generated by
extracting 200 sentences out of the SI-84 training set. The cv set
accounts for about 3% of the SI-84 set and was used to terminate
the training. The remaining 6877 SI-84 sentences were used as
training material. Evaluation was carried out on the Nov92
evaluation data (330 utterances from 8 speakers).

Mel-frequency cepstrum coefficients (MFCCs) [65] were used
as parametric representation of the audio signal. Spectral analysis
to generate MFCCs was performed using a 23 channel Mel filter
bank from 0 to 8 kHz. The cepstral analysis was carried out with a
Hamming window of 25 ms and a frame shift of 10 ms. For each
frame, 12 MFCC features plus the zeroth cepstral coefficient were
computed. The first and second time derivatives of the cepstra
were computed as well and concatenated to the static cepstra to
yield a 39-dimensional feature-vector.

For the word lattice rescoring experiment, a gender independent
LVCSR baseline systems was built. This system was designed with
the HTK toolkit [66] and is based on tied-state cross-word triphone
models and a trigram language model. The number of shared states
is 2818, and these states were obtained with a phonetic decision
tree and each state observation density was modeled by a GMM
with 8 mixture components. The HMM parameters of the LVCSR
baseline system were estimated using maximum mutual informa-
tion (MMI) estimation procedure [67]. A language model within the
5k-WSJ0 vocabulary was used during decoding. The acoustic vector
used to represent the speech signal contains 12 MFCCs, log energy,
velocity, and acceleration coefficients.

6.2. Results on attribute classification

As stated, each detector estimates attribute posterior prob-
abilities. Table 2 shows the classification accuracies at a frame
level for the speech attributes used in this work. In this table, the
prior probability of each attribute, P(attribute), is estimated from
the training data. The Naı̈ve algorithm assigns each frame with
the most probable label (true or false). That is, when the majority
of the frames in the training set is true for an attribute, then we
assign value ‘‘true’’ to that attribute for all frames. This informa-
tion has been added to the Table 2 to demonstrate that the
proposed solution can attain a classification result better than
chance. The shallow MLP results obtained using MFCC input
features were quoted from [35] and were obtained using a single

hidden layer MLP with 800 hidden units. These results are
referred to as shallow MLP in Table 2. The attribute accuracy
obtained using a DNN is reported in the next-to-last column of
Table 2. The DNN contains five hidden layers each with 2048 units
following the previous work [33].

From this table we observe that higher attribute accuracies can
be delivered using a DNN trained over short-time spectral features,
that is, MFCCs. Furthermore, for many attributes, such as back,
labial, and mid, the shallow MLP with a single hidden layer
performs only slightly better than the Naı̈ve approach. The DNN
achieves a much higher accuracy with relative error rate reductions
over the shallow MLP ranging from 40% to 90% for different
attributes. Furthermore, the average relative error rate is reduced
by 56% across all attributes over the shallow MLP. For instance, very
good attribute classification accuracies can be obtained for several
attributes, such as dental (99.0%) and voiced (95.4%).

6.3. Results on phoneme classification

Table 3 summarizes the average cross entropy (CE) and classifica-
tion accuracies at the frame level for phonemes. The setup names are
encoded as ]_hidden_units! ]_hidden_layer input_feature, where the
input feature MFCC is extracted as described in Section 6.1, input
features Attr1 and Attr2 refer to the attribute log posterior prob-
ability generated from the 800!1 MLP and 2048!5 DNN attribute
detectors, respectively. All the four setups used 11 frames of
features—5 frames looking ahead and 5 frames looking back.

From Table 3 we can make several observations. First, the
shallow MLP based phoneme detector performs the worst even
though it used the attribute detectors results as the input feature.

Table 2
Classification accuracies (in %) at a frame level for the speech attributes used in
this work.

Attribute P (attribute) Naı̈ve Shallow MLP DNN (2084!5) STC

Anterior 36.2 63.8 85.6 92.5 93.2
Approximant 9.2 90.8 94.9 96.4 95.9
Back 19.6 80.4 87.6 93.1 92.9
Continuant 55.7 55.7 88.7 93.5 89.93
Coronal 25.5 74.5 87.9 92.4 93.1
Dental 1.4 98.9 98.9 99.0 99.1
Fricative 15.3 84.7 94.2 96.2 95.4
Glottal 0.8 99.2 99.3 99.7 99.7
High 16.7 83.3 90.7 95.0 94.9
Labial 11.0 89.0 92.5 96.9 92.5
Low 9.3 90.7 94.6 96.9 96.9
Mid 11.8 88.2 90.7 93.8 93.6
Nasal 8.7 91.3 95.9 97.7 97.1
Retroflex 6.2 93.8 97.6 98.5 98.4
Round 14.7 85.3 91.9 94.9 93.4
Stop 15.3 84.7 92.9 95.7 94.9
Tense 39.5 60.5 83.0 90.6 90.5
Velar 5.4 94.6 96.6 98.7 98.4
Voiced 59.9 59.9 92.1 95.3 95.4
Vowel 32.5 67.5 87.9 92.8 91.3

Table 3
Average cross entropy (CE) and phoneme classification accuracy at a frame level.

Setup Train cv Test

avg CE acc(%) avg CE acc(%) avg CE acc(%)

1500! 1 Attr1 – 86.7 – 82.7 – 82.6
2048!5 MFCC "0.26 91.6 "0.45 85.3 "0.46 85.1
2048!7 MFCC "0.24 91.9 "0.45 85.5 "0.46 85.3
2048! 5 Attr2 "0.28 90.2 "0.45 85.5 "0.48 85.0
2048!5 STC "0.12 95.9 "0.37 88.8 – 88.3
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For example, we can increase the test set accuracy by absolute
2.5% and 2.7% over the shallow MLP detector, respectively, using a
5-hidden layer and 7-hidden layer DNN. Finally, comparing cv
and test set results we can see that the DNN results are robust.

Figs. 4 and 5 display the phoneme accuracies attained by a DNN
with 5-hidden layer on the training and cv data at different training
epochs. Specifically, the accuracies using MFCCs are reported in
Fig. 4, whereas the phoneme accuracies using Attr2 are displayed in
Fig. 5. A comparison between these two plots suggests that by
breaking the phoneme detector into two stages—first to detect the
attribute and then to estimate the phoneme identity based on the
results of attribute detectors, higher phoneme accuracies can be
achieved sooner. Nonetheless, this two-stage approach has not
provided any gain over the direct approach that detect phonemes
trained over MFCCs if DNN is used although the same two-stage
detector did show advantages if shallow MLP or other shallow
model (e.g. [68]) is used. This indicates that DNNs are powerful
enough to capture useful discriminative information, and the
performance on the test data reported in Table 3 confirms it. In
this study, we have not exploited the temporal overlapping char-
acteristics of speech attributes across different dimensions. There-
fore, we believe that the potential of the deep layered structure may
be proven useful in the future.

It has been demonstrated that better phoneme accuracies can
be delivered by employing long-time temporal patterns of spec-
tral energies in place of the conventional short-term spectral
features (e.g., MFCCs) [53]. It would therefore be meaningful to
verify whether further improvement on phoneme classification

can be gained by using long-time temporal based features. Each
attribute classifier was thus trained using split temporal context
features [52]. Specifically, spectral analysis was performed using a
23 channel Mel filter bank from 0 to 8 kHz. For each critical band
a window of 310 ms centered around the frame being processed
was considered and split in two halves: left-context and right-
context . Two independent front-end as shallow MLPs (‘‘lower
nets’’) were trained on those two halves and generated left- and
right-context attribute posterior probabilities, respectively. The
discrete cosine transform was applied to the input of these lower
nets to reduce the dimensionality. The outputs of the two lower
nets were then sent to a third MLP which acted as a merger and
gave the attribute posterior probability of the target attribute. The
attribute classification accuracy with STC features is reported in the
last column of Table 2. It is worth noting that by arranging MLPs in
a hierarchical structure and using long-time temporal information,
results comparable to the DNN detectors with MFCC features can be
attained. The output of these 21 attribute classifiers was combined
into a supervector, as explained earlier. This supervector is fed into
the merger shown in Fig. 2. We did not classify attributes using
DNN and STC features since when DNN is used in the two-stage
architecture with MFCC features, good phoneme recognition accu-
racy have been attained, as shown in Table 3.

Fig. 6 shows the framewise training and cv phoneme accuracy at
different training epochs for a DNN when long temporal patterns of
spectral energy are used. The final training and cv accuracies are
reported in Table 3, 2048!5 STC, and these accuracies are equal to
95.9% and 88.8%, respectively. The framewise test accuracy is of
88.3%, as shown in the last column of Table 3. This result represents
the best accuracy reported in this work.

In [69], it was shown that by using log filter bank features we
can get much better results than using MFCC features if the same
number of layers is used and sometimes even less layers are used,
on real world voice search datasets. In our laboratories, evidence
has also been gained to indicate that DNN is more robust than
shallow MLP and GMM when noise exists. Specifically, we have
got very remarkable results on the Aurora 4 task by simply
plugging in the CD-DNN-HMM without using any noise robust-
ness technique. Nonetheless, such experiments are out of the
topic of this work and will be the subject of a future publication.

6.4. Results on word lattice rescoring

The performance of the MMI-based baseline system is
reported in Table 4 in terms of word error rate (WER) on the
Nov92 task. This result is comparable with the baseline result

Fig. 4. DNN accuracy on the training and cv data using MFCCs.

Fig. 5. DNN accuracy on the training and cv data using Attr2.

Fig. 6. DNN accuracy on the training and cv data using long-time temporal
patterns of spectral energies.
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reported in [70,71]. Table 4 shows, in the second row, the
performance of the rescored system when a shallow MLP is used
to implement both the bank of attribute classifier and the merger.
Eq. (11) with w1 ¼w2 ¼ 0:5 is used to carry rescoring phase out.
The same rescoring procedure is also carried out over the MMI
baseline system using phoneme posterior probabilities generated
using DNNs for both the bank of detectors and the merger, that is
using the configuration 2048 Attr2 in Table 3. The interpolation
weights in Eq. (12) are again clamped to 0.5. These results
indicate that the rescored systems always achieve better perfor-
mance than the conventional baseline system due to the system
combination effect. Furthermore, DNN-based rescored system
outperforms the MLP-based one, and a final WER of 4.2% is
attained, which correspond to a relative improvement of 8.7%.
The relative improvement represents the relative reduction of
WER achieved by the DNN-based rescoring over the MMI baseline
system, and it is computed as ðWERMMI#WERRESCOREDÞ=WERMMIÞ.
This performance also represents an improvement over our
previously reported results on word lattice rescoring [10].

In Section 6.3, it was demonstrated that the use of long-
temporal evolution of spectral energies in place of MFCCs allows
us to obtain better phoneme classification accuracies. Therefore,
word lattice rescoring was performed with those boosted pho-
neme posterior probabilities, and a final WER of 4.0% was
observed (see last row in Table 4). This result corresponds to a
relative performance improvement of 13.0%.

7. Discussion and conclusion

We have demonstrated in this work that we can achieve high
accuracies for both phonological attribute detection and phoneme
estimation using DNNs. Furthermore, DNN-based rescoring has
proven useful in an LVCSR application. This opens up new oppor-
tunities to some old problems, such as speech recognition from a
phoneme lattice [2] and from phonological parsing [72]. It also
creates an exciting avenue to provide high-precision attribute and
phoneme lattices for bottom-up, detection-based speech recogni-
tion where words can be directly specified in terms of attributes
free from phonemes. For speech understanding, concepts may be
also directly specified in terms of attributes free from words.

It is well known that speech utterances can be characterized
by two types of acoustic/phonetic cues in spectrogram reading.
The first kind of cues are relatively stable, e.g. voicing, places, and
manners of articulation. On the other hand, there are many more
cues that varies strongly with context, e.g. flapping and spectral
manifestation of vowels. By combining these cues and other
higher level information such as lexical constraints, researchers
repetitively demonstrated that with some training, they can
‘‘interpret’’ the underlying sentence embedded in a speech utter-
ance. The gist seems to lie in the relatively reliable ‘‘human visual
detection’’ of such acoustic landmarks, or events, and ‘‘bottom-up
knowledge integration’’ of these linguistic events. This process of
integrating diverse knowledge sources as the basis for ASR could
be accomplished by phonological parsing (e.g. [72]) and related
techniques (e.g. [73]).

Furthermore, in spontaneous speech partial understanding is
often needed because an integrated approach is not sufficient to
properly capture the overall knowledge sources. Thus for ill-
formed utterances in spontaneous speech it is expected that the
proposed framework will be robust and will give a better
performance than the standard HMM-based technology as
demonstrated previously in the proposed key-phrase detection
frameworks [3]. The main challenge here is robust connection
between the target concepts in the understanding tasks and
attribute specification and robust detection of such attributes.
With our initial success reported in this paper, we intend to
continue to explore the cross-fertilization of ASAT and DNNs for
LVCSR and for potential speech understanding applications.

One clear limitation of the current framework in detection-
based speech recognition is the lack of temporal overlapping (i.e.,
asynchrony) characteristics in the attributes across different dimen-
sions. This limitation is reflected in the static phoneme-to-attribute
mapping (Table 1), and it may account for why the use of attribute
detectors has not led to superior phoneme classification as com-
pared to DNN directly trained over MFCC features. Nonetheless,
such asynchrony is central to modern phonological theory (see a
review in [74]). Incorporation of asynchrony will significantly
modify the attribute targets in running speech in a principled and
parsimonious way, as demonstrated in [5,7,8,75]. For spontaneous
speech that exhibits significantly more variation in pronunciation
than read-style speech, such asynchrony plays a more important
role. With the attribute targets modified in a phonologically mean-
ingful manner, we hope that the DNN approach will further
enhance the value of the attributes for making word recognition
and spontaneous speech recognition more accurate within the
detection-based ASAT framework.
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