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OAbstract

Discriminative training for hidden Markov models (HMMs) has been a central theme in speech recognition research for many years.
One most popular technique is minimum classification error (MCE) training, with the objective function closely related to the empirical
error rate and with the optimization method based traditionally on gradient descent. In this paper, we provide a new look at the MCE
technique in two ways. First, we develop a non-trivial framework in which the MCE objective function is re-formulated as a rational
function for multiple sentence-level training tokens. Second, using this novel re-formulation, we develop a new optimization method
for discriminatively estimating HMM parameters based on growth transformation or extended Baum–Welch algorithm. Technical
details are given for the use of lattices as a rich representation of competing candidates for the MCE training.
� 2007 Elsevier B.V. All rights reserved.
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C1. Introduction

Hidden Markov models (HMMs) have been a well
established framework for a variety of pattern recognition
applications, including, most prominently, speech recogni-
tion applications (Rabiner and Juang, 1993; Bahl et al.,
1987; Deng and O’Shaughnessy, 2003). One most attractive
feature of the HMM framework is that its parameters can
be learned automatically from the training data. In early
days of HMMs, the parameters were learned by the maxi-
mum likelihood (ML) criterion based on the EM algorithm
(e.g., Bahl et al., 1987; Rabiner and Juang, 1993). Improve-
ment of parameter learning beyond ML has been pursued
for many years (Brown, 1987; Chou, 2003; Deng et al.,
2005; Deng et al., 2005; Gopalakrishnan et al., 1991; He
and Chou, 2003; Juang and Katagiri, 1992; Juang et al.,
1997; Macherey et al., 2005; McDermott et al., in press;
Normandin, 1991; Povey and Woodland, 2002; Povey
et al., 2003; Povey, 2004; Povey et al., 2004; Rathinavalu
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and Deng, 1998; Schluter et al., 2001), based on the con-
cept of discrimination against classes, in contrast to maxi-
mizing likelihood of each individual class. The reason
behind discriminative training is that complete knowledge
of speech data distributions is lacking and training data
is always limited. It is not until recently that discriminative
training has shown uniform success in speech recognition
over virtually all tasks, including especially large tasks
(e.g., Woodland and Povey, 2000; Povey, 2004).

Among several types of discriminative training for
HMMs, one prominent type is minimum classification
error (MCE) training (Chou, 2003; Juang and Katagiri,
1992; Juang et al., 1997; He and Chou, 2003; Macherey
et al., 2005; McDermott et al., in press; Roux and McDer-
mott, 2005; Rathinavalu and Deng, 1998). The essence of
MCE is to define the objective function for optimization
that is closely related to the empirical classification errors.
This is more desirable than other types of discriminative
training that are less closely related to the classification
errors. The conventional MCE has been based on the
sequential gradient-descent based technique, named gener-
alized probabilistic descent (GPD), which optimizes the
objective function as a highly complex function of the
HMM parameters.
criminative training for hidden Markov models, Pattern Recogn.
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Another significant advance in discriminative training is
the development and application of a special type of opti-
mization technique, called growth transformation (GT)
or extended Baum–Welch (EBW) algorithm when it is used
for HMM parameter estimation. GT is an iterative optimi-
zation scheme where if the parameter set K is subject to a
transformation K = T(K 0), then the objective function
‘‘grows’’ in its value O(K) > O(K 0) unless K = K 0. In
(Gopalakrishnan et al., 1991), GT/EBW was developed
for rational functions such as the mutual information as
the optimization criterion. Maximization of mutual infor-
mation (MMI) as a form of discriminative criterion for
the discrete HMM was described in (Gopalakrishnan
et al., 1991). This has been extended to the continuous-den-
sity HMM in (Normandin, 1991; Gunawardana and
Byrne, 2001). The significance of GT/EBW lies in its effec-
tiveness and closed-form parameter updating for large-
scale optimization problems with difficult objective func-
tions. Compared with the gradient based techniques which
often require special and delicate care for tuning the
parameter-dependent learning rate, GT/EBW avoids such
requirements and with the closed-form updating formula
it is generally faster in reaching algorithm convergence.

Mutual information is naturally in the form of a rational
function and MMI is obviously suited to GT/EBW optimi-
zation. However, as a discriminative criterion, it is only
indirectly related to classification errors. On the other
hand, MCE as a discriminative criterion is closely related
to classification errors, but it is not naturally in the form
of a rational function when there are multiple utterance
tokens in the training data. Hence, it has been a tradition
to use the gradient-descent techniques (GPD) for optimiz-
ing the MCE criterion (Chou, 2003; Juang et al., 1997;
McDermott et al., in press; Rathinavalu and Deng,
1998). In this paper, we break this long-held tradition
and take a fresh look at the MCE. This new analysis and
formulation of the MCE covers two main issues. First we
re-examine the MCE criterion. Second the results of the
re-examination permit the use of the new GT/EBW optimi-
zation technique for optimizing the MCE criterion with
respect to the HMM parameters.

The organization of this paper is as follows. In Section
2, an overview of the traditional MCE is provided. Then,
in Section 3, we reformulate the MCE criterion (with multi-
ple training tokens) into a rational functional form. We
provide a rigorous proof by induction for the correctness
of the rational functional form. Given this non-trivial
reformulation, in Section 4, we present in detail a novel
GT/EBW based optimization technique for estimating
the parameters of the Gaussian HMMs. In Section 5, the
lattice-based MCE training is described, and a summary
is given in Section 6.

2. Overview of minimum classification error (MCE) training

We denote by K the parameter set of the generative
model expressed in terms of a joint statistical distribution
Please cite this article in press as: He, X., Deng, L., A new look at dis
Lett. (2007), doi:10.1016/j.patrec.2006.11.022
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pKðX ; SÞ ¼ pKðX jSÞP ðSÞ; ð1Þ

on the observation training data sequence X and on the
corresponding label sequence S, where we assume the
parameters in the ‘‘language model’’ P(S) are not subject
to optimization. We use r = 1 , . . .,R as the index for ‘‘to-
ken’’ (e.g., a single sentence or utterance) in the training
data, and each token consists of a ‘‘string’’ of an observa-
tion data sequence: Xr = xr,1, . . .,xr,Tr, with the correspond-
ing label (e.g., word) sequence: Sr = wr,1, . . .,wr,Nr. That is,
Sr denotes correct label sequence for token r. Further, we
use sr to denote all possible label sequences for the rth to-
ken, including the correct label sequence Sr and all other
incorrect label sequences.

MCE learning was originally introduced for multiple-
category classification problems where the smoothed error
rate is minimized for isolated ‘‘tokens’’ (Juang and Katag-
iri, 1992). It was later generalized to minimize the
smoothed ‘‘sentence token’’ or string-level error rate
(Juang et al., 1997; Chou, 2003), which is known as
‘‘embedded MCE’’.

The MCE objective function is defined first based on a
set of class discriminant functions and a special type of loss
function. Then the model is estimated to minimize the
expected loss that is closely related to the recognition error
rate of the classifier.

In embedded MCE training, a set of discriminant func-
tions is first defined based on the correct string Sr and the N

most confusable competing strings, sr,1, . . ., sr,N. Define the
top N best competing strings as

sr;1 ¼ arg maxsr :sr 6¼Srflog pKðX r; srÞg;
sr;i ¼ arg maxsr :sr 6¼Sr ;sr 6¼sr;1;...;sr;i�1

log pKðX r; srÞf g i ¼ 2; . . . ;N :

Then, the discriminant functions for the correct string
and the N competing strings take the form of

gsr
ðX r; KÞ ¼ log pKðX r; srÞ; sr 2 fSr; sr;1; . . . ; sr;Ng:

And the decision rule for the recognizer or classifier is
the one that for the observation data sequence, Xr,

CðX rÞ ¼ s�r if s�r ¼ arg max
sr

gsr
ðX r; KÞ:

Next, a misclassification measure in MCE is defined.
For the general N-best MCE training, the following mis-
classification measure has been widely used (Juang et al.,
1997):

drðX r;KÞ ¼ � log pKðX r; SrÞ

þ log
1

N

X
sr ;sr 6¼Sr

exp g log pKðX r; srÞ½ �
( )1

g

: ð2Þ

This misclassification measure function emulates the
decision rule, i.e., dr(Xr,K) P 0 implies misclassification
and dr(Xr,K) < 0 implies a correct classification. The sec-
ond term in (2) is a soft-max function, which counts the
scores of all N competitive candidates. It can be looked
as an average over the scores of competitive candidates
criminative training for hidden Markov models, Pattern Recogn.
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weighted based on their individual significance. Moreover,
this misclassification measure can be closely approximated
by the following simpler form:

drðX r;KÞ ¼ � log pKðX r; SrÞ þ log
X

sr ;sr 6¼Sr

wðsrÞ � pKðX r; srÞ;

ð3Þ

where w(sr) is a non-negative weighting factor for compet-
itive string sr. Note that the sum of w(sr) is not necessarily
equal to one.

Finally, to define the objective function of MCE, a loss
function for a single sentence token or string Xr is estab-
lished, as originally proposed in (Juang and Katagiri,
1992; Juang et al., 1997), in the following form:

lrðdrðX r;KÞÞ ¼
1

1þ e�adrðX r ;KÞþb
¼ 1

1þ e�drðX r ;KÞ
; ð4Þ

where we assume a = 1, b = 0 for simplicity in exposition
without loss of generality. This loss function emulates the
zero-one recognition error count function, i.e., when
dr(Xr,K) is larger than zero, which implies an incorrect rec-
ognition, the loss function approaches to one, which essen-
tially becomes a recognition error count.

With the misclassification measure in the form of (3), the
loss function for the N-best version of MCE becomes:

lrðdrðX r;KÞÞ ¼
P

sr ;sr 6¼Sr
wðsrÞpKðX r; srÞP

sr ;sr 6¼Sr
wðsrÞpKðX r; srÞ þ pKðX r; SrÞ

¼
P

sr ;sr 6¼Sr
wðsrÞpKðX r; srÞP

sr
wðsrÞpKðX r; srÞ

: ð5Þ

The last step is obtained after the assignment of
w(Sr) � 1 for the correct string Sr.

Given the loss function for one sentence token r in (5),
the empirical loss function over the whole training set with
all R training tokens becomes:

LðKÞ ¼
XR

r¼1

lrðdrðX r;KÞÞ: ð6Þ

Therefore, (6) is closely related to the empirical recogni-
tion error rate and is the objective function to minimize in
MCE. The traditional MCE methods minimize the loss
function via the technique of probabilistic gradient descent
or GPD, which we refer the readers to an excellent review
in (Chou, 2003).
 U

245245
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3. A new look at MCE – optimization criterion

We now take a new look at MCE in terms of its optimi-
zation criterion as expressed in (6). Minimizing the overall
loss function of L(K) in (6) is to the same as maximizing the
following equivalent objective function:
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OðKÞ ¼ R� LðKÞ ¼
XR

r¼1

1�
P

sr ;sr 6¼Sr
wðsrÞpKðX r; srÞP

sr

wðsrÞpKðX r; srÞ

2
64

3
75

¼
XR

r¼1

wðSrÞpKðX r; SrÞP
sr

wðsrÞpKðX r; srÞ
: ð7Þ

Importantly, (7) is a sum of rational functions rather than
a rational function in itself, and hence it would not be
directly amenable to GT/EBW for its optimization. The dif-
ficulty of formulating a rational function and the desire of
moving away from gradient descent have been discussed in
(Povey, 2004). In this section, we directly tackle this diffi-
culty and re-formulate the MCE objective function of (7)
as a true rational function of the following specific form:

OðKÞ ¼
P

s1...sR
wðs1 . . . sRÞpKðX 1 . . . X R; s1 . . . sRÞCðs1 . . . sRÞP

s1...sR
wðs1 . . . sRÞpKðX 1 . . . X R; s1 . . . sRÞ

;

ð8Þ

where wðs1 . . . sRÞ ¼
QR

r¼1wðsrÞand Cðs1 . . . sRÞ ¼
PR

r¼1CðsrÞ,
C(sr) = d(sr,Sr). Here, d(sr,Sr) is the Kronecker delta func-
tion that equals one if sr = Sr, and zero otherwise. Note that
w(s1, . . ., sR) and C(s1, . . ., sR) are quantities not relevant to
K. In (8), X = X1, . . .,XR denotes the collection of all obser-
vation data sequences in all R training tokens, and
pK(X1, . . .,XR, s1, . . ., sR) is the joint distribution for all train-
ing data and their corresponding label sequence assign-
ments s = s1, . . ., sR.

We now provide a rigorous proof that (7) and (8) are
equivalent. We use the induction method for the proof in
the following two steps.

(1) We prove the equivalence of (7) and (8) when there are
two training utterances, or R = 2, as follows. Starting
from (7), we have:

OðKÞ ¼ wðS1ÞpKðX 1;S1ÞP
s1

wðs1ÞpKðX 1; s1Þ
þ wðS2ÞpKðX 2;S2ÞP

s2
wðs2ÞpKðX 2; s2Þ

¼
P

s1
wðs1ÞpKðX 1; s1Þdðs1;S1ÞP

s1
wðs1ÞpKðX 1; s1Þ

þ
P

s2
wðs2ÞpKðX 2; s2Þdðs2;S2ÞP

s2
wðs2ÞpKðX 2; s2Þ

¼
P

s1

P
s2

wðs1Þwðs2ÞpKðX 1; s1ÞpKðX 2; s2Þ½dðs1;S1Þþ dðs2;S2Þ�P
s1

P
s2

wðs1Þwðs2ÞpKðX 1; s1ÞpKðX 2; s2Þ

¼
P

s1s2
wðs1s2ÞpKðX 1;X 2; s1; s2Þ½Cðs1s2Þ�P

s1s2
wðs1s2ÞpKðX 1;X 2; s1; s2Þ

:

ð9Þ

The last step used the common assumption that the train-
ing tokens are independent of each other. Clearly (9), is in
the same form of (8) when R = 2.
(2) After assuming the equivalence of (7) and (8) for

R = R0, we now prove the equivalence for R = R0 +
1 as follows. Again, starting from (7) for R = R0 +
1,we have,
criminative training for hidden Markov models, Pattern Recogn.
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XR0þ1

r¼1

wðSrÞpKðX r;SrÞP
sr

wðsrÞpKðX r;srÞ
¼
XR0

r¼1

wðSrÞpKðX r;SrÞP
sr

wðsrÞpKðX r;srÞ
þ wðSR0þ1ÞpKðX R0þ1;SR0þ1ÞP

sR0þ1
wðsR0þ1ÞpKðX R0þ1;sR0þ1Þ

¼
P

s1...sR0
wðs1 . . .sR0

ÞpKðX 1 . . .X R0
;s1 . . .sR0

ÞCðs1 . . .sR0
ÞP

s1...sR0
wðs1 . . .sR0

ÞpKðX 1 . . .X R0
;s1 . . .sR0

Þ

þ
P

sR0þ1
wðsR0þ1ÞpKðX R0þ1;sR0þ1ÞdðsR0þ1;SR0þ1ÞP

sR0þ1
wðsR0þ1ÞpKðX R0þ1;sR0þ1Þ

¼
P

s1...sR0

P
sR0þ1

wðsR0þ1ÞpKðX R0þ1;sR0þ1Þwðs1 . . .sR0
ÞpKðX 1 . . .X R0

;s1 . . .sR0
Þ½Cðs1 . . .sR0

ÞþdðsR0þ1;SR0þ1Þ�P
s1...sR0

P
sR0þ1

wðsR0þ1ÞpKðX R0þ1;sR0þ1Þwðs1 . . .sR0
ÞpKðX 1 . . .X R0

;s1 . . .sR0
Þ

¼
P

s1...sR0þ1
wðs1 . . .sR0þ1ÞpKðX 1 . . .X R0þ1;s1 . . .sR0þ1ÞCðs1 . . .sR0þ1ÞP
s1...sR0þ1

wðs1 . . .sR0þ1ÞpKðX 1 . . .X R0þ1;s1 . . .sR0þ1Þ
;

ð10Þ

4 X. He, L. Deng / Pattern Recognition Letters xxx (2007) xxx–xxx

PATREC 4114 No. of Pages 10, Model 5+

27 April 2007 Disk Used
ARTICLE IN PRESS
that is, (8) is valid for R = R0 + 1. This completes the
proof by induction.

The significance of the rational functional form of the
MCE criterion is that it enables the use of the GT/EBW
optimization method for discriminative training of the
HMM parameters, which we elaborate below.
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4. A new look at MCE – optimization method

4.1. Introduction to the growth-transformation optimization

technique

GT/EBW technique was developed for optimization of a
rational function. Gopalakrishnan et al. (1991) proposed
the GT/EBW based MMI estimation for the discrete
HMM, and the method was extended for MMI estimation
of the continuous-density HMM (CDHMM) in (Norman-
din, 1991). Later Gunawardana and Byrne (2001) give an
alternative method for MMI estimation of CDHMM,
and its validity is proved in (Axelrod et al. (in press)). In
following sections, we will present a similar method
for optimization of the re-formulated MCE objective
function.

Let G(K) and H(K) be two real valued functions on the
parameter set K, and let the denominator function H(K) be
positive valued. Construct the objective function as the
ratio of them to form the rational function of

OðKÞ ¼ GðKÞ
HðKÞ : ð11Þ

An example of this rational function is the objective
function for the MCE criterion, where

GðKÞ ¼
X

s

wðsÞpKðX ; sÞCðsÞ; and

HðKÞ ¼
X

s

wðsÞpKðX ; sÞ; ð12Þ
Please cite this article in press as: He, X., Deng, L., A new look at dis
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Rand we use s = s1, . . ., sR to denote the label sequences for

all R training tokens, and use X = X1, . . .,XR, to denote
the observation data sequences for all R training tokens.

As in (Gopalakrishnan et al., 1991), for the objective
function with the form of (11), the GT-based optimization
algorithm constructs the auxiliary function of

F ðK; K0Þ ¼ GðKÞ � OðK0ÞHðKÞ þ D; ð13Þ

where D is a quantity independent of the parameter set K,
and K 0 denotes the parameter set obtained from the imme-
diately previous iteration of the algorithm.

The GT algorithm starts by initializing the parameter
set as, say, K 0. (This is often accomplished by the ML
training using, for instance, EM or Baum–Welch algo-
rithm for HMMs.) Then, updating of the parameter set
from K 0 to K proceeds by maximizing the auxiliary func-
tion F(K;K 0), and the process iterates until convergence is
reached. Maximizing the auxiliary function F(K;K 0) is
often easier than maximizing the original rational function
O(K). It is easy to prove (Gopalakrishnan et al., 1991)
that as long as D is a quantity not relevant to the param-
eter set K, an increase of F(K;K 0) guarantees an increase
of O(K).

We now define another auxiliary function from the pre-
vious auxiliary function F(K;K 0) = F(h) defined in (13).
This new function is:

V ðh; h0Þ ¼
X

q

Z
v

f ðv; q; h0Þ log f ðv; q; hÞdv; ð14Þ

where the positive, real valued function f(x,q,h) > 0 is de-
fined by

F ðhÞ ¼
X

q

Z
v

f ðv; q; hÞdv ð15Þ

and where q is a discrete variable (e.g., a state sequence in
an HMM).

Then we have:
criminative training for hidden Markov models, Pattern Recogn.
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log F ðhÞ � log F ðh0Þ

¼ log
F ðhÞ
F ðh0Þ ¼ log

X
q

Z
v

f ðv; q; h0Þ
F ðh0Þ

f ðv; q; hÞ
f ðv; q; h0Þ dv

P
X

q

Z
v

f ðv; q; h0Þ
F ðh0Þ log

f ðv; q; hÞ
f ðv; q; h0Þ dv

¼ 1

F ðh0Þ
X

q

Z
v

f ðv; q; h0Þ log f ðv; q; hÞdv

"

�
X

q

Z
v

f ðv; q; h0Þ log f ðv; q; h0Þdv

#

¼ 1

F ðh0Þ V ðh; h0Þ � V ðh0; h0Þ½ �: ð16Þ

The inequality above is due to Jensen’s inequality (Jen-
sen, 1906) applied to the concave log function. The result
of (16) says that an increase in the auxiliary function
V(h;h 0) guarantees an increase in logF(h). Since logarithm
is a monotonically increasing function, this also guarantees
an increase of F(h) and hence the original objective func-
tion O(K). The technique that ‘‘transforms’’ the parameters
from K 0 to K so as to increase or ‘‘grow’’ the values of the
auxiliary functions and hence the value of the original
objective function is called the growth-transformation
(GT) technique (Gopalakrishnan et al., 1991). We now
apply this GT technique to the Gaussian HMM with the
MCE optimization criterion formulated in (8).
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Substituting (12) into (13), we obtain the auxiliary
function

F ðK; K0Þ ¼
X

s
wðsÞpKðX ; sÞCðsÞ

� OðK0Þ
X

s

wðsÞpKðX ; sÞ þ D

¼
X

s

wðsÞpKðX ; sÞ½CðsÞ � OðK0Þ� þ D

¼
X

q

X
s

wðsÞpKðX ; q; sÞ½CðsÞ � OðK0Þ� þ D ð17Þ

where q is the HMM state sequence, and s = s1, . . ., sR is the
label sequence (e.g., the word or phone sequence) for all R

training tokens (including both correct or incorrect label
sequences).

Follow the method used in (Gunawardana and Byrne,
2001), we can re-formulate F(K;K 0) as follows. Let K
consist of mean and variance parameters in the HMM.
Since (q, s) is irrelevant with K, we have p(X,q, sjK) =
p(Xjq,K)P(q, s), and hence

F ðK; K0Þ ¼
X

q

X
s

wðsÞP ðq; sÞ½CðsÞ � OðK0Þ�
" #

pKðX jqÞ þ D

¼
X

q

Z
v
½CðK0Þ þ dðqÞ�pKðvjqÞdv; ð18Þ
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Lett. (2007), doi:10.1016/j.patrec.2006.11.022
E
D

P
R

O
O

F

where CðK0Þ ¼ dðv;X Þ
P

swðsÞPðq; sÞ½CðsÞ � OðK0Þ�, and
D ¼

P
qdðqÞ is a quantity independent of the parameter

set K. This quantity should be sufficiently large to guaran-
tee that the integrant of (15) be positive, or C(K 0) +
d(q) > 0 (note pK(vjq) in (18) is non-negative).

We now desire to construct the auxiliary function of (14)
based on the auxiliary function (18). To achieve this, we
first identify from (18) that

f ðv; q;KÞ ¼ CðK0Þ þ dðqÞ½ �pðvjq;KÞ;

according to (15). Then, using (14), we have

V ðK;K0Þ ¼
X

q

Z
v
½CðK0Þ þ dðqÞ�pK0 ðvjqÞ logf½CðK0Þ þ dðqÞ�pKðvjqÞgdv

¼
X

q

Z
v

CðK0Þ þ dðqÞ½ �pK0 ðvjqÞ logpKðvjqÞdvþK

¼
X

q

½
X

s

wðsÞpK0 ðX ;q; sÞðCðsÞ�OðK0ÞÞ� logpKðX jqÞ

þ
X

q

dðqÞ
Z

v
pK0 ðvjqÞ logpKðvjqÞdvþK: ð19Þ

Ignoring optimization-independent quantity K in (19),
and dividing V(K; K 0) by another optimization-indepen-
dent quantity pK0 ðX Þ, we obtain an equivalent auxiliary
function of

UðK;K0Þ ¼
X

q

X
s

wðsÞpK0 ðsjX ÞpK0 ðqjX ;sÞðCðsÞ�OðK0ÞÞ
" #

logpKðX jqÞ

þ
X

q

d 0ðqÞ
Z

v
pK0 ðvjqÞ logpKðvjqÞdv ð20Þ

where

d 0ðqÞ ¼ dðqÞ=pK0 ðX Þ: ð21Þ

Note X = X1, . . .,XR, is a large aggregate of all training
data with R independent sentence tokens, and for each
token Xr = xr,1, . . .,xr,Tr , the observation vector xr,
depends only on the state at time t. This enables decompo-
sition of logpK(Xjq) and then drastic simplification of both
terms in (20). To pursue the simplification, we define

ci;r;sr
ðtÞ ¼ pK0 ðqr;t ¼ ijX r; srÞ; ð22Þ

as the occupation probability of state i at time t, given the
label sequence sr and observation sequence Xr. Note (22)
can be efficiently computed by the standard forward–back-
ward algorithm (Rabiner and Juang, 1993). We also define

dðr; t; iÞ ¼
X

q;qr;t¼i

d 0ðqÞ: ð23Þ

Then, after a series of algebraic steps, Eq. (20) can be
simplified to:
criminative training for hidden Markov models, Pattern Recogn.
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UðK; K0Þ ¼
XR

r¼1

XT r

t¼1

XI

i¼1

X
s

wðsÞpK0 ðsjX ÞðCðsÞ

� OðK0ÞÞci;r;sr
ðtÞ log pKðxr;tjqr;t ¼ iÞ

þ
XR

r¼1

XT r

t¼1

XI

i¼1

dðr; t; iÞ

�
Z

vr;t

pK0 ðvr;tjqr;t ¼ iÞ log pKðvr;tjqr;t ¼ iÞdvr;t:

ð24Þ

We now proceed to maximize (24) with respect to the
Gaussian HMM’s parameters, mean vectors and covari-
ance matrices K = {li,Ri}, i = 1,2, . . ., I , in the following
state-conditioned Gaussian distribution:

pKðxjq ¼ iÞ / 1

jRij1=2
exp � 1

2
ðx� liÞ

T R�1
i ðx� liÞ

� �
:

We set oUðK;K0Þ
oK ¼ 0 and solve for K given the model

parameters K 0 = {l0i,R
0
i} from the previous iteration of

the GT/EBW. For the mean and covariance, respectively,
in the Gaussian at the HMM’s state i, we set

oUðK; K0Þ
oli

¼ 0; and
oUðK; K0Þ

oRi
¼ 0:

This eventually gives the ‘‘growth transformation’’ for-
mulas of:

li ¼
PR

r¼1

PT r
t¼1Dcði; r; tÞxt þ Dil0iPR

r¼1

PT r
t¼1Dcði; r; tÞ þ Di

ð25Þ

and

Ri ¼
PR

r¼1

PT r
t¼1½Dcði; r; tÞðxt � liÞðxt � liÞ

T � þDiR
0
i þDiðli � l0iÞðli � l0iÞ

TPR
r¼1

PT r
t¼1Dcði; r; tÞ þDi

;

ð26Þ

where we use the new definitions of

Di ¼
XR

r¼1

XT r

t¼1

dðr; t; iÞ; ð27Þ

Dcði; r; tÞ ¼
X

s

wðsÞpK0 ðsjX ÞðCðsÞ � OðK0ÞÞci;r;sr
ðtÞ: ð28Þ

And we leave the detailed derivations leading to (25) and
(26) to the interested readers.
451451

452
453
U
N

4.3. Computing Dc(i, r, t)

The major computational steps in the above GT re-esti-
mation formulas are the computation of Dc(i, r, t) in (28),
which involves summation over all possible label sequences
s = s1, . . ., sR. The number of training tokens (sentence
strings), R, is usually very large. Hence, summation over
s needs to be decomposed and simplified.

Denote s 0 = s1, . . ., sr�1, s00 = sr + 1, . . ., sR,X 0 = X1, . . .,
Xr� 1, X00 = Xr + 1, . . .,XR. Then, from (28), we obtain
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Dcði;r; tÞ¼
X

s0

X
sr

X
s00

w s0;sr;s00ð ÞpK0 s0;sr;s00 X 0;X r;X 00jð Þ

� C s0;sr;s
00ð Þ�OðK0Þð Þci;r;sr

ðtÞ
¼
X

sr

wðsrÞpK0 ðsrjX rÞ

�
X

s0

X
s00

w s0;s00ð ÞpK0 s0;s00ð jX 0;X 00Þ C s0;sr;s00ð Þ�OðK0Þð Þ
h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term I

ci;r;sr
ðtÞ:

ð29Þ

Using C(s 0, sr, s00) = C(sr) + C(s 0, s00), Term I in (29) can
be simplified to

Term I¼
X

s0

X
s00

w s0;s00ð ÞpK0 s0;s00 X 0;X 00j Þ Cðs0;sr;s00Þ�OðK0Þðð Þ

¼
X

s0

X
s00

w s0;s00ð ÞpK0 s0;s00 X 0;X 00jð ÞCðsrÞ

þ
X

s0

X
s00

w s0;s00ð ÞpK0 s0;s00 X 0;X 00jð ÞC s0;s00ð Þ

�O K0ð Þ
X

s0

X
s00

w s0;s00ð ÞpK0 s0;s00 X 0;X 00jð Þ:

And using

OðK0Þ ¼
XR

r¼1

wðSrÞpK0 ðX r; SrÞP
sr

wðsrÞpK0 ðX r; srÞ

¼ wðSrÞpK0 ðX r; SrÞP
sr

wðsrÞpK0 ðX r; srÞ
þ
XR

i¼1;i 6¼r

wðSiÞpK0 ðX i; SiÞP
si
wðsiÞpK0 ðX i; siÞ

¼ wðSrÞpK0 ðX r; SrÞP
sr

wðsrÞpK0 ðX r; srÞ

þ
P

s0 ;s00wðs0; s00ÞpK0 ðs0; s00;X 0;X 00ÞCðs0; s00ÞP
s0 ;s00wðs0; s00ÞpK0 ðs0; s00;X 0;X 00Þ

¼ wðSrÞpK0 ðSrjX rÞP
sr

wðsrÞpK0 ðsrjX rÞ

þ
P

s0 ;s00wðs0; s00ÞpK0 ðs0; s00jX 0;X 00ÞCðs0; s00ÞP
s0 ;s00wðs0; s00ÞpK0 ðs0; s00jX 0;X 00Þ

;

we obtain:

Term I¼
X

s0

X
s00

w s0;s00ð ÞpK0 s0;s00 X 0;X 00jð ÞCðsrÞ

þ
X

s0

X
s00

w s0;s00ð ÞpK0 s0;s00 X 0;X 00jð ÞC s0;s00ð Þ

� wðSrÞpK0 ðSrjX rÞP
sr

wðsrÞpK0 ðsrjX rÞ
X

s0

X
s00

w s0;s00ð ÞpK0 s0;s00 X 0;X 00jð Þ

�
X

s0

X
s00

w s0;s00ð ÞpK0 s0;s00 X 0;X 00jð ÞC s0;s00ð Þ

¼
X

s0

X
s00

w s0;s00ð ÞpK0 s0;s00 X 0;X 00jð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term II

� CðsrÞ�
wðSrÞpK0 ðSrjX rÞP

sr
wðsrÞpK0 ðsrjX rÞ

" #
:

The quantity above denoted by Term II can be simpli-
fied to:
criminative training for hidden Markov models, Pattern Recogn.
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Term II ¼
P

s0
P

sr

P
s00w s0; sr; s00ð ÞpK0 s0; sr; s00 X 0;X r;X 00jð ÞP

sr
wðsrÞpK0 ðsrjX rÞ

¼ QðK0ÞP
sr

wðsrÞpK0 ðsrjX rÞ

where we define

QðK0Þ ¼
X

s

wðsÞpK0 ðsjX Þ

¼
X

s1

� � �
X

sR

wðs1Þ � � �wðsRÞ � pK0 ðs1jX 1Þ � � � pK0 ðsRjX RÞ

¼
YR

r¼1

X
sr

wðsrÞpK0 ðsrjX rÞ:

Substituting the above terms back to, we obtain:

Dcði; r; tÞ ¼
X

sr

wðsrÞpK0 ðsrjX rÞ
QðK0ÞP

sr
wðsrÞpK0 ðsrjX rÞ

� CðsrÞ �
wðSrÞpK0 ðSrjX rÞP

sr
wðsrÞpK0 ðsrjX rÞ

" #
ci;r;sr
ðtÞ: ð30Þ

For the 1-best MCE where w(s) � 1, Q(K 0) = 1, takes a
simpler form of:

Dcði; r; tÞ ¼
X

sr

pK0 ðsrjX rÞ CðsrÞ � pK0 ðSrjX rÞ½ �ci;r;sr
ðtÞ: ð31Þ
T

509
510
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522522

523
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531531
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533
534
535
U
N

C
O

R
R

E
C

4.4. Considerations for setting empirical constant Di

In the GT re-estimation formulas (25) and (26), the
value of constant Di is empirically set and it determines
the stability and convergence rate of the algorithm. We
now discuss the basis for setting this constant in practice.
From (27), (23), and (21), we have

Di ¼
XR

r¼1

XT r

t¼1

dðr; t; iÞ ¼
XR

r¼1

XT r

t¼1

X
q;qr;t¼i

d 0ðqÞ

¼ 1

pK0 ðX Þ
XR

r¼1

XT r

t¼1

X
q;qr;t¼i

dðqÞ: ð32Þ

According to Jensen Inequality, the theoretical basis for
setting Di is the requirement described in (18) that d(q) be
sufficiently large to ensure that dðqÞ > �CðK0Þ.

This gives

Di >
1

pðX jK0Þ
XR

r¼1

XT r

t¼1

X
q;qr;t¼i

�CðK0Þ: ð33Þ

For the continuous density HMM case, however,C(K 0)
is unbounded since d(v,X) is unbounded at the center point
v = X, and Di needs to approach to infinite. To address this
issue, follow the similar derivation as in (Axelrod et al. (in
press)), it can be proved that with a large enough but
bounded Di, the function V(K; K 0) at (19) is still a valid
auxiliary function of the objective function O(K), i.e.,
Please cite this article in press as: He, X., Deng, L., A new look at dis
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increasing the value of V(K; K 0) will guarantee increase of
the value of F(K; K 0), and so as to guarantee increase of
the value of the objective function O(K).

In implementation, we are more interested in the practi-
cal setting of Di, which is usually determined empirically
for fast convergence. The value of Diwhich we have found
practically effective for 1-best MCE is

Di ¼ E �
XR

r¼1

pK0 ðSrjX rÞ
X

sr

pK0 ðsrjX rÞ
X

t

ci;r;sr
ðtÞ; ð34Þ

where E is a factor controlling the learning rate. The larger
the E is, the slower the learning rate becomes, and E is usu-
ally a factor between one and four for 1-best MCE.
Extending (34) to N-best MCE, we have,

Di ¼ E �
XR

r¼1

QðK0ÞP
sr

wðsrÞpK0 ðsrjX rÞ
wðSrÞpK0 ðSrjX rÞP

sr
wðsrÞpK0 ðsrjX rÞ

�
X

sr

wðsrÞpK0 ðsrjX rÞ
X

t

ci;r;sr
ðtÞ: ð35Þ
E
D

P5. Use of Lattice for representing competitive candidates in

MCE training

In the above novel development of the MCE training
technique, N-best lists are used to represent the competing
candidates for discriminative learning. In many speech rec-
ognition tasks, in order to make the competing candidates
sufficiently rich, N in the N-best lists needs to be very large
(e.g., in the order of millions). This will create computa-
tional difficulties. To overcome such difficulties, we can
use a lattice to serve as a compressed form of a very large
N-best list, which has been shown to be successful and crit-
ical in MMI and MPE learning (Woodland and Povey,
2000; Povey, 2004). The previous work that discussed the
use of lattices for MCE training was reported in (Schluter
et al., 2001), where the misclassification measure takes
the approximate form of

drðX r;KÞ ¼ � log pa
KðX r; SrÞ þ log

X
sr ;sr 6¼Sr

pa
KðX r; srÞ; ð36Þ

to the misclassification measure of (2). This is a special case
of our approximate form of (3) where w(sr) � 1 for all
strings including the incorrect (competing) strings
{sr: sr 5 Sr}, and the correct string Sr.

In the above special case and with a = 1, our earlier
results in (30) and (35) become simplified to

Dcði; r; tÞ ¼
X

sr

pK0 ðsrjX rÞ CðsrÞ � pK0 ðSrjX rÞ½ �ci;r;sr
ðtÞ; ð37Þ

Di ¼ E �
XR

r¼1

pK0 ðSrjX rÞ
X

t

X
sr

pK0 ðsrjX rÞci;r;sr
ðtÞ: ð38Þ

In this section, instead of computing Dc(i, r, t) of (37)
and in (38) a brute-force manner by summing a huge num-
ber of strings of sr for the very large N-best list as repre-
sented by a lattice, we use an approximation that makes
criminative training for hidden Markov models, Pattern Recogn.
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the computation of (37) and (38) practically feasible. This
then gives a solution for lattice-based MCE parameter esti-
mation after using the computed results of (37) and (38) in
the estimation formulas (25) and (26). This solution differs
markedly from that reported in (Schluter et al., 2001). Spe-
cifically, our solution does not require removing the correct
word string Sr from the lattice. In contrast, removal of Sr in
the lattice is required by the solution provided in (Schluter
et al., 2001), which is more difficult to implement in prac-
tice than our solution. In addition, our solution has the the-
oretical appeal of guaranteed algorithm convergence since
it is derived based on GT/EBW for a rational function.
The solution provided in (Schluter et al., 2001) does not
have such convergence guarantee.

To compute (37), we first use C(sr) = d(sr,Sr) for MCE
to rewrite (37) as

Dcði; r; tÞ ¼
X

sr

pK0 ðsrjX r; ÞCðsrÞci;r;sr
ðtÞ

�
X

sr

pK0 ðsrjX rÞpK0 ðSrjX rÞci;r;sr
ðtÞ

¼ pK0 ðSrjX rÞci;r;Sr
ðtÞ � pK0 ðSrjX rÞ

�
X

sr
pK0 ðsrjX rÞci;r;sr

ðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�

: ð39Þ

In (39), since the correct string Sr is known, ci;r;Sr
ðtÞ can

be computed straightforwardly by the standard forward–
backward algorithm for the HMM (Rabiner and Juang,
1993). The main computation thus lies in

� ¼
X

sr

pK0 ðsrjX rÞci;r;sr
ðtÞ ð40Þ

and

pK0 ðSrjX rÞ ¼
pK0 ðSr;X rÞ

pK0 ðX rÞ
: ð41Þ

for Dc(i, r, t) of (37), as well as for Di in (38).
To efficiently compute (40) and (41) for the lattice repre-

sentation of strings of sr, we need to make a mild approx-
imation. A lattice is a compact representation of a large list
of strings. It is an acyclic directed graph consisting of a
number of nodes and a set of directed arcs each connecting
two nodes. A typical arc is denoted as q, and an arc corre-
sponds to a substring (e.g., a word in a sentence). Two time
stamps, bq and eq, are associated with each arc, providing
an estimate of the segment boundaries for the substring.
For a time slice t within the arc segment q, we have
bq 6 t 6 eq .

We will show below that (40) and (41) can both be com-
puted efficiently by a forward–backward algorithm on the
lattice after the mild assumption that HMM state
sequences are independent across arcs, that is,

ci;r;qðtÞ � ci;r;sr
ðtÞ when bq 6 t 6 eq and q 2 sr: ð42Þ
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This approximation says that within the segment of arc
q, its occupancy posterior probability ci;r;sr

ðtÞ ¼ pðqr;t ¼
ijX r; sr;K

0Þ given the observation sequence Xr for the sen-
tence-level string sr that passes arc q approximates the pos-
terior probability ci,r,q(t) for arc q alone. The justification of
approximation (42) is that the state sequence within arc
qshould be roughly independent of other arcs. This was
called ‘‘exact-matching’’ approximation in (Povey, 2004).
To see this, let sr be composed of three sub-strings: s0r, q,
s00r . Then the right hand side of (42) can be analyzed to be

ci;r;sr
ðt : bq 6 t 6 eqÞ ¼ pK0 ðqr;t:bq6t6eq

¼ ijX r; srÞ

¼ pK0 qr;t:bq6t6eq
¼ ijX r; s0r; q; s

00
r

� �
� pK0 ðqr;t:bq6t6eq

¼ ijX r; qÞ

which is the left hand side of (42).
The essence of approximation (42) is to decouple the

dependency on the local arc q from the entire string sr. This
enables drastic simplification of the computation in (40)
and (41), which we discuss below.

As we discussed earlier, the principal computation bur-
den in (40) is the huge number (N) of summation terms for
sr for the equivalent N-best list of a lattice. Using approx-
imation of (42), we can drastically reduce the computation
by the following simplification:

� �
X

sr
pK0 ðsrjX rÞci;r;qðtÞ

¼
X

q:t2½bq;eq�
ci;r;qðtÞ �

X
sr :q2sr

pK0 ðsrjX rÞ

¼
X

q:t2½bq;eq�
ci;r;qðtÞ � pK0 ðqjX rÞ

¼
X

q:t2½bq;eq�
ci;r;qðtÞ �

pK0 ðq;X rÞ
pK0 ðX rÞ

: ð43Þ

The key quantities in (43) can be efficiently computed as
follows (See the derivation in Appendix I):

pK0 ðq;X rÞ ¼ aðqÞbðqÞ; ð44Þ
pK0 ðX rÞ ¼

X
q:q2 fending arcsg

pK0 ðq;X rÞ ¼
X

q:q2 fending arcsg
aðqÞ ð45Þ

where the ‘‘forward’’ and ‘‘backward’’ probabilities are de-
fined by

aðqÞ ¼
X

pðpreceding qÞ
pK0 ðp;q;X 0rðqÞ;X rðqÞÞ ¼ pK0 ðq;X 0rðqÞ;X rðqÞÞ;

ð46Þ
bðqÞ ¼

X
vðsucceeding qÞ

pK0 ðv;X 00r ðqÞjqÞ ¼ pK0 ðX 00r ðqÞjqÞ: ð47Þ

In (46), X 0rðqÞ denotes the rth training token’s observa-
tion sequence preceding arc q, i.e., during 1 6 t < bq.
Xr(q) is the observation sequence bounded by arc q with
bq 6 t 6 eq. X 00r ðqÞ in (47) denotes the observation sequence
succeeding arc q, or duringeq < t 6 Tr.

For each arc q in the lattice, a(q) and b(q) can be
computed by the following efficient forward and back-
criminative training for hidden Markov models, Pattern Recogn.
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ward recursions, respectively (See the derivation in Appen-
dix II):

aðqÞ ¼
X

pðpreceding qÞ
pK0 ðqjpÞpK0 ðX rðqÞjqÞaðpÞ ð48Þ

and

bðqÞ ¼
X

vðsucceeding qÞ
pK0 ðvjqÞpK0 ðX rðvÞjvÞbðvÞ; ð49Þ

where a(q) is initialized at the starting arc q0 by
aðq0Þ ¼ pðq0ÞpK0 ðX rðq0Þjq0Þ, and b(q) initialized at the end-
ing arc qE by b(qE) = 1.

Using forward probability a(q), we can efficiently com-
pute (41) as follows. Since pðX rjK0Þ ¼

P
q:q2fending arcsgaðqÞ

and p0KðSr;X rÞ ¼ p0KðX rjSrÞpðSrÞ, we have

pðSrjX r;K
0Þ ¼ pðX rjSr;K

0ÞpðSrÞP
q:q2fending arcsg

aðqÞ : ð50Þ
T
E 689689

690
691

692
693
694
695
696

698698

699

701701
U
N

C
O

R
R

E
C

6. Summary and discussion

HMMs are continuing to play a central role in speech
recognition research and technology deployment, where
training techniques for the HMM parameters have been
a critical determinant for the speech recognition accuracy
and user satisfaction level. While discriminative training
for HMMs, typified by the MCE technique, has been
pursued with a relatively long history, it is not until
recently that the traditional gradient-based MCE optimi-
zation technique has been questioned (Macherey et al.,
2005; He and Chou, 2003). In this paper, we provide a
fresh look at the MCE technique not only from the per-
spective of the optimization technique, but also of the
objective function. The key technical contribution of this
paper is the establishment of a non-trivial framework in
which the MCE objective function is re-formulated as a
rational function for multiple sentence-level training
tokens. And we show that the N-best representation of
the competitive candidates in MCE training amounts to
a special weighting function in the newly formulated
MCE objective function. As a consequence of this re-for-
mulation, we most naturally derive the new optimization
method for discriminatively estimating HMM parameters
based on GT/EBW. This method has been successfully
implemented in a speech recognition system, and the
positive experimental results can be found in (He et al.,
2006).

In addition to the usual treatment of MCE training
using the N-best paradigm, in this paper, we also provide
further, more difficult technical detail for the use of lattices
as a richer representation of competing candidates. This
treatment can be considered as a technical guide for imple-
menting MCE training in large-scale speech recognition
systems. We are currently experimenting with this
approach.
Please cite this article in press as: He, X., Deng, L., A new look at dis
Lett. (2007), doi:10.1016/j.patrec.2006.11.022
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Appendix I. Derivation of Eqs. (44) and (45)

Given the ‘‘forward’’ and ‘‘backward’’ probabilities
defined as (46) and (47), as well as X 0rðqÞ, Xr(q) and X 00r ðqÞ
defined in Section 5, a derivation of (44) and (45) is pro-
vided below.

Derivation of (44):

pK0 ðq;X rÞ ¼
X

pðpreceding qÞ

X
vðsucceeding qÞ

pK0 p;q;v;X 0rðqÞ;X rðqÞ;X 00r ðqÞ
� �

¼
X

pðpreceding qÞ

X
vðsucceeding qÞ

pK0 p;q;X 0rðqÞ;X rðqÞ
� �

pK0

� v;X 00r ðqÞjp;q;X 0rðqÞ;X rðqÞ
� �

¼
X

pðpreceding qÞ
pK0 p;q;X 0rðqÞ;X rðqÞ
� �

�
X

vðsucceeding qÞ
pK0 v;X 00r ðqÞjq
� �

¼ aðqÞbðqÞ:

Derivation of (45):

pK0 ðX rÞ ¼
X

q:q2fending arcsg
pK0 ðq;X rÞ

¼
X

q:q2fending arcsg
pK0 ðq;X 0rðqÞ;X rðqÞÞ

¼
X

q:q2fending arcsg
aðqÞ:
Appendix II. Derivation of (48) and (49) for the forward–

backward computation

Given the ‘‘forward’’ and ‘‘backward’’ probabilities
defined as (46) and (47), as well as X 0rðqÞ, Xr(q) and X 00r ðqÞ
defined in Section 5, a derivation of (48) and (49) is pro-
vided here.

Forward computation for a(q):

aðqÞ¼
X

pðpreceding qÞ
pK0 p;q;X 0rðqÞ;X rðqÞ
� �

¼
X

pðpreceding qÞ
pK0 p;q;X 0rðpÞ;X rðpÞ;X rðqÞ
� �

¼
X

pðpreceding qÞ
pK0 q;X rðqÞjp;X 0rðpÞ;X rðpÞ
� �

pK0 p;X 0rðpÞ;X rðpÞ
� �

¼
X

pðpreceding qÞ
pK0 ðqjpÞpK0 X rðqÞjqð ÞpK0 p;X 0rðpÞ;X rðpÞ

� �
¼

X
pðpreceding qÞ

pK0 ðqjpÞpK0 X rðqÞjqð ÞaðpÞ:

Backward computation for b(q):

bðqÞ ¼
X

vðsucceeding qÞ
pK0 ðv;X 00r ðqÞjqÞ

¼
X

vðsucceeding qÞ
pK0 ðv;X rðvÞ;X 00r ðvÞjqÞ

¼
X

vðsucceeding qÞ
pK0 ðv;X rðvÞjqÞpK0 ðX 00r ðvÞjq; v;X rðvÞÞ
criminative training for hidden Markov models, Pattern Recogn.
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¼
X

vðsucceeding qÞ
pK0 ðvjqÞpK0 ðX rðvÞjq; vÞpK0 ðX 00r ðvÞjvÞ

¼
X

vðsucceeding qÞ
pK0 ðvjqÞpK0 ðX rðvÞjvÞbðvÞ
T

745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
R

E
C

References

Axelrod, S., Goel, V., Gopinath, R., Olsen, P., Visweswariah, K., in press.
Discriminative Estimation of Subspace Constrained Gaussian Mixture
Models for Speech Recognition, IEEE Trans. Audio Speech Language
Process., http://ieeexplore.ieee.org/iel5/10376/32978/101109TASL
2006872617.pdf.

Bahl, L., Jelinek, F., Mercer, R., 1987. A Maximum likelihood approach
to continuous speech recognition. IEEE Trans. Pattern Anal. Mach.
Intell. PAMI-5, 179–190.

Brown, P., 1987. The Acoustic Modeling Problem in Automatic Speech
Recognition, Ph.D. thesis, Carnegie Mellon University.

Chou, W., 2003. Minimum classification error approach in pattern
recognition. In: Chou, W., Juang, B.-H. (Eds.), Pattern Recognition in
Speech and Language Processing. CRC Press, pp. 1–49.

Deng, L., Wu, J., Droppo, J., Acero, A., 2005. Analysis and comparison
of two feature extraction/compensation algorithms. IEEE Signal
Process. Lett. 12 (6), 477–480.

Deng, L., Yu, D., Acero, A., 2005. A generative modeling framework for
structured hidden speech dynamics. In: Proc. of Neural Information
Processing System (NIPS) Workshop, Whistler, BC, Canada, Decem-
ber 2005.

Deng, L., O’Shaughnessy, D., 2003. SPEECH PROCESSING – A
Dynamic and Optimization-Oriented Approach. Marcel Dekker Inc.,
New York, NY, USA.

Gopalakrishnan, P., Kanevsky, D., Nadas, A., Nahamoo, D., 1991. An
inequality for rational functions with applications to some statistical
estimation problems. IEEE Trans. Inf. Theory. 37, 107–113.

Gunawardana, A., Byrne, W., 2001. Discriminative speaker adaptation
with conditional maximum likelihood linear regression. In: Proc.
EUROSPEECH.

He, X., Chou, W., 2003. Minimum classification error linear regression for
acoustic model adaptation of continuous density HMMs. In: Proc.
ICASSP.

He, X., Deng, L., Chou, W., 2006. A novel learning method for hidden
Markov models in speech and audio processing. In: Proc. IEEE
Workshop on Multimedia Signal Processing, Victoria, BC.
U
N

C
O

R

se cite this article in press as: He, X., Deng, L., A new look at dis
. (2007), doi:10.1016/j.patrec.2006.11.022
E
D

P
R

O
O

F

Jensen, J.L.W.V., 1906. Sur les fonctions convexes et les inegalites entre les
valeurs moyennes. Acta Math., 175–193.

Juang, B.-H., Katagiri, S., 1992. Discriminative learning for minimum
error classification. IEEE Trans. Signal Process. 40 (12), 3043–3054.

Juang, B.-H., Chou, W., Lee, C.-H., 1997. Minimum classification error
rate methods for speech recognition. IEEE Trans. Speech Audio
Process. 5.

Macherey, W., Haferkamp, L., Schluter, R., Ney, H., 2005. Investigations
on error minimizing training criteria for discriminative training in
automatic speech Recognition. In: Proc. Interspeech, Lisbon, Portugal,
pp. 2133–2136.

McDermott, E., Hazen, T., Roux, J., Nakamura, A., Katagiri, S., in press.
Discriminative training for large vocabulary speech recognition using
minimum classification error. IEEE Trans. Audio Speech Language
Process., http://www.kecl.ntt.co.jp/icl/signal/erik/index-j.htm.

Normandin, Y., 1991. Hidden Markov Models, Maximum Mutual
Information Estimation, and the Speech Recognition Problem, Ph.D.
dissertation, McGill University, Montreal.

Povey, D., 2004. Discriminative Training for Large Vocabulary
Speech Recognition, Ph.D. thesis, Cambridge University, Cam-
bridge, UK.

Povey, D., Gales, M.J.F., Kim, D.Y., Woodland, P.C., 2003. MMI-MAP
and MPE-MAP for acoustic model adaptation, In: Proc. Eurospeech.

Povey, D., Kingsbury, B., Mangu, L., Saon, G., Soltau, H., Zweig, G.,
2004. fMPE: Discriminatively trained features for speech recognition.
In: Proc. DARPA EARS RT-04 Workshop, November 7–10, Pali-
sades, NY, Paper No. 35.

Povey, D., Woodland, P.C., 2002. Minimum phone error and I-Smooth-
ing for improved discriminative training. In: Proc. ICASSP.

Rabiner, L., Juang, B.-H., 1993. Fundamentals of Speech Recognition.
Prentice Hall, Englewood Cliffs, New Jersey.

Rathinavalu, C., Deng, L., 1998. Speech trajectory discrimination using
the minimum classification error learning. IEEE Trans. Speech Audio
Process. 6 (6), 505–515.

Roux, J., McDermott, E., 2005. Optimization for discriminative training.
In: Proc. INTERSPEECH.

Schluter, R., Macherey, W., Muller, B., Ney, H., 2001. Comparison of
discriminative training criteria and optimization methods for speech
recognition. Speech Commun. 34, 287–310.

Woodland, P.C., Povey, D., 2000. Large scale discriminative training for
speech recognition. In: Proc. ITRW ASR, ISCA.
criminative training for hidden Markov models, Pattern Recogn.

http://ieeexplore.ieee.org/iel5/10376/32978/101109TASL2006872617.pdf
http://ieeexplore.ieee.org/iel5/10376/32978/101109TASL2006872617.pdf
http://www.kecl.ntt.co.jp/icl/signal/erik/index-j.htm

	A new look at discriminative training for hidden Markov models
	Introduction
	Overview of minimum classification error (MCE) training
	A new look at MCE - optimization criterion
	A new look at MCE - optimization method
	Introduction to the growth-transformation optimization technique
	Application to Gaussian HMM
	Computing  Delta  gamma (i,r,t)
	Considerations for setting empirical constant Di

	Use of Lattice for representing competitive candidates in MCE training
	Summary and discussion
	Derivation of Eqs. (44) and (45)
	Derivation of (48) and (49) for the forward-backward computation
	References




