

An online scheduler for hardware accelerators on general-
purpose operating systems

David Sheldon, Alessandro Forin

Microsoft Research

April 2009
Revised

December 2010

Technical Report

MSR-TR-2009-41

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

 - 2 -

 - 3 -

An online scheduler for hardware accelerators on general-purpose operating

systems

David Sheldon, Alessandro Forin

Microsoft Research

Abstract

This paper presents an online scheduling algorithm

for hardware accelerators and its implementation on the

NetBSD operating system. The scheduler uses the current

performance characteristics of the accelerators to select

which accelerators to load and unload. The evaluation on

a number of workloads shows that the scheduler is

typically within 20% of the optimal schedule computed

offline. The hardware support consists of simple cost-

benefit indicators, usable for any online scheduling

algorithm. The NetBSD modifications consist primarily in

loadable kernel modules, with minimal changes to the

operating system itself. The measured overhead is

negligible when accelerators are not in use, and

otherwise scales linearly by a small constant with the

number of active accelerators.

1 Introduction

Single-threaded performance has been linked to an

ever-increasing clock frequency, but that raise of the

clock has now come to an end. We must either parallelize

all our programs, or face stagnation. There is, however,

one avenue for improving performance that is still open:

the use of specialized hardware to support the most

performance sensitive parts of an otherwise sequential

program. Reconfigurable hardware is extremely flexible

in this regard, and can produce incredible speedups at a

very low clock speed [4,5,6,7]. eMIPS [8] is a

dynamically extensible processor that includes a standard

MIPS trusted ISA tightly connected to reconfigurable

hardware. The programmable logic is divided in extension

slots that plug into the main pipeline stages during the

execution of a program, as depicted in Figure 1. In

addition to providing hardware acceleration for improved

performance, the extension slots have been used for a

variety of other purposes [9,10,11]. In this paper, we

describe a scheduling algorithm for allocating the

extension slots to competing applications, under a

general-purpose operating system. The algorithm and the

required hardware support are fairly generic. They apply

both to the new, tightly coupled architecture advocated by

the eMIPS project and to the more traditional, loosely

coupled architectures that use a bus to connect the CPU

and the reconfigurable hardware units. It is also possible

to consider a GPU used for general computing as a form

of accelerator and schedule it according to our algorithm.

Our contributions are:

- A new scheduler that is typically within 20% of the

offline optimal schedule.

- The first working implementation on a general-

purpose operating system, on real hardware.

- A practical demonstration that scheduling of software

threads and hardware accelerators can be realized

independently.

- An open platform for experimentation with the

acceleration of general application software.

Figure 1: The scheduler supports micro-processor

architecture tightly-coupled with a number of

hardware extension slots usable for accelerating

software applications. Accelerators based on more

loosely-coupled architectures and GPGPUs can also be

supported.

The rest of the paper is organized as follows. Section

2 describes related work in the field. Section 3 describes

 - 4 -

the hardware support we assume from the underlying

architecture. Section 4 describes the new scheduling

algorithm. Section 5 presents the software support for the

NetBSD operating system that we built around the

scheduler, including some basic tools and the additional

system services offered by the operating system. Section 6

presents our evaluation of the scheduler, comparing it to

other competitive schedulers using synthetic benchmarks

and application programs. Results are presented for the

Giano system simulator and for three actual systems: the

ML40x evaluation board for the Virtex V4 FPGA chip

[1], the Virtex V5 based BEE3 [3] and XUP [32] systems.

Section 7 lists the detailed set of changes we applied to

the NetBSD 4.0.1 source tree to realize our prototype

implementation. Section 8 describes the practical

procedures for using the resulting system, and Section 9

presents our conclusions.

2 Related Work

Application specific hardware optimizations are not a

new idea. The goal is to modify the processor or system

platform to allow the application to run more efficiently

than on the base configuration. There are two major

classes of these optimizations, online and offline. The

offline approaches range from static analysis of the

application, trace driven analysis, to simulation based

design-space exploration [16, 17, 18, 19, 20, 24, 25, 12].

These approaches determine the best configuration for the

applications, which is the configuration that will be used.

The online approaches reconfigure the system while

the application is executing on the platform. This allows

the system to adapt to the application that is being seen,

unlike the offline approaches that need to use benchmarks

or previous traces to determine the types of applications

that would be seen. Most online algorithms fall into one

of two types: heuristic, or k-competitive. Heuristics are

often good at solving the problem but they usually

provide no guarantee on their performance against the

optimal configuration. The k-competitive algorithms do

provide such a limit. K-competitive algorithms use the

optimal sequence of configurations as a comparison point.

This analysis proves that even in the worst case the

algorithm will be no worse than a factor of k from the

optimal result [15]. While a heuristic in the common case

may be able to perform better than a k-competitive

algorithm, under a worst case input the maximum

performance loss is provable for the k-competitive

algorithm. For example, Borodin [13] proves that the

taskmaster can generate a worst-case time of 2n-1 for the

online-optimal strategy by making a move the best option

at each step. But Borodin [13] also notes that a scheduler

that randomly picks its move (ignoring costs) has an

expected execution time that is twice as good on this same

sequence.

There are two main types of k-competitive

algorithms, the Metrical Task System (MTS) [13] and the

k-server problem [14]. MTS is defined in terms of a set

of configurations and the cost of switching from one

configuration to another. Each application running also

takes a varying amount of time to run on each

configuration. The goal is to minimize the total time to

run a series of applications. The k-server problem has a

set of resources that needs to be serviced by the servers.

The servers move between the resources using a cost

function. The goal is to minimize the total cost to service

the requests.

There are different versions of these basic problems.

The k-server with excursions is one such variation on the

k-server problem, which was first introduced by Manasse

[14]. This expansion of the k-server problem has the k

servers that are used to handle the requests as in the

original k-server problem. However, in addition to

moving a server to the resource an excursion can be made

from one of the servers. This means that the server will

not move but will temporally handle the request. The cost

of the excursion is more than if a local server handled the

request but less than the cost of moving a server and

handling the request. This allows requests to be handled

without constant motion of the servers.

There has been much work in using hardware

accelerators to improve the performance of applications,

see [21] for a start. In many of these works the system

mandates that the hardware accelerator is present in the

FPGA prior to running the application. With this type of

problem there is only one option; the FPGA accelerator

must be loaded in order to execute the application. The

only scheduling decision therefore is of a batch nature,

e.g. deciding in which order to execute (serially) the

applications that require the accelerator [22], taking into

account the time to load the accelerators [23].

In the eMIPS system [8] hardware acceleration is

instead optional, because an application can execute with

or without the accelerator enabled. An example code

sequence is shown in Figure 2. If the accelerator is not

available the application will automatically fall back to

the original, un-accelerated software version. It is also

possible to transparently disable the accelerator at any

time during execution, and to switch the slot to a different

application. The accelerator is functionally equivalent to

the sequence of instructions inside the Basic Block, and it

is triggered by an extended opcode, e.g. the otherwise

illegal instruction ext1 in Figure 2. A load/store memory

access inside the accelerator can cause a trap, e.g. a miss

in the software-loaded MIPS TLB. In this case the

accelerator terminates early and indicates that execution

should resume at the corresponding software instruction,

 - 5 -

inside the Basic Block. Accelerators are automatically

generated by the M2V compiler [27].

Figure 2: Extension Instructions trigger the activation

of hardware accelerators in eMIPS. If the accelerator

is not enabled the extended opcode ext1 is treated as a

No-op and execution continues through the rest of the

Basic Block. Otherwise the accelerator executes and

the Basic Block is skipped. An interrupt or trap inside

the accelerator can cause execution to resume

somewhere inside the Basic Block.

The eMIPS system has a capacity problem, because

the number of accelerators that can be loaded at any one

time is limited. It presents a performance optimization

problem, because an application will execute more slowly

without the accelerator.

In this type of system the scheduling algorithm

performs two practical choices during execution; select

the best (set of) accelerators to enable, and select which

accelerator to remove so that a new accelerator can be

loaded onto the FPGA.

3 Hardware Support

What any accelerator scheduling algorithm really

wants of hardware is a reliable measure of the costs and

benefits provided by the accelerator resources. The cost is

the cost of not enabling an accelerator for the application

that demands it, and the benefit is the performance

advantage generated by an enabled accelerator. Note that

some algorithms can use just the first measure.

eMIPS provides the desired cost/benefit measures as

a set of counters, similar to the miss/hit counters of a

hardware instruction cache. Figure 3 illustrates the

structure of the combined software-hardware system. The

miss counters are global, and are depicted by the blue

boxes tagged Misses in the bottom-half of Figure 3. There

is one counter per (selectable) extended opcode. A miss

counter increments when its corresponding extended

opcode is not recognized by any of the loaded

accelerators. The hit counters are instead local to the

extension slots, and are tagged as Hits=n in the green

boxes that represent the extension slots in the bottom-half

of Figure 3. There is one hit counter for each extension

slot. The hit counter is incremented every time the

accelerator recognizes and executes an Extension

Instruction. Basically, this is the count of how many times

the corresponding accelerator has been activated.

Figure 3: Hardware support for scheduling is based on

hit and miss counters. Each time an Extension slot

recognizes an Extension Instruction the corresponding

hit counter is incremented. Each time an extended

opcode is not recognized by any of the slots the

corresponding miss counter is incremented. The

mapping from extended opcodes to accelerators is

provided by software.

Note that while the hit counters directly refer to an

accelerator, the miss counters do not. It is up to software

to maintain the mapping between the extended opcodes

and the accelerator that is supposed to recognize a given

opcode for the currently executing thread. This is

illustrated in Figure 3 by the dashed red arrows linking

counters to accelerators. The arrow that links a miss

counter with an accelerator jumps through a mapping

table, whereas the hit counters are directly linked. It is

also up to software to decide what abstraction to associate

with the accelerator-opcode mapping table (Acc-Map in

the top portion of Figure 3).

An important factor in scheduling is the cost of

loading the accelerators themselves, see [23] for a recent

discussion. The implementation on eMIPS uses the smart

DMA engine described in [30], wrapped in a simple,

 - 6 -

asynchronous device driver interface. Computation

therefore continues while the accelerator is being loaded.

Experiments [30] indicate that the loading time is

independent of the actual content of the configuration

bitfile. It only depends on the length of the file, divided by

the bandwidth between the DDR memory and the ICAP

port. Since the 32-bit ICAP port has a maximum clock of

100 MHz the bandwidth attainable is 400 MBps (unless

overclocked). In reality, there is hard competition for the

DDR memory interface and the results are much lower. In

addition to the Ethernet interface, the current eMIPS

processor does not have any caches. The processor

therefore uses a lot of DDR bandwidth, and disrupts the

(four) open-bank caching performed at the DDR chip

itself. Under the NetBSD OS, large transfers are typically

split into single-page transfers of 4KB and on the XUP

board we measure an effective user-mode bandwidth of

only about 800 KBps. With a stand-alone test program

we can reach 225 MBps, which closer to a kernel-mode

transfer bandwidth. This value was confirmed by

hardware measurements made using ChipScope.

Regardless of the actual bandwidth, for scheduling

purposes the key fact is that the file length is a valid

measure of the accelerator loading cost. In practice, the

hardware synthesis tools tend to fill up all the available

area for an accelerator slot, which leads to a file size that

is constant among all accelerators. The value does depend

on the slot area size, which is a hardware design time

parameter. On actual eMIPS systems the file sizes hover

around 100 KB for the Virtex V5 systems and 120 KB for

the Virtex V4 systems. The minimum theoretical

accelerator load time therefore is 250 microseconds. The

minimum time on an XUP board is 500 microseconds.

3.1 Discussion
Without any performance indications from hardware,

scheduling of a set of accelerators is very simple.

Software has no basis to make any scheduling decision

and therefore it can only allocate the accelerators in a

first-come, first-served manner. Software could use the

completion times of certain programs from past

executions, but this information can be input-dependent

and unreliable. Involving humans in the decision making

is insecure and unacceptable in a multi-user environment.

Software can be fair in allocating slots to multiple users,

but the majority of general purpose computers today are

used by a single user. A similar problem arises with pre-

emption. A few long-running programs can hog the

accelerator slots and never allow any other program to use

the accelerators. On what basis would the scheduler

choose which application to pre-empt? Not knowing

whether the accelerator was useful or not, the most

sensible choice is the obvious: round-robin, perhaps with

priorities. It is hardware support that therefore makes a

difference, and opens up the field to a number of possible

optimizations. For example, the MTS problem

formulation assumes knowledge of the scheduling costs.

We developed a scheduling algorithm that is

independent of the thread scheduler. The concept is that

CPU and accelerator slots are two different physical

resources and should be scheduled independently and

orthogonally. It is an interesting question whether the two

resources are indeed, as they appear, truly independent of

each other. The argument in favor is that acceleration only

affects the completion time for a thread’s computation; it

does not affect its behavior. The argument against is that

altering the order of events can make the thread scheduler

alter its decisions, therefore they are not independent. Our

assumption is similar to the assumption of independence

between processes made on general purpose operating

systems. It is not true that a process fully virtualizes a

system and therefore does not affect any other process.

Classical counter-examples are priority inversions,

communication via pipes, gang scheduling, and many

others. Nonetheless, the assumption in practice works

and it is therefore the norm.

When we say “cost” and “benefit” we make a hidden

assumption about the “optimality” criterion. What we

really mean is that we intend to minimize the completion

time for a set of tasks; this is our only measure of success.

We (e.g. the scheduler of a general purpose OS) do

weight this goal for “fairness” among users, but we do not

consider other important elements such as responsiveness

[33] and assume that a simple tweaking of priorities can

solve the problem. The optimality criteria in an embedded

system are even more complex and involve guaranteed

completion times, power, physical dimensions, monetary

cost, reliability and more. We could argue that an

accelerator simply reduces the task computation time and

therefore the system will still meet the deadlines without

changes. But it is easy to build a counter-example using

priority-inversion in a (poorly programmed) system.

We considered a few alternatives that we can realize

on eMIPS. One idea is to measure the cycles actually

spent in the accelerator. The hard fabric can securely and

reliably take this measure starting a counter from the

moment it enables the accelerator for one opcode to the

time it disables the interface signals. This measures the

benefits; it is more difficult to measure the costs. Perhaps

on a miss we can start a cycle counter and stop it on the

first branch… but what of multi-branched software.

Without a corresponding reliable measure of the costs, the

time spent inside the accelerator is not in fact a real

benefits measure. One advantage of this approach is that

it provides concrete performance feedback to the user.

One disadvantage is that it links too tightly the counters to

one specific execution model. What about accelerators

running in parallel to software, or larger accelerators that

involve many software branches? There is also potential

 - 7 -

for abuse, for instance an accelerator that occasionally

holds the interface for a very long time, only to bump up

its perceived benefit measure. We decided to provide a

more generic meaning to the counters themselves, and

leave this and other valid alternatives for future work.

Note that the scheduling algorithm itself is independent of

the actual unit of measure for “cost” and “benefit”, no

changes are required if the hardware changes.

In our implementation using NetBSD we placed the

accelerator-opcode mapping table in the process data

structure, logically equating the accelerator resource to a

section of executable code. Other choices are possible,

depending on the specifics of the selected operating

system. On one extreme the mapping table can be a global

resource, for instance in the RTOS of an embedded

system. On the other extreme the table can be per-thread.

Mapping structures other than arrays are possible.

4 Scheduling Algorithm

The pseudo-code for the scheduling algorithm is

shown in Figure 4. Each accelerator has an associated

activity history, which in the eMIPS case is the weighted

sum of hits and misses. Generally speaking, the algorithm

uses the past-predicts-future paradigm, and attempts to

reach a (stable) state where the new level of activity for

each accelerator is the same as in the past. The more the

future deviates from the past, the faster we drop the

relevance of the activity history. The level of activity for

each accelerator defines, according to its own expected

benefit, the accelerator’s current utility.

The algorithm makes two passes over the list of

accelerators. The first pass simply computes the overall

decay factor. Note that only accelerators with some level

of activity contribute to this first computation. The second

pass re-computes the current utility for all accelerators,

whether they are loaded or not. At the end of the second

pass we know which one is the most useful, not-loaded

accelerator N, and which one is the least useful, loaded

accelerator L. The scheduler loads accelerator N if it is

more useful than L, or if there is a free slot available. The

scheduler will load at maximum one accelerator per

scheduling round.

Note that the algorithm does not pro-actively remove

a loaded accelerator, even if no application uses it. This

means that during idle time no changes are performed and

the system can quickly restart without penalties. This lazy

strategy also applies to “empty” slots, e.g. slots that have

an accelerator loaded in them but no corresponding active

application. Should the user re-invoke a just-terminated

application the system may realize that the corresponding

accelerator is still loaded and re-activate it at zero cost.

This optimization implements the LRU-with-second-

chance replacement policy [28, 29] for the loaded

accelerators. Note, however, that a very small number of

slots will make this optimization moot in many cases.

Schedule::

Delta = ∑i (OldActivei - NewActivei) / NewActivei

Decay = Delta / AcceleratorCount;

Forall (i)

OldActivei = ((Decay * OldActivei) + NewActivei)/2

Utilityi = (OldActivei * Benefiti) - LoadingCosti

BestNotLoaded = Max(Utilityi)

WorstLoaded = Min(Utilityi)

If (BestNotLoaded ≠ NULL)

If WeHaveAFreeSlot(&s)

Load(BestNotLoaded,s)

Elif BestNotLoaded.Utility > WorstLoaded.Utility

Load(BestNotLoade, SlotOf(WorstLoaded))

Figure 4: Pseudo code for the scheduling function. At

each invocation, the new amount of activity NewActive

for each accelerator is compared against the

accumulated, predictive history value in OldActive.

The deviation Delta defines the Decay ratio for the

previous history. The new activity is then added into

the decayed history, and used to compute the new

Utility of each accelerator. The algorithm loads a new

accelerator if it is more useful than at least one of the

loaded accelerators, or if there is a free slot available.

The LoadingCost of an accelerator varies; in practice it

is proportional to the file-length of the accelerator.

Only a minor detail has been omitted from the

pseudo-code of Figure 4: the option to lock an accelerator

and prevent the scheduler from removing it. This option is

not normally used; it was introduced to support optional

higher-level policies and/or user preferences. Locked

accelerators are ignored in the selection of the least useful

accelerator.

5 Software Support

The scheduler is likely an integral part of the

operating system kernel and only requires simple

monitoring tools, to help system administration. Even our

implementation as an optional, loadable kernel module

exploits only existing facilities and no new tools are

required for loading or unloading the scheduler. In

addition to its own implementation (see Figure 4) the

 - 8 -

scheduler requires some machine-dependent code to

access the hit/miss counters. Figure 7 shows this code for

the eMIPS case.

A simple way to aid monitoring is a system call that

returns the list of accelerators, and all the information the

scheduler maintains about them. A set of flags indicates if

an accelerator is for kernel (privileged) use, private or

shareable by all applications, whether it is currently

loaded and/or locked, a count of active applications

making use of it, the hit and miss counters, and the benefit

estimates. Utilities similar to top(1) and TaskManager can

then help visualize this information for the user.

The scheduler does not use priorities, therefore there

is no need for tools to manually tweak them, such nice(1)

or TaskManager. Note, however, that eMIPS accelerators

depend heavily on the behavior of their software

counterparts, therefore altering the priorities of the

applications themselves has a direct corresponding effect

on the accelerators they use. On the other hand, the

locking functionality does require a simple manual tool,

and potentially can lead to a more sophisticated, long-

term, online monitoring and optimization infrastructure.

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Trace_1 Trace_2 Trace_3 Trace_4 Trace_5

Greedy

Work Function
50
Work Function
200
eMIPS dynamic
Scheduler

Optimum

Figure 5: Comparison of the new scheduler with other

known schedulers, using synthetic traces. In all cases

the new scheduler gets closer to the ideal optimum,

being on average 10% better.

In the implementation phase we spent more time and

code on a completely separate issue: the specifics of

loading the accelerators themselves. An accelerator in the

eMIPS case is a file with a new, vendor-specific structure.

It contains the bit-stream data to be fed into the internal

re-configuration port for the FPGA. In addition to

recognizing the file format, we need to be able to

associate the accelerator with one or more applications.

This was done by defining a new file format, the Secure

Executable (SE) format described in [31], essentially the

(backward compatible) concatenation of an ELF image

file with the accelerator bitstream, plus a header and a

security digest. Support for the new file format includes a

simple utility for creating an SE image, a utility for

displaying the content of an SE image, and modifications

to the system image loaders to support the SE format. The

loader code had to be replicated once in the kernel proper,

and once for the shared library loader. Debugging the

shared library version was not trivial.

There are additional tools in the eMIPS systems for

profiling applications and for automatically creating

accelerators, but their description is outside the scope of

this paper.

6 Evaluation

We performed two sets of evaluations: in a controlled

simulation environment, and on the actual systems. Given

the nature of some algorithms, we could only make a

meaningful comparison between algorithms in simulation,

using as input a common set of traces. Section 6.1

describes this first set of experiments. However,

simulation does not always capture the complexity of a

real system and therefore we performed a second set of

experiments to test the eMIPS scheduler on the various

systems where eMIPS runs. This includes the Giano full

system simulator, and various Xilinx-based systems.

Section 6.2 describes this second set of experiments.

6.1 Simulation
The program used for simulation is shown in

Appendix A. In one mode of invocation, the program

generates an activation trace according to some desired

features. In a second mode of invocation, the program

uses a trace file as input into the desired algorithm and

produces the estimated completion time.

The algorithms we used in the comparison can be

summarized as follows:

- Optimum: This not an algorithm but a value, obtained

assuming that there is an infinite number of slots and

all accelerators are always loaded, at zero cost. This

ideal value provides the maximum speedup attainable

for the given set of applications.

- Greedy: At each round, this algorithm selects the

accelerators with the highest expected benefit and

loads them in the empty slots. If there are no more

empty slots nothing is done. Accelerators are

unloaded upon task termination. This is a similar

algorithm as defined in Section 4.2 of [23] but, like

most of the other algorithms we compare, it does take

into account the penalty for loading a new accelerator

during the benefit computation.

- Work Function 50: This is the algorithm defined in

Section 4.3 of [23]. It uses dynamic programming

and is therefore too expensive to use in many online

settings. To make it online, the offline optimal

algorithm is applied to the current task plus the

previous fifty tasks in the past history.

 - 9 -

- Work Function 200: Same as above, but with a longer

history buffer.

- eMIPS: Our algorithm, as defined in Section 4.

- Basic 0.7: Similar to our algorithm, but with a fixed

decay factor.

The Optimum sets the 100% bar for performance, and

we report the results for the other algorithms relative to

this ideal maximum. The Greedy algorithm is perhaps the

simplest, one-step look-ahead strategy that still takes into

account all the elements of the problem. We would expect

this strategy to set the lower bar to compare all the others

to. The WorkFunction algorithm is an online adaptation of

the offline optimal strategy. We would expect that the

offline algorithm would degrade gracefully with the

reduced information available online and to make this

strategy competitive. Finally, the Basic algorithm is

similar to the eMIPS one, but discards past history at a

fixed rate. This is slightly more efficient to implement,

but we would expect this algorithm to be less reactive to

e.g. phase changes and therefore perform similarly but

sometimes worse than eMIPS. The simulator does not

take into account the cost of running the algorithms

themselves. They are all assumed to take zero time.

Algorithms are run every 13 million cycles.

0

0.5

1

1.5

2

2.5

3

3.5

4

R
an

d
_1

R
an

d
_2

R
an

d
_3

R
an

d
_4

R
an

d
_5

B
ia

se
d_

1
B

ia
se

d_
2

B
ia

se
d_

3
B

ia
se

d_
4

B
ia

se
d_

5

P
er

io
d

_1
P

er
io

d
_2

P
er

io
d

_3
P

er
io

d
_4

P
er

io
d

_5

P
ha

se
d

_1
P

ha
se

d
_2

P
ha

se
d

_3
P

ha
se

d
_4

P
ha

se
d

_5

Tr
ac

e_
1

Tr
ac

e_
2

Tr
ac

e_
3

Tr
ac

e_
4

Tr
ac

e_
5

Figure 6: Ideal speedups for the synthetic traces,

obtainable only with a large number of accelerator

slots, and zero accelerator load times. The eMIPS

scheduler reaches about 80% of the ideal speedups, on

average.

A trace file is a sequence of pairs (ID,Cycles). Each

pair indicates that the application uniquely identified by

the integer ID became schedulable for the given number

of Cycles. All traces use a maximum of seven different

applications, with expected acceleration factors of {3.96,

2.59, 3.17, 3.06, 1.12, 3.75, 2.64} with a geometric mean

of 2.72 and arithmetic mean of 2.9. The simulated system

has four accelerator slots. The durations are all randomly

selected, with a uniform distribution between 10 and

30,000 cycles. Traces are all 100,000 pairs long.

The traces we used in the comparison can be

summarized as follows:

- Rand_n: These traces are generated with a different

random seed each, and with uniformly randomized

application selection. This is the standard, white-

noise type of un-biased input.

- Biased_n: In these traces the application selection is

biased towards a certain set. Different traces have a

more remarked bias towards a smaller number of

applications. Here we are simulating the small

workload typically generated by a single user, or on

some dedicated server.

- Period_n: These traces are for a set of applications

with periodic activation times: the same applications

repeat in the same order within each period. The

traces have periods of length 15, 15, 10, 10, and the

whole trace. This is the case of a soft-real-time

system, or a machine dedicated to a repetitive taskset.

- Phased_n: These traces are equally subdivided in ten

phases. In each phase only a given subset of 3-6

applications is active, though their activation order is

random. This is the case of a set of programs that

change their behavior while they are performing their

task.

- Trace_n: These traces are a concatenation of the

(corresponding) previous four traces. They

summarize the average performance of an algorithm.

Given the practical considerations of Section 3, we

assume that loading an accelerator in all cases has a fixed

cost of 112,000 cycles. The simulator assumes that the

loading process stops execution. This is incorrect, we are

using DMA and the processor instead continues. But as

noted, the bus utilization will slow down the processor by

a certain amount (unknown). To account for both factors,

we use a fix load time much lower than the 250 us best.

A summary of the results is shown in Figure 5, using

just the combined traces. The complete set of results is

shown in Figure 8. All algorithms realize a sizeable

percentage of the optimum, ranging from a worst case of

69% for Greedy in Trace_1, to a best case of 84% for

eMIPS in Trace_2. This suggests that taking into account

the expected speedups in the scheduler is sufficient to

reach some 70% of optimal, the specific strategy being

only a secondary element. Looking at the details however,

we notice a wider spread: the absolute worst result is a

58% for both Work Function in Period_3, and the best is

a 98% for Greedy in Biased_1, 2, and 3.

Contrary to expectations, the Greedy algorithm is the

worst overall performer in only one out of the five

combined traces; in Trace_2, Trace_3, and Trace_5 it

outperforms both of the Work Function, although not by

much. Looking at the detailed results, we see that Greedy

 - 10 -

is actually the overall winner in 15 out of 25 cases.

Greedy always wins in the Rand traces with a consistent

67% of optimal. Greedy also wins in the Biased traces,

where it reaches the three best results overall, with 98% of

optimal. And again, Greedy is the winner in the Period

traces. On the other hand, in the Phased traces Greedy is

almost always the worst performer, by a 12% to 20%

range.

The Work Function algorithms do not perform as

expected. Not only are they the worst overall, but they

also show inconsistent results. They performance is

similar, but the shorter history wins by the largest margins

(about 4%) in Period_5, Phased_1, and Phased _4. The

long history wins at best by 1.7% in Rand_4. Note that in

the Period traces both histories are long enough to cover

the base period. Clearly the offline Work Function

algorithm does not quite scale as hoped for when made

online.

The eMIPS algorithm overall performs better than the

others, by about 10% on average. Looking at the details,

however, we note that Basic comes very close to eMIPS,

and it is in fact slightly better in the Rand traces, ranging

by 0.2% to 0.3% better. As expected, eMIPS does get the

advantage over Basic in the Phased traces, by 3% to 5%.

The comparison between Greedy and eMIPS is the

most interesting. When Greedy wins, it is never by a large

factor. The range is 1.0% to 2.7%, with an average of

1.5%. When eMIPS wins on the other hand, the difference

is much more visible: 3.0% to 19.3%, and 10.1% average.

The optimum speedups are shown in Figure 6, with

each trace resulting in a unique speedup. Speedups vary

between 2.3 and 3.4, with an average of 2.75. Biased_n

traces show a higher average speedup, due to the bias

towards applications with smaller IDs that have higher

acceleration factors. The other cases are closer to the

average, except for the 3.2 of Period_3. In this case the

application mix has an average speedup of 3.25, higher

than usual, and very close to the result obtained over the

whole trace. Since the durations are randomly chosen, this

is to be expected.

6.2 Actual Systems
To evaluate the eMIPS scheduler we perform a set of

experiments on the Xilinx XUP board and on the Giano

simulation of the same XUP board. In addition to

providing insights on the practical behavior of the system,

this process validates simulation. It does not compare the

various algorithms.

6.2.1 The TLOOP Probe

The program shown in Appendix B can simulate

various application behaviors by tuning three parameters:

the amount of work that can be accelerated and therefore

performed in the accelerator (count), the number of times

the accelerator is invoked (nloop), and the amount of

work that cannot be accelerated (nwork). If we link the

TLOOP image with a hardware accelerator (SE image) we

will provide an input to the scheduler. If instead the image

does not contain an accelerator (ELF image) the program

will always execute in software, unaccelerated. The

scheduler implementation effectively identifies an

accelerator with the file that contains it. Therefore we can

make copies of the SE images to fool the scheduler into

thinking it is working with many different accelerators...

even though they are all identical.

Note that our evaluation targets the scheduler itself,

not any particular application or interesting usage

scenario. Using the TLOOP probe reduces the amount of

noise in the experiments, and therefore aids our

understanding of the behavior of a complex system.

Evaluation of how the eMIPS system performs on real

applications is outside our scope.

The probe’s wall-clock execution time is a function

of the three input parameters:

 ()

 () (1)

where C is the time to activate the process, L is the per-

iteration cost of the first loop in the main() function, A is

the per-iteration cost of the assembly loop, and W is the

per-iteration cost of the second loop. We can optionally

use the timing report from the program itself to eliminate

the factor C.

The execution time of the accelerated version, using

the Verilog code of Appendix B, effectively eliminates

the effects of count, and the function reduces to:

 ()

 () (2)

where D now includes the accelerator loading time, and B

is very close (but not identical) to L+A. Note that equation

1 has the same linear shape of equation 2; using a nested

loop just gives us more fine grain control on the second

term. Table 1 summarizes the values we measured for the

constants in equations 1 and 2 on the Xilinx XUP board.

Table 1: TLOOP execution time depends on the input

arguments and on the process and accelerator load

times.

Dependency Time(ms)

C: process load 1310

L: nloop 0.011620

A: count 0.001864

W: nwork 0.006414

D: accel. load TBM

B: nloop TBM

 - 11 -

The accelerated version of the probe (TLOOP_A)

uses the Secure Executable image format [31] which is

slightly more expensive to load (see Section 5). The load

cost D of equation 2 includes the cost of loading a regular

ELF image (e.g. C from Table 1), plus two additional

costs as shown in equation 3.

 (3)

The first cost S is the check to see if the image to load

is in the SE format or not. This cost is incurred on all

images; it is small but it could be eliminated by breaking

the ELF compatibility, e.g. using a bit in the ELF header.

The second cost is only incurred on SE images, and again

has two parts. The first is the cost V of verifying the

integrity of the file itself, which at minimum involves a

CRC over the whole file. Stronger security digests are

typically more expensive. The second is the cost I of

loading the accelerator bit file into the ICAP

programming interface of the FPGA. Note that S is

constant, but V and I scale linearly with the length of the

file. The values we measured on the XUP board are

reported in Table 2.

Table 2: Breakdown of the image loading time for the

accelerated probe version.

Constant Time (ms)

S 60

V 190

I 0.498

D TBM

A number of parameters depend on the size of the

corresponding object. Table 3 shows the sizes for the two

versions of the probe. The software portion (text+data) is

the same for both versions, and much smaller than the

hardware portion.

Table 3: Sizes in bytes of the scheduler and probes.

File Text Data Accel. FileSize

TLOOP 3,500 228 0 8,095

TLOOP_A 3,500 228 109,604 117,812

Scheduler 7,832 80 0 15,508

In principle, we can measure all the constants in the

two equations using just the values (0,0,0), (0,1,0),

(1,1,0), and (0,0,1) for the input triple (count, nloop,

nwork). In reality, there are a few caveats to bear in mind

while using the probe: The absolute values in the set

{L,A,B,W} are much smaller than those in the set {C,D};

there are elements of variability in the load times; and the

time reported by the time(1) cover program has a limited

granularity of about 30 milliseconds. Very small input

triples therefore will generate time costs that are either

overwhelmed by the load times, not measurable with the

time(1) facility, or both. TLOOP’s internal time reporting,

using gettimeofday(2) (GTOD), is instead much more

precise. Using the board’s 10MHz clock this facility has a

granularity of 1 microsecond.

Other potential sources of large errors in the

measurements include network traffic and paging. To

avoid them, the Ethernet cable should be disconnected

from the board if possible, and the system should be idle,

preferably in single-user mode. All programs should be

run first to page them in from disk. Note that to measure

the scheduler we are interested in somewhat long running

applications, therefore the inputs to TLOOP will be fairly

large integers. This eliminates the noise due to granularity

issues. The lack of caches on the XUP implementation is

a determining factor for TLOOP’s predictability.

Linearity

This section evaluates TLOOP as a function of the

individual parameters. The upshot is that the program is

perfectly linear for large values and when measured by

GTOD, and shows some non-linearity only for very small

input arguments if measured with time(1). The accelerated

version of the program incurs some additional fixed costs.

Table 4: TLOOP single argument fits .

Input Measure a0 a1 R2 MinVal

nloop time(1) 1310 0.011620 0.9964 10,000

 GTOD 0.431 0.011620 1 n/a

count time(1) 1310 0.001864 0.9649 80,000

 GTOD 0.443 0.001864 1 n/a

nwork time(1) 1310 0.006414 0.9816 100,000

 GTOD 0.431 0.006414 1 n/a

nloop_A time(1) 1560 0.007262 0.9902 100,000

 GTOD 0.430 0.007262 1 n/a

A linear equation matches all

measurements, as shown in Table 4 for various

combinations of measuring facility, input parameter, R
2
 fit

for small values, and start of the linear range.

Figure 9 show the general behavior of TLOOP over a

large range of inputs. In this case we used nloop and

measured using time(1). The graphs for the other input

arguments show identical trends, and so do the measures

we obtained using GTOD.

Figure 10 shows the non-linearity at small input

values for TLOOP against nloop, when measured with

time(1). The probe is linear only for values larger than

approximately 10,000. Figure 11 uses GTOD for the same

measurements and is instead perfectly linear. Similar

 - 12 -

results apply to the nwork parameter, shown in Figure 12

to be linear above 100,000 and to count, shown in Figure

13 to be linear above 80,000.

The row nloop_A in Table 4 reports the results for the

TLOOP_A accelerated version of the probe. There is no

dependency on count because the accelerator returns

immediately (see Eq. 2). The dependency on nwork

remains unchanged. The dependency on nloop changes

because the function loop() now consists only of one

(extended) instruction instead of 5 instructions as shown

in Appendix B. Figure 14 shows the non-linearity with

time(1) for values less than 100,000.

6.2.2 Scheduling tests

The current build of eMIPS for the XUP board only

provides one accelerator slot, with four slots projected in

the near future. Consequently, some interesting test

scenarios could only be run on the Giano full-system

simulator. The tests that could be run on both platforms

validate the fidelity of the results on Giano.

The most visible functionality of the scheduler is to

assign the (one) available slot to the most valuable

program. We can test this with our probe using two

accelerated copies, one that uses the accelerator frequently

and one that uses it infrequently. Changing the nwork

parameter can accomplish this:

 Infrequent is INF=“tloop_a 10000 1000 10000”

 Frequent is FRE=“tloop_b 10000 1000 1000”

where tloop_b is a copy of the accelerated probe. We can

use the shell’s job control facilities to try various

scenarios, manually and using scripts. Table 5 reports the

results of the experiments. In the parallel execution

FRE||INF of the two probes we start FRE first; in

INF||FRE we start INF first. The rows marked (FRE)

indicate the elapsed time at which the first job completes.

All times are fairly consistent across runs; variations are

below the 0.1 second mark.

Table 5: Two probes competing for one slot. One uses

the accelerator INF-requently, the other more FRE-

quently.

Job XUP/a XUP/u Giano/a Giano/u

INF 63.9 76.0 59.2 74.8

FRE 7.9 20.0 8.5 22.0

FRE||INF 76.9 99.9 71.3 101.5

(FRE) 15.0 39.7 14.3 43.8

INF||FRE 76.7 99.9 71.6 96.0

(FRE) 15.0 39.3 14.8 43.8

When run individually, both jobs complete faster with

acceleration (“a” columns) than without (“u” columns).

The two jobs get a different speedup from acceleration:

about 1.2x for INF and 2.8x for FRE.

The times on the XUP board are mostly higher, and

between 1% and 10% of the results on Giano. The longer

running jobs are more precise, between 2% and 7%.

The order in which we start the two jobs in our script does

not matter; the FRE||INF and INF||FRE rows show similar

results. For both starting orders the shorter job completes

first, as expected. The completion times for (FRE) are

twice the time for the isolated, accelerated execution of

FRE. This is expected under the assumption that the CPU

is allocated fairly. The columns without acceleration

demonstrate the fairness of the thread scheduler, who

allocates 50% of the CPU to both competing programs.

The columns with acceleration also show that the CPU

was allocated 50% each. The accelerator scheduler

allocated the one slot sequentially; first to the FRE job

and when this completes, to the INF job. Therefore the

elapsed times are the sum of 2*FREa (jobs running in

parallel) plus the remainder of INFa. The first portion is

what is reported as (FRE).

Table 6: All combinations of running two probes with

one slot. Probes run accelerated and unaccelerated,

sequentially and in parallel, on the XUP board and on

Giano. Some commutative entries are omitted.

 XUP

elapsed

XUP

GTOD

Giano

elapsed

Giano

GTOD

INFu+FREu 99.8(75.9) 74.7+18.7 101.4(74.5) 73.5+22.0

INFa+FREa 77.1(63.9) 62.6+ 7.2 70.9(58.5) 57.3+ 7.3

INFu+FREa 87.8(75.8) 74.6+ 6.4 85.4(74.5) 73.5+ 5.9

INFa+FREu 87.7(63.9) 62.6+18.6 85.8(58.9) 57.7+22.1

INFu||FREu 99.7(39.4) 93.6+37.4 101.6(46.4) 96.0+44.4

INFa||FREa 77.9(16.3) 70.2+12.5 71.7(14.3) 65.0+12.0

INFu||FREa 87.7(15.3) 81.4+12.9 85.8(14.2) 80.0+12.0

INFa||FREu 87.6(39.9) 81.2+37.6 85.0(45.6) 79.0+43.5

Table 6 shows the results from running all combinations

of the two probes, running sequentially or in parallel,

accelerated and not. Some entries are omitted because

sequential execution is commutative, and the starting

order of a parallel job is not relevant. The “elapsed”

columns are computed as in Table 5, using time(1). The

GTOD columns report the elapsed time as observed from

within the probe, eliminating scripting and startup costs.

Each member of a timing pair refers to the corresponding

probe, indicated in the first column. The sequential

execution of the accelerated probes gives the best result.

A close second is the parallel execution of the accelerated

probes.

 - 13 -

Stability

We use the term “stable” to refer to a desirable property

of the scheduler, namely that it should not constantly

reallocate the resource among competing clients. Even

though loading an accelerator is not a huge overhead, still

we would like the scheduler to demonstrate a certain

degree of stubbornness once it reaches a decision to load.

We can use two identical jobs to test for stability in the

scheduler’s decision making. All things being the same,

the scheduler should keep the accelerator allocated to the

job that was started first. We use two FRE probes in

parallel for this test. Unlike the regular thread’s scheduler,

the accelerator scheduler is invoked infrequently enough

that we can insert printouts without triggering insanity.

Therefore we simply used debugging printouts to verify

that the scheduler made its decision.. and kept it. This test

is very simple, and yet it was rather useful during

development. We noticed that most implementation errors

somehow resulted in one form or other of instability.

Scheduling overheads

In the absence of any other accelerators present, the

parallel jobs complete in the same time with and without

the scheduler loaded. To test the effect of the presence of

accelerators in the system we can start and immediately

stop a number of accelerated probe copies, then run the

unaccelerated parallel job FRE||INF. Even though all the

probes are suspended, the scheduler still must scan them

all (to decay their history) and therefore will create some

small amount of overhead. We used up to 20 suspended

probes and were not able to measure any difference.

Measuring the effect of the accelerator load time is not

trivial. As mentioned, the size of an accelerator is

effectively constant, and the ICAP interface is much faster

than the processor. Therefore to measure any difference

we need a very large accelerator, which is impossible to

create because they are all the same size. What we can do

instead is to load the same accelerator multiple times, e.g.

concatenate multiple times the same ICAP file into a

larger accelerator image.

<More tests to be added here in final version>

7 Changes to NetBSD

In this section we describe in detail the changes

applied to the NetBSD source tree to support the eMIPS

processor and the accelerator scheduler.

In December 2008 we started the eMIPS port from

the source code base of the then-current official release,

version 4.0.1. The basic strategy for supporting eMIPS

was to clone the existing machine-dependent code for the

PMAX (aka DecStation series of workstations) and apply

all the required changes. This entailed a larger number of

changes than minimally required, but in the end produced

a complete, self-hosting system that we can trust to be

relatively bug-free. Modulo the byte-order, any software

produced for the PMAX in the past 20 years will work on

eMIPS because the eMIPS ISA is a superset of the R2000

processor. Indeed, we found very few software bugs, only

one of them serious (in the GCC compiler). The system

has now been in use for years and we never observed even

a single crash.

We wrote additional code for supporting soft-floats

on MIPS, a bus driver for the eMIPS on-chip peripheral

bus, device drivers for a number of new peripherals, boot

loader code for disks and Ethernet, and miscellaneous

other code. One required feature we added to the existing

MIPS code is the ability to access I/O space at arbitrary

physical addresses, mapping them virtually. Existing code

for MIPS assumed I/O space lived entirely in the K1SEG

space, e.g. the first 512 MB of physical space. Similar

changes allow the system to access 4 GB of memory

when available, e.g. on the BEE3 system [3].

Bootstrapping the system required cross-compiling

the whole tree and building a bootable disk image. We

used a VirtualPC running NetBSD 4.0.1 as a host, and the

Giano simulator [2] with an ML40x configuration as the

target. Cross-compilation of the whole NetBSD tree on a

notebook takes about 15 hours. The same compilation

takes about a month when done natively on the simulator.

To help the installation process, we added a second

SystemACE (disk) peripheral in the simulated ML40x

configuration and used it to access the ISO image of the

distribution CD we had created. This turned out to be

about as quick as accessing the distribution files over the

Ethernet, directly from the VirtualPC host. This procedure

is more fully described in Section 8. The system was

operational in simulation in just a couple of weeks, over

the 2008 winter holidays. Another week was then spent

providing diskless booting and NFS support.

Once the system was fully operational and tested we

applied the changes to support the new accelerator

scheduler. To minimize the amount of changes in the OS

kernel and provide maximum flexibility we realized the

scheduler as a Loadable Kernel Module (LKM), with very

simple interfaces to the kernel. All changes are

conditional, with absolutely no effect on other

architectures. Indeed, the longest piece of additional

kernel code is 93 lines in one single function,

accelerator_switch() which is invoked at thread context

switch time. Here we collect the performance indicators

used by the scheduler. Machine-dependent code provides

access to the hit/miss counters, and the slot control

registers. In the machine-independent portion of the

NetBSD kernel code the only other additions are

conditional function calls into the scheduler at process

termination, system-wide process priority re-computation,

and image activation.

 - 14 -

We added support for the Secure Executable (SE)

image format [31], both in the kernel and in the shared

library loader. The SE format links a software image and

a hardware image (bit file) in a single file, protected

against tampering by a security digest. Support for the SE

format required more code than the scheduler itself,

especially since it is duplicated in user and kernel space.

The LKM source file for both scheduler and SE image

loader is 893 lines long. It compiles to 6,096 bytes of

MIPS code.

When the LKM is not loaded there is no measurable

overhead in the system. The small memory cost for the

LKM is avoided. All function pointers are NULL and the

corresponding indirect calls are avoided. The context

switch code recognizes the absence of accelerators with a

single test. Therefore the system is fully backward

compatible and works as expected in the absence of

specialized applications. When the LKM is loaded but

there are no accelerators in use the overhead is also below

the measurable threshold. The function calls described

next are performed, but they return immediately to the

caller.

When there are accelerators in use there are

additional costs in three places. During priority re-

computation (about once a second in schedcpu()), the

scheduler scans the list of loaded accelerators and re-

evaluates their merits (see Figure 4). This can

occasionally lead to an accelerator load/unload event,

which is expensive. Otherwise the cost is linear with the

number of accelerators loaded, because the scheduler

makes a single pass over the list (note that this is

dependent on the specific scheduler loaded). At context

switch time, there is a potential additional cost for

gathering the counters and enabling the correct set of

accelerators. This cost is only incurred if/when switching

to/from a process that actually uses an accelerator and is

therefore avoided when no accelerators are in actual use,

e.g. if they are quiescent. The incurred cost depends on

the number of accelerator slots configured and the number

of opcodes supported. The maximums for the eMIPS

system are currently four slots and eight opcodes,

respectively. The actual number of accelerator slots is

dynamically configured at system boot time. Figure 7

shows the pseudo code for the accelerator_switch()

function, invoked by mi_switch(). A simple comparison

captures the case when no accelerators are involved in the

context switch. If the number of active accelerators is

small this test will capture the majority of the actual

context-switch cases. The most expensive case is the one

when switching between two separate applications that

both make use of accelerators. In the first step we

preserve (and reset) the hit/miss counters for the

accelerators that were enabled in the old process. In the

second step, we scan all slots and make sure that only the

accelerators that should be enabled in the new process are

so enabled.

The third and last call is made by proc_free() at

process termination time, to decrement the reference

count of the process’ accelerators.

accelerator_switch::

If NoAcceleratorsInUse OR SameProcess

 return;

If PreviousProcess.AcceleratorsInUse ≠ 0

 SaveHitsMisses(PreviousProcess)

If NewProcess.AcceleratorsInUse ≠ 0

 EnableAcceleratorsFor(NewProcess)

Figure 7: Additions to the regular thread context

switch function to collect statistics and enable the

correct accelerators. Saving the statistics requires

reading the miss and hit counters and incrementing

the corresponding accelerator’s history. This takes

linear time, proportional to the number of opcodes

and slots. Enabling the process’ accelerators requires

a linear scan of the slots to check if the accelerator

loaded in a given slot is valid for the process.

We wrote two utility programs, located in the

src/sbin/ directory, to support the SE image format. The

ACE2SE program creates an SE image, starting from two

existing software and hardware images. The SEDUMP

program shows the content of an SE binary image in

human-readable form. The tools currently accept the ELF

format for software images and the Xilinx ACE format for

accelerator images. The SE format itself is actually

agnostic of these file formats, so the tools will work with

any other file format.

8 Usage

Different users will want to perform one or more of

the following tasks: re-building the full system from

sources, install a system on a fresh disk image, either on

Giano or on a board, building and loading the scheduler,

and adding an accelerator to an application program. The

following sections describe these tasks in details.

8.1 Building
The system is built as a cross-compilation from a

NetBSD system. When using Windows as the

development system, the first step is to install the

VirtualPC product and create a virtual machine (and disk)

for the host NetBSD system. We recommend at least 12

GB of disk space. The installation CD (ISO) images to

create the host NetBSD system can be found at

 - 15 -

ftp://iso2.us.netbsd.org/pub/NetBSD/iso/<version>/

i386cd-<version>.iso, we used version 4.0.1 (and 5.99.39)

without problems, but at least one other version was

unable of building the system, presumably due to

problems with the ACPI BIOS of the VPC. When

appropriate, in the following we will refer to version 4.0.1

and related procedures.

The sources can be found on the distribution CD, and

someday on the official distribution places, such as

ftp://iso2.us.netbsd.org/pub/NetBSD/NetBSD-

<version>/source/sets/. The following files should be

installed on the host NetBSD system:

- gnusrc.tgz

- sharesrc.tgz

- src.tgz

- syssrc.tgz

- xsrc.tgz

We created the directories /usr/src, /usr/xsrc, and

/usr/obj to hold sources and binaries. We made them

owned by a regular user. One way to unpack the files is

“for file in *.tgz; do tar -xzf $file -C /; done”.

The build procedure consists of three steps: building

the system, the X system, and the distribution CD images.

The following commands, executed in /usr/src, will

perform these three steps:

- ./build.sh -u -U -V MKSOFTFLOAT=yes -m

emips release

- ./build.sh -x -u -U -V MKSOFTFLOAT=yes -m

emips release

- ./build.sh -u -U -V MKSOFTFLOAT=yes -m

emips iso-image-source

On a current high-end portable PC these steps take

approximately 14 hours, 9 hours, and a few minutes

respectively. The final result is the bootable CD image

/usr/obj/releasedir/iso/emipscd.iso, approximately 330

MB large. The directory /usr/obj/releasedir can be used

for installation over the network. The directory

/usr/obj/destdir.emips, after some manipulation, can be

used as the root to mount via NFS (use for testing only).

8.2 Installation on Giano
The first step is to install the Giano simulator itself.

The installation MSI file for Giano can be found at

http://research.microsoft.com/en-us/downloads, look for

the current Giano release page there. The second step is to

create a directory to hold all the simulated system data,

for instance c:\Giano\tests\emips. At minimum, this

directory should contain the following files:

- boot.emips

- emips3.img (*)

- emipscd.iso

- Ml40x_2ace.plx

- Ml40x_bram.bin

- putty.exe (*)

All files except the starred ones can be found in the

Giano installation directory. The file boot.emips is the

NetBSD bootloader; it is built as part of building the

NetBSD system for eMIPS (Section 8.1). A copy should

also be on the root of the installation CD emipscd.iso. The

file Ml40x_bram.bin is the primary eMIPS bootloader; it

can be found and rebuilt from the official eMIPS

hardware distribution. The file Ml40x_2ace.plx is the

Giano platform configuration file that defines the Xilinx

boards. This file is valid both for the ML40x and the XUP

boards. The configuration adds a second SystemACE

controller, useful as CD drive. The file putty.exe is the

free terminal simulator PuTTY; it can be downloaded

from http://www.chiark.greenend.org.uk/~sgtatham/putty.

We use Release 0.60. The file emips3.img is the primary

disk image for the simulated system. It should be created

as empty, with the desired size, by the user. One way is to

concatenate a few large files, making sure the first one is

not a valid NetBSD disk image (to avoid confusion later

on). For instance, you might type the command “copy/bin

boot.emips+emipscd.iso+emipscd.iso emips3.img”, which

will create an image of approximately 700 MB. We

recommend at the very least 800 MB of disk space for the

system, and preferably 2 GB or more.

Assuming you have a cmd window open in the

directory c:\Giano\tests\emips (or a Visual Studio

Command Prompt window), start PuTTY by typing:

- putty.exe

and then get it ready to connect to Giano. In the

configuration panel, select a Serial connection and set the

Serial line name to \\.\pipe\usart0. It is convenient to Save

this configuration for quick reuse later.

Next start the simulator with the following command

line:

- giano -Platform Ml40x_2ace.plx

The simulator will initialize and pop up a warning for

“Access to a non-existent memory”. This is expected,

software is probing I/O space to auto-configure the

system. This is a good stop point that allows you to tell

PuTTY to connect to the simulator. To do so, select Open

in the configuration pane. Next go back to the warning

window and select Retry. You should see a message on

the PuTTY window from the bootloader saying “Hit any

char to boot...”. Do so, and you should get the following

prompt:

NetBSD/emips <version> …

Default: 0/ace(0,0)/netbsd

ftp://iso2.us.netbsd.org/pub/NetBSD/iso/%3cversion
ftp://iso2.us.netbsd.org/pub/NetBSD/iso/4.0.1/i386cd-4.0.1.iso
ftp://iso2.us.netbsd.org/pub/NetBSD/NetBSD-%3cversion%3e/source/sets/
ftp://iso2.us.netbsd.org/pub/NetBSD/NetBSD-%3cversion%3e/source/sets/
http://research.microsoft.com/en-us/downloads
http://www.chiark.greenend.org.uk/~sgtatham/putty/
file://./pipe/usart0

 - 16 -

boot: 0/ace(1,0)/netbsd

Answer as indicated in bold red letters, electing to

boot from the installation CD. Later on you can let the

system boot from the default choice. This is also selected

via a timeout if you do not type anything.

This process brings up the standard NetBSD sysinst

application. Refer to the official documentation for the

various options, and for the post-install procedures: see

http://www.netbsd.org/docs/guide/en/index.html. The

installation CD contains documentation on the installation

process also, starting with the file emips/INSTALL.html.

8.3 Installation on Boards
The installation on a Xilinx ML40x or XUP board

assumes that you first create a bootable compact flash

card on a PC, then download the bootloader, and finally

install the bootloader into flash for operational use.

A quick way to perform the first step on NetBSD is to

use dd(1) to copy the installation CD onto the compact

flash card. Under Windows you can do the same using the

utility copydd.exe from the Giano distribution. An

alternate and often useful way is to tell Giano to use the

compact flash drive as the primary disk drive. Assume the

compact flash drive shows up as “Disk 1” under Disk

Management. Disable all drive letters from the drive, and

run the following as administrator:

- giano -Platform Ml40x_2ace.plx

SystemAce::HostFile \\.\PhysicalDrive1

Then follow the instructions of Section 8.2 to create

your bootable compact flash card.

The first time NetBSD is installed on a board you

will need to download the NetBSD bootloader into RAM

using the eMIPS serial line boot option. Use the

download.exe utility from the eMIPS distribution for this.

Assume the serial line connection to the board is on

Com1. Set the dip switches for a serial line download,

program the FPGA and then type the following:

- download com1: boot.emips

Once the download is complete, start PuTTY and tell

it to make a Serial connection to Serial line COM1:, with

Speed 38400. You will have missed the “Hit any char to

boot...” prompt during the switchover, so type one char to

get to the boot prompt above. Use the default boot device.

Once the system is up and running, login as root and

install the bootloader into flash:

- dd if=boot.emips of=/dev/rflash0c bs=4k

conv=sync

Note that if you used sysinst directly on the board it

will ask you if you want it to perform this step for you,

you do not need to repeat it.

Finally, change the dip switches to boot from flash

(switch number zero should be set to one) and reboot. The

system is now operational and should be able to boot

directly from disk, without doing the download again.

Note that the bootloader is also able to boot remotely via

DHCP/BOOTP. Once in flash, it can be used to prime

new cards directly from the net, or to boot diskless.

The BEE3 machine does not have any permanent

memories, therefore on this system the bootloader must be

re-downloaded on each power-up. Since there are no disks

either, the only option is to run NetBSD diskless over

NFS. The corresponding procedures are well known, and

beyond the scope of this document.

8.4 Scheduler LKM
The scheduler is built as part of the full system build

procedure (see Section 8.1), which produces two LKMs:

syscall_accel.o and syscall_accel_data.o. The build

places these two files in the corresponding object

directories. The first is the scheduler proper; the second is

a debug/maintenance interface to the scheduler. Should

you need to rebuild the scheduler, in the 4.x tree, go to the

source directory /usr/src/sys/lkm/syscall/accel and cross-

recompile. In a more recent version of NetBSD the

location has moved to /usr/src/sys/modules.

During installation, these two files are placed in

/usr/lkm. The scheduler is loaded like all LKMs using

modload(1), refer to its man page for details. The

following commands will do the loading:

- modload /usr/lkm/syscall_accel.o

- modload /usr/lkm/syscall_accel_data.o

Modstat(1) will verify that the LKMs are loaded

properly. Look at /etc/lkm.conf(5) to see how to enable

these modules automatically. Note that syscall_accel.o is

normally compiled with the option LOCK_THE_ICAP

enabled. This creates a potential locking conflict with

dev_mkdb(1) that can hang the system during boot. This

can be solved using the AFTERMOUNT condition in the

/etc/lkm.conf entry as follows:

syscall_accel.o - - - - AFTERMOUNT

A similar locking problem arises during shutdown,

because LKMs are not unloaded by default by the system.

To fix this, edit the file /etc/rc.d/lkm3 to add this line:

KEYWORD: shutdown

Failing that… you will have to halt the system

manually:

shutdown now

modunload accel

halt

Two simple test programs are also built: test_accel

and test_accel_data. The first manually loads an

http://www.netbsd.org/docs/guide/en/index.html

 - 17 -

accelerator, for testing purposes. The second displays the

list of all accelerators. These two programs live with the

corresponding LKMs but are not normally installed in a

user system. Administrators should use these example

programs to build more advanced facilities instead.

8.5 Applications
This section describes how to manually add hardware

acceleration to a program, using the simple test program

of Appendix B as reference. The procedure is purely

illustrative; other tools are normally used to automatically

generate an accelerated program from an existing

optimized binary program. The Giano simulator can

profile and identify the blocks to accelerate; the bbtools

can patch a binary and insert the extended opcodes; the

M2V compiler [27] can generate the hardware accelerator

from the MIPS binary code. Here we do everything

manually, but for brevity we omit the creation of the

hardware accelerator itself (see the manual from the

eMIPS hardware distribution).

The C test program is quite simple, it reports the

elapsed time taken to invoke the external function loop(),

passing the argument count to it, and repeating the

invocation nloops times. The external function itself,

written in assembler, is also quite simple. The first

instruction is the extended opcode to invoke the

accelerator. The basic block that follows the extended

opcode loops decrementing the integer argument in

register a0, until this become zero or negative.

The idea behind this example is to create the smallest

possible program that demonstrates a measurable

difference between use and no-use of the accelerator. One

simple implementation of the hardware accelerator,

shown in Appendix B, can simply transfer control to

register ra. The accelerator will take just one cycle to

execute, the software version will execute 2+(nloops*3)

instructions instead, which will take considerable longer

since eMIPS does not currently have an instruction cache.

The following command creates the optimized

software binary, assuming that the C code is in the file

tloop.c and the assembler file is in _tloop.S:

- cc –O2 –o tloop tloop.c _tloop.S

The program should be run first in this un-accelerated

form, to verify that it works as expected. Since the tloop

program image does not include or reference any

accelerator, it will always run in software only.

The accelerator code is shown in Appendix B. This

code is added to the standard extension boilerplate code to

create a PR project, using the Xilinx ISE tools. Let us

assume now that the hardware accelerator file was

generated and the Xilinx tools produced the

corresponding FPGA partial configuration file tloop.bit.

In our setup the file is 109,604 bytes long. To add the

accelerator to our program image we use the ace2se

utility:

- ace2se –ph1 tloop_a tloop tloop.bit 0 2000

The argument -ph1 indicates that the hardware

properties should be set to 0x1. Setting bit zero of this

field indicates that the accelerator plans to use opcode 24

for acceleration, which is the first of the available

extended opcodes. The flags argument is 0; the

accelerator does not require any special treatment. The

savings argument of 2000 cycles per invocation is

arbitrary since the accelerator actually provides a variable

amount of speedup.

To verify that the new file tloop_a is indeed an

accelerated application in the SE file format we can

invoke the sedump utility:

- sedump tloop_a

An interesting line in the output is:

Hardware Image Properties: x1 op24

This verifies that our accelerator, if loaded, will be

enabled for extended opcode 24.

Running the accelerated image will demonstrate an

appreciable speedup over the un-accelerated version.

9 Conclusions

We have presented an online scheduling algorithm

for hardware accelerators, its implementation on the

NetBSD operating system, and an initial simple

evaluation. The scheduler uses the current performance

characteristics of the accelerators to select which

accelerators to load and unload. The scheduler is typically

within 20% of the optimal schedule computed offline.

Even a much simpler greedy scheduling algorithm

performed acceptably and within 30% of optimal.

Differences are only notable in the cases of applications

that exhibit different behaviors at different phases of their

execution.

The measured overhead of the implementation on the

NetBSD operating system is negligible. Using a loadable

kernel module, even the code size overhead is negligible

and confined to the machine-dependent potion of the

kernel code. The scheduler itself compiles to 7,832 bytes

of MIPS binary code.

More work is needed to improve usability and to

assess the average speedups obtainable on typical user

programs. The system usability is acceptable, but the tools

for creating accelerators and applications, and for tuning

them still need work. In our evaluations we have assumed

an average application speedup of 2-4x, but we can

achieve 155x with a simple TLOOP test program. This

large range begs for closer investigations.

 - 18 -

References

[1] Xilinx, Inc. Virtex 4 Family Overview. Xilinx Inc. June

2005.
http://direct.xilinx.com/bvdocs/publications/ds112.pdf

[2] Forin, A., Neekzad, B., Lynch, N. L. Giano: The Two-

Headed System Simulator. MSR-TR-2006-130, Microsoft

Research, WA, September 2006.

[3] Davis, J. D., Thacker, C. P., Chang, C. BEE3: Revitalizing

Computer Architecture Research. MSR-TR-2009-45,

Microsoft Research, WA, April 2009.

[4] Sirowy, S., Forin, A. Where’s the Beef? Why FPGAs Are

So Fast. International Conference on Engineering of

Reconfigurable Systems and Applications (ERSA), Las

Vegas, NV, July 2009.

[5] Beeckler, J. S., Gross, W. J. FPGA Particle Graphics

Hardware. FCCM, 2005.

[6] Tsoi, K. H., Lee, K. H., Leong, P. H. A Massively Parallel

RC4 Key Search Engine. FCCM, 2002.

[7] Whitton, K., Hu, X. S., Yi, C. X., Chen, D. Z. An FPGA

Solution for Radiation Dose Calculation. FCCM, 2006.

[8] Pittman, R. N., Lynch, N., Forin, A. eMIPS, a Dynamically

Extensible Processor. MSR-TR-2006-143, Microsoft

Research, WA, October 2006.

[9] Lu, H., Forin, A. Automatic Processor Customization for

Zero-Overhead Online Software Verification. Transactions

on VLSI Systems, pg. 1346-1357, November 2008.

[10] Sukhwani, B., Forin, A., Pittman, R. N. Extensible On-Chip

Peripherals. 6th Symposium on Application Specific

Processors, Anaheim, CA, June 2008.

[11] Busonera, G., Forin, A. Exploiting partial reconfiguration

for flexible software debugging. 8th Symposium on Sytems,

Architectures, Modeling and Simulation, Samos, Greece,

July 2008.

[12] Sheldon, D., Vahid, F. Making good points: application-

specific pareto-point generation for design space

exploration using statistical methods. FPGA 2009,

Monterey, California, USA .

[13] Borodin, A., Linial, N., Saks, M. E. An optimal on-line

algorithm for metrical task systems. Journal of the ACM,

Volume 39.4, October 1992, pp. 745 – 763.

[14] Manasse, M. S., McGeoch, L. A., Sleator, D. D.

Competitive algorithms for server problems. Journal of

Algorithms, Volume 11, Issue 2, June 1990, pg. 208-230.

[15] Karlin, A. R., Manasse, M. S., Rudolph, L., Sleator, D. D.

Competitive snoopy caching. Algorithmica, Volume 3,

1994, pg. 79-119.

[16] Agosta, G., Palermo, G., Silvano, C. Multi-Objective Co-

Exploration of Source Code Transformations and Design

Space Architectures for Low-Power Embedded Systems.

ACM Symposium on Applied Computing (SAC). 2001.

[17] Chung, E., Benini, L., De Micheli, G. Source code

transformation based on software cost analysis. 14th

International Symposium on Systems Synthesis, pg. 153-

158, Montréal, Canada, 2001.

[18] Sherman, S., Baskett, F., Browne, J. C. Trace-driven

modeling and analysis of CPU scheduling in a

multiprogramming system. Communications of the ACM,

Volume 15.12, pg. 1063-1069, December 1972.

[19] Lieverse, P., Van Der Wolf, P., Vissers, K., Deprettere, E.

A Methodology for Architecture Exploration of

Heterogeneous Signal Processing Systems. The Journal of

VLSI Signal Processing, Volume 29.3, 2001, pg. 197-207.

[20] Halambi, A., Grun, P., Ganesh, V., Khare, A., Dutt, N.,

Nicolau, A. EXPRESSION: A Language for Architecture

Exploration Through Compiler/Simulator Retargetability.

Design, Automation, and Test in Europe, pg. 31-45, 2008.

[21] FCCM. Field-Programmable Custom Computing Machines

Conference. http://www.fccm.org

[22] Fu, W., Compton, K. An Execution Environment for

Reconfigurable Computing. 13th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines,

pp.149-158, 2005.

[23] Huang, C., Sheldon, D., and Vahid, F. Dynamic tuning of

configurable architectures: the AWW online algorithm. 6th

International Conference on Hardware/Software Codesign

and System Synthesis, Atlanta, GA, October 2008.

[24] Styles, H., Luk, W. Compilation and management of phase-

optimized reconfigurable systems. International Conference

on Field Programmable Logic and Applications, pp. 311-

316, August 2005.

[25] Styles, H., Luk, W. Exploiting Program Branch

Probabilities in Hardware Compilation. IEEE Transactions

on Computers, Volume 53.11, pp. 1408-1419, November

2004.

[26] Smith, M. C. Analytical Modeling of High Performance

Reconfigurable Computers: Prediction and Analysis of

System Performance. PhD Thesis, University of Tennessee,

Knoxville, 2003.

[27] Gu, R., Forin, A., Pittman, R. N. Path-Based Scheduling in

a Hardware Compiler. International Conference on Design

Automation and Test in Europe, Dresden, Germany, March

2010.

[28] Johnson, T., Shasha , D. 2Q: A Low Overhead High

Performance Buffer Management Replacement Algorithm.

20th VLDB Conference, Santiago, Chile, 1994.

[29] Young, M., Tevenian, A., Rashid, R., Golub, D., Eppinger,

J., Chew, J., Bolosky, W., Black, D., Baron, R. The Duality

of Memory and Communication in the Implementation of a

Multiprocessor Operating System. In 11th Symposium on

Operating Systems Principles. ACM, November, 1987.

[30] Liu, S., Pittman, R. N., Forin, A. Minimizing Partial

Reconfiguration Overhead with Fully Streaming DMA

Engines and Intelligent ICAP Controller. MSR-TR-2009-

150, Microsoft Research, WA, September 2009.

[31] Pittman, R. N., Forin, A. A Security Model for

Reconfigurable Microcomputers. MSR-TR-2008-121, and

3rd Workshop on Embedded Systems Security. Atlanta,

GA, October 2008.

http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://research.microsoft.com/en-us/projects/emips/tr-2008-130.pdf
http://research.microsoft.com/en-us/projects/emips/tr-2008-130.pdf
http://research.microsoft.com/en-us/projects/emips/tr-2007-120.pdf
http://research.microsoft.com/en-us/projects/emips/tr-2007-120.pdf
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236839%231990%23999889997%23518135%23FLA%23&_cdi=6839&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=35f54cd2bb878cd76cd87041e88a0f75

 - 19 -

[32] Xilinx Inc. Xilinx University Program XUPV5-LX110T

Development System, at

http://www.xilinx.com/univ/xupv5-lx110t.htm

[33] Endo, Y., Wang, Z., Chen, J. B., Seltzer, M. Using latency

to evaluate interactive system performance. SIGOPS

Operating System Review, October 1996, pp. 185-199.

 - 20 -

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00% Greedy

Work Function 50

Work Function 200

Basic 0.7

eMIPS dynamic Scheduler

Figure 8: Performance of the five scheduling algorithms, using four different types of traces. All traces use a

maximum of 7 different applications, and 4 accelerator slots. Each entry in the trace indicates that the given

application was (re)activated for a (random) number of cycles. Every “random” duration is uniformly distributed

between 10 and 30,000 cycles. Traces are all 100,000 events long. Loading an accelerator has a fixed cost of

112,000 cycles. The Rand_n traces are generated with different random seeds, with uniformly randomized

application selection. In the Biased_n traces the application selection is biased towards a certain set. Different

traces have a more remarked bias towards a smaller number of applications. The Period_n traces are for a set of

applications with periodic activation times: the same applications repeat in the same order within each a period.

The traces have periods of length 15, 15, 10, 10, and the whole trace. The Phased_n traces are equally subdivided

in ten phases. In each phase only a given subset of applications is active, though their activation order is random.

The Trace_n traces are a concatenation of the (corresponding) previous four traces.

y = 0.0116x + 1331.2
R² = 1

0

10000

20000

30000

40000

50000

60000

0 1000 2000 3000 4000 5000

M
ill

is
e

co
n

d
s

y = time(tloop(0,nloop,0)) Thousands

Figure 9: Behavior of TLOOP against a range of values for the nloop parameter, measured with the time(1)

facility. The other input parameters show a similar trend, as well as the measures obtained with gettimeofday(1).

 - 21 -

y = 0.0121x + 1319.6
R² = 0.9975

1200

1400

1600

1800

2000

2200

2400

0 10 20 30 40 50 60 70 80 90 100

M
ill

is
e

co
n

d
s

y = time(tloop(0,nloop,0)) for small values Thousands

Figure 10: TLOOP is linear against nloop when measured by time(1), except for values less than 10,000.

y = 11.592x + 477.54
R² = 1

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

M
ill

is
e

co
n

d
s

y = gettimeofday(tloop(0,nloop,0)) for small values Thousands

Figure 11: TLOOP is linear against all input arguments when using gettimeofday(2).

y = 0.0063x + 1337.8
R² = 0.9816

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70 80 90 100

M
ill

is
e

co
n

d
s

y = time(tloop(0,0,nwork)) for small values Thousands

Figure 12: TLOOP is linear against nwork when measured by time(1), except for values less than 100,000.

 - 22 -

y = 0.0024x + 1314.4
R² = 0.9649

1200

1400

1600

0 10 20 30 40 50 60 70 80 90 100

M
ill

is
e

co
n

d
s

y = time(tloop(count,1,0) for small values Thousands

Figure 13: TLOOP is linear against count when measured by time(1), except for values less than 80,000.

y = 0.0073x + 1565.4
R² = 0.9902

1500

1700

1900

2100

2300

0 10 20 30 40 50 60 70 80 90 100

M
ill

is
e

co
n

d
s

y = time(tloop_A(0,nloop,0)) for small values Thousands

Figure 14: TLOOP_A is linear against nloop when measured by time(1), except for values less than 100,000.

 - 23 -

Appendix A

The following is the C code for the simulation and trace-generation program. The program can either generate one of the

test traces, or execute the given scheduling algorithm on the input trace. See the function main() for details.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <limits.h>
#include <unistd.h>
#include <math.h>

#define TRACELEN 400000
#define NUMTASKS 7
#define NUMACC 7
#define MINRUNTIME 10
#define MAXRUNTIME 30000
#define NUMSLOTS 4
#define UPDATETIME 13000000
#define ACCLOADTIME 112000
#define INF INT_MAX
#define BASICDECAY .7
#define WFAWINDOW 200

int accLoadedOverride=-1;
unsigned long long int globalTime = 0;
unsigned long long int globalAccCount = 0;
unsigned long long int globalTotalTaskRuns = 0;

int readInput = 0;
int writeOutput = 0;

char inputFilename[80] = "trace_in";
char outputFilename[80] = "trace_out";
char schedulingAlgorithm[80] = "naive";

// 0 random
// 1 biased
// 2 peridic
int traceGenerateMethod = 0;

char traceGenerateArgs[10][80];
char algArgs[5][80];

struct timestep{
 int task;
 unsigned long long int length;
};

struct wfaStruct{
 int numConfigs;
 int** combinations;
 unsigned long long int* prev;
 unsigned long long int* curr;
 int currConfig;
 int move;
 int total;
 int window;
} wfaData;

struct basic_struct{
 int accHit[NUMACC];
 int accMiss[NUMACC];
 double accSavings[NUMACC];

 - 24 -

 int useful[NUMACC];
 int adjDecay;
 double avgDecay;
 int avgDecayCount;
} basicData;

int reconfigurations = 0;

struct timestep traceList[TRACELEN];
double taskSpeedup[NUMTASKS] = {3.96, 2.59, 3.17, 3.06, 1.12, 3.75, 2.64};
int taskSavings[NUMTASKS] = {11,21,13,11,14,14,8};
int slots[NUMSLOTS] = {-1};
unsigned long long int slotsLoadTime[NUMSLOTS] = {0};

unsigned long long int accHit[NUMACC] = {0};
unsigned long long int accMiss[NUMACC] = {0};

unsigned long long int globalAccHit[NUMACC] = {0};
unsigned long long int globalAccMiss[NUMACC] = {0};

unsigned long long int globalTaskRuns[NUMTASKS] = {0};

int fact(int n){
 if(n==1){
 return 1;
 }
 else{
 return n*fact(n-1);
 }
}

int choose(int a, int b){
 int ret = (fact(a)/(fact(a-b) * fact(b)));
 //printf("choose %d,%d = %d\n", a,b,ret);
 return ret;
}

void printc(int* comb, int k, int m){
 int i;
 printf("{");
 for(i = 0; i < k; i++){
 printf("%d, ", comb[i]);
 }
 for(i = k; i < m; i++){
 printf("%d, ", -1);
 }
 printf("\b\b}\n");
}
int next_comb(int* comb, int k, int n){
 int i = k -1;
 comb[i]++;
 while ((i >= 0) && (comb[i] >= n - k +1 + i)){
 i--;
 comb[i]++;
 }

 if (comb[0] > n - k){
 return 0;
 }

 for (i = i + 1; i < k; i++){
 comb[i] = comb[i-1]+1;
 }
 return 1;

}

 - 25 -

void copy_array(int* dest, int* src, int size){
 int i =0;

 for (i = 0; i < size; i++){
 dest[i] = src[i];
 }
}

int** generate_combinations(int n, int k, int total){
 int** toReturn;
 int dest = 0;
 int i;
 int m = k;
 int* comb;

 //printf("generate_combinations: %d\n", total);

 comb = malloc(sizeof(int) * k);

 toReturn = malloc(sizeof(int*) * total);
 for(i = 0; i < total; i++){
 toReturn[i] = malloc(sizeof(int) * k);
 }

 for(i = 0; i < k; i++){
 comb[i] = -1;
 }
 copy_array(toReturn[dest++], comb, k);

 for(m=1; m <= k; m++){
 for(i = 0; i < k; i++){
 comb[i] = -1;
 }

 for (i = 0; i < m; i++){
 comb[i] = i;
 }

 //printc(comb,m, k);
 copy_array(toReturn[dest++], comb, k);

 while (next_comb(comb, m, n)){
 //printc(comb, m,k);
 copy_array(toReturn[dest++], comb, k);
 }
 }

 // printf("DONE %d\n", dest);
 free(comb);
 return toReturn;
}

//task generator
void randomtask()
{
 int i;
 srand(time(NULL));
 for(i = 0; i < TRACELEN; i++)
 {
 int task;
 int length;
 task = (rand()) % NUMTASKS;
 length = rand() % MAXRUNTIME;
 if(length < MINRUNTIME){

 - 26 -

 length = MINRUNTIME;
 }
 traceList[i].task = task;
 traceList[i].length = length;
 }
}

void biastask(){ //task generator: biased
 float a,b;
 int i, j, r;
 int k = (int)NUMTASKS * a;
 int length;

 printf("Biastask\n");

 sscanf(traceGenerateArgs[0], "%f", &a);
 sscanf(traceGenerateArgs[1], "%f", &b);

 srand(time(NULL));
 for(i = 0; i < TRACELEN; i++){

 length = rand() % MAXRUNTIME;
 if(length < MINRUNTIME){
 length = MINRUNTIME;
 }
 traceList[i].length = length;

 r = rand() % 1000;
 if(r < b * 1000){
 if(k == 0){
 j = 0;
 }
 else{
 j = rand() % k;
 }
 traceList[i].task = j;
 }
 else{
 j = rand() % NUMTASKS;
 while(j <= (NUMTASKS * a))
 j = rand() % NUMTASKS;
 traceList[i].task = j;
 }
 }
}

void periodtask(){ //task generator: period
 int a;
 int i;
 int seq[TRACELEN];
 int length;

 srand(time(NULL));

 sscanf(traceGenerateArgs[0], "%d", &a);

 for(i = 0; i < a; i++){
 seq[i] = rand() % NUMTASKS;
 }
 traceList[0].task = seq[0];
 for(i = 1; i < TRACELEN; i++){
 length = rand() % MAXRUNTIME;
 if(length < MINRUNTIME){
 length = MINRUNTIME;
 }

 - 27 -

 traceList[i].length = length;
 traceList[i].task = seq[i % a];
 }
}

//task generator
void phasetask()
{
 int i,j;
 int numPhases;
 int numTasksPerPhase;
 int* validTasks;
 int phasedLen;
 printf("Biastask\n");

 sscanf(traceGenerateArgs[0], "%d", &numPhases);
 sscanf(traceGenerateArgs[1], "%d", &numTasksPerPhase);

 if(numTasksPerPhase > NUMTASKS){
 numTasksPerPhase = NUMTASKS;
 }
 printf("phased %d %d\n", numPhases, numTasksPerPhase);
 validTasks = malloc(sizeof(int) * numTasksPerPhase);

 srand(time(NULL));
 for(j = 0; j < numPhases; j++){
 printf("Phase %d {", j);
 for(i=0; i < numTasksPerPhase; i++){
 validTasks[i] = (rand()) % NUMTASKS;
 printf("%d ", validTasks[i]);
 }
 printf("\b}\n");
 for(i = 0; i < TRACELEN/numPhases; i++){
 int task;
 int length;
 task = validTasks[(rand()) % numTasksPerPhase];
 length = rand() % MAXRUNTIME;
 if(length < MINRUNTIME){
 length = MINRUNTIME;
 }
 traceList[((TRACELEN / numPhases) * j) + i].task = task;
 traceList[((TRACELEN / numPhases) * j) + i].length = length;
 }
 }
 /* Fill in the remainder with random */
 phasedLen = (TRACELEN / numPhases) * numPhases;
 for(i = 0; i < TRACELEN - phasedLen; i++){
 int task;
 int length;
 task = (rand()) % NUMTASKS;
 length = rand() % MAXRUNTIME;
 if(length < MINRUNTIME){
 length = MINRUNTIME;
 }
 traceList[phasedLen + i].task = task;
 traceList[phasedLen + i].length = length;
 }
}

void printTrace(){
 int i;

 for(i = 0; i < TRACELEN; i++){
 printf("Run Task %d for %lld cycles\n",
 traceList[i].task,
 traceList[i].length);
 }
}

 - 28 -

//2 loaded but not valid
//1 true
//0 false
int isLoaded(int acc){
 if(accLoadedOverride < 0){
 int i;
 for(i = 0; i < NUMSLOTS; i++){
 if(acc == slots[i]){
 if(globalTime > slotsLoadTime[i]){
 return 1;
 }
 return 2;
 }
 }
 return 0;
 }
 else{
 return accLoadedOverride;
 }
}

void clear_counters(){
 int i;
 for(i = 0; i < NUMACC; i++){
 accHit[i] = 0;
 accMiss[i] = 0;

 }
}
void clear_global_counters(){
 int i;
 clear_counters();
 for(i = 0; i < NUMACC; i++){
 globalTaskRuns[i] = 0;
 }
 globalTime = 0;
 globalAccCount = 0;
 globalTotalTaskRuns = 0;
}

void run_scheduler_naive()
{
 int i,j;

 for(i = 0; i < NUMSLOTS; i++){
 //empty
 if(slots[i] == -1){
 int bestACC = -1;
 for(j = 0; j < NUMACC; j++){
 if(isLoaded(j) >= 1){
 continue;
 }
 if(bestACC == -1){
 if(globalAccMiss[j]*taskSavings[j] > ACCLOADTIME){
 bestACC = j;
 }
 }
 else if(globalAccMiss[j]*taskSavings[j] >= globalAccMiss[bestACC]*taskSavings[bestACC]){
 bestACC=j;
 }
 }
 slots[i] = bestACC;
 slotsLoadTime[i] = globalTime;
 }

 - 29 -

 }
}

//2 loaded but not valid
//1 true
//0 false
int wfa_isLoaded(int acc, int config){
 int i;
 for(i = 0; i < NUMSLOTS; i++){
 if(acc == wfaData.combinations[config][i]){
 return 1;
 }
 }
 return 0;
}

int config_diff(int old, int new){
 int i,j;
 int counter = 0;
 for(i = 0; i < NUMSLOTS; i++){
 for(j=0; j < NUMSLOTS; j++){
 if(wfaData.combinations[old][i] == wfaData.combinations[new][j]){
 if(wfaData.combinations[old][i] >= 0){
 counter++;
 }
 }
 }
 }
 if(counter > NUMSLOTS){
 printf("CONFIG_DIFF:: MAJOR PROBLEM %d > %d\n", counter, NUMSLOTS);
 printf("{");
 for(j = 0; j < NUMSLOTS; j++){
 printf("%d ,", wfaData.combinations[old][j]);
 }
 printf("\b\b} :: ");
 printf("{");
 for(j = 0; j < NUMSLOTS; j++){
 printf("%d ,", wfaData.combinations[new][j]);
 }
 printf("\b\b}\n");
 }
 return NUMSLOTS - counter;
}

unsigned long long int wfa_runtime(int oldConfig, int newConfig, int taskno){
 unsigned long long int totalRuntime = 0;
 int configChange = 0;
 int i;

 if(oldConfig != newConfig){
 configChange = config_diff(oldConfig, newConfig);
 totalRuntime += configChange * ACCLOADTIME;
 }

 for(i = 0; i < wfaData.window; i++){
 int currTask = traceList[taskno + 1].task;
 int runTime = traceList[taskno + i].length;

 int accTime = runTime/taskSpeedup[currTask];
 //int numAccRun = (runTime-accTime)/taskSavings[currTask];

 //globalAccCount += numAccRun;
 if(wfa_isLoaded(currTask, newConfig) == 1){
 totalRuntime += accTime;
 }

 - 30 -

 else{
 totalRuntime += runTime;
 }
 }
 return totalRuntime;
}

void init_wfa(){
 int i;
 int j;

 wfaData.numConfigs = 1;
 for(i = 1; i<=NUMSLOTS; i++){
 wfaData.numConfigs += choose(NUMACC, i);
 }
 printf("%d configs\n", wfaData.numConfigs);

 wfaData.combinations = generate_combinations(NUMACC, NUMSLOTS, wfaData.numConfigs);

 wfaData.prev = malloc(sizeof(unsigned long long int) * wfaData.numConfigs);
 wfaData.curr = malloc(sizeof(unsigned long long int) * wfaData.numConfigs);

 for(j = 0; j < wfaData.numConfigs; j++){
 wfaData.prev[j] = 0;
 wfaData.curr[j] = 0;
 }

 wfaData.currConfig = 0;
 wfaData.window = WFAWINDOW;
 /*
 for(i = 0; i < wfaData.numConfigs; i++){
 printf("{");
 for(j = 0; j < NUMSLOTS; j++){
 printf("%d ,", wfaData.combinations[i][j]);
 }
 printf("\b\b}\n");
 }
 */

}

void run_scheduler_wfa(int i){
 int j,k,s1;
 unsigned long long int min, min1;
 unsigned long long int cost;

 min1 = INF; //min j
 for(j = 0; j < wfaData.numConfigs; j++){ // new config
 min = INF; //min wfaData.curr[j]
 for(k = 0; k < wfaData.numConfigs; k++){ // old config k changes to j

 cost = wfaData.prev[k] + wfa_runtime(k, j, i);

 if(min > cost){
 wfaData.curr[j] = cost;
 min = cost;
 }
 }
 if(min1 > wfaData.curr[j]){
 min1 = wfaData.curr[j];
 s1 = j;
 }
 }
 for(j = 0; j < wfaData.numConfigs; j++){ //update table

 - 31 -

 wfaData.prev[j] = wfaData.curr[j];
 }

 //above calculate loss of expert, below make online decision
 for(j = 0, min = INF; j < wfaData.numConfigs ; j++){
 if(min > wfaData.curr[j]){
 min = wfaData.curr[j];
 s1 = j;
 }
 }

 if(wfaData.currConfig != s1){
 wfaData.move++;
 wfaData.total = wfaData.total + wfa_runtime(wfaData.currConfig,s1,i);
 wfaData.currConfig = s1;
 }
 else{
 wfaData.total = wfaData.total + wfa_runtime(wfaData.currConfig,s1,i);
 }
 copy_array(slots, wfaData.combinations[wfaData.currConfig], NUMSLOTS);
}

void load_acc(int toLoad, int toUnload){
 int i;
 //printf("loading %d into %d\n", toLoad, toUnload);
 for(i = 0; i < NUMACC; i++){
 if(slots[i] == toUnload){
 slots[i] = toLoad;
 slotsLoadTime[i] = globalTime;
 return;
 }
 }
}

void run_scheduler_basic(){
 int i;
 int bestNotLoaded = -1;
 int worstLoaded = -1;
 double error[NUMACC];
 double total[2][NUMACC];
 double averageError = 0;
 double decay;
 int count = 0;
 int done = 0;

 //compute decay
 /* Determine the average % error for each accelerator in terms of
 * the past predicting this time slice
 */
 for(i=0; i<NUMACC; i++){
 total[0][i] = basicData.accHit[i] + basicData.accMiss[i];
 total[1][i] = accHit[i] + accMiss[i];
 //printf("<%d> %f = %d + %d\n", i, total[0][i], basicData.accHit[i], basicData.accMiss[i]);
 //printf("<%d> %f = %d + %d\n", i, total[1][i], accHit[i], accMiss[i]);
 }

 for(i=0; i<NUMACC; i++){
 if(total[1][i] == 0){
 error[i] = 0;
 }
 else{
 count++;
 error[i] = ((total[0][i] - total[1][i]) / total[1][i]);
 if(error[i] < 0.0){
 error[i] *= -1;
 }
 }
 //printf("error[%d] = abs((%f - %f) / %f) = %f\n", i, total[0][i], total[1][i],total[1][i], error[i]);

 - 32 -

 }
 for(i=0; i<NUMACC; i++){
 averageError += error[i];
 }

 if(basicData.adjDecay == 1){
 decay = 1 - (averageError/NUMACC);
 if(decay < 0){
 decay = 0;
 }
 basicData.avgDecayCount++;
 basicData.avgDecay += decay;
 }
 else{
 //printf("using constant\n");
 decay = BASICDECAY;
 }
 //printf("decay = %f\n", decay);

 // reduce previous value factor alpha
 for(i=0; i<NUMACC; i++){
 basicData.accHit[i] = basicData.accHit[i] * decay;
 basicData.accMiss[i] = basicData.accMiss[i] * decay;
 }

 // add in new data
 for(i=0; i<NUMACC; i++){
 basicData.accHit[i] += accHit[i];
 basicData.accMiss[i] += accMiss[i];
 }

 // compute new savings
 for(i=0; i<NUMACC; i++){
 basicData.accSavings[i] = basicData.accHit[i] * taskSavings[i] ;
 basicData.accSavings[i] += basicData.accMiss[i] * taskSavings[i];
 }

 //determine benifit of loading each acc
 for(i=0; i<NUMACC; i++){
 if(isLoaded(i) == 0){
 basicData.useful[i] = basicData.accSavings[i] - ACCLOADTIME;
 }
 else{
 basicData.useful[i] = basicData.accSavings[i];
 }
 }

 for(i=0; i<NUMACC; i++){
 if(isLoaded(i) == 0){
 if(bestNotLoaded == -1){
 if(basicData.useful[i] > 0){
 bestNotLoaded = i;
 }
 }
 else if(basicData.useful[i] > basicData.useful[bestNotLoaded]){
 bestNotLoaded = i;
 }
 }
 else{
 if(worstLoaded == -1){
 worstLoaded = i;
 }
 else if(basicData.useful[i] < basicData.useful[worstLoaded]){
 worstLoaded = i;
 }
 }
 }

 - 33 -

 // All useable accelerators loaded
 if(bestNotLoaded == -1){
 return;
 }
 if(isLoaded(-1) > 0){
 load_acc(bestNotLoaded, -1);
 }
 else{
 if(basicData.useful[bestNotLoaded] > basicData.useful[worstLoaded]){
 load_acc(bestNotLoaded, worstLoaded);
 }
 else{
 done = 1;
 }
 }
}

void init_basic(){
 int i;
 for(i = 0; i<NUMACC; i++){
 basicData.accHit[i] = 0;
 basicData.accMiss[i] = 0;
 }
 basicData.avgDecay = 0;
 basicData.avgDecayCount = 0;
 sscanf(algArgs[0], "%d", &basicData.adjDecay);
}

int init_scheduler(){
 int i;
 for(i=0; i < NUMSLOTS; i++){
 slots[i] = -1;
 }
 if(strcmp(schedulingAlgorithm, "naive") == 0){

 }
 else if(strcmp(schedulingAlgorithm, "wfa") == 0){
 init_wfa();
 }
 else if(strcmp(schedulingAlgorithm, "basic") == 0){
 init_basic();
 }
 else{
 printf("Invalid Scheduling Algorithm: %s\n", schedulingAlgorithm);
 return 0;
 }
 return 1;
}

void wfa_cleanup(){
 /*
 int i;
 for(i = 0; i < wfaData.numConfigs; i++){
 free(wfaData.combinations[i]);
 }
 free(wfaData.combinations);
 free(wfaData.prev);
 free(wfaData.curr);
 */
}

void run_scheduler(int i){
 int j;

 // First come first serve no reconfigure
 if(strcmp(schedulingAlgorithm, "naive") == 0){

 - 34 -

 run_scheduler_naive();
 }
 else if(strcmp(schedulingAlgorithm, "wfa") == 0){
 run_scheduler_wfa(i);
 wfa_cleanup();
 }
 else if(strcmp(schedulingAlgorithm, "basic") == 0){
 run_scheduler_basic();
 }
 else{
 printf("Invalid Scheduling Algorithm: %s\n", schedulingAlgorithm);
 }
 //printf("SLOTS: %d,%d,%d,%d\n", slots[0], slots[1], slots[2], slots[3]);
 printf("SLOTS: {");
 for(j = 0; j < NUMSLOTS; j++){
 printf("%2d,", slots[j]);
 }
 printf("\b}\n");
}

void update_counters(){
 int i;
 for (i = 0; i < NUMACC; i++){
 globalAccHit[i] += accHit[i];
 globalAccMiss[i] += accMiss[i];
 }
}

int runTrace(){

 unsigned long long int time_update = UPDATETIME;
 int i;

 clear_global_counters();

 for(i = 0; i <TRACELEN; i++){
 int currTask = traceList[i].task;
 int runTime = traceList[i].length;

 //printf("Task: %d, len: %d\n", currTask, runTime);

 globalTaskRuns[currTask]++;
 globalTotalTaskRuns++;

 int accTime = runTime/taskSpeedup[currTask];
 int numAccRun = (runTime-accTime)/taskSavings[currTask];
 //printf("numAccRun: %d\n", numAccRun);
 globalAccCount += numAccRun;
 if(isLoaded(currTask) == 1){
 //printf("Loaded\n");
 globalTime += accTime;
 accHit[currTask] += numAccRun;
 }
 else{
 //printf("Not Loaded\n");
 globalTime += runTime;
 accMiss[currTask] += numAccRun;
 }

 if(globalTime > time_update){
 time_update += UPDATETIME;

 update_counters();
 if(accLoadedOverride < 0){
 run_scheduler(i);
 }
 clear_counters();

 - 35 -

 }
 }

 update_counters();
 printf("Total Time is: %lld :: %lld sec\n", globalTime, globalTime/7500000);
 /*
 printf("Total ACC count is: %lld\n", globalAccCount);
 printf("Hits: %lld,%lld,%lld,%lld,%lld,%lld,%lld :: %lld\n",
 globalAccHit[0],
 globalAccHit[1],
 globalAccHit[2],
 globalAccHit[3],
 globalAccHit[4],
 globalAccHit[5],
 globalAccHit[6],
 globalAccHit[0]+
 globalAccHit[1]+
 globalAccHit[2]+
 globalAccHit[3]+
 globalAccHit[4]+
 globalAccHit[5]+
 globalAccHit[6]
);
 printf("Miss: %lld,%lld,%lld,%lld,%lld,%lld,%lld :: %lld\n",
 globalAccMiss[0],
 globalAccMiss[1],
 globalAccMiss[2],
 globalAccMiss[3],
 globalAccMiss[4],
 globalAccMiss[5],
 globalAccMiss[6],
 globalAccMiss[0]+
 globalAccMiss[1]+
 globalAccMiss[2]+
 globalAccMiss[3]+
 globalAccMiss[4]+
 globalAccMiss[5]+
 globalAccMiss[6]
);
 printf("Task: %lld,%lld,%lld,%lld,%lld,%lld,%lld :: %lld\n",
 globalTaskRuns[0],
 globalTaskRuns[1],
 globalTaskRuns[2],
 globalTaskRuns[3],
 globalTaskRuns[4],
 globalTaskRuns[5],
 globalTaskRuns[6],
 globalTotalTaskRuns
);
 */
 return globalTime;
}

void printTraceFile(){
 int i;
 FILE *fp;

 if(writeOutput == 0){
 return;
 }

 fp = fopen(outputFilename, "w");

 for(i = 0; i < TRACELEN; i++){
 fprintf(fp, "%d %lld\n",
 traceList[i].task,

 - 36 -

 traceList[i].length);
 }
 fclose(fp);

}

void processCommandLine(int ARGC, char** ARGV){
 int i;

 printf("ARGC = %d\n", ARGC);

 if(ARGC == 1){
 return;
 }

 for(i = 1; i < ARGC; i++){
 // Set input file
 if(strcmp(ARGV[i], "-i") == 0){
 if(i+1>=ARGC){
 printf("ERROR: Need additional string:: %s\n", ARGV[i]);
 }
 strlcpy(inputFilename, ARGV[i+1], 80);
 i++;
 }
 // Set ouput file
 else if(strcmp(ARGV[i], "-o") == 0){
 if(i+1>=ARGC){
 printf("ERROR: Need additional string:: %s\n", ARGV[i]);
 }
 strlcpy(outputFilename, ARGV[i+1], 80);
 i++;
 }

 // Read input file
 else if(strcmp(ARGV[i], "-r") == 0){
 readInput = 1;
 }

 // Write input file
 else if(strcmp(ARGV[i], "-w") == 0){
 writeOutput = 1;
 }

 // set Algorithm
 else if(strcmp(ARGV[i], "-a") == 0){
 if(i+1>=ARGC){
 printf("ERROR: Need additional string:: %s\n", ARGV[i]);
 }
 strlcpy(schedulingAlgorithm, ARGV[i+1], 80);

 if(strcmp(schedulingAlgorithm, "basic") == 0){
 strlcpy(algArgs[0], ARGV[i+2], 80);
 i++;
 }
 i++;
 }
 // set Algorithm
 else if(strcmp(ARGV[i], "--random") == 0){
 traceGenerateMethod = 0;
 }
 // set Algorithm
 else if(strcmp(ARGV[i], "--bias") == 0){
 if(i+2>=ARGC){
 printf("ERROR: Need additional strings:: %s\n", ARGV[i]);
 }
 traceGenerateMethod = 1;
 strlcpy(traceGenerateArgs[0], ARGV[i+1], 80);
 strlcpy(traceGenerateArgs[1], ARGV[i+2], 80);

 - 37 -

 i+=2;

 }
 // set Algorithm
 else if(strcmp(ARGV[i], "--period") == 0){
 if(i+1>=ARGC){
 printf("ERROR: Need additional strings:: %s\n", ARGV[i]);
 }
 traceGenerateMethod = 2;
 strlcpy(traceGenerateArgs[0], ARGV[i+1], 80);
 i++;
 }
 // set Algorithm
 else if(strcmp(ARGV[i], "--phase") == 0){
 if(i+2>=ARGC){
 printf("ERROR: Need additional strings:: %s\n", ARGV[i]);
 }
 traceGenerateMethod = 3;
 strlcpy(traceGenerateArgs[0], ARGV[i+1], 80);
 strlcpy(traceGenerateArgs[1], ARGV[i+2], 80);
 i+=2;
 }
 else{
 printf("ERROR: INVALID option:: %s\n", ARGV[i]);
 return;

 }

 }
}

void generateTrace(){
 printf("Generate start\n");
 if(traceGenerateMethod == 0){
 randomtask();
 }
 else if(traceGenerateMethod == 1){
 biastask();
 }
 else if(traceGenerateMethod == 2){
 periodtask();
 }
 else if(traceGenerateMethod == 3){
 phasetask();
 }
 else{
 printf("Invalid trace generation method\n");
 }
 printf("Generate end\n");
}

void read_input_file(){
 FILE *fp;
 int task, length;
 int count = 0;
 printf("Read input file\n");

 fp = fopen(inputFilename, "r");

 while(fscanf(fp, "%d %d\n", &task, &length) != EOF){
 traceList[count].task = task;
 traceList[count].length = length;
 count++;
 }
 fclose(fp);

}

 - 38 -

void getTrace(){
 if(readInput == 1){
 read_input_file();
 }
 else{
 generateTrace();
 }
}

int main(int ARGC, char** ARGV){
 unsigned long long int timeOn, timeOff, timeAlg;//, timeOpt;
 double speedup;
 double idealSpeedup;
 double percentMax;

 printf(">>>>>>>>>>>>%d<<<<<<<<<<<<<<\n", sizeof(unsigned long long int));
 processCommandLine(ARGC, ARGV);
 init_scheduler();
 sleep(1);

 getTrace();

 //printTrace();
 printTraceFile();
 sleep(1);
 printf("ALL ON\n");
 accLoadedOverride = 1;
 timeOn = runTrace();
 timeOn = globalTime;
 sleep(1);

 printf("ALL OFF\n");
 accLoadedOverride = 0;
 timeOff = runTrace();
 timeOff = globalTime;
 sleep(1);

 printf("ALG\n");
 accLoadedOverride = -1;
 timeAlg = runTrace();
 timeAlg = globalTime;

 printf("Avg decay is %f/%d = %f\n", basicData.avgDecay, basicData.avgDecayCount, (basicData.avgDecay*1.0) / basicData.avgDecayCount);

 speedup = (timeOff*1.0)/timeAlg;
 idealSpeedup = (timeOff*1.0)/timeOn;

 percentMax = (speedup/idealSpeedup) * 100;

 printf("All On %lld\n", timeOn);
 printf("Alg %lld\n", timeAlg);
 printf("All Off %lld\n", timeOff);
 printf("Alg SPEEDUP of %s is %f\n", schedulingAlgorithm, speedup);
 printf("Max SPEEDUP is %f\n", idealSpeedup);
 printf("SPEEDUP of %s is %.2f%% of maximum speedup\n", schedulingAlgorithm, percentMax);

 return 0;
}

 - 39 -

Appendix B
The following C program “TLOOP” invokes an external function to perform a count number of operations,

repeating nloops times. A second loop, executed nwork times, simulates a variable amount of non-accelerated work. The

elapsed time is then reported.

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

extern void loop(uint32_t count);

uint64_t gettime(void)
{
 struct timeval t;
 gettimeofday(&t,NULL);
 return t.tv_usec + ((uint64_t)t.tv_sec * 1000000);
}

int main(int argc, char **argv)
{
 uint32_t count = 1, nloops = 1, nwork = 1;
 uint32_t i, w;
 uint64_t t0, t;

 if (argc > 1)
 count = atoi(argv[1]);
 if (argc > 2)
 nloops = atoi(argv[2]);
 if (argc > 3)
 nwork = atoi(argv[3]);

 t0 = gettime();
 for (i = 0; i < nloops; i++) {
 loop(count);
 for (w = 0; w < nwork; w++) {
 volatile int x = 0; x++;
 }
 }
 t = gettime() – t0;

 printf("%u loops of %u instructions took %llu usecs.\n", nloops, count*3, (uint64_t)t);
 return 1;
}

 - 40 -

The following is the MIPS assembler source file for an accelerated simple loop. The extended opcode is defined by

the ExtInstruction macro, placed right before the basic block to accelerate.

#include <mips/asm.h>
 .set noreorder
#define ExtInstruction(_op_,_reg1_,_reg2_,_imm_) .int ((_op_<<26)|(_reg1_<<21)|(_reg2_<<16)|(_imm_))

LEAF(loop)
 ExtInstruction(24,4/*cosmetic*/,31/*cosmetic*/,0)
 1: bge a0,zero,1b
 addi a0,a0,-1
 jr ra
 nop
END(loop)

 - 41 -

The following is the Verilog source code for the TLOOP accelerator.

`timescale 1ns / 1ps

module tloop(
 input CLK, /* System Clock 50 - 100 MHZ */
 input EN, /* Enable */
 input [31:0] RDREG2DATA, /* Register Read Port 2 Register Data */
 input RESET, /* System Reset */
 output [31:0] EXTADD, /* Extension Transfer Address */
 output RI /* Reserved/Recognized Instruction */
);

 reg ri_reg;
 reg [31:0] extadd_reg;

 initial
 begin
 ri_reg = 1'b0;
 extadd_reg = 32'b0;
 end

 assign RI = ri_reg;
 assign EXTADD = extadd_reg;

 always@(posedge CLK)
 begin
 if (RESET == 1'b0) ri_reg <= 1'b0;
 else if (EN == 1'b0) ri_reg <= 1'b0;
 else ri_reg <= 1'b1;
 end

 always@(posedge CLK)
 begin
 if (RESET == 1'b0) extadd_reg <= 32'b0;
 else extadd_reg <= RDREG2DATA;
 end

endmodule

