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ABSTRACT
We propose PASTE, the first differentially private aggregation al-
gorithms for distributed time-series data that offer good practical
utility without any trusted server. PASTE addresses two important
challenges in participatory data-mining applications where (i) in-
dividual users collect temporally correlated time-series data (such
as location traces, web history, personal health data), and (ii) an
untrusted third-party aggregator wishes to run aggregate queries on
the data. To address this, PASTE incorporates two new algorithms.

To ensure differential privacy for time-series data despite the
presence of temporal correlation, PASTE uses the Fourier Pertur-
bation Algorithm (FPAk). Standard differential privacy techniques
perform poorly for time-series data. To answern queries, such
techniques can result in a noise ofΘ(n) to each query answer,
making the answers practically useless ifn is large. Our FPAk
algorithm perturbs the Discrete Fourier Transform of the query an-
swers. For answeringn queries, FPAk improves the expected er-
ror from Θ(n) to roughlyΘ(k) wherek is the number of Fourier
coefficients that can (approximately) reconstruct all then query
answers. Our experiments show thatk ≪ n for many real-life-
data-sets resulting in a huge error-improvement for FPAk.

To deal with the absence of a trusted central server, PASTE uses
the Distributed Laplace Perturbation Algorithm (DLPA) that adds
noise in a distributed way in order to guarantee differential privacy.
To the best of our knowledge, DLPA is the first distributed differen-
tially private algorithm that can scale with a large number of users:
DLPA outperforms the only other distributed solution for differen-
tial privacy proposed so far, by reducing the computational load per
user fromO(U) to O(1) whereU is the number of users.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT ]: Database applications—
Data Mining; C.2.4 [DISTRIBUTED SYSTEMS ]: Distributed ap-
plications; G.3 [PROBABILITY AND STATISTICS ]: Time se-
ries analysis
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1. INTRODUCTION
The ever increasing instrumentation of the physical and the vir-

tual world has given us an unprecedented opportunity to collect
useful data from diverse sources and to mine it for understanding
important phenomena. Consider the following examples ofpartic-
ipatory data mining applications.

E1: In participatory sensing applications such as CarTel [16],
BikeNet [8], PEIR [25], WeatherUnderground1, participants con-
tribute various time-series data, e.g., their current locations, speeds,
weather information, images, etc. These data can be aggregated
and mined for useful information such as community interests (e.g.,
popular places), congestion patterns in roads, micro-weather, etc.

E2: A Web browser can install plug-ins to monitor users’ brows-
ing behaviors such as the numbers of different types of web pages
a user visits, the types of products he buys from online stores, etc.
Historical data from such plug-ins can be aggregated to understand
user behaviors for improving search results or for better targeted
advertisement delivery [14].

E3: Health-care applications such as Microsoft HealthVault2 and
Google Health3 allow users to periodically upload data such as their
weights, occurrences of diseases, amounts of exercise, food and
drug intake, etc. PIER [25] allows individual users to store such
data locally inpersonal data vaults. Such data can be mined in
combination to understand disease outbreaks, distribution of weights,
relationship of weight gain and drug intake, etc.

As the above examples suggest, aggregate statistics computed
from data contributed by a large number of individual participants
can be quite useful. However, data owners or publishers may not
be always willing to reveal the true values due to various reasons,
most notably privacy considerations. The goal of our work is to
enable third parties to compute useful aggregate queries over, while
guaranteeing the privacy of, the data from individual publishers.

Random perturbation is a widely employed and accepted ap-
proach for partial information hiding, which works by introducing
uncertainty about individual values. Prior perturbation techniques
are designed primarily for relational data [7, 9, 19, 26]. However,

1http://www.weatherunderground.com
2http://www.healthvault.com
3https://www.google.com/health



Centralized Distributed

Relational
data

E.g., [7,15,27]
Inaccurate for long
time-series query
sequences

E.g., [6,9,12,28]
Either inefficient or inac-
curate [9] for a large num-
ber of users

Time-series
data

E.g., [11,20]
No formal privacy
guarantees

PASTE (this paper)
Accurate & efficient
answers for time-series
query sequences under
differential privacy

Table 1: The design space and existing works

participatory data mining applications have two unique character-
istics that make existing privacy mechanisms inadequate for these
applications.

• Time-series data:The applications generate time series numer-
ical or categorical data. Data at successive timestamps from the
same source can be highly correlated.

• Distributed sources: Data publishers may not trust any single
third party to see their true data. This means, the querier needs to
be able to compute useful aggregates without seeing the true data
values.

The above characteristics make most existing privacy solutions,
which assume relational data with negligible correlations across
tuples [9, 19, 26] or existence of a central trusted entity for care-
fully introducing noise [7, 15, 27], inadequate for our target appli-
cations (as summarized in Table 1).

Thus, to realize widespread adoption of participatory data min-
ing applications, one needs to address two challenges. The first
challenge is to ensure privacy for time-series data, which is prob-
lematic due to the strong correlation among successive values in
the series. This correlation makes answers to different queries over
time-series data to also become correlated, e.g. a sequence of queries
computing the average weight of a community at successive weeks.

One possible way for achieving privacy is to perturb the answers
to such queries independently of one another, thereby ensuring that
even revealing a few true answers does not help infer anything
about the perturbation of other answers. However, [20] pointed
out that if the time-series exhibit certain patterns, then independent
perturbation of query answers can be distinguished from the origi-
nal answers and filtered out. Authors in [11,20] consider perturbing
time series data to defend against several privacy attacks, but they
do not provide any formal privacy guarantee, without which data
owners may not publish sensitive data in the fear of unforeseen pri-
vacy attacks.

On the other hand, formal privacy guarantees like differential
privacy that work well for relational data, seem too hard to achieve
for time series data. For instance, standard differentially private
techniques [7] can result in a noise ofΘ(n) to each query answer,
wheren is the number of queries to answer, making the query an-
swers practically useless if a long sequence of queries is to be an-
swered.

The second challenge arises from the absence of a trusted aggre-
gator. Most previous works assume that a trusted aggregator, who
has access to the raw data, computes target functions on the data
and then perturbs the results [7, 19,26]. In the absence of a trusted
aggregator, users need to perturb their data before publishing it to
the aggregator [9]. However, if users perturb data independently,
the noise variance in the perturbed estimate grows linearly with the
number of users, reducing the utility of the aggregate information.
To improve utility, cryptographic techniques like Secure Multiparty

Figure 1: System Model(Users with dataI1, . . . , IU Aggrega-
tor issues recurring queryQ = Q1, . . . , Qn No trusted server has
I = I1 ∪ I2 . . . ∪ IU to evaluateQ(I))

Computation [6,12,28] can be used to compute accurate perturbed
estimates in a distributed setting. However the computational per-
formance of such cryptographic techniques does not scale well with
a large number of users.

In this paper, we proposePASTE(Private Aggregation of Signals
with Transformation and Encryption), a suite of algorithms that ad-
dress these two challenges of distributed time-series data. We use
the state-of-the-art differential privacy as the privacy requirement,
and make the following contributions:

◮ To answer multiple queries over time-series data under dif-
ferential privacy, we propose the FPAk algorithm that perturbs the
Discrete Fourier Transform (DFT) of the query answers. For an-
sweringn queries, FPAk improves the error fromΘ(n) (error of
standard differential privacy techniques) to roughlyΘ(k) wherek
is the number of DFT coefficients that can (approximately) recon-
struct all then query answers. Our experiments show that a small
k ≪ n is sufficient for many real-life datasets, resulting in a huge
error-improvement for FPAk. To the best of our knowledge, FPAk

is the first differentially private technique (unlike [11, 20]) that of-
fers practical utility for time-series data.

◮ We propose the DLPA algorithm that adds noise in a dis-
tributed way for providing differential privacy. To the best of our
knowledge, DLPA is the first distributed differentially private algo-
rithm that scales with a large number of users: DLPA outperforms
the only other proposed distributed algorithm [6], by reducing the
computational load per user fromO(U) to O(1) whereU is the
number of users.

◮ PASTE, our distributed solution, combines the FPAk and DLPA
algorithms to get the accuracy benefits of the former and the scala-
bility of the latter. We empirically evaluate our solution over three
real time-series datasets, namely,GPS traces, daily body-weight
readings, andtraffic volumes. Our experiments show that our so-
lution improves accuracy of query answers by orders of magnitude
and also scales well with a large number of users.

We believe that PASTE is an important first step towards practi-
cal participatory data mining applications. We have implemented
some of our techniques in Microsoft SensorMap,4 a real online par-
ticipatory sensing application that has been publicly available for
last three years with several hundreds data publishers. PASTE now
allow users to publish private data without revealing the true values
and SensorMap to compute useful aggregates over private data.

2. PRELIMINARIES

2.1 Problem Setup and System Model
Motivated by the participatory applications in Section 1, we con-

sider a system model as shown in Figure 1. The system has two
types of parties involved: a set ofU usersand anaggregator. The
4http://www.sensormap.org



figure showsU users locally storing their personal weight time-
series data. We will use the weight time-series as a running exam-
ple throughout the paper. In general, we model each useru’s data
as a (uni- or multi-variate) time series data, and denote it asIu. We
also denoteI = I1 ∪ I2 . . . ∪ IU the combined time-series data of
all users. There is no trusted central server, and henceI is never
computed. The aggregator, however, wishes to compute aggregate
queries overI.

Types of queries. An aggregate query can be asnapshotquery that
returns a single number, e.g., the current average weight over all
users. A query can also berecurring and ask for periodic answers,
e.g., the average weight of all users computed once every month
of the year. We model a recurring query as a sequence of queries
Q = {Q1, . . . , Qn} where each Qi is a snapshot query. We denote
Qi(I) the value of the snapshot query Qi on inputI, andQ(I) the
vector{Q1(I), . . . , Qn(I)}. A recurring query can behistorical
that focuses on past data only, orreal-time that runs on data as it
arrives.

The data-mining applications we consider are primarily concerned
with historical recurring queries, and we develop new algorithms to
answer them accurately. Note that even though we consider time-
series data in the paper, our techniques can be applied to any types
of input dataI as long as the query answerqi(I) is numerical and
hence the vectorQ(I) is a sequence of numeric values.

Distributed Computation . If a query Q contains predicates on
public static attributes, it can be forwarded only to users satisfying
the predicates. Otherwise, Q needs to be forwarded to all users.
Upon receiving the query Q, a user evaluates Q on his own time
series,Iu, perturbs the result, and sends the perturbed results back
to the aggregator. The aggregator combines the perturbed results
from all users to produce the final result.

A prerequisite for such a distributed system is that the true query
answer, Q(I), is computable distributedly. Of all such queries, we
consider only queries of the general form Q(I) =

∑

u fu(Iu),
wherefu is an arbitrary function that maps useru’s data,Iu, to
numbers.5 Such queries, called aggregate-sum queries, are quite
general, and as explained in [3], are powerful tools for learning and
statistical analysis: many algorithms like correlation, PCA, SVD,
decision tree classification, etc. can be implemented using only
aggregate-sum queries as a primitive. Queries not included in this
class are queries that require a non-sum function to be evaluated
collectively over multiple users’ data (e.g., aggregate-max or min
queries).

Attack Model . We allow both users and the aggregator to be ma-
licious. A malicious user can be of two kinds: (i) Liar: a user who
lies about his values, but otherwise follows the protocol correctly,
or (ii) Breaker: a user who breaks the protocol, e.g., sends wrong
messages. A malicious aggregator can break the protocol. In addi-
tion, it can collude with other malicious users.

To ensure privacy for users, we make a flexible assumption that
at least a fraction of users (e.g., a majority) are honest. The lower
boundh of the number of honest users is known a priori during
deciding the noise generation parameters of the system. Remain-
ing users and the aggregator can be arbitrarily malicious. (Similar
assumption is generally made in cryptographic solutions.) The as-
sumption is practical and flexible—for a user to know that his true
values will remain private, he only needs to know that at least a
certain fraction of other users are honest; he does not need to trust
any single entity such as the aggregator.

5Our techniques can support arbitrary queries if run on a central-
ized server.

On the other hand, to ensure a good utility guarantee for the ag-
gregator, we assume that the aggregator queries a set of users that
it generally trusts. Of the users the aggregator chooses to query,
there can be at mostl liars (l is small) and the remaining users are
either honest or colluding/collaborating with the aggregator. There
is fundamentally no way to ensure good utility if a large number of
users lie about their data.The same is true if even a single user in-
troduces an arbitrarily large noise. So we assume that there are no
breakers: in practice, this can be arranged by ensuring that users’
messages sent to the aggregator are generated and digitally signed
by a trusted software implementing the protocol.6

In summary, our privacy guarantees hold even if a large num-
ber of users are malicious. This is crucial to make new privacy-
aware users feel comfortable to join the system. Our utility guaran-
tees hold if a small (< l) number of users lie and try to disrupt
the final aggregate. This leaves the responsibility to the aggre-
gator for choosing a good set of users to query. For example, if
the aggregator can identify a malicious user (e.g., via some out-of-
band mechanism), it can blacklist the user and exclude him from
its queries. Our attack model is stronger than many previous tech-
niques [12] that use the honest-but-curious model and disallow ma-
licious agents.

Privacy Goals. We aim to enable the aggregator to estimate an-
swers to aggregate queries. At the same time, an aggregator should
not learn anything more, other than the aggregate answer, about
honest individual users. Moreover, no user should learn anything
about the values of other honest users, even if he colludes with the
aggregator or other malicious users. We formalize our privacy re-
quirement using differential privacy, which we discuss next.

2.2 Privacy Definition and Background
We now discuss differential privacy [5] that we use as our privacy

definition and also review the standard perturbation technique [7]
used for achieving differential privacy.

Differential Privacy . Informally, an algorithm is differentially pri-
vate if its output is insensitive to changes in the dataIu of any sin-
gle useru. This provides privacy because if similar databases, say
differing in the data of one user, produce indistinguishable outputs,
then the adversary cannot use the output to infer any single user’s
data. To formalize this notion, denoteI = I1 ∪ I2 . . . ∪ IU the
combined data formU users andnbrs(I) the data obtained from
adding/removing one user’s data fromI, i.e. nbrs(I) consists of
I ′ such that eitherI ′ = I ∪ Iu for u /∈ {1, . . . , U} or I ′ = I − Iu

for someu ∈ {1, . . . , U}.

DEFINITION 2.1 (ǫ-DIFFERENTIAL PRIVACY [5]). DenoteA(I)
the output of an algorithmA on input dataI. ThenA is ǫ-differentially
private if all I, I ′ such thatI ′ ∈ nbrs(I), and any outputx, the
following holds:

Pr[A(I) = x] ≤ eǫPr[A(I ′) = x]

wherePr is a probability distribution over the randomness of the
algorithm.

Query Sensitivity. We now look at a standard technique proposed
by Dwork et al. [7] for differential privacy. It can be used to an-
swer any query whether it is just a single snapshot query, Qi, or a
recurring query sequence,Q = Q1, . . . , Qn.

The technique works by adding random noise to the answers,
where the noise distribution is carefully calibrated to the query.
6Many software security systems rely on trusted software, for
instance the clients’ antivirus software, to work with untrusted
clients [14].



The calibration depends on the querysensitivity—informally, the
maximum amount the query answers can change given any change
to a single user’s dataIu. If Q is a query sequence,Q(I) and
Q(I ′) are each vectors. Sensitivity then measures the distance be-
tween the two vectors. This is typically done using theL1 distance
metric, denoted as|Q(I) − Q(I ′)|1, that measures the Manhattan
distance

∑

i |Qi(I)−Qi(I
′)| between these vectors. In this paper,

we also use theL2 distance metric, denoted as|Q(I) − Q(I ′)|2
that measures the Euclidean distance

√
∑

i(Qi(I) − Qi(I
′))2.

DEFINITION 2.2 (SENSITIVITY [7]). LetQ be any query se-
quence. Forp ∈ {1, 2}, theLp sensitivity ofQ, denoted∆p(Q),
is the smallest number such that for allI andI ′ ∈ nbrs(I),

∣

∣Q(I) − Q(I ′)
∣

∣

p
≤ ∆p(Q)

For a single snapshot query Qi, theL1 andL2 sensitivities are the
same, and we write∆(Qi) = ∆1(Qi) = ∆2(Qi).

EXAMPLE 2.1. Consider a query Q counting the number of
users whose weight in month1 is greater than 200 lb. Then∆(Q)
is simply1 as Q can differ by at most1 on adding/removing a sin-
gle user’s data. Now considerQ = Q1, . . . , Qn, where Qi counts
users whose weight in monthi is greater than 200 lb. Then∆1(Q)
is n (for the pairI,I ′ which differ in a single user having weight >
200 in each monthi) and∆2(Q) =

√
n (for the same pairI,I ′).

Laplace Perturbation Algorithm (LPA) . To guarantee differen-
tial privacy in presence of a trusted server, [7] proposes the LPA
algorithm that adds suitably-chosen noise to the true answers. The
noise is generated according to the Laplace distribution. Denote
Lap(λ) a random variable drawn from the Laplace distribution
with PDF: Pr(Lap(λ) = Z) = 1

2λ
e−ǫ|Z|/λ. Lap(λ) has mean

0 and variance2λ2. Also denoteLapn(λ) to be a vector ofn
independentLap(λ) random variables.

The LPA algorithm takes as input a query sequenceQ and pa-
rameterλ controlling the Laplace noise. LPA first computes the
true answers,Q(I), exactly and then perturbs the answers by adding
independentLap(λ) noise to each query answer inQ(I). More
formally, it computes and outputs̃Q = Q(I) + Lapn(λ). Differ-
ential privacy is guaranteed if the parameterλ of the Laplace noise
is calibrated according to theL1 sensitivity ofQ. The following
theorem shown in [7] formalizes this intuition.

THEOREM 2.1 (PRIVACY [7]). LPA(Q, λ) is ǫ-differentially
private forλ = ∆1(Q)/ǫ.

Analyzing accuracy. To analyze the accuracy of the perturbed
estimates returned by an algorithm, we quantify their error in the
following way.

DEFINITION 2.3 (UTILITY ). Let A(Q) be an algorithm that
returns a perturbed estimatẽQ = Q̃1, . . . , Q̃n for an input se-
quenceQ = Q1, . . . , Qn. We denoteerrori(A) = EA|Q̃i −
Qi(I)| the expected error in the estimate of theith query Qi. Here
EA is the expectation taken over the possible randomness ofA. To
quantify error in the entire sequencẽQ returned by algorithmA,
we use the standard notion of Root Mean Square Error (RMSE). We

denote it aserror(A); it is computed as
√

EA

∑n
i=1 |Q̃i − Qi(I)|2.

For example,errori(LPA) = E|Q̃i − Qi| = E|Lap(λ)| = λ,
while the RMSE,error(LPA), is

√
∑n

i=1 λ2 =
√

nλ.
Next we discuss the utility of the LPA algorithm while satisfying

ǫ-differential privacy.

THEOREM 2.2 (UTILITY [7]). Suppose we fixλ = ∆1(Q)/ǫ
so that LPA(Q, λ) is ǫ-differentially private. Then for alli ∈
{1, . . . , n}, errori(LPA) = ∆1(Q)/ǫ.

EXAMPLE 2.2. Recall the recurring queryQ of Eg. 2.1 that
counts users having weight> 200 in each monthi = {1, . . . , n}.
Then∆1(Q) = n and LPA gives anerrori(LPA) = n/ǫ in each
query Qi for ǫ-differential privacy. Also, the RMSE,error(LPA),
is

√
∑n

i=1 n2/ǫ2 = n3/2/ǫ

3. SKETCH OF THE PASTE SOLUTION
Before discussing PASTE, our solution for differential privacy

over distributed time-series data, we provide an outline for it in this
section. PASTE uses several existing primitives including Discrete
Fourier Transform (DFT), homomorphic encryption (that allows
aggregation of encrypted values without decryption), and threshold
encryption (that requires a threshold number of users for decryp-
tion). We will review these techniques in Sections 4 and 5.

PASTE uses the following two protocol stages for answering a
sequenceQ of n queries. The first stage is a method to improve
the accuracy of query answers and is described using a trusted cen-
tral server. The second stage is then used to obtain a distributed
solution.

1) Fourier Perturbation Algorithm (FPA k). To answer query se-
quenceQ of lengthn with small error under differential privacy,
we design the FPAk algorithm. FPAk is based on compressing the
answers,Q(I), of the query sequence using an orthonormal trans-
formation. Intuitively, this means finding ak-lengthcompressed
query sequence, Fk = Fk

1 , . . . , Fk
k, wherek ≪ n, such that the an-

swers,Fk(I), can be used to approximately computeQ(I). Then
we can perturbFk(I) instead ofQ(I) using a lower noise (the
noise actually reduces by a factor ofn/k) while preserving differ-
ential privacy. An additional error creeps in sinceFk(I) may not
be able to reconstructQ(I) exactly, but for the right choice of the
compressed query sequence,Fk, this reconstruction error is sig-
nificantly lower than the perturbation error caused by adding noise
directly toQ(I). A goodFk can be found using any orthonormal
transformation and we use the Discrete Fourier Transform (DFT) in
our algorithm. The DFT compressed query sequence,Fk, has large
L1 sensitivity and perturbing it for differential privacy requires new
analysis that distinguishes our solution from other Fourier-based
perturbation approaches [20]. We discuss this in detail in Sec. 4.

2) Distributed LPA (DLPA) . To answer an aggregate-sum query
sequenceQ distributedly under differential privacy, we propose the
DLPA algorithm, a distributed version of the LPA algorithm dis-
cussed in Sec. 2.2. Our complete solution comprises of using FPAk

for improving accuracy together with DLPA for distributed noise-
addition. We describe how they are combined in a moment, but
first we explain the DLPA algorithm. We explain DLPA for a sin-
gle aggregate-sum query Q: the generalization to the sequenceQ is
straight-forward and just requiresn separate invocations, once for
each query Qi in Q. Since Q is an aggregate-sum query, Q(I) =
∑U

u=1 fu(Iu) where the functionfu maps useru’s data to num-
bers. Denotexu = fu(Iu), so that Q(I) =

∑U
u=1 xu.

The basic protocol is based on threshold homomorphic encryp-
tion and is shown in Fig. 2. To perturb Q(I) =

∑U
u=1 xu, each

useru adds a share of noise,nu, to his private valuexu. To keep
the estimation error small, the noise shares are chosen such that
∑U

u=1 nu is sufficient for differential privacy, butnu alone is not
sufficient: thus the valuexu + nu can not directly be sent to the
aggregator. To address this, the useru computes encryptions of
xu + nu and sends it to the aggregator. Due to encryption, the



Figure 2: Basic Distributed Protocol (homomorphic property ex-
ploited to aggregate users’ encryption & threshold property to combine
users’ decryption shares)

aggregator can not learn anything aboutxu. However, using the
homomorphicproperty, it can compute the encryption of the sum
of all received values from all users thereby getting an encryption
E of Q̃ =

∑

u(xu + nu). This encryption is then sent back to all
users who use thethresholdproperty to compute their respective
decryption shares. Finally, the decryption shares are sent to the ag-
gregator who combines them to compute the final decryption. The
end result is a noisy differentially private estimateQ̃ of Q(I).

There are two challenges with the basic protocol described above.
Firstly, the noise shares have to be generated in a way so that their
sum is sufficient for differential privacy. Secondly, the aggregator
can be malicious: the distributed protocol requires the aggregator
to compute an encryptionE of Q̃ =

∑

u(xu + nu) and send a
decryption request to the users to help him decryptE. But, the ag-
gregator can cheat and request the decryption of wrong values, for
instance, the encrypted private value of a single user, in which case
the users will be inadvertently decrypting the private value of that
user. We discuss how to solve these challenges in Sec. 5.

Putting the two together into PASTE. Now we explain how FPAk
and DLPA together give the complete solution in PASTE. To an-
swer a query sequenceQ of n aggregate-sum queries, the aggrega-
tor first uses FPAk to compute thek-length sequenceFk. Due to
the linearity of the DFT transformation,Fk is another aggregate-
sum query sequence. Now FPAk requires to perturb the answers
of the query sequenceFk in order to get differential privacy. This
is done by applying the DLPA algorithm onFk. The end result
of DLPA is that the aggregator gets a noisy differentially estimate
F̃k of Fk(I). Then the aggregator computes the inverse DFT to
reconstruct an estimatẽQ from F̃k. The final estimatẽQ has error
characteristics of the FPAk algorithm, but has been computed in a
distributed way using DLPA.

We discuss FPAk and DLPA in detail in next two sections.

4. FOURIER PERTURBATION ALGORITHM
We now describe in detail the FPAk algorithm (the first stage

of PASTE) for improving accuracy of query answers for long se-
quences. In this section, we assume a central trusted server: how to
distribute the algorithm using DLPA (the second stage of PASTE)
was briefly mentioned in the solution sketch and will be discussed
in detail in Sec. 5. The FPAk algorithm is based on the Discrete
Fourier Transform, which we review briefly below.

4.1 The Discrete Fourier Transform
The DFT of an-dimensional sequenceX is a linear transform

giving anothern-dimensional sequence,DFT(X), with jth ele-

ment given as: DFT(X)j =
∑n

i=1 e
2π

√
−1

n
jiXi. Similarly one can

compute the Inverse DFT as IDFT(X)j = 1
n

∑n
i=1 e−

2π
√

−1

n
jiXi.

Furthermore,IDFT(DFT(X)) = X.
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Figure 3: Reconstructed sequenceX′ vs. original X

Algorithm 4.1 FPAk(Inputs: sequenceQ, parameterλ)

1: ComputeFk = DFTk(Q(I)).
2: ComputeF̃k = LPA(Fk, λ)

3: ReturnQ̃ = IDFT(PADn(F̃k))

DenoteDFTk(X) as the firstk elements ofDFT(X). The
elements ofDFTk(X) are called the Fourier coefficients of the
k lowest frequencies and they compactly represent the high-level
trends inX. An approximationX′ to X can be obtained from
DFTk(X) as follows: DenotingPADn(DFTk(X)) the sequence
of lengthn obtained by appendingn−k zeros toDFTk(X), com-
puteX′ = IDFT(PADn(DFTk(X))). ObviouslyX′ may be
different fromX as ignoring the lastn−k Fourier coefficients may
introduce some error. We denote REk

i (X), short for reconstruction
error at theith position, to be the value|X′

i − Xi|.

EXAMPLE 4.1. To give a sense of the reconstruction error, we
consider a sequenceX of lengthn = 2000 representing the num-
ber of people with weight> 200 in a real dataset (more details in
Section 7), counted once every day over 2000 days. Fig. 3 shows
the reconstructed sequence,X′, usingk = 20 DFT coefficients
along with the original sequenceX. X shows the temporal trend
in the # of overweight people in the dataset. As shown,X′ cap-
tures the trend accurately showing that the reconstruction error is
small even when compressing fromn = 2000 to k = 20 DFT
coefficients.

4.2 The Algorithm
FPAk is shown in Algorithm 4.1. Given a query sequenceQ, it

begins by computing a compressed query sequenceFk, compris-
ing the firstk Fourier coefficients in the DFT ofQ(I). Then it
perturbsFk using the LPA algorithm with parameterλ to compute
a noisy estimatẽFk. This perturbation is done to guarantee dif-
ferential privacy. Finally, the algorithm computes the inverse DFT
of PADn(F̃k) to getQ̃, an approximation to the original query
answersQ(I).

As with LPA, the parameterλ in FPAk needs to be adjusted in or-
der to getǫ-differential privacy. Since FPAk perturbs the sequence
Fk, λ has to be calibrated according to theL1 sensitivity,∆1(F

k),
of Fk. Analyzing this sensitivity is challenging as changing a sin-
gle user’s data can affect the entire sequence,Q(I), resulting in
large changes to each Fourier coefficient. Next we discuss how to
bound this change, and obtain a value ofλ that makes FPAk(Q, λ)
differentially private.

THEOREM 4.1. DenoteFk = DFTk(Q(I)) the firstk DFT
coefficients ofQ(I). Then, (i) theL1 sensitivity,∆1(F

k), is at
most

√
k times theL2 sensitivity,∆2(Q), ofQ, and (ii) FPAk(Q, λ)

is ǫ-differentially private forλ =
√

k∆2(Q)/ǫ.



Proof (i) holds since∆2(F
k) ≤ ∆2(Q) (as then Fourier coef-

ficients have the sameL2 norm asQ, while Fk ignores the last
n − k Fourier coefficients), and∆1(F

k) ≤
√

k∆2(F
k) (due to a

standard inequality between theL1 andL2 norms of a sequence).
(ii) follows since for λ =

√
k∆2(Q)/ǫ ≥ ∆1(F

k)/ǫ, F̃k =

LPA(Fk, λ) computed in Step 2 isǫ-differentially private, and̃Q
in step 3 is obtained using̃Fk only.

4.3 Analyzing accuracy
Example 2.2 gives an instance of an-length query sequence for

which LPA results in an error ofn/ǫ to each query answer, making
the answers useless for a largen. Intuitively speaking, FPAk ap-
plies LPA on a length-k sequence. Hence the noise added during
perturbation should be smaller. On the other hand, ignoringn − k
DFT coefficients in FPAk results in an additional (but often much
smaller) reconstruction error. Below we formalize this argument to
compare the errors for the two algorithms in greater detail.

In general, LPA results in a large noise whenever theL1 sensi-
tivity of the query sequence is high. We define below irreducible
query sequences that have the worst-possibleL1 sensitivity behav-
ior.

DEFINITION 4.1 (IRREDUCIBLE QUERIES). A query sequence
Q = Q1, . . . , Qn is irreducible if its L1 sensitivity,∆1(Q), is
equal to the sum,

∑n
i=1 ∆(Qi), of the sensitivities of its constituent

queries Qi’s.

For all sequencesQ, ∆1(Q) ≤
∑n

i=1 ∆(Qi). Hence irre-
ducible queries have the worst-possibleL1 sensitivities among all
query sequences. Recurring queries over time-series data are of-
ten irreducible: one instance is the recurring queryQ of Exam-
ple 2.2. The improvement of FPAk over LPA is the most on ir-
reducible query sequences (since LPA has the least accuracy for
such queries). We compare the accuracies over irreducible queries
below (note however that irreducibility is not required for FPAk).

For simplicity, we assume W.L.O.G that the sensitivity∆(Qi) =
1 for all Qi ∈ Q. If not, we can rescale the queries by defining the
sequenceQ′ = {Q′

1, . . . , Q′
n} given as Q′i = Qi/∆(Qi). Then

∆(Q′
i) = ∆(Qi/∆(Qi)) = ∆(Qi)/∆(Qi) = 1. Furthermore,

Q(I) can be computed fromQ′(I) by just multiplying with∆(Qi)
at theith position. We call such sequences as normalized query
sequences.

With this simplification,∆1(Q) = n (as irreducibility means
∆1(Q) =

∑n
i=1 ∆(Qi) =

∑n
i=1 1 = n). Applying Theorem 2.2,

we know thaterrori(LPA) = n/ǫ in each query Qi. On the other
hand the following theorem shows the error of the FPAk algorithm.
Recall that REki (Q(I)) is the reconstruction error for theith query,
Qi, caused by ignoringn − k DFT coefficients ofQ(I) and then
computing the inverse DFT.

THEOREM 4.2. Fix λ =
√

k∆2(Q)/ǫ so that FPAk(Q, λ) is ǫ-
differentially private. Then for alli ∈ {1, . . . , n}, theerrori(FPAk)
is k/ǫ + REk

i (Q(I)).

Due to lack of space, the proof of the above theorem is deferred
to the full version of the paper [22]. The theorem shows that the
error by FPAk for each query isk/ǫ+REk

i (Q(I)), while we know
that LPA yields an error ofn/ǫ. Since the reconstruction error,
REk

i (Q(I)), is often small even fork << n, we expect the error in
FPAk to be much smaller than in LPA. This hypothesis is confirmed
in our experiments that show that FPAk gives orders of magnitude
improvement over LPA in terms of error.

Choosing the Rightk. So far we have assumed thatk is known to
us. Sinceerrori(FPAk) is k/ǫ + REk

i (Q(I)), a good value ofk

is important in obtaining a good trade-off between the perturbation
error,k/ǫ, and the reconstruction error, REk

i (Q(I)). If k is too big,
the perturbation error becomes too big (giving the performance of
LPA), while if k is too small the reconstruction error becomes too
high.

We can often choosek based on prior assumptions aboutQ(I).
For instance, ifQ(I) is such that the Fourier coefficients corre-
sponding toQ(I) decrease exponentially fast, then only a constant
number (sayk=10) of Fourier coefficients need to be retained dur-
ing perturbation. Our experiments show that this naive method is
applicable in many practical scenarios as Fourier coefficients of
many real-word sequences decrease very rapidly [1].

However, for optimal performance, we need to adjust the value
of k depending on the exact nature ofQ(I). Computingk after
looking at Q(I), however, compromises differential privacy. An
algorithm to efficiently computek in a differentially private way is
described in Sec. 6.1.1.

5. DISTRIBUTED LPA (DLPA)
In both LPA and FPAk, we assumed a trusted central server that

stores the entire databaseI, computes the true answers Q(I), and
adds noise for privacy. Next we discuss how to adapt these algo-
rithms for the distributed setting, i.e. databaseI = I1 ∪ I2 . . .∪ IU

whereIu is the data of useru that she keeps to herself. We restrict
ourselves to aggregate sum queries:7 i.e. Q is such that Q(I) =
∑U

u=1 fu(Iu) wherefu is an arbitrary function that maps useru’s
databaseIu to numbers.

We first construct the distributed LPA algorithm (DLPA for short)
and then use it to construct distributed FPAk. As discussed in
Sec. 2, our algorithms guarantee privacy even against a malicious
aggregator and malicious users as long as a majority of honest users
exist. For the utility of the aggregate estimate to be good, we as-
sume that among the malicious users, there are no breakers and at
mostl liars.

We explain DLPA over a single aggregate-sum query Q: the
generalization to query sequences is straight-forward and just re-
quires multiple invocation of the algorithm, once for each query in
the sequence. In this section, we also make a simplifying assump-
tion that there are no communication failures: all links between the
users and aggregator are maintained throughout the time required
to answer the query. We relax this assumption and discuss fault
tolerance in Sec. 6.2.

Let Q =
∑U

u=1 fu(Iu) be the aggregate-sum query that we wish
to answer. For simplicity of presentation, we assumefu returns
numbers in the set{1, 2, . . . , l}: our techniques work for any finite
domain⊆ R. Denotexu = fu(Iu). Then Q=

∑U
u=1 xu. For

privacy, each useru adds a share of noise,nu, to his private value
xu such that

∑U
u=1 nu is sufficient for differential privacy, butnu

itself is small so that total noise is low as possible. Hence, the value
xu + nu can not directly be sent to the aggregator. To address this,
the useru computes encryptions ofxu + nu and sends it to the
aggregator, which performs aggregation over encrypted data. We
next review the cryptographic primitives that make this possible.

5.1 Basics: Encryption Scheme
DLPA is built upon the threshold Paillier cryptosystem [10]. The

cryptosystem is set up by choosing an integerm such that(i) m =
pq wherep and q are strong primes (i.ep = 2p′ + 1 and q =
2q′ + 1), and (ii) gcd(m, φ(m)) = 1. Oncem is chosen, any
number inZm (the set{0, 1, . . . , m − 1}) can be encrypted. Also

7Note that FPAk itself is more general and can support arbitrary
queries when used in a centralized setting.



Algorithm 5.1 Encrypt-Sum(xu, ru)
1: User u generates a randomru ∈ Zm computescu =

Enc(xu + ru), and sendscu to the aggregator.
2: The aggregator computesc =

∏U
u=1 cu.

denoteZ∗
m the subset of numbers inZm that have a multiplicative

inverse modulom (eg.0 does not have an inverse, but1 has).

Key generation Choose a random elementβ ∈ Z
∗
m and setλ =

β×lcm(p, q). λ is the private key. Also setg = (1+m)abm mod m2

for some randomly chosen(a, b) ∈ Z
∗
m×Z

∗
m. The triplet(m, g, gλ)

forms the public key.

Encryption The encryption functionEnc maps a plaintext mes-
saget ∈ Zm to ciphertextc ∈ Z

∗
m2 . Enc(t) is computed as

gtrm mod m2 wherer ∈ Z
∗
m is a randomly chosen number.

Decryption DenoteL the functionL(u) = (u − 1)/m for any
u = 1 mod m. The decryption of ciphertextc ∈ Z

∗
m2 is the

functionDec(c) = L(cλ mod m2)

L(gλ mod m2)

The encryption scheme has the following properties.

Homomorphic addition If ci is a ciphertext for messageti for
i ∈ 1, 2, thenc1 · c2 is a ciphertext for messaget1 + t2.

Distributed decryption Suppose the private keyλ is shared byU
users asλ =

∑

u λu whereλu is the private key for useru. Then
decryption of a ciphertextc can be done distributedly (i.e. without
any party knowingλ) as:

• Each useru computes his decryption sharecu = cλu .

• The decryption shares are combined asc′ =
∏U

u=1 cu.

• Finally the decryptiont = L(c′ mod m2)

L(gλ mod m2)
is computed.

5.2 Protocol for Computing Exact Sum
Let Q =

∑U
u=1 xu be the query to be computed by the aggrega-

tor. We first start with a protocol for computing Q at the aggregator
exactly. We will subsequently enhance the protocol to include noise
addition. As discussed in the solution sketch (Sec. 3), computing
even exact sum is difficult against a malicious aggregator: instead
of the aggregator computing the encrypted sum and sending it to
the users for decryption, it can send false decryption requests (say
the encrypted private value of a single user) and break privacy.

We use the threshold Paillier scheme for the protocol. In a key
generation phase, the private keyλ is generated and distributed
among the users asλ =

∑U
i=u λu. Thus the users all together

can perform distributed decryption using their keysλu. Note that
since the key generation needs to be done only once (irrespective
of the# of queries to be answered), expensive secret-sharing pro-
tocols [24] can be used for this purpose.

The protocol executes in two phases. In the first phase, the ag-
gregator computes the required Q in encrypted form. Then in the
second phase, a distributed decryption protocol is run to recover Q
from the encrypted form.

The first phase is shown in Algorithm 5.1. We call it Encrypt-
Sum(xu, ru): each useru encrypts his private value,xu, added to a
randomly generatedru. Note thatru is known only to useru. The
aggregator obtains all the encryptions and multiples them to com-
putec. Due to the homomorphic properties of the encryption, the
obtainedc is an encryption of

∑U
u=1(xu + ru) = Q +

∑U
u=1 ru.

Sinceru’s are not known to the aggregator, decryptingc would not
reveal any information about Q. However, the following modifica-
tion of the distributed decryption protocol can be used to obtain Q
exactly. Note thatgλ is publicly known.

Algorithm 5.2 Decrypt-Sum(c, ru)
1: The aggregator sendsc to each useru for decryption.
2: Useru computes decryption sharec′u = cλug−ruλ.
3: The aggregator collectsc′u from each user, combines them to

get c′ =
∏U

i=u c′u, and computes the final decryptionQ =
L(c′ mod m2)

L(gλ mod m2)

The above protocol is a minor modification of distributed decryp-
tion: useru multiplies an additional factor ofg−ruλ while gener-
ating his decryption share (step 2). We call this protocol Decrypt-
sum(c, ru). The following proposition shows the correctness of the
protocol.

PROPOSITION 5.1. Let c = Encrypt-sum(xu, ru) andQ be the
decryption computed by Decrypt-sum(c, ru). ThenQ = Q =
∑U

u=1 xu.

Proof Sketch: The proof appears in the full version of the pa-
per [22]. Here we give a sketch. As mentioned earlier,c obtained
from Encrypt-sum(xu, ru) is an encryption of Q+

∑U
u=1 ru. Each

useru corrects for hisru in Step 2 of Decrypt-sum(c, ru). Thus the
final Q obtained is equal to Q.

Finally, we show that even though the Encrypt-sum and Decrypt-
sum protocols can be used to compute the sum,

∑U
u=1 xu, no other

linear combinations can be computed. We saw that to compute the
sum, the aggregator computedc =

∏

u cu, wherecu is the encryp-
tion received by the aggregator from useru in the Encrypt-sum
protocol (Step 2). Next we show that virtually no other encryp-
tion computed from thesecu’s can be decrypted in order to breach
privacy.

THEOREM 5.1. Suppose that the aggregator runs the Encrypt-
sum(xu,ru) protocol followed by the Decrypt-sum(c′, ru) proto-
col for somec′ of his choice. Letc′ =

∏U
u=1 cau

u (wherecu are
the encryptions sent by useru during Encrypt-sum protocol) such
that au − 1 has an inverse modm2 (which impliesau 6= 1) for
someu. If the Decrypt-sum protocol decryptsc′ correctly to give
∑U

u=1 auxu, then there exists an attacker that breaks the security
of the original distributed Paillier cryptosystem.

Proof Sketch: The formal proof of security is quite involved and
appears in the full version [22]: here we just highlight the intu-
ition. Let c = Encrypt-sum(xu, ru). Suppose the aggregator runs
Decrypt-sum(c′, ru) for c′ 6= c, i.e. he sends wrong request for de-
cryption, say the encryption of a single user’s data (i.e.,au = 0 for
all users but one). In Step 2 of Decrypt-sum(c′, ru) protocol, other
users will wrongly be correcting for their randomru’s that are not
present inc′, making the decrypted valueQ completely random and
useless.

5.3 Protocol for Computing Noisy Sum
Now we describe how to add noise in the distributed setting. As

mentioned earlier, LPA requires us to computeQ̃ = Q + Lap(λ)
whereLap(λ) is a Laplace random variable with mean0 and vari-
ance2λ2. DenoteN(µ, σ) to be a Gaussian random variable with
meanµ and varianceσ2. We shall generate Laplace noise using 4
Gaussian variables by exploiting the following property (proved in
the full version [22]).



Algorithm 5.4 Encrypt-Noisy-Sum(xu, ru)

1: Useru chooses five random numbersr1
u, r2

u, . . . , r5
u from Zm

and computesru = r1
u + r2

u − r3
u − r4

u + r5
u.

2: User u generates fourN(0,
√

2λ/U) random variables
y1

u, . . . , y4
u.

3: Let cj =Encrypt-Sum-Squared(yj
u, rj

u) for j ∈ {1, 2, 3, 4}.
4: Let c5 =Encrypt-Sum(xu, r5

u)

5: Aggregator computesc = c1c2c5

c3c4
.

PROPOSITION 5.2. Let Yi ∼ N(0, λ) for i ∈ {1, 2, 3, 4} be
four Gaussian random variables. ThenZ = Y 2

1 + Y 2
2 − Y 2

3 − Y 2
4

is aLap(2λ2) random variable.

The advantage of this decomposition is that Gaussian variables
can be generated in a distributed fashion: To generate aN(0, λ)
variable, each user can generate aN(0, λ/h) variable (h = U/2 is
a lower bound on the number of honest users, i.e. a honest majority
exists) and then the sum of theseh, N(0, λ/h), random variables
gives the rightN(0, λ) variable. However, to compute aLap(λ)
variable by Theorem 5.2, we need to compute squares of Gaus-
sian random variables: for this we extend the Encrypt-Sum proto-
col described in the previous section to compute the encryption of
(
∑U

u=1 yu)2 whereyu is the privateN(0, λ/h) of each user.
The protocol requires two randomly generated private keysau, bu

∈ Zm for each useru. The keysbu are such that their sum for all
users,

∑U
u=1 bu, is 0. Denotea the sum

∑U
u=1 au. Enc(a2) is

computed and made public in a key generation phase. The keys
au, bu need to be generated only once and expensive secret sharing
protocols [24] can be used for this purpose. The protocol is shown
below.

Algorithm 5.3 Encrypt-Sum-Squared(yu, ru) Protocol

1: Useru computescu = Enc(yu + au + bu) and sends it to the
aggregator.

2: The aggregator computesc =
∏U

u=1 cu and sends it to each
useru.

3: Each useru generates a randomru ∈ Zm, computescu =
cyu−au+buEnc(ru).

4: The aggregator collectscu from each user and computesc′ =
(
∏U

u=1 cu)Enc(a2)

We call the above protocol Encrypt-Sum-Squared(yu, ru). Due
to the homomorphic properties of the encryption, the finalc ob-
tained in Encrypt-Sum-Squared(yu, ru) can be shown to be an en-
cryption of(

∑

u yu)2 +
∑

u ru.
Finally we can discuss the the noisy-sum protocol to addLap(λ)

noise. The protocol is shown in Algorithm 5.4 and is called Encrypt-
Noisy-Sum(xu, ru): each user generates4 Gaussian,N(0,

√
2λ/U),

random variables in Step 2. Each of these4 Gaussian variable is
used to generate an encryption of aN(0,

√

λ/2) Gaussian random
variable in Step 3 using the Encrypt-Sum-Squared protocol. Then
the useru generates an encryption for his private valuexu using
the Encrypt-Sum protocol in Step 4. The random variablesri

u are
generated so as to force the right encryption to be computed by the
aggregator in Step 5: the aggregator can only computec = c1c2c5

c3c4
;

all others would have someri
u unbalanced. Due to the homomor-

phic properties of the encryption, the obtainedc is an encryption of
∑

u xu+(
∑

u y1
u)2+(

∑

u y2
u)2−(

∑

u y3
u)2−(

∑

u y4
u)2+

∑

u ru.
Also thisc can be decrypted using decrypt-sum(c, ru) protocol (Al-
gorithm 5.2).

Next we state theorems showing the privacy and utility of the
protocol. Due to space constraints, the proofs are deferred to the
full version of the paper [22].

THEOREM 5.2 (PRIVACY ). Letc =Encrypt-Noisy-Sum(xu,ru)
andQ̃ =decrypt-sum(c, ru). If there are at leastU/2 honest users,
thenQ̃ = Q + Lap(λ)+Extra-Noise, whereLap(λ) is the noise
generated by honest users and the Extra-Noise is that generated by
malicious users. Thus forλ = ∆(Q)/ǫ, ǫ-differential privacy is
guaranteed independent of what the malicious users and aggrega-
tor choose to do.

THEOREM 5.3 (UTILITY ). Letc =Encrypt-Noisy-Sum(xu,ru)
andQ̃ =decrypt-sum(c, ru). If there are no malicious users, then
Q̃ = Q + Lap(2λ). Finally, in presence ofl malicious users that
are all liars and no breakers,̃Q can deviate from Q+ Lap(2λ) by
at mostl × ∆(Q).

PASTE. Now we explain how FPAk and DLPA together give the
complete solution in PASTE. Above we discussed how to compute
the perturbed estimatẽQ for a single query Q. As mentioned ear-
lier, extending distributed LPA for an-length query sequenceQ
is straightforward: apply the Encrypt-Noisy-Sum protocoln times,
once for each Qi ∈ Q. This works since LPA consists ofn inde-
pendent perturbations for each of then queries in the sequence.

Implementing FPAk over the distributed setting is slightly more
involved. Each useru first computes the answers ofQ over his
dataIu. We denote the answers asQ(Iu) = Q1(Iu), . . . , Qn(Iu).
Next the useru computes the firstk DFT coefficients of the answers
Q(Iu). Let us denote thesek DFT coefficients by the sequence
Fk(Iu). Recall thatFk(I) are thek DFT coefficients ofQ(I),
whereQ(I) are the answers ofQ over the complete databaseI.
By linearity of DFT, we know thatFk(I) =

∑U
u=1 Fk(Iu): thus

Fk is another aggregate-sum query. Then distributed LPA can be
used by the aggregator to compute the perturbed estimateF̃k for
Fk(I). Finally, the aggregator takes the inverse DFT transform of
F̃k to computeQ̃, a perturbed estimate ofQ.

6. EXTENSIONS
We now describe two useful extensions of our algorithm. The

first extension enables us to choose a good value of the parameter
k (# of DFT coefficients used in FPAk) if a central trusted server
exists, while the second extension allows us to tolerate failures of
usersduring the execution of the DLPA algorithm.

6.1 Choosing a Good Value ofk
So far we have assumed that the valuek is known to us before

executing FPAk. This was unavoidable in the distributed setting as
each user needs to knowk before computing hisk DFT coefficients
Fk(Iu). However, assuming a central server holds all the dataI,
then the server can computek depending on the exact nature of
Q(I). Computingk after looking atQ(I), however, compromises
differential privacy. We present here an algorithm to efficiently
computek in a differentially private way. This algorithm can be
used instead of LPA to accurately answer long query sequences in
the centralized setting.

6.1.1 Differentially-private Sampling
DenoteF = DFT(Q(I)), andFk (resp.Fn−k) the firstk (resp.

lastn − k) Fourier coefficients inF. We want to choose a suitable
k, and an estimatẽFk for the firstk Fourier coefficients in a dif-
ferentially private way. One obvious method is to somehow com-
putek under differential privacy, and then use FPAk to compute



Algorithm 6.1 SPA(Inputs: Q(I), parameterλ)

1: ComputeF = DFT(Q(I))
2: DenoteU ′(k) the function|Fn−k|2 + k

√
n/ǫ.

3: Sample ak ∈ {1, . . . , n} with probability∝ e−U′(k)/λ.
4: Letg be aG(1/λ2, (k + 1)/2) random variable
5: ComputeF̃k = Fk + Nk(0,

√
g)

6: ComputeQ̃ = IDFT(PADn(F̃k)).

F̃k. However this two step procedure results in additional noise,
as computingk privately exhausts some privacy budget that could
have been used for computing̃Fk using FPAk. Next we discuss a
differentially private sampling procedure that computes a suitable
k along withF̃k simultaneously.

THEOREM 6.1. DenoteU(k, F̃k) the function|Fn−k|2+|F̃k−
Fk|2. Then samplingk and F̃k with probability proportional to

e−U(k,F̃k)/λ satisfiesǫ-differential privacy forλ =
√

2∆2(Q)/ǫ.

Theorem 6.1 (proved in the full version [22]) shows a differen-
tially private way of samplingk andF̃k. However, the sampling
may not be efficient. This is because, even assuming thatk has
been sampled already, samplingF̃k needs to be done with proba-

bility proportional toe|F̃
k−F

k|2/λ. In other words,F̃k has to be
sampled with probability based on itsL2 distance with another se-
quenceFk. This is difficult as now elements of the sequenceF̃k

cannot be sampled independently: ifPr is the sampling distribu-

tion, thenPr(F̃
k
i = x|F̃k

j = y) 6= Pr(F̃
k
i = x). On the other hand,

in FPAk, F̃k was generated independently by addingLapk(λ) ran-
dom variables toFk. Nevertheless we discuss next an efficient way
to sample fromU(k, F̃k).

6.1.2 Sampling Perturbation Algorithm (SPA)
Before giving the algorithm, we recall two kinds of random vari-

ables: (i)N(µ, Σ), that represents a normal random variable with
meanµ and varianceσ2 (additionally, denoteNk(µ, σ) a vec-
tor of k i.i.d normal variables), and (ii)G(θ, r), that represents a
Gamma random variable withPDF given as 1

Γ(r)θr xr−1e−r/θ,
whereθ > 0, andr > 0 are parameters, andΓ(.) is the gamma
function. This PDF is similar to the exponential distribution except
for an extra factor ofxr−1.

Our sampling-based perturbation algorithm (SPA) is shown in
Algorithm 6.1. In the first step it computes the entire DFT ofQ.
Then in steps 2 and 3, it samples a value ofk. Intuitively speaking,
U ′(k) = |Fn−k|2 + k

√
n/ǫ computed in the step 2 is the sum of

the reconstruction error,|Fn−k|2 (this is the loss incurred by ignor-
ing all elements inFn−k), and the perturbation error,k

√
n/ǫ (an

additional factor of
√

n appears as this is the perturbation error for
the whole sequence). In step 3, those values ofk are more likely
to be picked that give a lowerU ′(k), i.e. give a better trade off
between the reconstruction error and the perturbation error.

Oncek has been sampled, the algorithm continues to sample
F̃k. This is done by first picking a gamma random variableg in
Step 4, and then perturbingFk by addingNk(0,

√
g) noise vector

in Step 5. Even though,Nk represents a vector ofk independent
normal variables, thẽFk vector has not been generated in an inde-
pendent fashion:g generated in Step 4 makes all elements ofF̃k

correlated (for instance ifg is picked to be0, then allF̃k = Fk).
This makes sure that̃Fk has been generated in the right way, con-
firmed by the following theorem proved in the full version of the
paper [22].

THEOREM 6.2 (PRIVACY ). SPA(Q, λ) is ǫ-differentially pri-
vate forλ =

√
2∆2(Q)/ǫ.

Finally, we show that it always makes sense to run our SPA al-
gorithm as opposed to LPA. IfQ is compressible, SPA will sample
a goodk << n decreasing the error significantly (as confirmed in
our experiments). However, ifQ is not compressible, the following
theorem (proved in the full version [22]) shows that no matter what
the total error of SPA would be at most a factor

√
2 log n times

worse than LPA for any normalized irreducible query sequence8

Q.

THEOREM 6.3 (UTILITY ). LetQ be any normalized irreduc-
ible query sequence. Fixλ1 = ∆1(Q)/ǫ andλ2 =

√
2∆2(Q)/ǫ

such that LPA(Q, λ1) and FPAk(Q, λ2) are ǫ-differentially pri-
vate. Thenerror(SPA) ≤

√
2 · (log n) · error(LPA).

6.2 Fault-tolerance
Our distributed protocol has two phases. In the Encrypt-Noisy-

Sum(xu, ru) phase, the aggregator computes an encryptionc for
the noisy sum of the private values,xu, and the random values,
ru, of all users. Then in the Decrypt-Sum phase, all users need to
correct for their respective random valuesru. In addition, since the
secret keyλ is shared as the sum

∑U
u=1 λu of the private keysλu’s,

all users need to send their decryption shares in order to decrypt.
This makes the protocol susceptible to failures: if a single user
does not respond in the decrypt-sum phase, no decryption can be
obtained.

The solution is to (i) use a(T, U)-threshold decryption [10] sche-
me in which anyT valid decryption shares out ofU possible ones
can be used to decrypt, and (ii) instead of choosing a completely
randomru ∈ Zm during the encrypt-sum protocol, a user chooses
ru ∼ Lap(∆(Q)/ǫ), i.e. ru is chosen from the Laplace distri-
bution sufficient for guaranteeing differential privacy. Thisru is
sufficient: to minimize noise the aggregator has an incentive for
adding all users’ data when computing the aggregate encryption to
be sent back for decryption, and leaving out a single user’s data
results in a Laplace noise sufficient for differential privacy.

Having seen the extensions still ensure privacy, let us see how
they help in case of failures. Firstly, iff users fail to send their
decryption shares, the(T, U)-threshold property ensures that a de-
cryption can still be computed as long asf < U −T . Furthermore,
not using the decryption share off users means that the random
valueru of each of thef users is left uncorrected for, at the end of
decryption. This results in an extra noise off Lap(∆(Q)/ǫ) vari-
ables. It can be shown that the expected sum of of thesef variables
increases as

√
f∆(Q)/ǫ. In other words, the noise increases as the

square root of the number of user failuresf as demonstrated in our
experiments. As long asf is small, this behavior is acceptable. For
a largef , the distributed protocol for computation of Q has to be
repeated.

Note that in the above solution, we are concerned about fail-
ures of users that happen after the first phase and before the second
phase of our protocol. Failures that happen before or after the com-
plete execution of the protocol for a query do not affect the accu-
racy of our protocol. Since execution of our protocol for a single
query takes less than a few seconds in practice, failures within this
small time window is rare and are of small size. In Section 7.4, we
experimentally show that the impact of such failures is small.

8Recall that normalized query sequences have individual query
sensitivities rescaled to1 while irreducible sequences haveL1 sen-
sitivity equal to the sum of individual query sensitivities.



7. EXPERIMENTS
We have implemented PASTE in Java, using the BigInteger li-

brary for cryptographic components of the algorithms. This sec-
tion evaluates our prototype using a 2.8 GHz Intel Pentium PC with
1GB RAM.

Data sets. We use three real data sets in our evaluation.

• GPS: This is the GPS trace from Microsoft’s Multiperson Local
Survey (MLS) project [17]. The GPS trace was collected from
253 voluntary drivers, mostly in the Seattle, Washington area,
covering about 135,000 kilometers of driving. The entire trace
has approximately 2.3 million timestamped latitude/longitude points
comprising about 16,000 discrete trips. The median interval be-
tween recorded points on a trip is 6 seconds and 62 meters. Thus,
successive points on a trip are highly correlated.

• Weight: This is trace of body weights, collected from an online
weight-monitoring website9. The trace contains daily weight data
of about 300 users for a period of up to5 years.

• Traffic: This data, collected from Department of Transportation
of San Antonio, Texas10, reports volume and speed data at about
30 intersections in the city. We use a 6-months long trace, where
data is reported once every 15 minutes.

Queries. For evaluating utility, we consider the following 6 query
sequences. The first two queries are on theGPSdata set, the next
two queries are on theWeight data set, and the last two queries are
on theTraffic dataset.

• Query G1: A query sequence whose value at each timestamp
is an histogram over locations counting the number of people at
each location. The locations are obtained by dividing the map into
a50×50 grid. The query sequence has2000 different timestamps
spread uniformly over2 weeks.

• QueryG2: The number of people at a fixed location evaluated at
2000 different timestamps spread uniformly over 2 weeks.

• QueryW1: Number of people with weight> 200 lb on each day
for a total of 2000 days.

• QueryW2: A query sequence whose value at each timestamp is
the correlation coefficient between two month-long time-series:
(i) people with weight> 200 on dayi of the month, and (ii)
people with weight decreasing on dayi of the month.

• QueryT1 and QueryT2: Occupancy at two different city inter-
sections with an interval of15 minutes for a total of6 months.

As the examples suggest, our algorithm can support a wide vari-
ety of queries. Unless otherwise stated, we usek = 30 for the
FPAk algorithm and1-differential privacy (ǫ = 1) as the privacy
requirement in our experiments.

7.1 Accuracy of Answers
We first evaluate the accuracy of outputs of our FPAk algorithm

and compare it with the LPA algorithm. We report error percentage
of a sequence of output estimate, which is the totalL2 error in the
estimate (See Def. 2.3) normalized by the maximum possibleL2

value of a query answer.
Figure 4 reports the average error percentage of FPAk and LPA

algorithms for the 6 query sequences. Average error percentage
is computed as the average over100 runs of each algorithm, the
variance in the error percentages are represented by the error bars.
9http://www.hackersdata.com

10http://www.transguide.dot.state.tx.us/
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Figure 6: Effect of DFT parameters

As shown, FPAk has orders of magnitude better error percentage
than LPA (graph shows y-axis using a log-scale). In fact, LPA has
an error percentage≫ 100% showing that estimates obtained are
completely meaningless.11 On the other hand, FPAk has error per-
centages of< 20% that are mostly acceptable in practice.

Figure 5 demonstrates the errors of both algorithms more visu-
ally. Fig 5(a) and (c) plot outputs of the FPAk algorithm along
with the exact answers ofW1 andG2. Fig 5(b) and (d) plot the
estimates obtained by LPA for the same two queries for the same
privacy parameter. The graphs show that FPAk estimates follow
the curve of the exact answer very closely, while LPA results in
estimates that are practically meaningless.

7.2 Effect of DFT Parameters
Value ofk. To understand the impact ofk on the accuracy of FPAk,
we vary the value ofk in evaluating the queryW1. Fig. 6(a)
demonstrates the results. It shows that ask increases the total
error decreases at first, then reaches a minimum, and finally in-
creases. This is because the total error of FPAk is a combination
of reconstruction error and perturbation error. Reconstruction error
decreases with increasing values ofk (also shown in Figure 6(a)),
while perturbation error increases with increasingk. The total er-
ror is minimized for an optimal value ofk that finds a sweet spot
between these two types of errors. This highlights the importance
of choosing a good value ofk for FPAk.

In the distributed case, there is no way to choose the bestk by
looking at query answers. Thusk has to be predetermined, which
is the reason we used a fixed value ofk = 30 in our previous ex-
periments (and it worked reasonably well for all queries). However
the graph shows that for theW1 query,k = 10 would have given
a better trade-off, and the results of FPAk would have been better
if we usedk = 10. In a centralized setting, our sampling perturba-
tion algorithm (SPA) can be used to privately sample the value of

11Laplace noise can send query answers outside their range making
the error> 100%. Truncation at range boundaries can make error
= 100%, but is not done here to reflect the true magnitude of the
noise.
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Figure 7: Evaluation of Distributed LPA

k. The error for that algorithm is also shown in the figure by the
horizontal line and it is quite near the optimal error fork = 10.

First-k vs. Top-k DFT coefficients. Our algorithms, both FPAk
and SPA, choose the firstk DFT coefficients, for a given value of
k. The choice of leading coefficients is unavoidable in a distributed
setting since all the users need to pick the samek DFT coefficients
for our algorithms to work. Even in the presence of the centralized
server, choosing the best set ofk DFT coefficients in a differen-
tially private way is inefficient. However, if possible, it is always
better to choose thek largest DFT coefficients (i.e., top-k coeffi-
cients), since they give lower reconstruction error than the first-k
coefficients. This leads to the natural question: how much do we
sacrifice in accuracy for using the first-k DFT coefficients (which
gives us differential privacy) instead of using the top-k coefficients
(which does not give differential privacy)?

Figure 6(b) answers the above question. It shows the errors of
FPAk for different queries and compares it with the errors of a
hypothetical algorithm that uses the top-k DFT coefficients (but
may not necessarily be differentially private). Both the algorithms
usek = 30 coefficients. The graph shows (with a linear scale
for y-axis) that we do not lose much even if we just pick the first
k coefficients (indicating that they generally are the largest coeffi-
cients). A substantial difference occurs only inT1 andT2 queries
since they have periodic behavior at slightly higher frequencies in-
dicating there largest coefficients are not the firstk. Even for these
queries, the difference is less than5%.

7.3 Computation & Communication Overhead
Fig. 7(a) shows the computational overhead of our algorithm for

computing a single aggregate-sum query. The graph shows the
computation times (averaged over 100 runs) at a user and at the ag-
gregator, as a function of the number of users involved in the query.
The average computation time at a user is independent of the num-
ber of users and remains nearly constant. On the other hand, the
time required by the aggregator increases linearly with the number
of users. In all cases, the computation overhead is quite small, most
of which is spent for cryptographic operations. We have also mea-

sured the communication overhead of our prototype and found that
the algorithm has a small overhead:0.5 Kb for each user (consid-
ering both incoming and outgoing messages) and0.5 Kb times the
# of users for the aggregator.

7.4 Effect of Failures
Fig. 7(b) shows the fault-tolerance behavior of our algorithm

based on the extensions described in Sec. 6.2. The fault-tolerant
algorithm is implemented and used to answer theW1 query of
lengthn = 2000 usingk = 30 DFT coefficients. We again report
the percentage error: the totalL2 error in the computed estimate
normalized by the maximumL2 value ofQ. The percentage user
failure is the percentage of users who fail during the protocol.

The graph shows that the error increases with the square root of
the number of users failing and is quite reasonable with even say
5% failure rate. Note that the accuracy of our algorithm is affected
only by the failures that happenduring execution of the algorithm
to answer a query, which is typically less than a few seconds in a
distributed system. Failure within this short time should be rare and
small in size in practice. In a very rare occasion, if a large number
of users fail during this small time window, the algorithm should
be started from the beginning.

8. RELATED WORK
Relational Data. Many approaches for relational data have been
proposed that support formal definitions of privacy such as differ-
ential privacy [7, 15, 27],ρ1ρ2 breach [9], adversarial privacy [21,
23], etc. Among these, most relevant to our work are those that fo-
cus on query answering [7,15,27]. [7] proposes the LPA algorithm
that adds independent Laplace noise to each query answer. The
noise is calibrated according to theL1 sensitivity. Recurring query
sequences over time-series data have highL1 sensitivity (O(n) for
an length sequence) and thus LPA does not accurately answer such
queries.

To improve accuracy of query answers under differential pri-
vacy, [27] focuses on range-count queries, i.e. count queries where
the predicate on each attribute is a range. The main idea is to take
a sequence of range-count queries that are disjoint and then perturb
the entire Discrete Wavelet Transform of the sequence. Such dis-
joint range-count queries have aL1 sensitivity ofO(1) and can be
accurately answered using their technique. However the technique
can not be used to answer recurring sequences over time-series data
accurately, owing to their highL1 sensitivity.

Another approach for answering query sequences accurately is
proposed in [15], where constraints over the answers of multiple
queries are exploited to improve accuracy. Usually no constraints
exist over recurring query sequences and thus the method is largely
inapplicable for time-series data. Simlarly, [2] uses Fourier analysis
to enforce constistency in query answers. Their Fourier analysis



uses a different perturbation algorithm whose goal is to computate
consistent solutions efficienty, which is different from our goal of
compressing time-series data.

Distributed protocols. Many Secure Multiparty Computation (SMC)
techniques have been proposed to evaluate functions securely over
data from multiple users [12]. In general, such techniques are
slow [28] and infeasible for practical scenarios. However, if the
function to be evaluated is a sum function, then efficient techniques
using threshold homomorphic functions have been proposed [4,13].
Such techniques often require a communication mechanism with
a broadcast facility, or a mechanism enabling a user to verify the
computation done by other users. This is not possible in our set-
ting where the aggregator does all the computations and the users
do not have enough resources to check whether those computations
are correct. In addition, we need to compute noisy sum (in order
to guarantee differential privacy) which is more difficult than com-
puting just the sum of the inputs. To the best of our knowledge, [6]
is the only known technique that computes noisy sum. However,
it uses expensive secret-sharing protocols leading to a computation
load ofO(U) per user, whereU is the number of users. This makes
the technique infeasible for largeU .

Techniques for Time-series data. Most work on time-series data
assume the centralized setting: a trusted server publishes an anonym-
ized version of the data of all users and aggregate queries can then
be run on the published data. [11] publishes data by adding a virtual
user whose data is sampled from a public noise distribution. [20]
works on a single time-series data by obtaining an orthonormal
transform (such as DFT), then adding noise only to large coeffi-
cients of the transform, and finally obtaining the inverse transform.
The main difference between our technique and theirs is the lack
of formal privacy guarantee. Techniques [11, 20] show privacy
by protecting against specific attacks (such as linear least-square
regression or linear filtering in [20]), however no formal privacy
guarantee (such as differential privacy) is provided. Furthermore
no distributed solution is discussed. Same holds for most works on
location data privacy (See [18] and the references therein).

9. CONCLUSION
We have proposed PASTE, a suite of novel algorithms to pri-

vately answer queries on distributed time-series data. PASTE uses
the FPAk algorithm to answer long query sequences over corre-
lated time series data in a differentially private way. FPAk perturbs
k DFT coefficients of an answer sequence, thereby improving the
accuracy for ann-length query sequence fromΘ(n) of existing al-
gorithms to roughlyΘ(k), if the k DFT coefficients can accurately
reconstruct all the query answers. For achieving differential pri-
vacy in distributed setting, PASTE uses the DLPA algorithm that
implements Laplace noise addition in a distributed way withO(1)
complexity per user. Our experiments with three real data sets show
that PASTE improves accuracy of query answers by orders of mag-
nitude and also scales well with a large number of users.
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