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ABSTRACT | Automatic speech recognition (ASR) is a central
and common component of voice-driven information proces-
sing systems in human language technology, including spoken
language translation (SLT), spoken language understanding
(SLU), voice search, spoken document retrieval, and so on.
Interfacing ASR with its downstream text-based processing
tasks of translation, understanding, and information retrieval
(IR) creates both challenges and opportunities in optimal
design of the combined, speech-enabled systems. We present
an optimization-oriented statistical framework for the overall
system design where the interactions between the subsystems
in tandem are fully incorporated and where design consistency
is established between the optimization objectives and the
end-to-end system performance metrics. Techniques for opti-
mizing such objectives in both the decoding and learning
phases of the speech-centric information processing (SCIP)
system design are described, in which the uncertainty in speech
recognition subsystem’s outputs is fully considered and margi-
nalized. This paper provides an overview of the past and
current work in this area. Future challenges and new oppor-
tunities are also discussed and analyzed.
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I. INTRODUCTION

Automatic speech recognition (ASR) is an enabling tech-
nology for a number of important information processing
applications in the realm of human language technology
(e.g., [3], [4], and [35]). For example, a spoken language
translation (SLT) system takes the source speech signal as
input, and the output of ASR as “noisy” text is then fed into
a machine translation (MT) system, producing a translated
text of another target language. That is, the full SLT system
can be viewed as ASR and MT subsystems in tandem (e.g.,
[14], [39], [62], [66], [83], and [96]). As another example,
a voice search system also recognizes the input utterance
as “noisy” text first, and then feeds it as a query to a
subsequent information retrieval (IR) system, returning a
list of documents ranked by their relevance to the query
(e.g., [29], [30], and [84]). As a further example, a spoken
language understanding (SLU) system again recognizes the
input utterance first, and then feeds the noisy transcrip-
tion to a natural language understanding (NLU) system.
The NLU system will then identify the domain that the
utterance represents, and/or parse the semantic meanings
embedded in the utterance (e.g., [80], [85], and [87]).
In all the information processing tasks outlined above,
ASR is a common component and plays a central role;
hence we refer to these tasks and related applications as
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speech-centric information processing (SCIP). In the SCIP
systems, ASR works with one (or more) downstream com-
ponent(s) (i.e., the subsequent component(s) after ASR)
in tandem to deliver end-to-end results. One important
character in such systems is that different applications are
sensitive to different errors in the ASR output. However,
most of the current ASR methods embedded in SCIP sys-
tems tend to use the uniform metric of word error rate
(WER) to train ASR parameters and treat all types of word
errors as equally bad. Another consequence of ignoring the
interactions between the subsystems is the mismatch be-
tween how the subsystems are trained and how the trained
subsystems are used in the operation environment. A typi-
cal example of mismatch is the general use of large
amounts of “clean” written text data to train the MT
subsystem in a full SLT system while in decoding operation
the MT subsystem always receives the “distorted” text in-
put subject to ASR errors and speech disfluency. To over-
come the various types of optimization inconsistency in a
systematic manner and to aim for optimal design of all the
subsystem components in the overall SCIP system, we
need to fully incorporate the interactions between, and the
uncertainty in, these subsystem components, and in parti-
cular, between ASR and MT/NLU/IR components. More
specifically, we need to establish design/learning consis-
tency between the optimization objectives and the end-to-
end system performance metrics for all subsystem
components.

In this paper, we will address the critical optimization
inconsistency problems discussed above that are common-
ly present in most existing SCIP systems. This motivates
the development of a unifying end-to-end optimization-
oriented approach, where both the ASR and the down-
stream subsystems are learned via optimizing end-to-end
performance metrics.

The organization of this paper is as follows. In
Section II, we provide an overview of the general tandem
architecture of a wide variety of SCIP systems and show
how a combination of various subsystems can produce
most of the common realistic systems studied and reported
in the literature. In Section III, we describe and analyze
the problem of optimization inconsistency inherent in
most existing SCIP systems of a “divide and conquer” sort
when the interactions between the subsystems are dis-
carded. We present technical solutions to the optimization
inconsistency problem in the next two sections based on a
body of the published work but with generalization, uni-
fication, and new insights that cut across several types of
SCIP systems. Section IV is focused on the unified objec-
tive functions for end-to-end learning of interactive SCIP
subsystems’ parameters. We devote Section V to the tech-
niques for optimizing these objective functions, including
a summary of experimental evidence showing the feasi-
bility and effectiveness of these techniques. In Section VI,
the experiments conducted and published in the literature
that evaluate the feasibility and effectiveness of several

aspects of the unified framework are reviewed and ana-
lyzed. Finally, in Section VII, we draw conclusions and
discuss future directions on speech-based information
processing.

II. SPEECH-CENTRIC INFORMATION
PROCESSING: AN OVERVIEW

While ASR technology has important applications on its
own (e.g.,[3], [4], [19], and [46]), its more significant im-
pact lies in the combination with its downstream process-
ing, typically referred to as human language technology,
including MT, NLP, and IR [35], [68]. Interfacing ASR
with one or more of the downstream information pro-
cessing systems gives rise to a full SCIP system. In this
section, we will first provide an architectural overview of
an SCIP system. Then, we will discuss three common types
of the SCIP system depending on the nature of the down-
stream processing.

A. Architectural Overview of SCIP Systems

In Fig. 1, we show the general tandem architecture
(i-e., serial connection) that characterizes a number of
SCIP systems.

Starting from the common ASR subsystem component,
each path through the diagram from left to right corre-
sponds to one specific type of the SCIP system. For in-
stance, ASR and NLU subsystems in tandem form the SCIP
system of SLU. When the output of SLU is further provided
to a subsequent dialog control subsystem, a part of a
spoken dialog system (open loop) is established. Similarly,
when the SLT system, which consists of ASR and MT sub-
systems in tandem, is further connected in tandem with an
NLU subsystem, we produce a cross-lingual SLU system.

Importantly, the design and learning of the diverse
types of SCIP systems shown in Fig. 1 are amenable to the

Natural Spoken Language Understanding
> Language g
Understanding
Dialog Control
[T e Voice Search
Retrieval
Speech | Machine 7Spoken Language Translation
Recognition Translation
Speech
Synthesis
i Language Cross-lingual
Understanding SLU
= WEIUEREIEN Cross-lingual Voice
Retrieval Search
Fig. 1. lllustration of the general tandem architecture of common
SCIP systems and their relations in terms of the shared subsystem
components. Design of these diverse types of systems shown here

follows the shared optimization-oriented principles presented
in this paper.

(open-loop) Spoken
Dialog System

Speech-to-Speech
Translation
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common and general optimization-oriented approach to be
presented and analyzed in Sections III-V. Specifically,
rather than simply feeding the ASR subsystem’s output
directly (and unambiguously) as the input to the down-
stream subsystems, uncertainty of ASR, in the form of
probabilistic lattices or N-best lists, is incorporated in the
overall system’s design, learning, and decoding. As we will
see, taking into account the ASR uncertainty permits re-
covery of the errors made in ASR and this becomes essen-
tial for achieving robustness of the overall SCIP system.

Compared with the text-centric systems of NLP, IR,
and MT in human language technology [35], the speech-
centric systems with ASR integrated as the “front—end”
present special challenges in terms of system robustness.
This problem can be likened, to a certain degree, to that
facing acoustic-environment robustness in ASR, which has
occupied ASR research for over 25 years and is still an
active research area today. Numerous techniques invented
for handling environment robustness in ASR and their
taxonomy have been reviewed in [22] and [53], and they
are relevant to the new robustness problem in the SCIP
system design arising from “noisy” text inputs (analogous
to mnoisy acoustic inputs) due to ASR errors [102] and
speech disfluency [69]. The successful techniques for
noise-robust ASR aimed at achieving matched training-test
acoustic environments bear resemblance to the learning
strategy that exploits ASR output uncertainty. As will be
explained in Sections IV and V, the use of ASR lattices or
N-best lists in training the system parameters effectively
(as well as in scoring in the decision-making phase) en-
hances the diversity of the “noisy” text input data to the
downstream information processing subsystems. This will
create a desirable learning style for the SCIP system ana-
logous to the “multistyle” training popular in noise-robust
ASR (and also analogous to the use of elastic distortion
popular in training image recognition systems [78].

Owing largely to shortage of work in the literature, we
intentionally exclude the prosodic modeling and speech-
disfluency modeling stages in Fig. 1. They could be appro-
priately placed either before or after the ASR stage in
Fig. 1. When appropriate modeling techniques (e.g., [88])
are used, this additional stage would also fit well in the
optimization approach presented in this paper. Without
including the prosodic processing/modeling stage, we sim-
ply treat the difference between what goes (as the “noisy”
text input) into the downstream processing components in
the SCIP system and the “clean” text input to the tradi-
tional MT, IR, or NLP systems as a combination of ASR
errors and normal speech disfluency.

B. Spoken Language Translation

As shown in Fig. 1, a full SLT system can be viewed as
ASR and MT subsystems in tandem (e.g., [14], [39], [62],
[66], [83], and [96]). SLT is of significant relevance in our
increasingly globalized world, and its research and system
development started in the late 1990s (e.g., [54], [66], and
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[82]) after ASR had matured and become useful in prac-
tice. Following the well-established statistical framework
in ASR, the same statistical approach has dominated SLT as
well as MT research (e.g., [13], [14], [52], [67], [71], and
[83]). In this same issue, another paper also provides a
comprehensive review on latest advances in SLT [95].

The applications of SLT are diverse, ranging from
machine-aided human translation [73] to professional trans-
lation services for international organizations. TC-STAR
(http://www.tc-star.org) in Europe and GALE (http://www.
darpa.mil/ipto/programs/gale) in the United States are the
most prominent SLT research projects.

An SLT system with the ASR component to provide the
input to the MT component is more difficult than text-
based MT because of the compounded difficulties of ASR
and MT. A particular issue in SLT is speech disfluency,
making the input to the MT component of the SLT system,
even with perfect ASR, deviate from lexical, syntactic, and
semantic patterns of normal written texts that are typically
used for training the MT system. Examples include filled
pauses, paragraph and sentence delimiters, punctuation
marks, and capitalized words. This deviation, together
with ASR errors, produces serious “mismatch” between
training and testing conditions.

One way to address this mismatch problem is to adopt
the Bayesian approach where uncertainty of ASR outputs is
taken into account. While the initial crude mathematical
formulation of this approach appeared in the early days of
SLT research [66] and later extended to joint ASR and MT
decoding through an ASR lattice or confusion network 8],
[96], only at the decoding stage has the ASR uncertainty
been considered until rather recently when the same un-
certainty was incorporated into the training process with a
decision-feedback style [94]. In Section V, we will review
this line of work, elaborate on how partial exploitation of
ASR uncertainty at the decoding stage only can be nontri-
vially extended to the full exploitation (i.e., at the training
state also), and provide a significantly more general and
consistent framework that cuts across SLT, SLU, and other
SCIP-related applications.

C. Voice Search

An ASR system followed by an IR stage produces a
voice search system, as shown in Fig. 1. Voice search is the
technology intended to provide users with the information
they request with a spoken query [84]. The information
requested often exists in a structured or unstructured large
database (e.g., the Web being a huge, unstructured data-
base). The query has to be compared with fields in the
database or “documents” in the Web to obtain the relevant
information. Typical voice search applications are direc-
tory assistance [1], [93] (i.e., search for the phone number
and address information of a business or an individual),
personal music and video management [61], infotainment
in the car [77], business and product reviews [97], confer-
ence information systems [10], local search (extending
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directory assistance to include also maps, directions, movie
schedules, local events, and travel information) [29],
voice-enabled question answering, and more recently,
mobile personal assistants (e.g., Siri in iPhone).

Voice search provides a convenient and direct access to
a broad variety of services and information. It is parti-
cularly appealing to the users of mobile devices because of
the greater efficiency to search for the desired information
from the mobile devices by speech than by typing [29].
However, due to the vast amount of information available
and the open nature of the spoken queries, voice search
applications still suffer from both ASR and IR errors. As an
example, in the voice search task of automated directory
assistance, there are millions of possible business listings
(over 18 million in the United States alone) as the targets
for matching. Further, the users frequently do not know
and say the exact business names as listed in the directory.
This illustrates the special difficulty of voice search.

Typical voice search methods make use of a term
frequency-inverse document frequency (TF-IDF) weight-
ed vector space model [93], personalization features [11],
analysis/parsing of input queries [27], [28], [79], and tem-
plate matching [48]. In most of the above and other exist-
ing voice search work, the ASR output, subject to possible
analysis, is directly fed into the IR system without consid-
ering the interactions between the two components.

A different form of voice search is called spoken
document retrieval, or retrieving (and browsing) spoken
content typically distributed and stored in the Web, where
IR systems are deployed to access spoken “documents”
produced by ASR after processing the original spoken ut-
terances such as lecture recordings [15], [58]. The differ-
ence from voice search discussed earlier is that ASR is used
here to process the stored spoken documents rather than
the spoken search query. This form of voice search fits less
well with the tandem architecture of SCIP shown in Fig. 1
and will not be dealt with in this paper.

D. Spoken Language Understanding

Fig. 1 also shows that when ASR and NLU subsystems
are connected in tandem, the resulting pipeline gives rise
to a full SLU system [18], [87], [101]. SLU has the task of
mapping from an utterance to its semantic representation.
In this sense, voice search just discussed can be regarded as
a special form of SLU where the semantic representation is
expressed in terms of the intended entry in the database or
the intended document in the Web.

Traditionally, SLU tasks are divided into two broad
categories. First, intent determination, also referred to as
“call routing” or “How May I Help You” for historical
reasons, performs the task of spoken utterance classifica-
tion where the output is one of many semantic classes and
there is no sequence information or structure at the output.
Second, slot/form filling, also referred to as semantic
frame-based SLU, is the task that produces the output as a
sequence of semantic frames, with a possible hierarchical

structure, from a spoken utterance [98]. Compared with
intent determination, the task of slot filling generally
allows a lower degree of naturalness and a smaller cover-
age of the language space, but it gives higher resolution or
finer concepts in the output’s semantic representation.

Unlike ASR (as well as MT), which accepts speech (or
text) inputs in any semantic domain, current NLU tech-
nology has not been able to accomplish the task of under-
standing in unlimited domains [49]. Hence, the semantic
space in both intent determination and slot filling of SLU is
often highly constrained. This is in contrast with voice
search tasks whose semantic space tends to be significantly
larger.

A comprehensive coverage of slot filling, the most
extensively studied SLU category, including both the tradi-
tional and more recent methods as well as technical chal-
lenges, can be found in the recent book chapter of [85]. It
reviews both knowledge-based and, more importantly,
data-driven statistical solutions. The latter includes gener-
ative models/methods of hidden Markov model (HMM)
and composite HMM/context-free grammar (CFG) and
conditional models/methods of conditional random field
(CRF) and composite CFG/CRF. In the more recent work
reported in [34], the results of comparative experiments
are presented on three different tasks of slot filling (called
concept tagging in the paper) in a set of languages with
different complexity. Six methods covering both genera-
tive (finite state transducers, statistical MT, dynamic
Bayesian networks) and discriminative [maximum entropy
Markov models, support vector machines, conditional ran-
dom fields (CRFs)] techniques are compared, and CRF
turns out to be the best performing one on all tasks. Most
recently, Li et al. have explored the multitask learning
paradigm using semi-Markov CRFs on a set of slot filling
tasks that overlap with each other [60].

On intent determination of SLU, a book chapter [80]
also provides a comprehensive review, especially on data-
driven methods. Most recently, deep learning technique
has been successfully applied to intent determination, as
reported by [81], [103].

E. Other SCIP Tasks

In addition to the two-component SCIP tandem sys-
tems reviewed above, Fig. 1 further shows four types of
three-component SCIP tandem systems, which we briefly
review here. First, when the SLU system, which consists of
ASR and NLU subsystems, is further connected with a
dialog control/planning component, a major part (the
“open-loop” portion) of a spoken dialog system is estab-
lished. Further additions of natural language generation,
text-to-speech synthesis, and user modeling components
will complete the full, closed-loop spoken dialog system,
which has had excellent recent reviews in [90] and [91]
and will not be covered in this paper. It is worth noting
that the recent prevalence in mobile computing has gal-
vanized intense and renewed interest in the work on
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spoken dialog systems. Some earlier, primitive form of
such systems—e.g., the work on the MiPad system [21]—
was limited in part by imperfection of the design and
component technologies in these early days [20], but more
importantly by the late arrival of mainstream mobile com-
puting as well as the lack of a full ecosystem of Web ser-
vices that Siri-style understanding and dialog systems are
enjoying today.

Likewise, the two-component SLT system, composed of
ASR and MT subsystems in tandem, can be extended to a
three-component system by a further interface with anoth-
er text-based subsystem. As shown in Fig. 1, by connecting
SLT (ASR+MT) with an NLP subsystem, we produce a
cross-lingual SLU system (ASR+MT+NLU) where the
understanding task is now performed in a new, target
language [57]. Similarly, interfacing SLT with a speech
synthesis subsystem gives rise to a speech-to-speech trans-
lation system, which has applications in enabling human-
to-human conversation using different languages [36],
[65]. Finally, cross-lingual voice search can be accom-
plished when SLT is interfaced in tandem with a voice
search subsystem, giving the full pipeline of ASR+MT+
VoiceSearch.

We emphasize that the general design and learning
principles, full exploitation of the uncertainty in the front-
stage subsystems, and the optimization-oriented approach
described in the remainder of this paper apply to all SCIP
systems discussed in this section. However, we will mainly
focus the discussions on selected, two-component systems
largely due to the lack of sufficient work in the literature
on other more complex SCIP systems. Specifically, we
limit our discussions to the full exploitation of the uncer-
tainty in the ASR subsystem, which is common in and
essential for all types of SCIP systems.

ITI. OVERCOMING OPTIMIZATION
INCONSISTENCY

As discussed above, ASR operates together with the down-
stream components to deliver the end-to-end result in any
of the SCIP systems. However, optimization inconsistency
that has permeated the existing design of most of the SCIP
systems today is a crucial problem. In this section, we first
provide an analysis on the optimization inconsistency
problem from two perspectives. Then, we outline a general
solution, expanded and generalized from recently pub-
lished work, which overcomes the inconsistency and forms
the basis of much of the remaining material in this paper.

A. The Problem of Optimization Inconsistency

SCIP is a complex information system that consists of
multiple subsystems in a tandem architecture where voice-
based ASR subsystem as a “front-end” is interfaced with
one or more text-based subsystems including MT, NLU,
and IR. Each of these subsystems has been trained using
the collected supervised data with respect to the individual
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subsystem’s own input and output signal/information.
Optimization inconsistency among subsystems discussed
in this section refers to the mismatch condition between
the training data used to estimate the parameters of such
individual subsystems and the operating environment
when the decoding decision is made during the system
deployment.

In conventional design, the subsystems tend to be built
and trained independently, i.e., without considering the
interactions between them. Sometimes, such a simplistic
and easy-to-implement approach is referred to as a “divide
and conquer” one and has been advocated by its propo-
nents. Each subsystem is isolated from one another, and is
assumed to take “clean” input and to produce the output
results directly on its own. However, a subsystem in an
actual SCIP system takes the output from the upstream
subsystems as its input, and produces output that will be
fed into its next downstream subsystem in tandem until
the final result is delivered. Following this design philoso-
phy, since each subsystem will necessarily produce pro-
cessing errors, errors from one subsystem will propagate
and impact negatively on the remaining consequent sub-
system(s). That is, errors produced by the upstream sub-
system at the decoding stage make the input to the
downstream subsystem being polluted or “noisy.” This
“noisy” input mismatches the “clean” condition under
which the downstream subsystem is to be trained. In this
case, the output of an upstream subsystem (e.g., ASR) is
just an intermediate result that will be consumed by
downstream subsystems. Since this (uncertain) interme-
diate result is a random variable, it should be marginalized
(e.g., take a summation over all possible intermediate
results) in both decoding and training, a process through
which the mismatch problem can be reduced.

Let us take a concrete example. In the voice search
application, the ASR subsystem is most often built without
considering that its recognition output will be fed into an
IR subsystem, which may be able to tolerate certain types
of text errors better than others. On the other hand,
traditionally, an IR system is built separately, assuming the
input is a relatively “clean” text, thus with little or no
tolerance to the distorted text caused by ASR errors or by
speech disfluency. This assumption, however, does not
hold for the IR component in a full voice search system,
where the IR module necessarily has to handle the output
from the ASR module, which is nearly always ambiguous
and error prone. The use of marginalization would enable
the IR component to select possible incorrect ASR errors,
as long as they can be tolerated by the IR, to strike a
tradeoff with other errors that would affect IR more
negatively. This kind of interactions between the sub-
systems is thus important to incorporate in the holistic
design of the full system, which we advocate and elaborate
in this paper.

In addition to the “mismatch” inconsistency just de-
scribed, another important source of inconsistency in the
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conventional design of SCIP systems stands out between
the training criteria for subsystems and the desired end-to-
end evaluation metric. Historically, different downstream
subsystems have had their own evaluation metrics, and the
model parameters in each of such subsystems have been
optimized by the objective function directly relevant to
that metric. However, in the SCIP systems, different
applications tend to emphasize distinct types of errors in
the ASR output.

Let us again take a concrete example here. IR applica-
tions tend to focus on the match of content words, while
ignoring functional words. Therefore, it is important for
the ASR component to have the content words correctly
recognized, while the errors in functional words can be
tolerated. On the other hand, functional words bear im-
portant contextual and syntactic information, which is
critical to MT. Therefore, it is crucial to recognize func-
tional words correctly in MT applications. Unfortunately,
most of the current ASR models are optimized without
considering the downstream subsystems. Instead, WER is
widely accepted as the de facto metric for ASR, treating all
types of word errors equally. Since WER only measures
word errors at the surface level and takes no consideration
of the roles of a word in the ultimate performance mea-
sure, this often leads to suboptimal end-to-end perfor-
mance. An analysis and experimental evidence for such
suboptimality in the context of SLT were provided in [39],
and those for the case of SLU were provided in [86].

B. End-to-End Optimization to Overcome the
Inconsistency Problem

In this paper, we address the above critical optimiza-
tion inconsistency problem facing the design and learning
of SCIP systems. The analysis of the problem has motivated
the development of a unifying end-to-end optimization
framework, which fully exploits the uncertainty in each
subsystem’s output and the interactions between the sub-
systems. In this framework, the parameters of all sub-
systems are treated as correlating with each other and they
can be trained systematically to optimize the final perfor-
mance metric of the full SCIP system.

End-to-end training of SCIP systems involves optimiz-
ing difficult objective criteria [39], [41], [56], [94]. Efforts
have been made and reported in the literature on the use of
better optimization criteria and methods. In [42], the
“margin concept” is incorporated into conventional discri-
minative training criteria such as minimum phone error
(MPE) and maximum mutual information (MMI) for
string recognition problems. In [45], a fast extended
Baum-Welch (EBW) algorithm built on Kullback-Leibler
(KL)-divergence-based regularization is proposed. In [50]
and [51], a line search A-function (LSAF) is introduced to
generalize the EBW algorithm for optimization of discri-
minant objective functions. In [41], a discriminative train-
ing criterion that unifies maximum mutual information
(MMI), minimum classification error (MCE), and mini-

mum phone/word error (MPE/MWE) was proposed for
ASR and a growth-transformation (GT)-based optimization
method for training hidden Markov model (HMM)
parameters in ASR systems was presented in a systematic
way. It was shown that GT-based optimization approxi-
mates the quadratic Newton update and usually gives a
faster learning speed than the simple gradient-based
search. More recently, in [37], this optimization method
was extended to SLT based on the Bayesian framework
using a similar GT- or EBW-based optimization method. In
[39], experimental evidence was provided that the ASR
component with the lowest WER may not necessarily lead
to the best translation performance, and that global end-to-
end optimization in SLT is superior to separately training
ASR and MT components of an SLT system. Finally, in
[94], a global end-to-end optimization for SLT was imple-
mented using a gradient-descent technique with slow
convergence. This body of work sets up the background for
the more technical material in the next two sections on the
establishment of optimization criteria and methods for
implementing the general end-to-end learning framework.
This framework and the associated optimization-oriented
approach are aimed at exploiting more advanced EBW-
based optimization techniques for improving global, end-
to-end optimization for all types of SCIP systems. The goal
here is not only faster convergence but also better perfor-
mance in the overall SCIP system.

As alternatives to the EBW algorithm, other effective
gradient-based methods exist [24], [63], [64]. For example,
Quickprop [26] is a batch-mode optimization method. With
the help of heuristics to determine the proper update step
size, it approximates Newton’s optimization. Rprop [75],
which stands for “resilient backpropagation,” is another
batch-mode optimization method, which performs dynam-
ic scaling of the update step size for each parameter based
on different kinds of heuristics. In [64], a comprehensive
study of gradient-based optimization methods for MCE
training, including batch and semibatch probabilistic de-
scent (PD), Quickprop, and Rprop, is given for large
vocabulary speech recognition tasks. Furthermore, the
Broyden-Fletcher—Goldfarb—Shanno (BFGS) method and
conjugate gradient search [5], [23] are also popular gradient-
based methods and are superior to other gradient—descent
techniques in terms of the convergence properties. Readers
are referred to [55] for further discussions.

IV. A UNIFIED UTILITY FUNCTION FOR
JOINT OPTIMIZATION

While superior results were reported in earlier work on
using end-to-end optimization for a variety of SCIP appli-
cations (e.g., [89] and [94]), there is a lack of a principal
solution. In this section, motivated by the findings from
previous work, we present a unifying solution, with solid
theoretical principle, which generalizes to different types
of SCIP system design and learning.
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automatic downstream
speech information
recognition processing

X » {H} » Y

Fig. 2. Notations and the pipeline relations among speech
signal input X, the full system output Y, and the intermediate
ASR outputs {H} as marginalizable hidden variables. Random
variables {H} are also the input to an MT, NLU, or IR subsystem.

A. Notations

Without loss of generality, Fig. 2 extracts the most ba-
sic information flow in SCIP systems, where X is the ob-
served input speech utterance, {H} is a set of hidden
random variables denoting speech recognition hypotheses
that are commonly represented by a lattice or an N-best list
associated with scoring information, and Y is the output
from the final downstream information processing sub-
system. Note that while Fig. 2 shows a tandem data flow
with two subsystems, the principle and techniques pre-
sented in this and the next sections can be extended to the
SCIP systems with more than two subsystems.

In the following sections, assuming there are R utter-
ances in the training set, we denote by X = X; ... Xy the
aggregate of all R training utterances. Likewise, ¥ = Y; . ..
Yr denotes the aggregate of all R output hypotheses, one
from each utterance, and H = H; ... Hg denotes the ag-
gregate of all R recognition hypotheses, one from each
utterance. In model optimization, we denote by A the set
of parameters subject to optimization.

B. A Unified Utility Function

First, we define a general utility function that we would
like to optimize in the joint training of SCIP systems sub-
ject to regularization. This would be the objective function
for optimization if there were sufficient amounts of train-
ing data to obviate the need for adding a regularization
term. Using the notations defined in Section IV-A, the
utility function takes the following succinct form:

U(A) =) PA(YIX)C(Y) )

where C(Y) is a function tied to a classification quality
measure, which scores the quality of the final output. Note
that C(Y) is independent of the model parameters, and it
can be any arbitrary scoring function by design.

Equation (1) defines the expected quality of the end-to-
end system output over the entire training corpus. In joint
optimization, it is desirable to design the quality function
C(Y) that is close to the end-to-end evaluation metric of a
particular SCIP system.

On the other hand, in order to make the computation
of (1) tractable, C(¥) need to be in certain decomposable
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form with respect to different training utterances; i.e.,

()= c(v,) 2)

r=1

which states that the classification quality of the whole
data set is proportional (by a constant factor of 1/R) to the
average quality of each sentence.

With the decomposition form of (2), and under the
assumption that training sentences are independent of
each other, the utility function can be rewritten into a
tractable form

U(A) = 30 3 Pa(TIR)C(T,). ©)

A brief proof is provided here:

R

U(A)= Z PA(Y1, Ya. r|X1, X2 8)|C(Y1) + Z c(Y,)
Yi.Y2 r r=2
R

= PAiX)C(Y) + > Pa(Ya.xXo)[D_C(Y,)

Y2 R r=2

= Z > PA(Y[X)C(Y,).

r

Different SCIP applications have separate forms of the
final output and distinct quality measures. In Table 1, we
show four quality functions designed to cover the appro-
priate metrics for ASR and three speech-centric applica-
tions: SLU, SLT, and voice search, where Y denotes the
target reference of the rth input sentence. As an example,
in SLT, the final output Y is a sentence in the target lan-
guage, and the quality of Y is commonly measured by the
bilingual evaluation understudy (BLEU) score [70] given
the reference translation Y*. On the other hand, in voice
search, each ASR hypothesis H is fed into the IR system as
a query, and the final output Y is a list of ranked

Table 1 Four Quality Functions That Correspond to Appropriate
Evaluation Metrics for ASR, SLU, SLT, and Voice Search

Sub-Systems Evaluation Cc(Y,)
Metric
ASR WER AY.Y): phone/word
accuracy count
SLU/slot filling | F-score S(Y.Y) @ slot-filling
accuracy count
SLT BLEU BLEU(Y,.Y;)
Voice Search NDCG NDCG(Y,.Yy)
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documents that are retrieved from a document set. The
quality of Y is usually measured by comparing it against
the gold set of documents Y*, sorted by the relevance to
the original spoken query as judged by humans. In IR, one
widely adopted metric is the normalized discounted cumu-
lative gain (NDCG) score [47].

By taking different forms of the classification quality
measure function C(Y,), the unified utility function en-
compasses a range of SCIP systems. Note that the corpus
level quality measure is C(¥) = S8 C(Y,).

For some applications, the evaluation metric is scored
over the whole data set and thus cannot be decomposed
directly. Examples are the F-measure for the slot filling
task of SLU [98] and then the BLEU score for SLT. In this
case, we need to design a decomposable quality function
that approximates the true metric. For example, the
sentence-level BLEU is used to approximate the corpus-
level BLEU. In practice, we found the sentence-level BLEU
correlates well with the corpus-level BLEU [38].

If the parameter set of the downstream subsystem is
not accessible, we can treat that subsystem as a fixed black
box, and train other subsystems jointly with the end-to-end
system performance as the objective. As an example, if the
commercial online web search service is used as the back-
end of a voice search system, where the commercial search
service is provided as is, we want to optimize the ASR
system so that the end-to-end voice search performance is
optimized. In this case, we can design the utility function
as follows:

u(A) = 3 Pa(HIX)

H

R
> NDCG(Y,, Yj)] (4)
r=1

where Y, = IR(H,) is the ranked document list retrieved
through feeding the speech recognition hypothesis H, to
the back—end IR system. This utility function effectively
scores the expected quality of the ASR output, which is
measured by the IR performance resulting from using the
recognition hypothesis as query. This gives a special case of
the general utility function of (1).

The utility function of (1) provides a principled and
practical way of constructing the optimization objective,
and has four important merits. First, the evaluation me-
trics of most applications are not smooth. In earlier work,
the metric had to be modified to make it differentiable so
as to facilitate model training. In contrast, the utility
function of (1) is independent of the model parameters and
can take a more flexible form. Second, the conventional
discriminative training methods require a target reference,
and the model parameters are adjusted such that the sys-
tem will produce outputs that approach that reference.
However, in complex tasks such as MT, specifying a true
reference is difficult and often the true reference may not

be reachable [100]. For the utility function of (1), there is
no need to explicitly specify a discriminative reference or
pseudoreference target. Third, the utility function of (1) is
directly linked to the end-to-end evaluation metric, mini-
mizing the discrepancy between the training criterion and
the evaluation metric. Fourth, the utility function of (1) is
in a form suitable for the use in extended Baum-Welch
(EBW) optimization algorithm, which is efficient and
scalable to handle large data sets. Moreover, EBW reesti-
mation formulas can often provide useful insight on how
the parameters are influenced by each other during the
optimization process. They also offer intuitive interpreta-
tions for the model updating process. This is particularly
important for the analysis of the complex interactions of
subsystems and their impact on model estimation for the
SCIP systems. Concrete examples will be given on the EBW
formulas and their interpretations in the next section.

C. Modeling PA (Y |X) in the Utility Function

To complete the specification of the utility function of
(1), here we model end-to-end SCIP systems by a general
log-linear model, where the interactions between the sub-
systems are jointly modeled.

Given the speech signal X, the final output of an SCIP
system Y is decoded by

Y = arg max Py (Y|X). (5)
Y

When we view the recognition hypothesis H as a
hidden structure between X and Y, then according to the
law of total probability, we have

PA(Y|X) =) Pa(Y,HIX) = max P (Y, HX)  (6)
H

and when the downstream subsystem is modeled by a log-
linear model, we can also represent the posterior proba-
bility of the (Y, H) pair given X through a log-linear model
as follows:

PA(Y,H|X) = %exp{Zwi log (Y, H,X)} 7)

where Z =, yexp{>_. wilog vi(Y,H,X)} is a normal-
ization denominator to ensure P4 (Y, H|X) sum to one over
the space of the (Y, H) pair, w = {w;} are feature weights,
and {p;(Y,H,X)} are the feature functions, also called
component models, empirically constructed to capture the
dependency among Y, H, and X. For simplification, we
denote by I the set of parameters of all feature functions
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subject to optimization, and the complete parameter set
A = {w,T'}. In the following sections, we may use A, w,
and I" to represent parameters as appropriate to emphasize
the parameter set that is subject to optimization within the
current context.

Conventionally, it is assumed that H depends only on X
through the ASR subsystem and Y depends only on H
through the downstream subsystem. Then, the feature set
of the overall SCIP system is a mere collection of the ASR
model (e.g., HMM and language model) and component
models in the downstream subsystem. Moreover, once
being integrated through (7), models from different sub-
systems will compete and/or support each other to esti-
mate the integrated score of (6) for each hypothesis. This
integrated score ensures that the decoding process is able
to deliver a global optimal output incorporating the inter-
actions between the subsystems. Using SLT as an example,
we now elaborate on this joint modeling framework below.

The ASR component in an SLT system is commonly
modeled through a noisy-channel model; i.e., the posterior
of the recognition hypothesis given the speech signal is

P(H|X) oc P(X|H)P(H) (8)

where P(X|H) is usually represented by an HMM-based
acoustic model, and P(H) by an n-gram language model
(LM) for the source language. However, the actual decod-
ing process in ASR practice is

argmax([log P(X|H) + wry log P(H) + wwelH|]]  (9)
H

where wr\ and wyc are the LM scale and the word count
scale. Therefore, we can construct ASR-relevant feature
functions as follows:

|

oam = P(X|H) v = P(H) owc =e

Modern MT is commonly represented by a log-linear
model [67]. For example, the widely adopted phrase-based
MT has features including an n-gram target language
model, a reordering model, source-to-target and target-to-
source phrase translation models, source-to-target and
target-to-source lexicon translation models, target word
counts, and phrase counts.

In SLT, it is usually assumed that the MT process de-
pends on the input speech only through the recognition
hypothesis. Hence, the features for both ASR and MT
components are simply aggregated to form the feature set
in (7) [14], [39]. Nevertheless, it is worth noting that (7)
enables the possibility of developing and integrating more
informative features ¢;(Y, H,X) capable of capturing the
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dependency between speech input and translation output
directly. A potential direction is to use prosodic features in
this regard. The prosody of speech (in the source language
side of SLT) bears important information that is potentially
helpful for translation. For instance, prosody can help to
more accurately translate emotion expressions of the user.
Unfortunately, in most of the current SLT systems, the
prosodic information after ASR is lost. Given the joint
modeling framework discussed here, it is possible to design
features ;(Y, H, X) that embed the prosodic influence and
enable appropriate dependency between speech input and
translation output.

Equation (7) is defined on a single sentence; however,
it is straightforward to extend it to the full training corpus,

yielding
1
PA(Y, H|X) = Zexp{zi: w; log cpi(Y,H,X)} (10)

where the features of the full corpus are constructed by

R
oY, H,X) = [[ (Y, H,). (11)
r=1
Accordingly, at the full-corpus level, we have
(12)

PA(Y|X) =D Po(Y,H|X).

Equations (10)—(12) describe the actual models needed in
computing the utility function of (1). In Section V, we will
discuss the techniques for jointly estimating the ASR and
the downstream subsystems’ parameters I' in these mod-
els, as well as the feature weights w, so as to optimize (1).

V. TECHNIQUES FOR JOINT
OPTIMIZATION

The complete parameters that are subject to optimization
in an SCIP system consist of two sets: {w, I'}, where w =
{w;} are the feature weights in the log linear model of (10),
and I' are the parameters that characterize the feature
functions of ;(¥, H,X) in (10). Note that exactly what T’
entails is dependent upon how the subsystems (e.g., ASR,
SLT, NLU, and IR) are parametrically modeled. In this
section, we first describe the optimization techniques for
the parameter sets w = {w;} and I, respectively. Then, we
describe the complete training procedure that iteratively
trains sets w = {w;} and I'. Joint optimization in the sec-
tion title here refers to the joint parameters in the feature
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function of ¢;(¥,H,X), which contains the free param-
eters in both ASR and its downstream processing subsys-
tems, the main topic in Section V-B.

A. Learning Feature Weights in the
Log-Linear Model

The size of free parameters of the log-linear model, i.e.,
the set of feature weights denoted by w = {w;} in (10), is
usually small. These parameters can be trained by directly
maximizing the utility function or the evaluation metric
associated with the final output of the SCIP system on a
development set; i.e.,

w= aurgmaxEvaul(IA/(w,X)7 Y*) (13)

where Y™ is the reference, and /I;'(w,X) is the final system
output obtained through the decoding process according
to (5) given input X and (initialized) feature weights w
Eval() is the evaluation metric, shown in the second col-
umn of Table 1 for various SCIP systems, which scores the
quality of Y. When the number of weights is relatively
small, the weights w = {w;} are usually tuned by methods
such as minimum error rate training (MERT) [67] and
Powell’s search or hill climbing [12]. When there are a large
number of such feature weights, since the evaluation-
metric-derived training objective is usually not convex,
numerical optimization algorithms such as perceptron and
margin infused relaxed algorithm (MIRA) are often used as
reported in the literature [99], [100].

B. Learning Joint Parameters Inside the
Feature Functions

Compared with feature weights w, the number of pa-
rameters I' in the feature functions or component models
¢i(¥,H,X) in (10) is typically much larger. For example,
there are hundreds of thousands of multivariate Gaussian
models in a modern acoustic model, and millions of
n-grams in a language model. Therefore, learning param-
eters of these models presents a significant challenge. In
brief, there are two major problems when designing the
learning method. First, given the large number of free
parameters, proper regularization is important to achieve
robust parameter estimation. Second, in order to learn the
many free parameters, large-scale training materials are
necessary; hence, efficiency and scalability in the optimi-
zation technique are critical.

Below we will present parameter regularization, fol-
lowed by the application of an efficient and scalable meth-
od based on EBW algorithm for optimizing the parameters
in feature functions.

1) Regularization and the Training Criterion: As a power-
ful technique in machine learning, regularization is ap-

plied to control the complexity of the model, where the
most common regularization methods are based on the
norm of the parameters [9]. However, for the model of (7),
since most of the component models are probabilistic, KL-
divergence-based regularization also fits the need well. KL
regularization has been studied in the machine learning
community. The study of [2] uses KL regularization for
sparse coding, and shows that KL regularization retained
the desirable pseudo-sparsity characteristics of L1 regular-
ization while being differentiable. In training SCIP-related
systems, KL regularization effectively prevents the new
parameters from being too far away from a constant prior
model, which was found effective experimentally [38].

We encounter both continuous-density Gaussian mod-
els (e.g., in the acoustic model of ASR) and discrete distri-
bution models in common speech-centric information
systems (e.g., transition probabilities of HMM and lan-
guage models for ASR and many types of distributions in
MT, IR, and NLU models). For the Gaussian distributions
in ASR, the KL regularization is defined as

KL($[) = ZKL (N7IIN:) (14)

where we denote by 1 the set of Gaussians and N; the ith
Gaussian distribution, e.g.,

_1 1 _
plx; p, 2) o | X Zexp (—E(x — ) E  (x - ,u)) (15)
The KL divergence between two Gaussians is

KL(N[IN) =

N =

(tr(zlzo) () E e~ o)
detEo
— hl(detE) — k>. (16)

On the other hand, we denote by 0 the set of all pa-
rameters in discrete distributions. To simplify the nota-

tion, O is formed as a matrix, where its elements {0[7} are
probabilities subject to X;0;; = 1, e.g., each row is a pro-
bability distribution.

The KL regularization of discrete distributions is de-
fined as the sum of KL divergence over the entire discrete
parameter space

KL(8°||6) = 17)

ZZH log
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Then, the overall KL regularization becomes

KL(L?||T) = KL($°[[b) + KL(8°[8).  (18)

Given the regularization, the objective function to be
maximized in training is

O(T') =log U(T) — 7 - KL(I°||T") (19)

where the prior model T° can take the maximum-
likelihood trained model without joint discriminative
training. 7 is a scaling factor controlling the regularization
term, e.g., 7 =0 results in no regularization. In practice,
different values of 7 could be assigned to KL(°||1p) and
KL(6°]|0) to accommodate the difference between dyna-
mic ranges of KL distances of continuous distribution and
discrete distribution, respectively.

We now describe how the objective function of (19)
can be optimized.

2) Basics of the EBW Algorithm: Here we briefly review
the EBW algorithm and demonstrate how it can be applied
to optimizing some specific forms of the objective
function.

Baum-Eagon inequality [6], [7] gave the parameter
estimation formula to iteratively maximize positive-
coefficient polynomials of random variables that are sub-
ject to sum-to-one constants. Gopalakrishnan et al. [32]
extended the algorithm to handle rational functions, i.e., a
ratio of two polynomials, which is commonly encountered
in discriminative training.

Consider a set of random variables p = {p;} that are
subject to the constraint of Xjp; = 1. Assume that g(p)
and h(p) are two positive polynomial functions of p.
Then, a growth transformation (GT) of p for the rational
function r(p) = g(p)/h(p) can be obtained through the
following two steps, which will iteratively optimize the
value of r(p).

1) Construct the auxiliary function

(20)

where p’ are the values from the previous ite-
ration. Increasing f guarantees an increase of r,

i.e., h(p)>0 and r(p)—r(p’) = (1/h(p)) x
(f(p) — f(P")
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2) Derive GT formula for f(p)

L)) B
pi = " i lp—p ' (21)
Ty A

j ! Opy p=p'

where D is a smoothing factor.

The EBW algorithm was originally proposed for
discriminative learning of discrete distributions. Later,
Axelrod et al. [16], Gunawardana and Byrne [33], and
Normandin [76] extended it to discriminatively train con-
tinuous density distributions such as Gaussian models,
leading to substantial success in ASR [41], [72].

3) Learning Discrete Distributions: The EBW algorithm
can be applied to learn discrete feature parameters by op-
timizing the objective function (19). Since maximizing
0(0) is equivalent to maximizing ®®, we transform the
original objective function O(8) into the following objec-
tive function:

R(0) = U(B)e TKLE1O) (22)

In order to optimize 0, i.e., the set of discrete param-
eters, we substitute (1), (10), (12), and (18) into (22), drop
terms that are irrelevant to optimizing 0, and obtain R(8)
in a rational function form (see the derivation steps in

Appendix I)
(23)

where

ZZZ‘PW' (Y,H,X)C(Y)
@:HH@"
Sl

are all positive polynomials of 8. Therefore, we can follow
the two steps of EBW to derive the GT formulas for 0.
We now use SLT as a concrete example to discuss the
EBW reestimation formula for the phrase translation mod-
el of MT in the remaining part of this section. In phrase-
based translation, the input sentence is segmented into K
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phrases, and the source-to-target forward phrase (FP)
translation feature is scored as

(PFP(H, YaX) = Hp(ykmk) (24)
k

where hj, and y, are the kth phrase in the recognition
hypothesis H and translation hypothesis Y, respectively.
As shown in Table 1, C(Y) takes the form of
SR BLEU(Y,,Y’) for SLT. Using the EBW derivation
steps provided in Appendix II, we obtain the reestimation
formula for updating the following parameters (probability
of translating the source phrase i to the target phrase j):

. Zr ZH, ZY, Yep (Hr, Yy, 1,5 ) + U(e/)TFPpg + D,'p;i
Pi Z; Zr ZH ZY, yep (Hr, Yry1y1,j) + U(GI)TFP + D;
(25)

where 0’ is the model obtained from the immediately pre-
vious iteration 7pp = 7/wpp, and

Yep (Hy, Yy, 1,1,j) = Py (Y, Hi|X,) - [BLEU(Y,,Y;) — U,(6')]
> Uhge =13, =)) (26)

k

in which the utility function U,(') is the expected BLEU
score for sentence r using models from the previous itera-
tion; i.e.,

U.(0") = Py(Y,[X,)BLEU(Y,,Y;). (27)
Y,

The smoothing factor set of D; according to the Baum-
Eagon inequality is usually far too large for practical use
[32]. One general guide for empirically setting the smooth-
ing factor D; is to make all updated probabilities positive.
Following [38], we compute

Diden = 33 > > max(0, —yp(H,, Y,,1,1,j)) (28)
i r H Y,

which ensures that the denominator of (25) is positive. We
also compute

Di,nor = max
]

{Zr ZHr ZY,prj/FP(HHYHraivj)} (29)
ij

that guarantees that the numerator is positive also. Then,
D; is set to be the maximum of these two values

Di - maX{Di,nora Di,dcn}- (30)

To gain insight into the desirable properties of the
EBW reestimation formula of (25), let us first compare the
phrase model’s training formula of SLT and that of regular
text-based MT. That is, if the recognition hypothesis is
replaced by the true speech transcription Hy, SLT is re-
duced to MT and so should the related EBW reestimation
formulas. This can be verified by analyzing the model up-
dating formula in (25) and (26). To this end, we first
eliminate summation over H, in (25). Then, since H; is a
deterministic (true) transcription of X,, we have
Py (H!|X,) = 1. This leads to

Py (Y;, H|X,) = Py (Y,|H} )Py (H;|X,) = Py (Y,|H).

Thus, the EBW reestimation formula of (25) for SLT is
reduced to

o Zr ZY, TFP (Hja Yra T, ivj) + U(BI)TFPPS + Dipl{j
P S 2y, ee (B Yo, 1,) + U(O) e + D,
(31)

which is exactly the same as the EBW reestimation formula
developed in [38] for text-based MT.

Further insight can be gained by comparing (31) for
MT to (25) for SLT to appreciate how the ASR’s behavior is
automatically taken into account when training the phrase
translation model for SLT. It is clear from (25) that the
estimator in such jointly trained SLT considers possible
phrases in all ASR hypotheses as potential source phrases.
These include the phrases in incorrect ASR outputs, which
nevertheless may result in good translation as driven by the
right utility function. This desirable property becomes
even clearer in (26), which computes a modified fractional
count for the phrase pair. According to (26), the fractional
count will be positive if the resulting translation is good, as
measured by its BLEU score being better than average.
This is consistent with the intuition about a good estima-
tor. The actual value of the fractional count depends also
on how likely the translation is (conditioned on the recog-
nition hypothesis), which is measured by Py (Y,|H,), and
how likely the recognition hypothesis is, which is mea-
sured by Py (H,|X;). All these intuitive dependencies are
reflected in (26) through the factor of Py (Y,,H,|X,) =
Py (H/|X;)Py (Y, |H,). Therefore, the EBW estimate auto-
matically implements this desirable and intuitive notion:
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as long as a particular translation is reasonably accurate
(better than average and not necessarily the top one), all
phrase pairs that contribute to this translation, as denoted
by Zil(h. =iy, =j) in (26), will receive positive
fractional counts according to (26). The size of the counts
is the product of the likelihood of the translation given the
recognition hypothesis and the likelihood of the hypothesis
given the speech utterance (not necessarily the most accu-
rate ASR hypothesis), according also to (26). Then, such
positive fractional counts help boost the translation proba-
bility of that phrase pair according to (25).

Similar EBW reestimates are derived for other discrete
models, such as the n-gram language model, and the dis-
crete parameters in the feature functions used in the SLU,
voice search, and other SCIP systems. These reestimation
formulas also offer intuitive interpretations in their respec-
tive application domains, just like the interpretations pro-
vided to the phrase translation probability of SLT as
detailed above.

4) Learning Gaussian Distributions in ASR: Using SLT as
an example again and following similar derivation steps to
those presented in [41] and [37], we establish a set of EBW
reestimation formulas for the Gaussian parameters in the
Gaussian-mixture HMM-based speech recognition sub-
system within any SCIP system. Taking the mean vector of
the ith Gaussian distribution as an example, we write
down the reestimation formula as (32), shown at the
bottom of the page, where

,VC(HY7 Yr7 T, i7 t) = P’l];' (YV? HV|XV)
[BLEU(Y,, ¥}) — Un(¥)] - 3, (£)  (33)

in which U,(1) is computed similarly to (27), and

Yim, () = Py (¢ = iX, Hy) = Z Py (qlX: Hy) (34)
q:q.=i

is the occupation probability of HMM state i at time t of
the rth sentence.

By analyzing the model update formulas of (32) and
(33), it is clear that the Gaussian means in the ASR model
are trained to avoid producing recognition hypotheses that
may lead to poor translation for SLT (or poor understand-
ing for SLU, or poor IR in voice search in which cases,
BLEU would be replaced by F-measure or NDCG, respec-
tively). Here is why: According to (33), the modified frac-

1. Build the baseline system to initialize { T, w }.

2. Decode an N-best list or a lattice for training corpus using
the baseline system, compute quality measure C (Y, ¥;).

3. SetI’'=I,w =w.

4. Train parameters in the feature functions
a. Go through the training set.
i. Compute Py, (Y, H,|X,) and U,(T") .
ii. Accumulate statistics {y}.
b. Update:T' - T.
Train feature weights: w' — w (MERT/ MIRA/ Perceptron).
Test { T, w } on the validation set.
Go to step 3 until training converges.
Pick the best { T, w } on the validation set.

® oL

Fig. 3. Ssummary of the end-to-end optimization procedure for
training a complete SCIP system.

tional count 7 will take a large negative value if
Py (Y,, H|X,) is large and the resulting translation has a
low or at least below-average BLEU score. On the other
hand, the model parameters will not be penalized much
for producing recognition errors as long as the resulting
translation quality is not affected much (or staying about
average making the value of [BLEU(Y,, Y*) — U, ()] close
to zero). In contrast to the conventional discriminative
training methods such as MPE/MWE that treats all errors
equally, the reestimation formula of (32) takes into ac-
count the end-to-end translation (or understanding or
voice search) performance when training the acoustic
model. Hence, different ASR errors are treated differently
in terms of their impact on the ultimate goal of the SCIP
task. This style of training gives the possibility to auto-
matically dismiss certain types of errors so long as they can
be tolerated by the MT (or NLU or IR) subsystem. This
helps to strike a more balanced tradeoff with other errors
that would affect MT (or NLU or IR) more negatively.

C. Iterative Training Process for End-to-End SCIP
System Optimization

We now put together the full end-to-end optimization
procedure for training a complete SCIP system. Since the
parameter sets I' and w affect the training of each other,
we train them iteratively. That is, at each iteration, we first
fix w and update I', and then we retrain w given the new I'.
In order to track the training progress, a validation set is
used to determine the stop point of training. At the end, I’
and w that give the best score on the validation set are
selected as the final parameter set. Fig. 3 provides a sum-
mary of the entire training procedure. Note that steps 2
and 4 are parallelizable across multiple processors.

_ Zr EH, ZY, Zt Y6 (Hy, Y1y i, )X + U(‘V)ﬁ“? —+ Di/‘ﬁ

Hi = -
Zr ZH, ZY, Zt Ye(Hr, Yry 10y t) + U("bl)T + D
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VI. EXPERIMENTS AND ANALYSIS

In this section, we review a set of works published in the
literature, which either supported or actually implemented
various aspects of the end-to-end and joint-optimization-
based approach to the design and learning of SCIP systems
presented so far in this paper. We focus our attention
mainly on the experimental evidence and evaluations that
demonstrated the feasibility and effectiveness of the
approach.

A. Spoken Language Translation

The initial proposal of using translation evaluation
metrics to train both ASR and MT parameters in an SLT
system was due to [94], where a primitive implementation
and experimental evaluation showed promising results.
The SLT scoring or decision function was developed based
on Bayesian analysis on the joint ASR and MT compo-
nents. The analysis led to the decision variable, used in
SLT decoding, as a function of acoustic scores, source lan-
guage model scores, and translation scores. A discrimina-
tive learning technique was further developed based on the
decision-feedback principle that jointly learns the param-
eters in the source language model (used in ASR) and the
MT subsystem in the overall SLT system. The SLT eval-
uation experiments were conducted on the International
Workshop on Spoken Language Translation (IWSLT)
DIALOG 2010 database. The experimental results demon-
strated the effectiveness of this approach. Compared with
the baseline system that assumes no ASR to MT interaction
and no ASR uncertainty, the improved SLT system raised
the BLEU score by 2.3 points, about half coming from the
use of a combined posterior score from both ASR and MT
subsystems (while keeping the original separate ASR and
MT subsystem training, but generating an n-best list of the
ASR output and using it in the downstream MT) and the
remaining half from the joint training of the two
subsystems.

The optimization criterion used in [94] was the poste-
rior probability of the target text given the source speech
signal, and the gradient descent was used to carry out the
optimization process. The posterior probability is not the
direct SLT evaluation metric of BLEU and this shortcom-
ing was overcome in the more recent work of [40] and
[38], both of which directly took BLEU as the optimization
objective, as we presented in Section IV. The gradient—
descent method of optimization, which took as many as
50 iterations to converge in training, was also improved
to the EBW-based technique, with one magnitude fewer
iterations to run in training. The optimization frameworks
in the work of both [40] and [38] are two special cases of
the more general framework we presented in Sections IV
and V. The evaluation experiments were conducted on
two tasks: 1) an IWSLT 2011 benchmark task where the
EBW-based optimization technique on MT produced the
best Chinese-to-English translation result on translating

TED talks; and 2) Europarl German-to-English MT task
where the same EBW-based technique leads to 1.1 BLEU
point improvement over the state-of-the-art baseline
system.

B. Spoken Language Understanding

While most of the SLU methods, which are reviewed in
the recent book [98] and in Section IV-B, have taken the
“divide and conquer” approach that separates the ASR
“front—end” and the NLU “back—end,” we draw attention
to some notable exceptions here. In [86], Wang et al.
questioned the conventional wisdom that better speech
recognition accuracy is a good indicator for better SLU
accuracy. Experimental evidence was provided that higher
WERs may correlate with better slot filling accuracy as
long as model training criteria match the optimization ob-
jective for understanding. Specifically, the experiments
were conducted in the ATIS domain of SLU using the
composite HMM/CFG. The use of domain knowledge and
grammar library in the language model produced a higher
WER (7.6%) in ASR than the use of a trigram language
model trained with more data (WER of 6.0%), but slot
filling understanding error rate is lower (8.8% versus
9.0%). A similar kind of divergence between the interme-
diate ASR word errors and the ultimate understanding
errors was also found in earlier work of [74] and [25].

In a more recent work on the ATIS intent determina-
tion task, a decision-feedback learning method using a
quantity correlated with intent classification accuracy was
successfully applied to learn both the language model of
the ASR component and the maximum-entropy model of
the text classification component in the overall SLU system
[89]. The jointly trained system produced some ASR errors
but it performed better than the system assuming no ASR
errors. The framework presented in Sections IV and V
more systematically explores joint training of the system
components. The objective functions are also more directly
correlated with the performance metrics, which are ap-
plied not only to SLU but also to SLT, voice search, and
other SCIP systems. Moreover, the optimization tech-
niques are more principled and more general.

C. Voice Search

Like other SCIP systems, most of the existing voice
search methods discard the uncertainty in the ASR output
and the interactions between the ASR and IR subsystems.
One main exception is the very recent work of [59], where
an end-to-end ASR accuracy metric was proposed for voice
search tasks, in the same spirit as the end-to-end perfor-
mance metrics were developed for SLT and SLU. The end-
to-end metric was motivated by the end user’s experience
and is intended to capture how this experience is affected
by various ASR errors.

In the experiments reported in [59], it was shown that
the impact of many types of ASR errors on the voice search
quality is significantly smaller than what shows as the
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sentence error rates. That is, the voice search quality and
ASR errors often are not well correlated. Such experimen-
tal observations offer a strong support to the basic premise
of the end-to-end joint training of the voice search system
as well as other SCIP systems that we have discussed in this

paper.

D. Cross-Lingual Spoken Language Understanding

Porting an SLU service from one language to another is
of tremendous practical value and hence of increasing
interest to both the language understanding and machine
translation research communities recently [57], [104]-
[106]. One approach to addressing this need is to first
translate the (testing) utterances in the second language to
the primary language and then to use the primary lan-
guages SLU models to analyze them [104]. An alternative
approach is to first translate the annotated (training) cor-
pora to the second language, which is costly, followed by
training models from understanding examples in the sec-
ond language. Given the machine translation services that
are broadly available nowadays, the SLU service for the
primary language can be efficiently extended to cover a
variety of other languages with minimal cost using the first
approach. However, a full cross-lingual SLU system con-
sists of multiple components including ASR, MT, and SLU.
Due to the errors introduced in each of the components,
the performance of straightforward cross-lingual SLU in
this approach is far from acceptable. To address this issue,
the framework presented in this paper has provided a
principal solution to jointly train all the components to
achieve an optimal end-to-end performance. Research
along this direction is currently under way by the authors
and their colleagues.

VII. SUMMARY AND
FUTURE DIRECTIONS

In this paper, we organize and analyze a broad class of

SCIP applications in the realm of human language technol-

ogy. These include:

SLT = ASR + MT;

SLU = ASR + NLU;

voice search = ASR + IR;

cross-lingual SLU = ASR + MT + NLU;

cross-lingual voice search = ASR + MT + IR;

spoken dialog (open loop) = ASR + NLU +

DialogControl;

e speech-speech translation =
SpeechSynthesis;

ASR + MT +
which are all enabled by a common component or subsys-
tem of ASR that is in tandem with one or more down-
stream, text-based processing component(s). An overview
of the work in the literature on SLT, SLU, voice search,
and selected other SCIP systems is provided, setting up the
background for a critique of the basic methodology in the
current design of most of such systems.
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Special challenges are examined for optimal construc-
tion of such complex information processing systems with
the error-prone ASR component. Two distinct types of
optimization inconsistency are analyzed: 1) mismatch be-
tween the training and deployment conditions; and 2) de-
viation of the training objective from the evaluation metric
of the full system pipeline.

Aiming to overcome the optimization inconsistency,
we establish a unified statistical framework applicable to
all types of SCIP systems. We focus our technical presenta-
tion on two key aspects of the framework: 1) optimization
objectives; and 2) optimization techniques. We also review
a body of the work in the recent literature that imple-
mented a number of isolated aspects of this general frame-
work and demonstrated its feasibility and effectiveness.
While most previous work on SCIP has focused on joint
decoding with the parameters of component models being
trained disjointly (i.e., without considering their interac-
tions), we emphasize in this paper joint optimization for
the full set of parameters in the overall SCIP system.

As is clear from the reviews and presentation con-
ducted in this paper, SCIP systems are complex with diffi-
cult optimization problems in their design and learning.
While some progress has been made, many challenges re-
main. First, prosody is an important aspect of the speech
signal, interacting with both ASR and its downstream
components strongly. How to optimally embed prosody in
the framework presented in this paper [e.g., designing
tightly coupled features ¢;(¥,H,X) in (10)] has by no
means an obvious solution. Second, how to acquire a large
amount of supervised training data for optimizing SCIP
systems is more difficult than that for optimizing separate
ASR or text-based MT, NLU, and IR systems. While, in
principle, end-to-end two-way parallel data are sufficient
for the full SCIP system training, practical difficulties of
associating the end-to-end data and labels may necessitate
three-way parallel data collection, which is very costly. In
practice, it may be feasible to first train the individual
components separately, then to apply the end-to-end joint
optimization approach to fine-tune the models. Using pro-
per regularization described in this paper, the end-to-end
training can be achieved with a small amount of three-way
parallel data. Third, in practical usage scenarios of SCIP
systems, users may have the desire not only for having the
final system’s output but also for observing some interme-
diate results. For example, in the SLT system, it is desira-
ble to show the end users, who are often ignorant of the
target language, not just high-quality translated target
language but also the ASR results on the source language
with reasonably low ASR error rates. To fulfill such desire,
the objective function in end-to-end learning may be more
complicated than described in Section IV. Fourth,
successful exploration and exploitation of the equivalence
of generative and log-linear discriminative models [43] has
the potential to further extend the feasibility of current
EBW-based learning strategy to attack more challenging
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problems in the SCIP system design and optimization.
Fifth, despite the best effort to overcome it, there still
remains some degree of inconsistency between the
training objective, as exemplified in (3) and (19), and
the decision variable in decoding, as exemplified in (5).
Integration of a minimum Bayes-risk decoding framework
[31] into the current end-to-end optimization strategy
holds promise to eliminate this final piece of inconsisten-
cy. Finally, in light of the recent advance in deep learning
methods that have dramatically cut down the ASR error
rate [17], [44], [92], it is highly desirable to extend the
end-to-end optimization approach for the SCIP systems
presented in this paper based on Gaussian-HMM ASR
subsystems to incorporate the potentially new generation
of ASR based on deep networks. B

APPENDIX I
DERIVATION STEPS FOR (23)

Here we show the derivation steps leading to the
rational-function form of (23) for the transformed training
objective function R(f).

Substituting (10) into (12) and then into (1), we obtain

9):%E;exp{2wi loggoi(Y,H,X)}C(Y)

(35)
where Z = EYEH exp{Z}wi lOg QOI(Y,H,X)}
Further algebraic manipulations yield
U(o) Sy om exp{log IL " (Y,H,X) }C
Sy g exp{log[L ¢ (Y, H,X)}
_ Sy Sl (r X0 6

ZyZHHiSDi (Y,H,X)

On the other hand, we rewrite (17) to obtain

KL(6°||6) = ZZ@ log 0 + C (37)

where C is a term irrelevant to optimizing 0. Equation (37)
can be further written into

e T KL(0°)0) _ HHHU l/. (38)

After substituting (36) and (38) into (22), we obtain (23).

APPENDIX II

DERIVATION STEPS FOR (25)

Here we provide the derivation steps leading to the
EBW reestimation formula in (25) for the phrase transla-
tion model parameters in an SLT system.

We start from the transformed objective function R(0)
in (23), follow the first step of the EBW algorithm de-
scribed in Section V-B2, and construct the following auxi-
liary function:

F(6;0') = G(6) - J(8) — H(B)R(H').

Noting only 0, not 0', contains the parameters p;; for
optimization, we obtain

OF(6;0))  G(6)
~ %% 50) +
Op;j %ﬁ()

BIC)
apl}

G(6) —R(6)

where, according to (23), we have

Y H i
1
=wrp—- > _ > [ (¥Y.H X)C(¥)
1 Y H i
Z (k= L3 =1)
r,k
9(6) g 210](0)
%u %q
0> 10 1ogh;
10) ===, :
Pij
1
=7(8)7p; —
Pij
OH(O 1
8—( =wep—- Y Y [ (¥.H,X)
Pi S TH
Z (k. = LYy = j)
rk
Then
OF(0;0'
FODN| (@ weo (0
Pij =0 pl]

1
Z Z’VFP H Y7 l)]) + G(e’)](e’)Tpl] /

ij
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~wepJ (0)H(O) 32y 3oy e (H, Y, 1)) + G(0)] () 7p; + Dpj

Py = > wep] (0)H(6') >y >y yep(H, Y,1,j) + G(6)](¢')T + D

ZY ZH 7FP(H7 Y’iaj) +

- e
Zf ZY ZH’YFP(H7 Y7la]) +H

G(G’) T /
HO) wre " e @)1)
@) n D

(@) wep  wrpJ(0)H(O)

where

’YFP(Hv Yviv]-)

of (21), we obtain the equation shown at the top of the page.

_ Hi@‘i»i(vavX)‘B:B’ .

H(0)

) Z (b = LY = j)
rk

:pe,&y,H|X) -le(y) — u(e)]

[C(Y) -

: Z 1(HYJ< = ivynk = ])
r.k

Substituting the above equation into the EBW formula
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