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ABSTRACT
Location data becomes more and more important. In this
paper, we focus on the trajectory data, and propose a new
framework, namely PRESS (Paralleled Road-Network-Based
Trajectory Compression), to effectively compress trajectory
data under road network constraints. Different from exist-
ing work, PRESS proposes a novel representation for trajec-
tories to separate the spatial representation of a trajectory
from the temporal representation, and proposes a Hybrid
Spatial Compression (HSC) algorithm and error Bounded
Temporal Compression (BTC) algorithm to compress the
spatial and temporal information of trajectories respectively.
PRESS also supports common spatial-temporal queries with-
out fully decompressing the data. Through an extensive ex-
perimental study on real trajectory dataset, PRESS signif-
icantly outperforms existing approaches in terms of saving
storage cost of trajectory data with bounded errors.

1. INTRODUCTION
The advance in location-acquisition technologies has led

to a huge volume of spatial trajectories, e.g., the GPS trajec-
tories of vehicles, each of which is comprised of a sequence
of time-ordered spatial points. As the trajectories are in
huge volume and some points in a trajectory are redundant,
application systems on trajectories have to bear high com-
munication loads and expensive data storage. This is calling
for trajectory compression technologies that can reduce the
storage cost while keeping the utility of a trajectory. In this
paper, we propose a trajectory compression framework un-
der the road network constraints, namely PRESS (Paralleled
Road-Network-Based Trajectory Compression). The main
objective is to achieve a spatial lossless and temporal error-
bounded compression, and meanwhile provide support to
popular LBS applications.
The PRESS framework has five components, namely map

matcher, trajectory re-formatter, spatial compressor, tem-
poral compressor, and query processor, as shown in Fig. 1.
Taking raw GPS trajectories as input, map matcher maps
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each trajectory into a sequence of edges in the road net-
work, which will be reformatted into a spatial path and a
temporal sequence via trajectory re-formatter. Thereafter,
the compression takes place in parallel. The spatial path is
compressed by spatial compressor based on Hybrid Spatial
Compression (HSC) algorithm; and the temporal sequence
is compressed by temporal compressor based on Bounded
Temporal Compression (BTC) algorithm. The compressed
spatial path and compressed temporal sequence are then
passed to query processor to support different application
needs.
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Figure 1: PRESS framework

Different from existing works, we consider both the com-
pression ratio and the utility of the compressed trajectories.
In general, the higher the compression ratio, the lower the
quality of the compressed trajectory, which directly affects
data utility. Consequently, it is challenging to propose a
novel approach to achieve a high compression ratio with
high quality compressed trajectories, especially under road
network constraints.

PRESS tackles this issue from three different angles. First,
it observes that the spatial path and the temporal infor-
mation of a trajectory have different features and hence it
strategically separates the spatial path from the temporal
information when presenting a trajectory. The clear separa-
tion allows us to compress the spatial path and the temporal
information separately. Second, a lossless spatial compres-
sion algorithm HSC is proposed to effectively compress the
spatial path using significantly less space without losing any
spatial information. It has two stages. The first stage com-
pression is based on shortest paths. Given a sub-trajectory
Tsub from edges ei to ej , if Tsub is exactly the same as the
shortest path from ei to ej , Tsub will be replaced by (ei,
ej). As in many cases we tend to take shortest paths in
real life, this compression can effectively reduce the number
of edges we have to maintain for each trajectory. The sec-
ond stage compression is based on frequent sub-trajectory
(FST) coding. The main idea is to decompose a trajectory
into a sequence of FSTs, each of which is represented by a
unique code (e.g., Huffman code). The more popular the
FST, the shorter the corresponding code and the more the



space savings. Meanwhile, PRESS designs a temporal com-
pression algorithm BTC to compress temporal information
with bounded errors. BTC is very flexible, and it can com-
press the temporal information based on the error bounds
specified by different applications. As a summary, the loss-
less nature of the spatial compression and the error-bounded
nature of the temporal compression guarantee the high qual-
ity of the compressed trajectories. Last but not the least,
PRESS also supports many popular spatial-temporal queries
commonly used in location-based services (LBSs) such as
whereat, whenat and range queries without fully recovering
the compressed trajectories.
An extensive experimental study has been conducted on a

real trajectory dataset to validate the effectiveness and effi-
ciency of PRESS. According to the results, PRESS can save
up to 78.4% of the original storage cost. Let |T | be the length
of a trajectory T . Both HSC and BTC have the compression
time complexity of O(|T |), and hence the compression time
complexity of PRESS is O(|T |). As compressed temporal
sequences share the same format as original ones, BTC does
not require any decompression process. In other words, the
decompression time complexity of PRESS is equal to that
of HSC, i.e., O(|T |). In addition, PRESS can significantly
accelerate spatial-temporal queries. In brief, PRESS outper-
forms the state-of-the-art approaches in terms of the com-
pression ratio, the time consumption and the acceleration of
spatial-temporal queries.
The rest of the paper is organized as follows. Section 2

presents our new approach to represent a trajectory. Sec-
tion 3 and Section 4 introduce the detailed spatial compres-
sion and temporal compression respectively. Section 5 ex-
plains how to support some common queries via compressed
trajectories. Section 6 presents our experimental studies.
Section 7 reviews related work. Finally, Section 8 concludes
this paper with some directions for future work.

2. TRAJECTORY REPRESENTATION
In our work, a road network is defined as a directed graph

G = (V,E), where V is the vertex set and E is the edge
set. The weight on an edge e, denoted as w(e), can be
physical distance, travel time or other costs according to
different application context. A trajectory is the path that
a moving object follows through space as a function of time.
Consequently, it contains both spatial information and tem-
poral information. Traditional approaches represent trajec-
tories via a sequence of n triples in the form of ((x1, y1, t1),
(x2, y2, t2), · · · , (xn, yn, tn)), where (xi, yi) is the position in
the 2D Euclidean space at time stamp ti.
We propose a different representation of trajectories in

the road network. Instead of combining positions and time
stamps together like existing approaches do, we separate the
locations from time stamps. In other words, a trajectory is
represented by a spatial path and a temporal sequence. This
clear separation enables us to design different compression
approaches for spatial information and temporal information
respectively, so that both spatial compression and tempo-
ral compression can achieve high compression effectiveness
without constraining each other. In the following, we will
explain how to represent the spatial information and tem-
poral information via spatial path and temporal sequence,
respectively.
The spatial path of a trajectory in a road network is a

sequence of consecutive edges. As shown in Fig. 2, a trajec-

tory sequentially passes edges e15, e16, e13, e6, and e3. Con-
sequently, it can be represented by a spatial path, in the
format of ⟨e15, e16, e13, e6, e3⟩. Note trajectories can start
from and/or end at any point of an edge, not necessarily an
endpoint. For example, the example path ends at a point
along edge e3. We will tackle this issue via the temporal
sequence presented in the following.
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Figure 2: Sample trajectory in a road network

The temporal information of a trajectory defines the time
when an object locates at a specific location. For example,
the triple (xi, yi, ti) used in the traditional representation
tells that the object is located at position (xi, yi) at time
stamp ti. However, this representation does not facilitate
the spatial queries in road networks. Consider a common
query that asks for the average moving speed of an object
obj during a period [ti, tj ] with 1 ≤ i < j ≤ n. Positions
(xi, yi) and (xj , yj) do not capture any distance information
and we have to explore the road network to calculate the
distance traveled by obj from ti to tj . Consequently, we
propose to use the tuple (di, ti) to capture the temporal
information. To simplify the discussion, di in this paper
represents the network distance the object has traveled at
the time stamp ti since the start of the trajectory. More
generally, di can represent other weight information of the
edges, e.g., travel time or other costs based on application
needs.

Back to the example trajectory shown in Fig. 2. There are
five time stamps denoted as t1, t2, t3, t4, and t5, respectively.
Based on our newly proposed temporal sequence represen-
tation, the temporal information of our example trajectory
will be represented by five tuples. They are ⟨0, t1⟩, ⟨w(e15)+
∆1, t2⟩, ⟨w(e15) + w(e16), t3⟩, ⟨w(e15) + w(e16) + w(e13) +
∆2, t4⟩, and ⟨w(e15) +w(e16) +w(e13) +w(e6) +∆3, t5⟩, as
shown in Fig. 3(a). The first tuple means the object starts
the trajectory at time stamp t1 and the corresponding dis-
tance it has traveled since start is zero (i.e., d1 = 0), the
second tuple means the object has traveled w(e15)+∆1 dis-
tance at time stamp t2 with w(e15) representing the distance
of edge e15, and so on. Note the last tuple does not locate
at any endpoint, and the same can happen to the first tuple
too.

Although we are not the first one to represent the spatial
path of a trajectory via edges, we want to highlight that
our approach to separating the spatial information from the
temporal information when representing trajectories is very
unique. Former approach [10] uses the vertices in a road
network (i.e., the endpoints of edges) to capture the spa-
tial information of trajectories, together with the time when
the object passes those vertices. However, the time stamps
when the object passes those vertices do not cover the entire
temporal information. For example, a taxi might stop for
a long time somewhere between two vertices. By retaining
two time stamps of the vertices, we can only assume that the
taxi drives at a low uniform speed on the edge, which is not
the real case. Our approach can easily tackle this issue. As
illustrated in Fig. 3(b), we understand that the taxi moves
slowly from t1 to t2, gets stuck from t2 to t3, and then moves



slowly again from t3 to t4.
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Figure 3: Temporal sequence

3. SPATIAL COMPRESSION
After presenting the formal representation of trajectories,

we are ready to present Hybrid Spatial Compression (HSC),
the two-stage spatial compression algorithm. It takes an
initial spatial trajectory T = ⟨e1, e2, · · · , en⟩ as an input,
and performs shortest path compression on the first stage
and then frequent sub-trajectory compression on the second
stage. Existing works use n original sampled positions to
keep track of a trajectory, and propose to use m (< n) po-
sitions for capturing the trajectory in order to cut down the
storage cost. However, all the existing approaches based on
this idea cannot fully capture the spatial path traveled by
the trajectory. Consider our sample trajectory. Its spatial
path can be represented by six vertices, i.e., v9, v10, v11, v7,
v3, and v4. If we reduce the vertex number from original six
to three and represent the trajectory by v9, v11, and v4, we
can only tell that in this trajectory, object obj moves from
v9 to v4 via vertex v11 but we cannot tell how the object obj
moves from v9 to v11, and then from v11 to v4. Consider the
movement from v11 to v4, the object obj could take path
(v11, v12, v8, v4), or (v11, v7, v3, v4), or (v11, v7, v8, v4),
which is uncertain.
Although existing works propose various metrics to guar-

antee the similarity between the compressed trajectories and
the original ones, none is error-free. They trade in the accu-
racy of the trajectories’ spatial information for the saving of
the storage cost. Alternatively, our two-stage HSC approach
is error-free. The compressed trajectory returned by HSC,
although taking less space, captures the spatial path of the
original trajectory as it is. In HSC, we make two assump-
tions. i) Objects tend to take the shortest path instead of
longer ones in most if not all cases; and ii) the trajectories
are not uniformly distributed in the road network and there
are certain edge sequences which are passed through more
frequently.

3.1 Shortest path compression
Given a source s and a destination e, most of the time

we will take the shortest path (SP) between s and e if all
the edges roughly share the similar traffic condition. Under
this assumption, we can predict that most, if not all, of the
trajectories consist of a sequence of shortest paths. Our first
compression is motivated by this observation, and takes full
advantage of shortest paths.
We assume that all-pair shortest path information is avail-

able via a pre-processing of the road network. This can be
achieved by any of the well known shortest path algorithms.
If there are several shortest paths between a pair of edges,
we only record one of them to eliminate any ambiguity dur-
ing compression. We assume SP (ei, ej) denotes the short-
est path from edge ei to edge ej , and maintain a structure
SPend(ei, ej) recording the last edge (the edge right before

ej) of SP (ei, ej) for each pair of edges. Take the partial
road network shown in Fig. 4 as an example. Assume the
number in the middle of each edge indicates the network dis-
tance of the edge, then SP (e15, e7) = ⟨e15, e12, e9, e10, e7⟩,
SPend(e15, e7) = e10, SPend(e15, e10) = e9, and so on.
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Figure 4: Example of shortest path compression

Due to the space limitation, we use a running example
to illustrate the SP compression. The main idea is to skip
the detailed sub-trajectory ⟨ei, ei+1, · · · , ej⟩ if it matches ex-
actly the shortest path from ei to ej , i.e., replacing SP (ei, ej)
with ei and ej only. As shown in Fig. 4, the original trajec-
tory T = ⟨e15, e12, e9, e6, e3⟩. Initially, the SP compression
algorithm enrolls the first edge e15 into T ′. Thereafter, it
scans the subsequent edges one by one. For the second edge
e12, e15 and e12 are adjacent and the process continues. For
the third edge e9, SPend(e15, e9) = e12, so edge e12 can be
skipped. For the fourth edge e6, SPend(e15, e6) = e9 and
hence e9 is also skipped. Next, SPend(e15, e3) = e6, so e6 is
skipped. Finally, the algorithm enrolls the last edge e3 into
T ′ to finish the process and replaces T with T ′ = ⟨e15, e3⟩.
As it scans each edge in T once, its complexity is O(|T |).
The main idea of SP compression is to replace the shortest
path between two pair of edges with those two edges, and
there are multiple ways to implement it. The SP algorithm
proposed in this work is based on greedy algorithm, and
it actually generates the largest compression ratio during
shortest path compression, as stated in Theorem 1.

Theorem 1. The greedy algorithm is the optimal algo-
rithm resulting in the largest compression ratio during SP
compression.
Proof. Please refer to the Proof of Theorem 1 in our
technique report [22]. �

The decompression process is straightforward. Given a
compressed trajectory T ′ = ⟨e1, e2, · · · , em⟩, we sequentially
scan each pair of edges (ei, ei+1). If they are not adja-
cent, we complement the trajectory with the shortest path
SP (ei, ei+1). As (e15, e3) is the only pair and e15 is not adja-
cent to e3, we complement T with SP (e15, e3) = ⟨e15, e12, e9,
e6, e3⟩. In order to obtain SP (ei, ej), we only need to visit
SPend(ei, ej), SPend(ei, SPend(ei, ej)) and so on. This step
takes as many times as the length of the shortest path and
hence the time complexity of the decompression process is
also O(|T |).

3.2 Frequent subtrajectory compression
As we assume previously, trajectories are not evenly dis-

tributed within the road network and edges in a road net-
work are not accessed uniformly. In other words, certain
edge sequences are much more popular than others in terms
of frequency. If we are able to locate the very popular sub-
trajectories, named frequent sub-trajectory (FST), then we
can use certain coding scheme to compress them and to re-
place them in the trajectories with the corresponding codes.

Given a large set of trajectory data, the concept of FST
makes sense. Consequently, the compression based on FST



is not effective if the underlying dataset is small. In ad-
dition, we also assume the trajectory dataset is periodical.
That means if we collect all the trajectories of all the cars
moving within a city for a duration of several months, the
dataset of one day should be similar to the dataset of an-
other day. Under this assumption, we can locate FSTs based
on a subset of the complete trajectory dataset, which cor-
responds to the training process in data mining. Note that
the input training dataset is a subset of the complete trajec-
tory dataset after the SP compression. For example in our
experiments, we take the trajectories corresponding to one
day as a training dataset, perform SP compression for each
trajectory in the training dataset, and then pass them to the
second stage for FST mining. In the following, we explain
how to mine FSTs, how to decompose a trajectory based
on the mined FSTs, and the detailed decoding process, the
three main steps of FST compression.

3.2.1 FSTs mining
The problem of mining FSTs is similar to the frequent

pattern mining problem [6, 14, 25] in data mining. In this
work, we propose a novel approach to locate FSTs. We
treat sub-trajectories as strings and use Huffman coding [8]
to compress them. The more frequent a sub-trajectory is
(based on its frequency in the training set), the shorter the
corresponding code is and hence more savings in terms of
storage cost are expected when compressing the trajectories.
The basic idea is to first build a Trie [9] based on the train-
ing set to represent sub-trajectories as strings, next form
an Aho-Corasick automaton [1] to enable a decomposition
of a trajectory into a set of sub-trajectories, and then use
Huffman coding to compress the trajectories.
In order to facilitate the understanding of our approach,

we assume that an input set TD returned by the first-
stage SP compression has three compressed trajectories, as
shown in Fig. 5. Theoretically, we can locate all the sub-
trajectories with length ranging from minimum 1 to max-
imum trajectory length (e.g., ranging from 1 to 6 in our
example). However, we set a threshold θ to only consider
the sub-trajectories with their length not exceeding θ. Take
the real dataset used in our simulation as an example. On
training dataset, by setting θ as any number from 1 to 20,
our approach is able to save around 50% to 70% storage
consumption but the time complexity of our approach is
proportional to θ. Although we cannot formally find an op-
timal setting for θ as it is highly dependent on the training
dataset and real trajectory dataset, a small value of θ al-
ready can achieve significant storage saving with reasonable
time complexity. In the following discussion, we set θ = 3,
which is the optimal length for our trajectory dataset.

 TD = { Ts1=‹e1, e5, e8, e6, e3›,

             Ts2=‹e1, e5, e2, e1, e4, e8›,

             Ts3=‹e2, e1, e4, e6›}

Sub-trajectories = 

{‹e1, e5, e8›, ‹e5, e8, e6›, ‹e8, e6, e3›, ‹e6, e3›, ‹e3›, ‹e1, e5, e2›, 

‹e5, e2, e1›, ‹e2, e1, e4›, ‹e1, e4, e8›, ‹e4, e8›, ‹e8›, ‹e2, e1, e4›, 

‹e1, e4, e6›, ‹e4, e6›, ‹e6›} 
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Figure 5: Example Trie

For the given input dataset TD, we first locate all the
sub-trajectories with length not exceeding θ (i.e., 3). Note
we locate one sub-trajectory starting from each edge, so

those sub-trajectories near the tail of each trajectory may be
shorter than θ. As illustrated in Fig. 5, they are ⟨e1, e5, e8⟩,
⟨e5, e8, e6⟩, ⟨e8, e6, e3⟩, ⟨e6, e3⟩, ⟨e3⟩, ⟨e1, e5, e2⟩, ⟨e5, e2, e1⟩,
⟨e2, e1, e4⟩, ⟨e1, e4, e8⟩, ⟨e4, e8⟩, ⟨e8⟩, ⟨e2, e1, e4⟩, ⟨e1, e4, e6⟩,
⟨e4, e6⟩, and ⟨e6⟩. We then build a Trie based on all identi-
fied sub-trajectories. For any node n in the Trie, the path
from root to n represents a sub-trajectory Tsub with the
number shown in the link from its parent node indicating
the frequency of Tsub. Here, the number next to each node
is the unique ID for the node. Take node 18 as an exam-
ple. The string formed by the nodes along the path from
root to node 18 is e1e4e6, i.e., corresponding to the sub-
trajectory ⟨e1, e4, e6⟩. The number 1 shown in the link from
node 16 to node 18 represents the frequency of ⟨e1, e4, e6⟩,
i.e., it only appears once in the training dataset. In addi-
tion, we want to make sure that the nodes in the first level
(the level right below root) correspond to all the edges in
the original road network. This design is to facilitate the
later decomposition process which will be explained later.
Take our sample Trie as an example. Assume our origi-
nal road network consists of 10 edges (i.e., e1, e2, · · · , e10),
only edges e1, e2, e3, e4, e5, e6, and e8 present as the first
edge in the located sub-trajectories. Consequently, we add
the rest edges (i.e., e7, e9,and e10) to the first level with
the corresponding frequency set to zero, as shown in Fig. 5.
Trajectory decomposition. Once FSTs are identified and
the Trie is constructed, we need to decompose an input tra-
jectory into a set of identified FSTs. We borrow the basic
idea from Aho-Corasick string matching algorithm. Infor-
mally, the algorithm constructs a finite state machine that
resembles a trie with additional links between the various
internal nodes. The automaton is depicted in Fig. 6, with
all the extra links represented by dashed lines. To be more
specific, each extra link issued from a node n1 to another
node n2 that is the longest possible suffix of the string cor-
responding to n1. For example, for node 15 (e2e1e4), its
suffixes are (e1e4) and (e4). The longest of these that exists
in our example is (e1e4), i.e., node 16. That is why the extra
link issued from node 15 points to node 16.
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Figure 6: Aho-Corasick automaton

Now we explain how to decompose an input trajectory
into a sequence of identified sub-trajectories. It treats the
trajectory as a string, and scans the characters (i.e., edges)
one by one sequentially. At each step, the current node is
extended by finding its children, and if none of the children
matches the character, finding its suffix’s children, and if
that does not work, finding its suffix’s suffix’s children, and
so on, finally ending in the root node if nothing has seen
before.

Algorithm 1 lists its pseudo code. First, it initializes all
the parameters. Here, n indicates the current node of the
automaton A, i indicates the position of the edge of the tra-
jectory currently evaluated, S is an auxiliary stack holding
all the matched nodes in A, and Res is the result set which
consists of a sequence of the sub-trajectories decomposed



Algorithm 1 Trajectory decomposition

Input: Aho-Corasick automation A, a compressed trajectory
T ′ = ⟨e1, e2, · · · , ej⟩;
Output: a sequence of sub-trajectories;
Procedure:

1: n← root(A); i← 1; S ← ∅; Res← ∅; l← 0;
2: while i ≤ |T ′|(= j) do
3: child←Match(n, ei);
4: if child ̸= −1 then
5: push(S, child); n← child; i++;
6: else if n.Linkextra ̸= NULL then
7: n← n.Linkextra;
8: else
9: n← root(A);
10: while n← pop(S) ̸= ∅ do
11: if l = 0 then
12: insert(Res, Tsub(n)), l← |Tsub(n)| − 1;
13: else
14: l−−;
15: return Res;

from the input trajectory T ′. It then scans the edges in T ′

one by one sequentially. For each edge ei, it first checks
whether a child of the current node matches ei via the func-
tion Match(n, ei). If a match occurs, Match(n, ei) returns
the child node. We then push it to S, set it as the current
node, and proceed to the next edge by increasing i (lines
4-5). If a mismatch occurs indicated by −1 returned by
Match(n, ei), we continue the checking at n’s suffix node if
any via the extra link Linkextra (lines 6-7) or the root node
(lines 8-9). Recall that for each edge in the original road net-
work, our automaton has a corresponding node in its first
level. Consequently, a match can be definitely achieved for
each edge in the input trajectory and our decomposition is
converged. After the first WHILE-loop (lines 2-9), stack S
shall have |T ′| (=j) nodes, with each corresponding to an
edge in T ′.
Next, we recover the sub-trajectories represented by the

nodes in S. Note that the initial Aho-Corasick string match-
ing algorithm is a kind of dictionary-matching algorithm
that locates elements of a finite set of strings (the “dictio-
nary”) within an input text. As it matches all patterns
simultaneously, the returned patterns may have overlaps.
However, our purpose for sub-string searching is to decom-
pose the trajectory T ′ into a sequence of sub-trajectories and
hence each edge in T ′ shall present exactly once in one sub-
trajectory. The reason that, when a matched node is found,
we do not output the corresponding string but maintain it
in the stack S is to avoid the overlapping among different
sub-trajectories. As each node in S matches one edge in T ′,
our basic idea is to find the longest matched sub-trajectory
from each edge backward. In other words, given a node n
with |Tsub(n)| = l, the next (l−1) nodes in S can be ignored.
This process is performed by the second WHILE-loop (lines
10-14). Finally, the algorithm returns the sub-trajectories
maintained in Res to complete the decomposition. The time
complexity of this decomposition process is O(|T ′|).
We use an example to illustrate the trajectory decomposi-

tion process. Assume T ′ = ⟨e1, e4, e7, e5, e8, e6, e3, e1, e5, e2,
e10⟩. First, for e1, the first edge in T ′, it finds a match
at node 1, and pushes node 1 to S with S = {1}. Sec-
ond, for e4, the second edge in T ′, it finds a match at node
16 and pushes node 16 to S with S = {16, 1}. For e7,
the third edge of T ′, it cannot find a match with any child

of node 16, and even the child of node 20 (node 16’s suf-
fix node). Consequently, we trace-back to the root node
and find a match at node 22 and update S to {22, 16, 1}.
The process repeats until all the edges are processed with
S = {24, 10, 2, 1, 9, 6, 5, 4, 22, 16, 1}. Next, we start the sub-
trajectory recovery step by popping out nodes from S. First,
node 24 is popped out, and Tsub(24) = ⟨e10⟩ is added to Res.
As |Tsub(24)| = 1, it does not skip any other node in S. Sec-
ond, node 10 is popped out and Tsub(10) = ⟨e1, e5, e2⟩ is
added to Res. As its length is three, it skips the next two
nodes popped out from S, i.e., nodes 2 and 1, but evalu-
ates node 9. It adds Tsub(9) = ⟨e8, e6, e3⟩ to Res. Again,
the next 2 nodes (i.e., nodes 6 and 5) are skipped and we
evaluate node 4 which triggers the insertion of ⟨e5⟩. This
process also continues until S is empty. Finally, Res =
{⟨e1, e4⟩, ⟨e7⟩, ⟨e5⟩, ⟨e8, e6, e3⟩, ⟨e1, e5, e2⟩, ⟨e10⟩}. Accordingly,
T ′ is decomposed into six sub-trajectories, corresponding to
nodes 16, 22, 4, 9, 10, and 24, respectively, as shown in
Table 1.
Encoding procedure. Finally, we present an encoding pro-
cedure which uses Huffman coding to represent the identi-
fied FSTs. The main idea is to code each node in Trie. The
more frequent a node is, the shorter the code is expected to
be. Consequently, we construct a Huffman tree based on all
the nodes according to the node frequency, except the root
node. Huffman tree is a binary tree. A node can be either
a leaf node or an internal node. An internal node contains
a weight that is a summation of its child nodes’ weights,
and two links to two child nodes. As a common convention,
bit ‘0’ represents following the left child and bit ‘1’ repre-
sents following the right child. Assume the initial Trie has n
nodes, a corresponding Huffman tree has up to n leaf nodes
and n− 1 internal nodes.
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Figure 7: Example Huffman tree

Initially, all nodes are leaf nodes, and the process essen-
tially begins with the leaf nodes containing the frequencies
of the Trie nodes they represent. Then, a new node whose
children are the two nodes with smallest frequencies is cre-
ated, such that the new node’s weight is equal to the sum of
the children’s weight. With the previous two nodes merged
into one node, and with the new node being now considered,
the procedure is repeated until only one node remains. For
the Trie shown in Fig. 5, the corresponding Huffman tree is
depicted in Fig. 7. Here, a rectangle represents a leaf node
which corresponds to a node in the Trie, and a circle rep-
resents an internal node with the number inside the circle
indicating the weight. With the help of Huffman tree, each
node of the Trie (i.e., each identified sub-trajectory) can be
represented by a unique code. For easy understanding, we
list some sample sub-trajectories and their unique codes in
Fig. 7. For example, ⟨e1, e5, e8⟩ is represented by node 3
in the Trie, and its corresponding code is 00101; ⟨e1, e4⟩ is
represented by node 16 in the Trie, and its corresponding
code is 0111. Based on Huffman coding, the code for the



example trajectory T ′ is listed in Table 1.
As a summary, FST compression first locates all the sub-

trajectories with their length not exceeding θ from the train-
ing set, and constructs a Trie. It then builds an Aho-
Corasick automaton and a Huffman tree based on the Trie.
For a given compressed trajectory T ′, it decomposes T ′ into
a sequence of sub-trajectories with the help of the automa-
ton, and then uses the Huffman codes of the corresponding
sub-trajectories as a compressed format to represent T ′. The
decoding process is straightforward. Given a binary code, it
first recovers the sequence of nodes in Trie represented by
the binary code with the help of Huffman tree, and then re-
trieves the sub-trajectories represented by those Trie nodes
to recover the trajectory. The time complexity of the first
step is in the scale of the length of the binary code. Given
the fact that the binary code has |T | as the upper bound,
the first step has O(|T |) as the time complexity. The time
consumption of the second step is the length of the SP com-
pression result, which is up bounded by |T |. Consequently,
the time complexity of this step is also O(|T |). Combining
two steps, the time complexity of decoding process is O(|T |).
HSC takes advantages of above two spatial compression

techniques, and is expected to further improve the compres-
sion effectiveness. We assume the all-pair shortest path, the
Trie, the automaton and the Huffman tree are constructed in
advance. Because the compression and decompression time
complexity of both SP compression and FST compression is
O(|T |), the compression and decompression time complexity
of HSC is O(|T |).

Table 1: FST compression of trajectory T ′

input T ′ ⟨e1, e4, e7, e5, e8, e6, e3, e1, e5, e2, e10⟩
decomposition ⟨e1, e4⟩, ⟨e7⟩, ⟨e5⟩, ⟨e8, e6, e3⟩, ⟨e1, e5, e2⟩, ⟨e10⟩
Trie nodes 16, 22, 4, 9, 10, 24

Huffman code 0111, 01010000, 1111, 01001, 00110, 0101001
Result 011101010000111101001001100101001

4. TEMPORAL COMPRESSION
We propose to represent the temporal information of a

trajectory in the form of (di, ti). This representation is stor-
age consuming, as it suffers from the same scale as the orig-
inal GPS sampling number. However, on the other hand,
each tuple (di, ti) describes when the object is at a specific
location. The compression of this information will cause
the loss of certain information. Consequently, we propose
two metrics to bound the inaccuracy that could be caused
by the temporal compression, namely Time Synchronized
Network Distance (TSND) and Network Synchronized Time
Difference (NSTD), as formally defined in Definition 1 and
Definition 2. To simplify our discussion, we assume the
trajectories mentioned in the following are in the format
of ((d1, t1), (d2, t2), · · · , (dn, tn)). For a given T and a given
time stamp tx (∈ [0, tn]), the corresponding distance dx the
object has moved at tx can be approximated by linear in-
terpolation via function Dis(T, tx). For example, Dis(T, tx)

with ti < tx ≤ ti+1 returns di +
(di+1−di)×(tx−ti)

(ti+1−ti)
. Similarly,

for a given T and a given dx (∈ [0, dn]), the corresponding
time tx when object moves dx distance along T can be ap-
proximated by linear interpolation via function Tim(T, dx).

4.1 Error metrics
Before we present our BTC algorithm, we first introduce

the error metrics TSND and NSTD in the following.

Definition 1 (Time Syn. Network Dis. (TSND)).
Given a trajectory T and its compressed one T ′, TSND mea-
sures the maximum difference between the distance object
travels via trajectory T and that via trajectory T ′ at any time
slot with TSND(T, T ′) = Maxtx(|Dis(T, tx)−Dis(T ′, tx)|).
�

Definition 2 (Network Syn. Time Dif. (NSTD)).
NSTD defines the maximum time difference between a tra-
jectory T and its compressed form T ′ while traveling any
same distance with NSTD(T, T ′) = Maxdx (|Tim(T, dx)−
Tim(T ′, dx)|). �

To facilitate the understanding of these two metrics, we
depict an example in Fig. 8. Given a sequence of temporal
tuples T = ((d1, t1), (d2, t2), · · · , (dn, tn)), T can be plotted
on a d-t plane. Then, TSND measures the maximum dif-
ference between T and T ′ along d-dimension, and NSTD
measures the maximum difference between T and T ′ along
t-dimension. We want to highlight that both TSND and
NSTD are meaningful only when the compressed trajectory
T ′ keeps exactly the same spatial information as the original
trajectory T ′, which is guaranteed by our HSC algorithm.

(a) TSND
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|Dis(T,tx)-Dis(T’,tx)|

tx (b) NSTD
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t
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|Tim(T,dx)-Tim(T’,dx)|
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dx

Figure 8: TSND and NSTD

The metric TSND is a variant of Time Synchronized Eu-
clidean Distance (TSED) [16, 20] metric which measures the
distance of two Euclidean space trajectories. Given a Eu-
clidean space trajectory Te = ((l1, t1), (l2, t2), · · · , (ln, tn))
and its compressed one T ′

e = ((l′1, t
′
1), (l

′
2, t

′
2), · · · , (l′m, t′m))

with li = (xi, yi) and l′i = (x′
i, y

′
i) representing two Eu-

clidean points, TSED returns the maximum Euclidean dis-
tance between a point li and a point l′j with (li, tx) ∈ Te and
(l′j , tx) ∈ T ′

e, for any tx ∈ [0, tn].
Theorem 2. Given an original trajectory T and a com-

pressed trajectory T ′, if T ′ is compressed via previously in-
troduced HSC algorithm, TSND(T, T ′) ≥ TSED(T, T ′).
Proof. Please refer to the Proof of Theorem 2 in our tech-
nique report [22]. �

4.2 Bounded Temporal Compression
After introducing metrics TSND and NSTD, we are ready

to present the Bounded Temporal Compression (BTC) algo-
rithm. As T = ((d1, t1), (d2, t2), · · · , (dn, tn)) can be plotted
as a polygonal line on d-t plane, it forms a Euclidean space
trajectory in d-t space. Consequently, BTC can be trans-
formed to Euclidean trajectory compression, which has been
well-studied in the literature. Among available solutions,
we adopt an algorithm similar to Before Opening Window
(BOPW) [16] because of its excellent performance and the
ability to address online trajectory compression issues. The
only difference is that the original algorithm purely consid-
ers TSED metric, while our implementation considers TSND
and NSTD metrics.

The main idea is that for a given trajectory T , maximal
tolerated TSND τ and maximal tolerated NSTD η, BTC
scans the tuples in T sequentially. For a tuple (di, ti), it at-
tempts to skip (di+1, ti+1) by linking (di, ti) and (di+2, ti+2)



directly. In other words, we attempt to replace the initial
sub-trajectory Ti = ((di, ti), (di+1, ti+1), (di+2, ti+2)) with
T ′
i = ((di, ti), (di+2, ti+2)). To evaluate whether this re-

placement is valid, we calculate NSTD and TSND values
between Ti and T ′

i . If TSND(Ti, T
′
i ) ≤ τ and NSTD

(Ti, T
′
i ) ≤ η, this attempt is valid and we can safely skip

(di+1, ti+1), and then start the next attempt to skip (di+2, ti+2)
by linking (di, ti) and (di+3, ti+3) directly. Otherwise, the
attempt is invalid and (di+1, ti+1) cannot be skipped. An in-
valid attempt terminates the evaluation of tuple (di, ti), and
initiates the evaluation of the last successfully attempted tu-
ple (di+1, ti+1). The process repeats until all the edges are
evaluated.
The original implementation of BOPW has a time com-

plexity of O(|T |2). We improve it to O(|T |) with the help of
a novel concept namely angular range. Given two points pi
= (di, ti) and pi+1 = (di+1, ti+1) in a d-t space, we assume
BOPW keeps pi in T ′. No matter how T ′ looks like, it must
satisfy τ and η, i.e., TSND(T, T ′) ≤ τ and NSTD(T, T ′) ≤
η. In other words, the difference between T and T ′ along
d dimension at ti+1 is bounded by τ and the difference be-
tween T and T ′ along t dimension at di+1 is bounded by η.
Consequently, given a vertical line segment segv centered at
di+1 with |segv| = 2τ , T ′ must intersect segv. As shown in
Fig. 9(a), segv bounds an angular range R1 that T ′ shall fall
within. Similarly, given a horizontal line segment segh cen-
tered at ti+1 with |segh| = 2η, T ′ must intersect segh. As
shown in Fig. 9(b), segh actually bounds an angular range
R2 that T ′ shall fall within. Considering both η and τ , the
angular range is shrunk to the intersection between R1 and
R2, i.e., the shaded angular range RA depicted in Fig. 9(c).
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Figure 9: Illustration of angular range

In order to facilitate the presentation, we assume function
RA(pi, Sp, τ, η) returns the angular range centered at point
pi formed by all the points of set Sp, i.e., RA(pi, Sp, τ, η) =
∩∀p∈SpRA(pi, {p}, τ, η). Take points depicted in Fig. 9(d) as
an example, RA(pi, {pi+1}, τ, η) = RA1 , RA(pi, {pi+2}, τ, η)
= RA2 , and RA(pi, {pi+1, pi+2}, τ, η) = RA1 ∩RA2 .
With the help of angular range, we can compress T =

⟨p1, p2, · · · , pn⟩ based on BOPW with O(|T |) time complex-
ity, and its pseudo code is listed in Algorithm 2. It main-
tains a pointer index pointing to the last point pindex along
T that has been enrolled into T ′, and an angular range R
centered at pindex that bounds all the possible rotations T ′

can make right after pindex. Initially, R is set to straight an-
gle [−π

2
, π
2
] which captures the full half-plane after pindex.

Thereafter, R gets shrunk by the points evaluated. For each
point pi that is scanned by the algorithm, we check whether
pi is located inside the current angular range R centered

at pindex via the boolean function FallInside(R, pindex, pi)
and there are two possible outputs. If pi is within R, the
points pindex+1, pindex+2, · · · , pi−1 can be skipped. We fur-
ther shrink the current range R by pi and start the evalu-
ation on pi+1. Otherwise, pi−1 cannot be skipped and we
append pi−1 to T ′. Meanwhile, a new angular range cen-
tered at pi−1 is initiated. Take Fig. 9(e) as an example.
Suppose index = i and currently we are evaluating point
pi+3. If pi+3 is located at the point of p′i+3, pi+3 is within
the angular range R (i.e., the shaded area). We can shrink R
based on RA(pi, {pi+3}, τ, η) and then continue the process.
If pi+3 is located at the point of p′′i+3, it is located outside
the current R. Consequently, the algorithm will enroll pi+2

into T ′, set index to (i + 2) and a new angular range R to
straight angle, and then continue the process.

Algorithm 2 Bounded Temporal Compression

Input: a trajectory T = ((d1, t1), (d2, t2), · · · , (dn, tn));
Output: a compressed trajectory T ′;
Procedure:

1: index← 1, T ′ ← pindex, R← [−π
2
, π
2
];

2: for i← 2 to n do
3: if FallInside(R, pindex, pi) = 1 then
4: R← R ∩RA(pindex, {pi}, τ, η);
5: else
6: Append(T ′, pi−1); R← [−π

2
, π
2
]; index← i− 1;

7: return T ′;

5. APPLICATIONS ON COMPRESSED TRA
JECTORY

The main purpose of trajectory compression is to use less
space to store the trajectories. Consequently, whether the
compressed trajectories can support various LBS applica-
tions is not the main focus of different compression ap-
proaches. As PRESS compresses the trajectories in such a
way that the spatial paths are captured exactly and the tem-
poral information loss is bounded by TSND and NSTD, we
can decompress the trajectories for LBS applications. How-
ever, it is still desirable that the compressed trajectories
can support certain, if not all, applications without being
fully decompressed. In the following, we demonstrate in de-
tail that the compressed trajectory can support whereat,
whenat and range, three common queries used by many
LBSs, and briefly introduce some other queries PRESS can
support. whereat(T, t) returns a location along the trajec-
tory T where an object is located at time t, whenat(T, x, y)
returns a time stamp when an object is located at (x, y)
while traveling along T , and range(T, t1, t2, R) checks whether
trajectory T passes the region R during time period t1 to
t2.
whereat Query. Given a trajectory T , its compressed form
T ′ returned by PRESS, and a time slot ti, let Dis(T, ti) =
di, Dis(T ′, ti) = d′i, whereat(T, ti) = pi and whereat(T

′, ti) =
p′i. Based on the fact that |di −d′i| ≤ TSND(T, T ′) guaran-
teed by BTC, we have |whereat(T

′, ti) − whereat(T, ti)| =
|pi − p′i| ≤ TSND(T, T ′). This is because |pi − p′i| refers
to the shortest distance from pi to p′i, and |di − d′i| refers
to the distance from pi to p′i along trajectory T . Obviously,
|pi − p′i| ≤ |di − d′i| ≤ TSND(T, T ′).

Given one original trajectory, we assume its spatial in-
formation is represented by n edges ⟨e1, e2, · · · , en⟩ and its
temporal information is captured bym (di, ti) tuples. Query
whereat(T, t) needs to first locate d based on t (i.e., Dis(T, t)
= d) and then locate e based on d. Consequently, it visits



m
2

temporal tuples and n
2
edges on average.

Given a compressed trajectory T ′, whereat(T
′, t) query

still needs to locate d′ based on t. Assume the temporal

compression ratio is |T |
|T ′| = β, it needs to scan m

2β
tuples

on average. Thereafter, it needs to locate the point along
T ′ corresponding to the distance d′. As this process re-
lies on some additional information, we first introduce the
auxiliary structures. We assume certain distance informa-
tion is embedded in Trie to facilitate the query processing.
For each node n in Trie, it stores the distance of Tsub(n),
denoted as Tsub(n).d. For example, node 16 keeps the dis-
tance of Tsub(16) = ⟨e1, e4⟩, and node 9 keeps the distance
of Tsub(9) = ⟨e8, e6, e3⟩. Note that the sub-trajectories cap-
tured by Trie might not be a real sub-trajectory of any orig-
inal trajectories, as Trie takes all the compressed trajec-
tories of SP compression as input. Consequently, we need
to decompress the sub-trajectory Tsub(n) based on SP de-
compression in order to calculate the distance Tsub(n).d. In
addition to this node distance, we also assume the distance
of all-pair shortest paths is maintained by the shortest path
table.
Now, we are ready to explain how to locate the answer

point along the trajectory based on a given d′. Given a bi-
nary code, we maintain an accumulative distance dacu and
recover the sequence nodes ni one by one following the FST
decompression process. For each recovered node ni, we in-
crease dacu by Tsub(ni).d. In addition, we need to check
whether the hop from Tsub(ni−1) to Tsub(ni) is seamless.
To achieve this, we get the character (i.e., edge) represented
by ni−1 (i.e., the node right before ni), that is the last edge
of Tsub(ni−1); and we get the first character along the path
from root to ni, that is the first edge of Tsub(ni). We then
check the shortest-path table to get the shortest distance
between them, which also contributes to dacu. After recov-
ering a node ni, we check whether dacu < d′. If yes, the
process continues to recover the next node ni+1; otherwise,
the answer point must locate in Tsub(ni). Assume Tsub(ni)
is in the form of ⟨ej , ej+1, · · · , ej+u⟩. We then scan the edge
and its immediate follower one by one. Initially, we check
ej and ej+1, get their shortest distance from the distance
table, and add it to dacu. If dacu < d′, it proceeds to ej+1

and ej+2. Otherwise, the answer point must locate at the
shortest distance from ej to ej+1. We then fully recover the
shortest path and find the answer point. Assume that the
SP compression ratio is α, and the FST compression ratio
is γ. It on average recovers n

2αγ
Trie nodes, and checks γ

2
edges within the located sub-trajectory. Given the fact that
α > 1 and γ > 1, the time complexity is reduced.
whenat Query. Before introducing whenat, we show that
whenat is error-bounded by NSTD, i.e., for a trajectory T
and its compressed form T ′ compressed via PRESS, |whenat

(T, x, y)−whenat(T, x, y)| = |ti−t′i| ≤ NSTD(T, T ′). Given
an input point p = (x, y) and T , whenat assumes p is a point
along T and locates p to an edge of T . Then, it derives
the network distance d traveled along T from the starting
point until p, based on which the corresponding time ti can
be located along the temporal information of T . As HSC is
errorfree, T ′ captures the exact spatial information as T and
the corresponding d′ derived based on T ′ and (x, y) equals
d. As guaranteed by Definition 2, |ti − t′i| ≤ NSTD(T, T ′).
Similar as whereat(T, t), whenat(T, x, y) needs to first lo-

cate (x, y) to an edge ej ∈ T along the trajectory such that
(x, y) ∈ ej , derive the distance di traveled along T until the

input point (x, y), and then locate ti along the temporal
representation based on di. On average, it visits n

2
edges

and m
2

temporal tuples. Given a compressed trajectory T ′,
whenat(T, x, y) is processed similarly except it actually vis-
its fewer edges. To facilitate the process, we record an MBR
(Minimum Bounding Rectangle) for each Trie node n and
an MBR for the shortest path of each pair of nodes. When
we recover the nodes one by one, we check whether (x, y) ∈
MBR(n). If (x, y) ∈ MBR(n), we scan Tsub(n) edge by
edge and check whether (x, y) ∈ MBR(ei, ej), assuming ei
and ej are two adjacent edges in Tsub(n). Every time when
(x, y) ∈ MBR(SP (ei, ej)), we retrieve the shortest path
SP (ei, ej) and map (x, y) back to SP (ei, ej). This process
might be repeated a few times as MBRs are much bigger
than SP (ei, ej) and the fact (x, y) ∈ MBR(SP (ei, ej)) does
not guarantee (x, y) ∈ SP (ei, ej). Once we get the distance,
we can locate the time based on compressed temporal se-
quence. As a summary, whenat(T, x, y) spends n

2αγ
+ α+γ

2
time unit on spatial process and m

2β
time unit on temporal

process.
range Query. For boolean range query on an original tra-
jectory T , it first locates d1 and d2 based on t1 and t2 on the
temporal sequences, and then retrieves the spatial segment
Seg between d1 and d2. It then scans Seg edge by edge and
checks whether any edge intersects the query region R. The
process on a compressed trajectory T ′ is similar. Given t1
and t2, it locates d′1 and d′2 as described in whenat query,
and then retrieves points corresponding to d′1 and d′2. As we
maintain the MBRs for all the shortest paths and the sub-
trajectories captured by Trie, we can first check whether an
MBR overlaps with R before recovering the original sub-
trajectories. Its time complexity is the same as that under
whenat query.
Discussion. For all the three queries studied above, the
processing over compressed trajectories demonstrates cer-
tain non-negligible advantages, compared with the process-
ing over original trajectories. We agree that the gain in
terms of performance has a cost of enlarged storage cost,
e.g., the storage cost for maintaining the distance for all-
pair shortest paths and that for maintaining the MBRs for
all-pair shortest paths with both in the scale of |V |2. How-
ever, all these auxiliary structures can be pre-processed and
can be used for a relatively long duration unless the road
network structure changes and/or the movement patterns
of the underlying trajectories change significantly. Com-
pared with the large number of trajectories generated daily
and the long time period of collection we have to maintain,
the extra storage cost incurred by these auxiliary structures
can be well-justified. We will further demonstrate it in our
simulation study to be presented in Section 6.

PRESS also supports other queries commonly used by
LBSs. For instance, it can support queries inquiring trajec-
tories passing near a location point (x, y) within distance d
from t1 to t2 and queries calculating the minimal distance
between two trajectories T1 and T2. Based on these queries,
PRESS can support more advanced applications, such as
traffic flow analysis, behavior mining and so on [26]. We give
more description of this part in our technique report [22].

6. EXPERIMENTS STUDY
In this section, we conduct extensive experiments to demon-

strate the effectiveness and efficiency of PRESS. The exper-
iments are based on real trajectory data from one of the



largest taxi companies in Singapore. Each taxi has installed
GPS, and it reports its locations regularly. In our stud-
ies, we use the trajectories reported within January 2011, in
total 465, 000 trajectories generated by about 15,000 taxis.
The original storage cost of this dataset is 13.2GB. First, we
map the GPS locations using the approach proposed in [21]
to get the spatial path of the trajectories. Then, we project
the sample points onto the spatial path and calculate the
distance from the starting point of the trajectory by linear
interpolation to generate the temporal presentation of the
trajectories1.
In addition to PRESS framework, we implement Map-

matched trajectory compression (MMTC) [10] and Nonma-
terial [4], two state-of-the-art approaches for trajectory com-
pression in road networks, as the representatives of exist-
ing approaches. All the algorithms are implemented with
C/C++ and run on a computer with Intel Core i7-3770 CPU
(3.40 GHz) and 32 GB memory. In the following, we first
evaluate the effectiveness of various approaches by reporting
the compression ratio; next evaluate the efficiency of various
approaches by reporting the time taken; and finally report
the flexibility of various approaches by demonstrating their
capabilities in supporting common LBSs.

6.1 Compression Effectiveness
In the first set of experiments, we first discuss the ef-

fectiveness of our spatial compression algorithm HSC and
our temporal compression algorithm BTC, then compare the
compression effectiveness of various algorithms. We adopt
compression ratio as the performance metric. Given a tra-
jectory T and its compressed form T ′, the compression ratio
is defined as the ratio of T ’s storage cost to T ′’s storage cost,

i.e., |T |
|T ′| .

First, we report the effectiveness of the spatial compres-
sion algorithm HSC. As introduced in Section 3, HSC is a
two-stage process, compressing the spatial path based on
SP compression first and then based on FST compression.
Given a spatial path in a road network, the storage cost of
original trajectory T relies on the sampling rate. The higher
the sampling rate, the more the points T contains with
higher storage cost. However, the sampling rate does not
affect SP compression that much. As shown in Fig. 10(a),
we demonstrate the power of SP compression under differ-
ent sampling rate. Via changing the sampling rate from 1
second/point to 60 seconds/point, the SP compression on
average can achieve a compression ratio of 1.52. It is very
close to the compression ratio of the sampling rate 30 sec-
onds/point, which is also the median sampling rate of the
trajectory dataset we use.
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Figure 10: Compression Ratio of HSC

In the second stage, we compress the spatial path via FST,
with its compression ratio under different θ (i.e., the length

1The source code is available at
https://github.com/RenchuSong/PRESS.

of the sub-trajectories in Trie) reported in Fig. 10(b). Note,
assume T is an original spatial path, T ′ is the compressed
trajectory via SP compression, and T ′′ is the compressed
trajectory via FST compression, the compression ratio re-
ported here is the ratio of T ′′’s storage cost to T ′’s (but not
T ’s) storage cost. We use the trajectory set corresponding
to one day as the training set, and change the θ values from
1 to 20. As shown in Fig. 11(a), the compression ratio im-
proves initially with the increase of θ. However, when θ > 3,
a bigger θ does not help improve the compression ratio. This
is because a larger θ corresponds to a Trie with more nodes,
and hence the Huffman tree has to use more bits to repre-
sent each node. We set θ = 3 in the following experiments.
In real compression applications, the optimal value of θ can
be obtained by attempting to compress a subset of the com-
plete trajectory dataset. Our FST compression can achieve
the optimal compression ratio of 3.05 when θ = 3. In other
words, by combining these two stages (i.e., SP compression
and FST compression), our HSC is expected to have an op-
timal compression ratio of 1.52× 3.05 ≈ 4.64.
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Figure 11: Performance of FST Compression

Recall that for FST compression, we propose a greedy
algorithm to decompose a given trajectory into a sequence
of sub-trajectories. However, there is actually an optimal
approach that results in the maximum compression ratio
based on dynamic programming. Given a trajectory T ′

compressed via SP compression, the main idea is to in-
voke dynamic programming to calculate the splitting so-
lution of T ′. Assume T ′ = ⟨e1, e2, · · · , ei⟩ and Fk is the
minimum storage cost of the prefix k edges of T ′, then
Fk = min∀j<k(Fj +Huf(ej+1ej+2 · · · ek)). Here, Huf(Sjk)
represents the Huffman code length of a string Sjk in the
Trie. Initially, F0 = 0. Thereafter, we can derive the op-
timal splitting point based on dynamic programming. Al-
though this algorithm can generate a compressed trajectory
with minimum storage cost, its time complexity is high. Al-
ternatively, we propose a greedy algorithm, as presented in
Section 3. In order to demonstrate that our greedy algo-
rithm can achieve a performance comparable with that of
dynamic programming but with a much cheaper time cost,
we compare these two approaches in Fig. 11. As observed
from Fig. 11(a), the compression ratio of our greedy algo-
rithm is almost the same as that achieved by dynamic pro-
gramming, with only around 1% difference. However, as
shown in Fig. 11(b), our greedy algorithm is much faster, as
it only incurs around 65% of dynamic programming’s time
on average. Consequently, our choice of greedy algorithm is
well justified.

After presenting the performance of spatial compression,
we are ready to present the performance of temporal com-
pression. As our temporal compression algorithm BTC takes
TSND and NSTD as inputs, we report the compression ra-
tio under different TSND and NSTD settings in Fig. 12(a).
To be more specific, the value of TSND changes from 0, 10,



20, 50, 100, 200, 400, 600, 800, to 1000 (unit: meter), and
the value of NSTD changes from 0, 10, 20, 50, 100, 200,
400, 600, 800, to 1000 (unit: second). It is noticed that
even when TSND = NSTD = 0, BTC can still achieve a
compression ratio of 1.1. This is because around 10% of the
trajectory sampling points tell that the taxi is not moving
(e.g., waiting at a taxi drop-off point, or stuck in a traffic
jam). In general, the larger the TSND and/or NSTD are,
the higher the compression ratio is, which is consistent with
our expectation. For example, when TSND = 1000m and
NSTD = 1000s, the compression ratio is as high as 6.49.
Now considering both spatial compression and temporal

compression, we plot the overall compression ratio of our
newly compression framework PRESS in Fig. 12(b), under
various TSND and NSTD values. We assume the initial tra-
jectory is represented by (x, y, t) tuples. We then re-format
the trajectory as a spatial path and a time sequence, and
invoke HSC to compress the spatial path and invoke BTC
to compress the time sequence based on TSND and NSTD
settings. Our approach is effective. Even when TSND =
NSTD = 0, PRESS still achieves a compression ratio of 2.71
(i.e., can save around 63% storage cost). As TSND and/or
NSTD increase, the compression ratio is also improved. For
example, when TSND = 1000m and NSTD = 1000s, the
compression ratio is 8.52.
Finally, we present the overall compression ratio of all

three algorithms (i.e., our PRESS framework and two com-
petitors) in Fig. 13. Notice that existing works are not
bounded by NSTD and TSND but only by TSED and hence
the results are presented based on various TSED values. It
is very obvious that our approach is able to achieve a much
higher compression ratio than existing ones. The higher the
TSED is, the more significant the advantage of PRESS is.
For example, when TSED = 0, our approach can improve
MMTC’s compression ratio by 64% and it can improve Non-
material’s compression ratio by 43%; when TSED = 600m,
our approach can improve MMTC’s compression ratio by
280% and Nonmaterial’s compression ratio by 199%. We
also use the standard ZIP and RAR algorithm to compress
the trajectory. The compression ratio of ZIP is 2.09, and
that of RAR is 3.78. Although both algorithms are lossless,
the compressed trajectories lose their utility totally. That
is to say, the compressed trajectories have to be fully de-
compressed before use. Moreover, the compression ratio of
PRESS is better than that of ZIP even when TSND = NSTD
= 0, and it beats RAR when TSED > 230m. As a summary,
our approach is very effective in terms of compressing trajec-
tories, which is the main objective of the compression frame-
work proposed in this work. The experimental results well
demonstrate the power of our framework and hence justify
the design.

(a) BTC (b) PRESS

Figure 12: Compression Ratio vs. TSND and NSTD

6.2 Compression Efficiency
Although the main objective of PRESS framework is to

save space, the time complexity is also important. Ideally,
we prefer a compression algorithm that can effectively cut
down the storage cost and meanwhile is time efficient. Con-
sequently, we report the time taken by each algorithm when
compressing trajectories, and we also report the time taken
by each algorithm for decompressing trajectories. It is no-
ticed that MMTC does not support decompression as the
compressed trajectories cannot be recovered.

In terms of trajectory compression, MMTC is the most
time-consuming. The average compression time cost of MMTC
is 196.5 times of PRESS. Moreover, our approach is faster
than Nonmaterial, and it on average only requires 72% of
Nonmaterial’s time. Furthermore, PRESS also outperforms
both ZIP and RAR in terms of time efficiency. It only takes
around 24.6% of ZIP’s time and 13.0% of RAR’s time. For
decompression, our approach consumes 58.7% time of Non-
material, 56.1% time of ZIP, and 74.5% time of RAR on
average. The reason behind is that Nonmaterial contains
arithmetic of real numbers to calculate the timestamps dur-
ing decompression, while our approach only needs to visit
the Huffman tree, Trie and shortest path table for recovery
of the trajectories. Consequently, we can conclude that our
approach is most time efficient, for both compression and
decompression operations.

Some may argue that our approach relies on auxiliary
structures, namely the shortest path table, the AC automa-
tion and the Huffman tree. Here, we want to point out that
these structures are static and they are only constructed
once. For the real dataset we use, they take space of 452MB,
101MB and 121MB respectively, which is absolutely accept-
able for modern computation platforms. Compared with the
storage saving they achieve for compressing trajectories, the
cost of constructing these structures and maintaining these
structures is well justified.

6.3 Supporting LBS applications
As mentioned before, our framework not only can effec-

tively compress the trajectories, but also can support some
popular spatial-temporal queries commonly used by many
LBSs, even when the trajectories are in the compressed
form. In the following, we report their time performance
for supporting different queries. For a given query q, an
original trajectory dataset TD and a compressed trajectory
dataset TD′, let t(q, TD) and t(q, TD′) represent the time
duration taken by processing the query q over the dataset
TD and TD′ respectively. We report the time performance

ratio (i.e., t(q,TD′)
t(q,TD)

) instead of the time duration for each
query.

First, we study the whereat query, with its performance
shown in Fig. 14 under various distance deviations. In gen-
eral, the time performance depends on the distance devia-
tion. The higher the deviation, the higher the compression
ratio and hence the faster the query processing. PRESS is
most efficient, and it on average only takes 26% of the time
spent in original uncompressed trajectory dataset. Com-
pared with its two competitors, PRESS saves around 34%
of MMTC’s time and roughly 28% of Nonmaterial’s time.

Second, we study the whenat query, with its performance
shown in Fig. 15 under various time deviations. Again,
our approach significantly outperforms the other two ap-
proaches. On average, it only incurs 30% of MMTC’s time
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and incurs around 35% of Nonmaterial’s time.
Then, we study the range query and report its perfor-

mance under different accuracy in Fig. 16. Unlike previous
two queries, the range query returns a boolean value and it
is not error bounded under any of the compression scheme
studied in this evaluation. For example, when there are
a large number of trajectories located near the boundary of
the queried spatial range at the queried temporal period, the
lossy temporal compression of our approach and Nonmate-
rial may result in wrong query result. On the other hand,
MMTC is even worse, as it compresses the trajectories in
such a way that it loses both the spatial information and
the temporal information to certain degree. Consequently,
we randomly generate 2, 325, 000 range queries, and then
cluster queries based on the accuracy. Again, PRESS works
the best, and it can save around 14% of the time, compared
with both MMTC and Nonmaterial.
Although PRESS demonstrates excellent performance in

all the above mentioned common spatial queries, it has to
maintain certain auxiliary structures. If we only consider
above three queries, our new framework needs to main-
tain the distance information of all-pair shortest path which
takes around 904MB space, the distance information be-
tween Trie nodes which takes roughly 201MB space, the
MBRs for all-pair shortest path which take 904MB space,
and Trie MBR information which takes another 805MB space.
However, given trajectories in a real road network which is
relatively stable, the overhead of these auxiliary structures
is acceptable, especially when these structures can signifi-
cantly improve the query performance and they can be used
for a long period. We want to highlight that for fair com-
petition, we also maintain several auxiliary structures for
MMTC and Nonmaterial. We give more description of this
part in our technique report [22].

7. RELATED WORK
In this section, we review related work to trajectory com-

pression. They are roughly clustered into two groups, one
to compress a trajectory using line simplification methods
and the other based on map-matching algorithms.

7.1 Trajectory Simplification
Line simplification is to approximate a polyline with a

subset of the vertices from the original one. These algo-
rithms are used to compress Euclidean space trajectories.
Existing line simplification algorithms can be categorized as
either batch model based or online compression. According
to an experimental study [17] that compares the major com-
pression approaches, no approach outperforms others under
all scenarios as they have their pros and cons.
Batch Model Based. Those line simplification methods

falling this category discard some locations with negligible
error from an original trajectory which is already wholly

obtained before the process [26]. The uniform sampling al-
gorithm is an efficient (but not error-bounded) simplifica-
tion method that keeps every ith points and discards others.
The Douglas-Peucker (DP) algorithm [5, 7] approximates
a trajectory by a line segment and recursively selects the
point contributing the biggest error as a split point, until
the trajectory satisfies the error requirement. Quite a few
variants have been proposed to improve the original DP al-
gorithm [15], e.g., replacing the perpendicular distance with
the time synchronized Euclidean distance or a time-distance
ratio metric that considers both spatial and temporal infor-
mation [16], and a bottom-up algorithm that starts from the
consecutive sample points and approximates step by step
by merging the consecutive segments into one line segment
which introduces the least error [12]. The Bellman’s algo-
rithm [2] uses dynamic programming to minimize the “area”
between the original trajectory and the compressed one.
However, the time complexities of the original DP method
and Bellman’s algorithm are O(|T |2) and O(|T |3) respec-
tively. Some improved implementations of DP-variants can
achieve a complexity of O(|T |log|T |), and that of Bellman’s
algorithm can be O(|T |2).

As compared with this category of algorithms, PRESS
also works on batch model. In addition, the complexity of
PRESS is O(|T |), much more efficient than DP-variants and
Bellman’s algorithms. Recently, a Spatial Quality Simplifi-
cation Heuristic Extended approach [18] has been proposed
with the time complexity of O(|T |), achieving a relatively
low error in Euclidean spaces. Different from this approach,
PRESS works in road network spaces, in which we face more
constrains. Furthermore, PRESS is spatial lossless and tem-
poral error-bounded.

Online compression. Algorithms of this category com-
press the trajectories that are being generated, i.e., we need
to make a decision whether the recently received point should
be reserved or not online. The reservoir sampling algo-
rithm [24] uses the replace strategy to keep no more than a
maximal number of sample points to assure that each point
shares the same probability to be kept at last. The sliding
window approach [16, 11], on the other hand, tries to sim-
plify the points within a sliding window with a line. The
sliding window keeps growing until the simplification ex-
ceeds the error limitation. The sliding window approach
also inspires other variations, such as the opening window
approach [16] and Dead Reckoning [23]. Other approaches
argue that a point should be included in the compression
result as long as it reveals significant change of the move-
ment. Given speed and direction error bounds, the STTrace
algorithm [20] uses the concept of safe area to generate a
simplified trajectory. Alternatively, work presented in [16]
explores the speed information and uses the speed differ-
ence of two sub-trajectories as an error metric to determine
whether to reserve a sample point.



Although PRESS focuses on batch model based trajec-
tory compression, the compression procedure scans the spa-
tial path and temporal sequence from head to tail without
tracing back. This means PRESS can be adapted to online
compression. In BTC, we propose a novel angular-range ap-
proach with a time complexity of O(|T |) based on a variant
of the opening window method whose original complexity is
O(|T |2). Additionally, the trajectory compressed by PRESS
can be directly used to answer spatial-temporal queries with-
out being fully decompressed.

7.2 MapMatching Based Compression
This fold of compression methods first projects a tra-

jectory onto a road network using a map-matching algo-
rithm [3, 13, 19, 21], and then reduces the storage of the
trajectory that has been represented as a sequence of road
segments. Here, we review two representatives, Nonmate-
rial [4] and MMTC [10]. Nonmaterial uses the street in-
formation to represent the spatial information. It calcu-
lates the timestamps of the intersections based on the times-
tamps of the original sampled points and the spatial loca-
tions of their snapped projections on the roads, under the
assumption of uniform speed movement. MMTC uses sub-
trajectories through fewer intersections to replace parts of
the original trajectory. Some specific evaluation functions
are introduced during the compression to guarantee the sim-
ilarity between the compressed trajectory and the original
one. The compressed trajectory consists of fewer intersec-
tions, thus the storage cost is reduced.
To the best of our knowledge, Nonmaterial and MMTC

are the only techniques focusing on trajectory compression
in road networks. Different from these two approaches, we
compress the spatial component and temporal component of
a trajectory separately. In the meantime, the spatial com-
pression reduces the storage of a trajectory tremendously
by using the sequential patterns mined from the trajectory
corpus to encode the trajectory. As a result, our approach
achieves a much higher compression ratio with a linear time
complexity. According to the extensive experiments, PRESS
outperforms both Nonmaterial and MMTC in terms of both
effectiveness and efficiency.

8. CONCLUSION
In this paper, we propose a new framework, namely PRESS,

for trajectory compression. To be more specific, PRESS rep-
resents a given trajectory using a spatial path and a tempo-
ral sequence and then employs different algorithms to com-
press the spatial path and temporal sequence, respectively.
We have conducted extensive experiments to evaluate the
performance of PRESS on a real data set, i.e., the Singa-
pore taxi trajectories collected within one month. The sim-
ulation results demonstrate the superior compression power
of PRESS. In the near future, we plan to formalize the selec-
tion of the θ value for FST compression, and we will collect
more types of real trajectories (e.g., pedestrian trajectory)
to evaluate how PRESS works in different application sce-
narios.
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