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Before the date of this concise and all-embracing formulation
of the laws of dynamics there was not available any engine of sufficient

power and generality to allow of a thorough and
exact exploration

of the properties of an ultimate medium, of which the mechanism and
mode of action are almost wholly concealed from view.

—Nature (11 January 1894)

Abstract

Recent analysis of classical algorithms resulted in their axiomatiza-
tion as transition systems satisfying some simple postulates, and in the
formulation of the Abstract State Machine Theorem, which assures us
that any classical algorithm can be emulated step-by-step by a most gen-
eral model of computation, called an “abstract state machine”. We re-
fine that analysis to take details of intra-step behavior into account, and
show that there is in fact an abstract state machine that not only has
the same state transitions as does a given algorithm but also performs
the exact same tests on states when determining how to proceed to the
next state. This enhancement allows the inclusion—within the abstract-
state-machine framework—of algorithms whose states only have partially-
defined equality, or employ other native partial functions, as is the case,
for instance, with inversion of a matrix of computable reals.

Keywords: Abstract State Machines, Partial Functions, Case Statement,
Church-Turing Thesis

1 Introduction

Abstract state machines (ASMs) [14] constitute a most general model of (se-
quential) computation, which can operate on any level of abstraction of data
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structures and native operations. By virtue of the Abstract State Machine
Theorem of [15] (henceforth the “original study”), any algorithm that satis-
fies three “Sequential Postulates” can be step-by-step emulated by an ASM.
These postulates formalize the following intuitions: (I) we are talking about
deterministic state-transition systems; (II) the information in states suffices to
determine future transitions and may be captured by logical structures that re-
spect isomorphisms; and (III) transitions are governed by the values of a finite
and input-independent set of (variable-free) terms.

A careful analysis of the notion of algorithm in the original study, as well
as an examination of the intent of the founders of the field of computability in
[12], have demonstrated that the Sequential Postulates are in fact true of all
ordinary, sequential algorithms, the (only) kind envisioned by the pioneers of
the field.

Our goal in the current endeavor is to refine the previous analysis, axiom-
atization and theorem to take into account the precise set of locations in each
state that are accessed or examined by the algorithm. This may be critical when
dealing, for example, with objects like computable reals, for which inequality
may be only partially computable, so cannot be used indiscriminately. The
proposed refinement should contribute to the belief that ASMs are a universal
model of sequential computation in the very strong sense of precise emulation.

In Section 3, we recapitulate some of the analysis of the classical notion of
algorithm from the above-cited works.

In an effort to be self-contained, we briefly review the three original Sequen-
tial Postulates, ASM programs, and the ASM Theorem in Sections 4 and 5, and
consider how they ought to be modified.

The refined third axiom, restricting exploration, is developed in Section 6
and compared with the original version of bounded exploration. The main
result, that for every algorithm there is a behaviorally equivalent ASM that
explores the exact same set of locations as does the given algorithm, is shown
by construction in Section 7, which includes a definition of what it means to
be “behaviorally equivalent” when we are also interested in precisely which
locations are explored.

Sections 8 and 9 extend the analysis to allow for failed exploration, partial
functions, and multivalued tests. Variants and consequences of the refined ex-
ploration axiom are touched on in Section 10, followed by a brief discussion of
the implications of this work for the Church-Turing Thesis.

But first, we explain the importance of this foundational study for the un-
derstanding of algorithms and computation.

2 Significance

The significance of the ASM Postulates lies in their comprehensiveness. They
formalize which features exactly characterize a sequential algorithm in its most
abstract and generic manifestation. All models of effective, sequential compu-
tation satisfy the postulates, as do idealized algorithms for computing with real
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numbers, or for geometric constructions with compass and straightedge. See
[21] for some examples.

Abstract state machines are a computational model that is not wedded to
any particular data representation, in the way, say, that Turing machines ma-
nipulate strings using a small set of tape operations. The ASM Theorem of the
original study proves that ASMs can express any and all algorithms satisfying
the premises captured by the postulates. For any such algorithm, there is an
ASM program that describes precisely the same state-transition function as does
the algorithm. In this sense, ASMs subsume all other computational models.

There are at least three important reasons for delving into the issue of precise
emulation: universality of ASMs for describing algorithms, fidelity of ASMs
to the inner workings of algorithms, and parsimony of the description of an
emulating ASM.

Universality. The states of standard ASMs always come with an equality
relation between all base-set elements. Furthermore, operations in states are al-
ways total, with partiality represented by explicit values for “undefined”. With
the refinements developed here, one can naturally model all varieties of sequen-
tial algorithms, with total or partial operations, and even with only partially
defined equality (which might vary from initial state to initial state, depending
on the inputs).

Additionally, one can now model system-wide failure authentically: if any
part of the program attempts a zero division, for example, the computation as
a whole gets stuck in an unresponsive state, what we will call a “black hole”.
See Section 8.

Furthermore, the results described herein serve to bolster the belief that
the Sequential Postulates succeeded in capturing all sequential algorithms—
as claimed in the original study—regardless of which model of computation
they may be expressed in, by showing that the postulates also faithfully cover
algorithms that employ native operations that are only partially defined. One
can, for example, work with genuine (infinite-precision computable) reals, in
symbolic form, for which testing for zero is undecidable.

Fidelity. The ASM Theorem presupposes the availability of an equality test,
which is used in the guards of commands in the emulating ASM. This paper
sheds light on how to emulate algorithms even when only limited equality be-
tween values is actually available.

For example, a Gaussian elimination program would test that a pivot element
p is non-zero before dividing an array element a[i, j] by it. Since the program
would include a statement involving the expression a[i, j]/p, the emulating ASM,
as produced by the proof of the ASM Theorem, would include that expression
in conditions that are always evaluated, regardless of the value of p, which is
undesirable. It is clear that there is an ASM that first tests p and only when
p 6= 0 needs to look at a[i, j]/p. And indeed, the emulating ASM constructed in
Section 7 works that way; see Section 8.1.
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[ if j 6= n then

[ if F (i) > F (j) then [F (i) := F (j) ‖F (j) := F (i)]

‖ j := j + 1 ]

‖ if j = n ∧ i + 1 6= n then [i := i + 1 ‖ j := i + 2 ] ]

Figure 1: An abstract-state-machine program for sorting.

Similarly, an algorithm for inverting a matrix of (computable) real (or com-
plex) numbers, by first computing its adjugate (classical adjoint) and then di-
viding through by the value of the determinant, might be expressed in terms
of arithmetic operations on the reals, without ever testing their equality or dis-
equality. Likewise, states might only partially interpret various other function
symbols, besides equality, like division. In particular, in the adjugate matrix
inversion method, only if the determinant is zero ought the result of inversion
be undefined. See Section 8.2.

Parsimony. Querying a state about the values of its locations may be time
consuming and expensive. Why? Because states are abstractions of the data
that are potentially available, whereas, in reality, an implementation may need
to investigate its environment to actually obtain those values, or may need to
invest great effort in reconstructing them. In that case, one would not want the
emulating ASM to explore parts of the state that the original algorithm does
not. But the “normal-form” ASM that is constructed as part of the proof of
the ASM Theorem performs many tests that might not all be necessary for the
determination of the next state.

For example, an algorithm for removing duplicates from a file system may
need to sometimes test equality of gigantic files, but would first check to see
that their recorded sizes are the same. The normal-form ASM, however, would
always check both size and content, despite the tremendous overhead. On the
other hand, the emulating ASM constructed in Section 7 avoids such tests. By
eliminating unnecessary tests, the emulating ASM program is often simpler and
shorter—with no need for human ingenuity to improve the normal-form ASM
obtained directly from the theorem.1

3 Background

The ASM Postulates assert that a classical algorithm is a state-transition sys-
tem operating over first-order structures in a way that is invariant under iso-
morphisms. Thus a state X interprets each function symbol f as an operation

1Cf. the discussion of algorithm equivalence in [2], and the illustration therein of two ASMs
with the same state-for-state behavior.
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over its base set (underlying set, or domain) Dom X , and in that way gives a
meaning JtKX ∈ Dom X to every term t. (Whenever we speak of a “term”, we
will mean a ground term—sans variables.)

An algorithm is a prescription for updating states, that is, for changing
some of the interpretations given to symbols. The essential idea is that there is
a fixed finite set of terms that refer (possibly indirectly) to locations within a
state and which suffice to determine how the state changes during a transition.
The actions taken by a transition are describable in terms of updates of the
form f(ā) 7→ b meaning that b is the new interpretation to be given by the state
to the function symbol f for values ā.

For example, the state of a sorting algorithm may have integers in its base
set, along with some static arithmetic and logical operations. Fixed nullary
functions 0 and n (programming “constants”) can serve as bounds of an array
F , where F is a unary function; in addition varying nullary functions i and j
(programming “variables”) can be used as array indices. Initially i = 0 and
j = 1, and the algorithm proceeds by modifying the values of i and j as well
as of locations F (0), . . . , F (n − 1), by referring to terms F (i) and F (j). See
Figure 1 and Example 3 in Section 5 below.

We adopt most of the analysis of classical algorithms in previous work on
ASMs. In particular, we observe the following points:

• A state (like the “instantaneous description” of a Turing machine compu-
tation) contains all the relevant information, besides the algorithm itself,
needed to determine the next steps.

• The values of “programming variables”, in and of themselves, are mean-
ingless to an algorithm, which is implementation independent. It is the
relationships between values that matter to the algorithm. Accordingly,
a state stores values in its locations in some internal format and provides
the algorithm with access to those values in the form of concrete answers
to queries about their relationships.

• An algorithm must access the state and sometimes change values stored
therein. We speak about this interaction on the precise level of the ab-
straction of the algorithm, independent of any specific implementation of
states. In this sense, the interface between algorithm and state is “public”
and “objective”.

• First-order structures suffice to model all salient features of states. The
only means an algorithm has at its disposal for determining relations be-
tween values stored in a state is via terms.

• Algorithms are expressed by means of finite texts, making reference to the
values of only finitely many terms.

In contrast with the original study, we will not necessarily presume here that
states are always endowed with the equality relation for all pairs of elements of
their base set, nor that states contain values for all function symbols applied
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to all tuples of elements (of the appropriate length) of its base set. These
considerations will be taken up in Section 8.

A classical ASM typically models partial functions by using a special value,
undef, denoting that the argument is outside the function’s domain of definition,
and arranging that all operations be strict, so any term involving a subterm that
is undefined is also undefined. The state of a classical ASMs would return true

when asked to evaluate an expression a[i, j]/p = undef, when p = 0, and so it can
be programmed to work properly, despite the partiality of division. It is usually
an easy matter in applications to include “weak equality” in states, under which
testing for equality of a defined value with an undefined value always yields
undef. But it is, of course, better not to count on a proper implementation,
and to have the model itself enforce faithfulness to the notion of truly partial
functions, which return no value at all and whose domain of definition may be
undecidable. We return to this issue in Section 5.4.

We deal here only with the “classical” type of algorithms, that is to say,
with the “small-step” (meaning, only bounded parallelism) “sequential-time”
(deterministic, no intra-step interaction with the outside world) case, called
“sequential algorithms”. In [3, 4, 5, 6, 7], the analysis of sequential algorithms
was extended to the case when the algorithm may interact with the outside
environment during a step. We do not consider such intra-step interaction with
the outside environment here. But there is also an internal interaction between
(the executor of) the algorithm and the state of the algorithm. In fact, different
implementations of the algorithm may have different implementations (“rep-
resentations”) of the state. Though we abstract from implementation details,
the need for an algorithm to interact with the state remains. This internal
interaction is much simpler than the intra-step interaction with the external
environment analyzed in the cited works, yet goes beyond that of the original
study. Hence the need for this study. See Section 6.1.

Related Work

We are aiming for a model of computation that can faithfully support algo-
rithms for which basic operations may have varying costs involved, and/or for
which their domains of applicability may be unknown or uncomputable. The
foundation built here provides an operational semantics for programming with
objects like computable reals, represented by partial algebras. See, for example,
[23]. There are many implementations of arithmetic with infinite-precision re-
als, including xrc in C (see keithbriggs.info/xrc.html and other links there)
and a Lisp package (www.haible.de/bruno/MichaelStoll/reals.html). See
also [13, 11]. And there are optical models with some arithmetic but no equality
[19].

ASMs have been used to model all manner of programming applications,
systems, and languages, each on the precise intended level of abstraction. See
[10] and the site www.eecs.umich.edu/gasm. AsmL [16], an executable speci-
fication language based on the ASM framework, has been used in industry, in
particular for the behavioral specification of interfaces [1]. ASMs have been
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used in [20] to model the BSS model of computation with real numbers [8].
The work herein provides theoretical justification for the applicability of the
ASM paradigm also to domains with partial functions, and allows for the speci-
fication of programming languages with such features, by means of interpreters
expressed as ASMs.

4 Axiomatization of Algorithms

In this section, we briefly recount the original postulates regarding algorithmic
behavior, taking the output of algorithms explicitly into account. With an eye
on the considerations outlined in the previous section, we refine those postulates.

4.1 Sequential Time

To begin with, algorithms are deterministic state-transition systems.

Postulate I (Sequential Time). An algorithm determines the following:

(a) A nonempty set2 S of states, a nonempty subset2 I ⊆ S of initial states,
and a subset2 O ⊆ S of terminal states.

(b) A next state transition function τ : S \ O → S.

Alternatively, one may think of τ as a partial function τ : S ⇀ S, which
is only defined for non-terminal states. So, we can express that X ∈ S has no
next state by way of τ(X) = ⊥. Terminal states O can come in two varieties,
successful and failing.

This postulate asserts that we are dealing with state-transition systems.3

Having the transition τ depend only on the state means that states must
store all the information needed to determine subsequent behavior. Prior history
is unavailable to the algorithm unless stored in the current state.

Classical algorithms never leave room for choices, nor do they involve any
sort of interaction with the environment to determine the next step.4 Hence,
we analyze only deterministic transition systems here.

4.2 Abstract State

States may be viewed as first-order structures (or “partial algebras” in the
sense of universal algebra). Each state consists of a domain and interpretation
for symbols. All relevant information about a state should be given explicitly
in the state by means of its interpretation of the function and relation symbols

2Or class.
3It is just like the Sequential Time Postulate of the original study, except that this version

insists that there are in fact some initial states (or else there would be no computations) and
also takes into consideration the possibility that an algorithm may halt—whether with success
or with failure—without producing a next state.

4Bounded nondeterminism is dealt with in [17].
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appearing in the vocabulary of the structure. The specific details of the im-
plementation of the data types used by the algorithm should not matter. In
this sense states are “abstract”. This crucial consideration leads to the second
postulate.

Postulate II (Abstract State). The states S of an algorithm are (first-order)
structures, possibly with partial operations, over a finite vocabulary F , such that
the following hold:

(a) If X ∈ S is a state of the algorithm, then any structure Y isomorphic
to X is also a state in S, and Y is initial or terminal if X is initial or
terminal, respectively.

(b) Transitions τ preserve the base set; that is, Dom τ(X) = Dom X for every
non-terminal state X ∈ S \ O.

(c) Transitions respect isomorphisms, so, if ζ : X ∼= Y is an isomorphism of
non-terminal states X, Y ∈ S \ O, then ζ : τ(X) ∼= τ(Y ).

This postulate is justified by the same considerations as in the original study,
namely, the vast experience of mathematicians and scientists who have faith-
fully and transparently presented every kind of static mathematical/scientific
reality as a logical structure. Closure under isomorphism ensures that the al-
gorithm can operate on the chosen level of abstraction and remain oblivious
of the internals of states. So states are “comprehensive”: they incorporate all
the relevant data (including any “program counter”) that, when coupled with
the program, completely determine the future of a computation, but the states’
internal representation of the data is invisible and immaterial to the program.
Vocabularies are finite, since an algorithm must be describable in finite terms,
so can only refer explicitly to finitely many operations.5

Since a state X is a structure, it interprets function symbols in F , assigning
a value b from Dom X to the “location” f(a1, . . . , ak) in X for every k-ary
symbol f ∈ F and for those values a1, . . . , ak in Dom X for which f is defined.
In this way, X assigns a value JtKX in Dom X to terms t over F (as long as all
the symbols in t are defined at the relevant points; see Section 8).

It is convenient to view each state as a collection of the graphs of its oper-
ations, given in the form of a set of location-value pairs, each written conven-
tionally as f(ā) 7→ b, for ā, b ∈ Dom X . Define the update set ∆(X) of state
X as the changed points, τ(X) \ X . When X is a terminal state and τ(X) is
undefined, then we will indicate that by setting ∆(X) = ⊥ (that is, undefined).

An algorithm can make an explicit distinction between successful and failing
terminal states by storing particular values in specific locations of the final state.

5The only differences between this and the original Abstract State Postulate are that
operations may be partial and provision has been made for computations that explicitly halt
in terminal states. In the original study, a computation was viewed as “completed” when a
state transitions to itself. Most quotidian algorithms, however, halt explicitly in an observable
terminal state, a situation that should be distinguished from when algorithm gets “stuck” in
a fixpoint loop.
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We will also need to handle the possibility that an algorithm “hangs”, waiting
helplessly for a response from the state. To distinguish between knowing that
there is no next state, indicated by ∆(X) = ⊥, and not knowing that there
is none, as in this case, we let ∆ also take on a “black hole” value, •. See
Section 8.

The point is that ∆ encapsulates the state-transition relation τ of an algo-
rithm by providing all the information necessary to update the interpretation
given by the current state. But to produce ∆(X), the algorithm needs to eval-
uate, with the help of the information stored in X , the values of some terms.
Later, we will use Γ(X) to refer to the set of these “exploration” terms. The
next postulate will ensure that ∆ has a finite representation and its updates can
be performed by means of only a finite amount of work.

4.3 Bounded Exploration

The original third postulate simply states that there is a fixed, finite set of
ground (variable-free) terms that determines the behavior of the algorithm.

Postulate III (Bounded Exploration). An algorithm with states S over vocab-
ulary F determines a finite set T of critical terms over F , such that states that
agree on the values of the terms in T also share the same update sets. That is,

if X =T Y then ∆(X) = ∆(Y ) , (1)

for any two states X, Y ∈ S.

Here, X =T Y , for a set of terms T , means that JtKX = JtKY for all t ∈ T .
We will express this by saying that structures X and Y agree on the values of
critical terms T . In what follows, we will presume that the set T of critical
terms is closed under subterms.

The intuition is that an algorithm must base its actions on the values con-
tained at locations in the current state. Unless all states undergo the same
updates unconditionally, an algorithm must explore one or more values at some
accessible locations in the current state before determining how to proceed. The
only means that an algorithm has with which to reference locations is via terms,
since the values themselves are abstract entities. If every referenced location has
the same value in two states, then the behavior of the algorithm must be the
same for both of those states. Subsequent actions may include—besides updates
themselves—the act of exploring different locations.

4.4 Classical Algorithms

All classical algorithms satisfy the above postulates. We formalize this observa-
tion in the following definition:

Definition 1 (Classical Algorithm). An algorithm satisfying Postulates I, II,
and III will be called classical.
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In this sense, the traditional notion of algorithm is precisely captured by the
three postulates.

In Section 6, we will revise the third postulate, since we are interested in the
more refined set of explored terms Γ(X), rather than the full set T of critical
terms as in the above version. What we want is a stronger, localized version
of (1), namely:

if X =Γ(X) Y then ∆(X) = ∆(Y ) . (2)

We will actually need both aspects of behavior—exploration, as well as
updates—to be fully determined by the values of terms that are actually ex-
plored. So, in addition, we will demand that

if X =Γ(X) Y then Γ(X) = Γ(Y ) . (3)

5 Abstract State Machines

Abstract State Machines (ASMs) are an all-powerful language for classical algo-
rithms. For convenience, we employ a simple form of ASMs below. (The reader
should bear in mind that richer languages for ASMs are given in [14] and are
used in practice.)

5.1 ASM Programs

Programs are expressed in terms of some vocabulary, which—we may always
assume—includes symbols for the Boolean values (true and false), standard
Boolean operations (¬, ∧, ∨), and equality (=).

Definition 2 (ASM). An ASM program P over a vocabulary F is a finite text,
taking one of the following forms:

• An assignment statement f(s1, . . . , sn) := t, where f ∈ F is a function
symbol of arity n, n ≥ 0, and the si and t are ground terms over F .

• A parallel statement [P1 ‖ · · · ‖ Pn] (n ≥ 0), where each of the Pi is an
ASM program over F . (If n = 0, this is “do nothing” or “skip”.)

• A conditional statement if C then P , where C is a Boolean condition
over F , and P is an ASM program over F .

The semantics of these ASM statements are as expected, and are formalized
below. The program, as such, defines a single step, which is repeated forever or
until there is no next state.

Example 3. Let F = {1, 2, +, >, =, F, n, i, j} be the vocabulary of a sorting
program. By default, ASM programs also include symbols for true, false, and
undef for “undefined”, and for the standard Boolean operations.6 Let all states

6It is not absolutely necessary for the states themselves to harbor the Boolean operations.
One could consider them, instead, to be part of the programming language syntax only, used
for forming conditionals.
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States X such that Update set ∆(X)

0 JjK = JnK = JiK + 1 ⊥

1 JjK = JnK 6= JiK + 1 i 7→ JiK + 1, j 7→ JiK + 2

2 JjK 6= JnK, JF (i)K > JF (j)K
F (JiK) 7→ JF (j)K, F (JjK) 7→ JF (i)K,

j 7→ JjK + 1

3 JjK 6= JnK, JF (i)K ≤ JF (j)K j 7→ JjK + 1

Table 1: Update sets for the sorting example (the subscript in J·KX is omitted).

interpret the symbols 1, 2, +, >, =, as well as the default symbols, as usual.
These are static; their interpretation will never be changed by the program. Let
initial states have n ≥ 0, i = 0, j = 1, some integer values for F (0), . . . , F (n−1),
plus undef for all other points of F . Figure 1 displays a simplified selection-sort
in this language, where j 6= n is short for ¬(j = n). This program rearranges
F so that F (0) ≤ F (1) ≤ · · · ≤ F (n − 1) in the end. It always terminates
successfully, with j = n = i + 1 and with the first n elements of F sorted.

We point out that every such ASM program can be reformulated as a single
parallel application [P1‖ · · · ‖Pn], where each Pi is a nested conditional assign-
ment of the form

if C1 then if C2 then · · · then f(s1, . . . , sn) := t

(or nothing, [ ], in place of the assignment). This is accomplished by re-
peatedly replacing if C then [P1‖ · · · ‖Pn] with the semantically equivalent
[if C then P1‖ · · · ‖ if C then Pn]. For any state X , the exact same conditions
are evaluated and assignments executed.

5.2 Update Sets of ASMs

Unlike algorithms, which are observed to either change the value of a location
in the current state, or not, an ASM might “update” a location in a trivial
way, giving it the same value it already has. Also, an ASM might designate
two conflicting updates for the same location, in which case the standard ASM
semantics are to cause the run to fail.7

To take these additional possibilities into account, a proposed update set

7An alternative semantics, namely, nondeterministic choice between values, was also con-
sidered in [14].
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∆+
P (X) for an ASM P may be defined in the following manner:8

∆+
f(s1,...,sn):=t

(X) = {f(Js1KX , . . . , JsnKX) 7→ JtKX}

∆+
[P1 ‖ ··· ‖ Pn](X) = ∆+

P1
(X) ∪ · · · ∪ ∆+

Pn
(X)

∆+
if C thenP

(X) =

{

∆+
P (X) if X |= C

∅ otherwise .

(4)

When the condition C of a conditional statement does not evaluate to true, the
statement does not contribute any updates. When ∆+

P (X) contains inconsistent
updates, f(ā) 7→ b and f(ā) 7→ b′ with b 6= b′, we set ∆+

P (X) = ⊥, and say that
the ASM P “fails” and provides no next state; when ∆+

P (X) = ∅, it halts
with success. In either case, X is a terminal state. Otherwise, the updates are
applied to X to yield the next state, by replacing the values of all locations in
X that are referred to in ∆+

P (X). So, if the latter contains only trivial updates,
P will loop forever.

Let ∆0(X) denote the set {f(ā) 7→ Jf(ā)KX | ā ∈ Dom X} of all possible
trivial updates for state X . Then, the update sets ∆(X) for the algorithm
given by an ASM program P can be derived from ∆+ as follows:

∆(X) =

{

⊥ if ∆+(X) ∈ {∅,⊥}
∆+(X) \ ∆0(X) otherwise .

(As long as no confusion will arise, we are dropping the subscript P .) Let

∆−(X) = {f(ā) 7→ Jf(ā)KX | f(ā) is updated in ∆(X)}

be the set of location-value pairs of all locations slated to be changed. The next
state is the result

τ(X) =
(

X \ ∆−(X)
)

∪ ∆(X)

of applying those updates, when ∆(X) 6= ⊥, and is undefined, otherwise.

Example 4. The update sets for the above sorting program are given in Table 1.
For example, if state X is such that n = 2, i = 0, j = 1, F (0) = 1, and
F (1) = 0, then (per row 2) ∆+(X) = {F (0) 7→ 0, F (1) 7→ 1, j 7→ 2}. For
this X , ∆(X) = ∆+(X), and the next state X ′ = τ(X) has i = 0, j = 2,
F (0) = 0 and F (1) = 1. After one more step (per row 1), in which F is
unchanged, the algorithm reaches a successful terminal state, X ′′ = τ(X ′), with
j = n = i + 1 = 2. Then (by row 0), ∆+(X ′′) = ∅ and ∆(X ′′) = ⊥. (This
program never fails, as ∆+ never includes inconsistent updates.)

5.3 The ASM Theorem

Abstract state machines clearly satisfy Postulates I–III. ASMs define a state-
transition function; they operate over abstract states; and they depend critically
on the finite set of terms appearing in the program.

8This notion of proposed updates ∆+ arose in [3], where it was pointed out that, when
algorithms are distributed and more than one process may be vying for access to a location,
trivial updates can cause an observable difference.
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Explore set Γ(X) Exploration order ≺X

0 j 6= n, j = n ∧ i + 1 6= n

1 j 6= n, j = n ∧ i + 1 6= n, i + 2 j = n ∧ i + 1 6= n ≺X i + 2

2 j 6= n, j = n ∧ i + 1 6= n,

F (i) > F (j), j + 1

j 6= n ≺X

F (i) > F (j), j + 13

Table 2: Explore sets (omitting subterms) and an exploration order for the cases
of the sorting example (Figure 1) shown in Table 1.

Example 5. The critical terms for our sorting example (Figure 1) are all the
terms in the program, except for the left-hand sides of assignments, which con-
tribute their proper subterms instead. These are j 6= n, (j = n) ∧ (i + 1 6= n),
F (i) > F (j), i + 2, j + 1, and their subterms. Only the values of these affect
the computation.

Theorem 6 (ASM Theorem [15, Theorem 6.13]). Every classical algorithm,
satisfying Postulates I–III, has an equivalent ASM, with the exact same states
and state-transition function.

The proof of this theorem constructs an ASM that contains conditions in-
volving equalities and disequalities between all the critical terms. These con-
ditions can be very large and complicated. Theorem 22 below is a refinement
that avoids unnecessarily complicated conditions.

Example 7. Given the above critical terms and sort algorithm, the ASM con-
structed by the proof of the ASM Theorem would include statements like

if (F (i) > F (j)) = true ∧ j = n ∧ i + 1 6= n then j := i + 2 .

This, despite the fact the first conjunct of the conditional is irrelevant when the
other two hold.

5.4 Explore Sets of ASMs

As explained earlier, one can easily model partial functions by using a special
“undefined” value. The problem is that we need to model the case when an al-
gorithm calls such a function, but the function never informs the algorithm that
it is undefined for the arguments in question. This situation should entail that
the algorithm “stalls”. See Section 8. But then it is crucial that only intended
locations are explored during an emulation, something that was irrelevant to
the original study. For this reason, we make explicit now which locations are
actually explored by an ASM. For this reason, too, it behooves us to refine the
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ASM Theorem so that every classical algorithm can be emulated by an ASM
that does not explore locations with undefined values, unless the algorithm also
does. This refinement will be undertaken in Sections 6 and 7.

Let Γ(X) ⊆ T denote that set of critical terms that are actually explored by
the algorithm at state X , so as to determine how to continue the computation.
We will call Γ(X) the explore set of X . For ASMs, Γ would include the actual
tests performed, and the terms needed for the actual assignments. It may be
defined inductively in the following fashion for ASMs:

Γ[P1 ‖ ··· ‖ Pn](X) =
⋃

j ΓPj
(X)

Γif C thenP (X) = {C} ∪

{

ΓP (X) if X |= C
∅ otherwise

Γf(s1,...,sn):=t(X) = {s1, . . . , sn, t} ,

(5)

where X |= C means that Boolean condition C holds true in X . Thus, Γ(X)
includes all the conditions that are actually tested when in state X , and all the
terms appearing in updates that are actually performed.9 In addition, Γ always
includes true and false, and all subterms of its members, since the latter need to
be evaluated before the locations denoted by the above terms can be accessed.
See Section 10 for a discussion of the different aspects of exploration.

Example 8. Table 2 gives the explore sets Γ(X) for our sorting program.
For example, if i + 1 = j = n in output state X (row 0), then Γ(X) is just
{j 6= n, (j = n) ∧ (i + 1 6= n)}, plus their subterms.

In what follows, we fine-tune the Bounded Exploration Postulate, by making
explicit the possibility that only a subset of the critical terms may be needed in
any particular situation.

6 Exact Exploration

Before delving into an analysis of the exploration of states, we should visualize
for ourselves how an algorithm goes about retrieving data from its current state
and storing updated information for what will be the next state.

6.1 Executor Model

One should distinguish between an algorithm proper and its state. An algorithm
is a finite collection of instructions of some sort, “run” by an “executor”.10

An example of an algorithm is the method of long division, in which case the
executor might be a pupil who has fully mastered the rules.

9If one chooses to leave Boolean operations out of the vocabulary of states, as suggested in
footnote 6, then Γ should contain the atomic predicates appearing in the conditions, without
connectives.

10The latter is the “computing agent” L of [22].
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In general, a state may be a finite or infinite object. It must be kept in
some form, like scratch paper used in the process of dividing, and the multipli-
cation table that needs to be looked up. Furthermore, classical algorithms are
deterministic, so there is no need for the algorithm to guess what to do next.

Static information, including native operations and methods, is a fixed part
of an algorithm’s state. When, for example, a long division algorithm needs to
look up a small multiplication table, it turns to the state. When it needs to add
two numbers, it also appeals to the built-in addition operation provided by the
state. In addition, all dynamic information is stored in the state.

The executor of the algorithm, on the other hand, need remember nothing
about previous states, since all that is relevant is available in the current state.
The executor acts on states according to the instructions contained in the al-
gorithm being executed. By definition, the state contains all information that,
in addition to the program, determines the future behavior of the algorithm.
The executor can take a “lunch break” between steps and continue the process
exactly where it was left off. History does not matter at all. The state of a
Turing machine, for instance, must include the information in its instantaneous
description (that is, the tape contents, head position, and internal state), plus
operations for reading, writing, changing internal state, and moving the head.
That is what is required to determine the next state.

At the beginning of a step, all states look the same to the executor. That is
why exploration of a state must always start the same way. It is possible that
the executor applies a fixed update set without ever querying the state. But this
is a degenerate case. In general, the executor requires some information from
the state to complete the next step. The executor consults the state by posing a
batch of questions for the “state manager” to answer. Questions for which the
executor knows the answer need not be asked, but we are not precluding that
possibility.

What kind of questions? Note that it is of no help if the state manager
displays an actual element to the algorithm executor. This follows from the Ab-
stract State Postulate. The executor understands only objective things, things
that do not depend on the particular implementation. In the original frame-
work, the only objective thing was equality: equality meant the same to the
state as to the executor. If we want to eliminate the dependence on full equal-
ity, we need to change that aspect of ASMs. We still presume that the executor
and manager have an agreed-upon interface. In particular, we assume that
they both understand immediately and give the same import to the truth value
constants true and false. More generally, there could be some other small set
of agreed-upon values upon which communication between algorithm and state
can be based and for which the vocabulary includes distinct self-denoting (static
nullary) symbols. See Section 8.1.

6.2 Refined Analysis

As already explained, deciding which locations to explore is part of the behav-
ior we are now interested in. If an algorithm acts differently on different states,
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either in the sense of exploring different terms or in the sense of performing
different updates, then it clearly must first find something that distinguishes
them. So we certainly want both (2) and (3) above. Furthermore, if the behav-
iors of the algorithm in states X and Y differ, then that must be made evident
from the part of the state that is explored both in X and in Y . Accordingly,
what we really want is more like the following:

if X =Γ(X)∩Γ(Y ) Y then Γ(X) = Γ(Y ) (6)

if X =Γ(X)∩Γ(Y ) Y then ∆(X) = ∆(Y ) . (7)

A bit of notation. For a set V of algorithm states, let Γ(V ) be short for the
shared explore terms

⋂

X∈V Γ(X). We will say that V is agreeable if all states in
V agree on the values of all their shared explore terms, that is, if X =Γ(V ) Y for
all X, Y ∈ V . It stands to reason that sets of agreeable states engender uniform
behavior, because the algorithm has no way of distinguishing between them.

We defer until Section 8.2 consideration of the possibility that operations
may be undefined for some arguments, in which case some terms may not have
any value at all in a given state.

For an algorithm to proceed, it needs to communicate with its state X , as
described above. In particular, the algorithm may need to learn information
that distinguishes X from other states for which it behaves differently. To this
end, the algorithm evaluates—in some order—a finite collection of terms over X
and learns their values. In addition, in order to produce updates, the algorithm
evaluates a finite collection of additional terms, the values of which need not be
actually observed.

Think of it this way: An algorithm starts out agnostic about the nature of
the current state. It may begin by performing some updates, but only such
updates as are not contingent on state. If (but not only if) any aspect of its
behavior is contingent, then the next thing it does is evaluate some set G of
critical terms. So, in all events, Γ(S) includes G. If all states in S happen
to agree on G, then, at this point, either no further exploration is undertaken,
and all states in S must have the same behavior, or else in every state of S
the algorithm goes on and evaluates some additional set G′ of terms, so as to
distinguish different behaviors. If not all states agree on G′, then, depending
on the truth values of terms in G′, the algorithm proceeds differently in the
different cases. There may also be some shared behavioral aspects that may be
performed regardless of the outcome of evaluating G′. If the different behaviors
are still not fully distinguished by G′, then an additional set G′′ of terms is
called for, for each set of answers to G′. And so on. Note that for agreeable S,
Γ(S) would also include G′, and all states in S would also agree on G′, and—in
the final analysis—the behavior of the algorithm would be uniform for all states
in S.

The precise order of exploration need not be fixed for a given state, but some
partial order is dictated by the possible behaviors.

In general, in a given state X , if a conditional ASM statement if C then P
is executed and the test C is true, then the terms in C are explored be-
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fore, or together with, those in P . But we cannot simply derive the explo-
ration order from the conditionals in the program, making conditions in C
smaller than any new terms in P . For example, we might have an assignment
if d then if b then x := d, in which case d needs to be explored before b, but
when placed in parallel with if b then if d then x := c, b and d can be explored
at the same time. Instead, we put all terms of the top-level conditions and as-
signments of components of a parallel statement at the bottom of the ordering,
followed by contributions from the relevant cases of the conditionals.

Example 9. Consider the following ASM program, in the expanded form de-
scribed at the end of Section 5.1:

[ if d then if c then if b then s := x ‖
if d then if ¬c then t := x ‖
if d then if ¬b then s := y ] .

Clearly, d must be explored first off, since nothing more transpires when d is
false, while further tests are necessary when d is true. Suppose the latter is the
case. Then b and c must both be explored, though the order in which that occurs
does not matter. Of course, x and/or y are only explored after it becomes clear
that the relevant case holds. (Note that the algorithm need not ascertain the
values of x and y; those locations are used only for the purpose of transferring
their contents to locations s and t. See Section 10.1.)

We have the following (omitting some self-evident subscripts):

• Γ(X) = {d, c, b, x} and ∆(X) = {s 7→ JxK} whenever X |= d, c, b;

• Γ(Y0) = {d, c, b, x, y} and ∆(Y0) = {t 7→ JxK, s 7→ JyK} whenever Y0 |=
d,¬c,¬b;

• Γ(Y1) = {d, c, b, x} and ∆(Y1) = {t 7→ JxK} whenever Y1 |= d,¬c, b;

• Γ(Y2) = {d, c, b, y} and ∆(Y2) = {s 7→ JyK} whenever Y2 |= d, c,¬b; and

• Γ(Z) = {d} and ∆(Z) = ∅ whenever Z |= ¬d.

In a state X with d, c, and b true, we must have d explored before b or c, which
are both explored before x is, while y is not examined. But whether c is explored
before b, after b, or simultaneously with b is immaterial. This is because once d
is true, b must be examined regardless of the truth of c, so as to determine if y
needs to be updated by the third conditional of the program.

This order of exploration will be captured in what follows by a “causality”
order ≺X on the explore terms Γ(X) of states X .

6.3 Refined Postulate

With these considerations taken into account, the refined exploration postulate,
replacing Postulate III, is as follows:
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Postulate IIIe (Exact Exploration). An algorithm with states S over vocab-
ulary F determines, for each state X ∈ S, a finite explore set Γ(X) of ground
terms over F such that the following three properties hold:

• Determination. For all states X, Y ∈ S, if X =Γ(X) Y , then ∆(X) =
∆(Y ).

• Discrimination. For each state X ∈ S there is a partial order ≺X of
Γ(X) such that for every state Y ∈ S and for any t ∈ Γ(X) \ Γ(Y ), there
is a Boolean term s ∈ Γ(X) that takes on opposite truth values in X and
Y and such that s ≺X t.

• Limitation. The set
⋃

X∈S Γ(X) of all explore terms is finite.

By “opposite”, we mean that in one state s has the same value as true, and in
the other, as false.

Determination says that if two states X and Y agree on the values of the
explored terms Γ(X), then the changes that need to be made from each to
get to their next states are the same. This part is analogous to the original
version of the third postulate, except that the set of critical terms is localized
so as to depend on the state X . The second part (Discrimination) ensures that
an algorithm also determines which locations are to be explored before actually
exploring them, so if a term t is explored in X but not in Y , then that distinction
depends on some previously explored term s. The fact that algorithmic behavior
is finitely describable is captured by the last part (Limitation), which states
that only finitely many terms need to be mentioned to fully characterize what
locations are to be explored and what changes are to be made. The original
postulate likewise insisted that the set of all critical terms is finite.

Example 10. The rightmost column of Table 2 shows the partial order in which
the explore terms are examined by the sorting algorithm of Figure 1.

Remark 11. Equation (6) does not suffice for Discrimination. Consider a
pseudo-algorithm that “magically” chooses to execute

[ if b then [b := b ‖ c := c] ‖ if ¬b then d := d ] ,

whenever d is true, and otherwise executes

[ if c then [b := b ‖ c := c] ‖ if ¬c then d := d ] ,

and has the following three initial states: X |= ¬b,¬c, d; Y |= b, c,¬d; and
Z |= b,¬c,¬d. We have Γ(X) = {b, d}, Γ(Y ) = {b, c}, and Γ(Z) = {c, d}. It is
easy to verify that this algorithm satisfies the simple version (6). But it does
not meet the requirement of having strictly smaller discriminating terms. To
see this, note that one must have b ≺X d to discriminate between X and Y ,
but must also have d ≺X b, because d is the only Boolean that discriminates
between X and Z. In fact, without the “magic”, an algorithm would have no
way of knowing whether to start by exploring b or c.
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Definition 12 (Exacting Algorithm). An algorithm satisfying Postulates I, II,
and IIIe will be called exacting.

The following property is certainly to be expected if exploration is an aspect
of behavior of an algorithm:

Lemma 13. For any exacting algorithm and isomorphic states X and Y , we
have Γ(X) = Γ(Y ).

Proof. Isomorphic states agree regarding the truth values of Boolean terms.
So there can be no s to discriminate between Γ(X) and Γ(Y ), as required by
Discrimination. Hence, Γ(X) = Γ(Y ).

6.4 Exact Exploration is Bounded

Since, as in the original study, we are aiming at a universal formalization of
algorithms, we should expect the same processes to obey our new Exact Ex-
ploration Postulate as fulfill the original Bounded Exploration Postulate. The
difference stems from the fact that the critical terms that are actually examined
may depend on which state the algorithm is currently examining, an aspect of
behavior captured by the new postulate, but not by the original.

Theorem 14. Every exacting algorithm is also classical, and every classical
algorithm can be equipped with explore sets so as to be exacting.

Proof. To see that Exact Exploration (Postulate IIIe) implies Bounded Ex-
ploration (Postulate III), let T =

⋃

X∈S Γ(X) be all the explore terms of an
algorithm satisfying the former. By Limitation, T is finite; by Determination,
T determines behavior as required by Postulate III.

For the other direction, we let Γ(X) = T , for all states X ∈ S, where T is the
algorithm’s finite set of critical terms per Postulate III. It is straightforward to
see that all parts of Postulate IIIe are fulfilled: Determination and Limitation by
Bounded Exploration, and Discrimination, vacuously, with any order ≺X .

Since an exacting algorithm is classical, it has an emulating ASM by The-
orem 6. This, however, is insufficient for our stated purposes, since that ASM
might explore any location given by T , not just those of the current state given
by Γ(X). What we show in the next section is that there is an emulating ASM
that always restricts exploration to Γ(X), so the ASM satisfies a more refined
notion of equivalence (Definition 15 below) than used in Theorem 6.

We also just showed that every classical algorithm can be made exacting,
but in a rather uninteresting way: all states share the same explore set. Explore
sets, however, can be much more informative. Accordingly, what we consider
next are exacting algorithms with non-uniform Γ(X).

7 Exacting Algorithms

Our goal now is to show that every exacting algorithm is equivalent to some
abstract state machine, where the notion of equivalence pays attention to both
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transitions and exploration. This will enable us to refine the Abstract State
Machine Theorem to take into account which locations in a state are actually
explored.

7.1 Refined Equivalence

There are many senses in which one may say that two algorithms are equiva-
lent.11 We are interested here in behavioral equivalence of two transition sys-
tems. In addition to updating states in the same fashion, we want behavioral
equivalence of algorithms to also mean that the same critical terms are explored
in each state. Accordingly, for the purposes of this paper, we may define “algo-
rithm equivalence” for exacting algorithms as follows:

Definition 15 (Equivalence). Two exacting algorithms P and Q are equivalent
if they operate over the same states S, have the same initial states I and terminal
states O, and provide exactly the same explore sets and update sets, that is, if,
for all states X ∈ S, ∆P(X) = ∆Q(X) and ΓP(X) = ΓQ(X).

Except to the extent that the order in which locations are explored might
affect what is actually explored in a given state, we do not care about the precise
order of exploration, nor about the number of times a location is accessed.
Should one be interested in those additional aspects of an algorithm’s behavior,
one ought to lower the level of abstraction and decompose the individual steps
to make those features explicit.12

7.2 Uniformity

We will say that a set V of states is uniform if all states in V have the same
explore set, that is, if Γ(X) = Γ(Y ) for all X, Y ∈ V . Recall from Section 6.2
that Γ(V ) =

⋂

X∈V Γ(X) is the set of their shared explore terms, and that V is
said to be agreeable when all states in V agree on the values of Γ(V ), that is, if
JsKX = JsKY for all states X, Y ∈ V and terms s ∈ Γ(V ).

When V is agreeable, then it should also be uniform:

Theorem 16. For any exacting algorithm, agreeability of a set of states implies
its uniformity.

Proof. By contradiction, suppose that, despite V ’s agreeability, not all states
in V have the same explore set. Without loss of generality, let t ∈ Γ(X) be a

11See [2] for a discussion of the slippery notion of equivalence of algorithms.
12Were there a need to consider exploration orders as part of the behavior of algorithms,

and therefore to require equivalent algorithms to agree as to the orderings, Postulate IIIe
would need to be strengthened in two ways. First, if two states produce different orderings,
then any such difference should be “caused” by a difference of values at some location that
was explored earlier. Second, the orderings should be constrained to look like the intuitive
picture in Section 6.2: An initial block G of terms, followed by a second block G′ (that can
depend on the answers to the first block), etc. Then one can prove that algorithms of this
sort can be emulated by ASMs—including matching the orderings. To make the frequency of
exploration of locations also part of behavior would require the use of multisets for Γ.
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minimal explore term for some X ∈ V that is not also an explore term for all
other states in V (minimal with respect to ≺X), and let Y ∈ V be a state such
that t /∈ Γ(Y ). By Discrimination, there is an s ∈ Γ(X) such that s ≺X t and
with different truth values in X and Y . By agreeability, s /∈ Γ(V ). But then
s must be a smaller choice of an explore term for X than is t, since perforce
s /∈ Γ(Z) for some Z ∈ V .

Consider, again, the example in Remark 11. Since the intersection of the
three different explore sets is empty, it cannot be that agreeability, which holds
vacuously for those states, always implies uniformity. It must be, then, that the
explore sets of the “magic” algorithm in question are not discriminating.

By Determination, we also have the following:

Corollary 17. For any exacting algorithm, agreeability of a set V of states
implies that ∆(X) = ∆(Y ) for all X, Y ∈ V .

Theorem 18. For any classical algorithm equipped with explore sets satisfying
the Determination and Limitation clauses of Postulate IIIe, if every agreeable
set of states is uniform, then the algorithm is exacting.

Proof. For each X ∈ S, we define a partial order ≺X on Γ(X). Explore terms
that are shared by all states are smallest, because they are always needed. Next
come those terms that are shared by all states that agree with X on the values
of the lowest tier, Γ(S), of terms. And so on. Thus, the ordering ≺X , as a set
of ordered pairs, is LX(S), where LX(V ) is an ordering that discriminates X
from other states in V . When V is uniform, LX(V ) := ∅; otherwise,

LX(V ) := (Γ(V ) × (Γ(X) \ Γ(V ))) ∪ LX({Y ∈ V |Y =Γ(V ) X}).

This recursion is bound to terminate, because Γ(X) \ Γ(V ) gets continually
smaller. To see why, note that X ∈ V always, so Γ(V ) ⊆ Γ(X). When V is not
uniform, it cannot be agreeable, so there is an s ∈ Γ(V ) over which states in
V disagree. But, by construction, all of V agrees on all terms in the previous
Γ(V ).

To show Discrimination, consider any t ∈ Γ(X)\Γ(Y ) for a Y ∈ S. Initially,
t /∈ Γ(V ) = Γ(S), whereas t ∈ Γ(V ) = Γ(X) at the end of the recursion, so Y
is not in the final argument V . At the point when Y is removed from V , there
must be an s ∈ Γ(V ) that discriminates between X and Y . By construction,
s ≺X t.

It follows that the Discrimination requirement is equivalent to “agreeability
implies uniformity”.

Example 19. For the program in Example 9, and for X |= d, c, b, the construc-
tion in the above proof yields d ≺X b, c ≺X x.
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7.3 ASMs are Exacting

By the Theorem 14 of Section 6.4, any exacting algorithm also satisfies Bounded
Exploration, and any classical algorithm satisfies Exact Exploration, when the
explore terms of every state are taken to be all critical terms. A classical al-
gorithm can always be simulated by many ASMs, which may differ from one
another in terms of what tests need to be performed in any given state. We
show now that the precise explore terms of ASMs satisfy our refined postulate.

Theorem 20. Every (clash-free) ASM program is an exacting algorithm.

See Section 10.2 for when assignments may clash.

Proof. We know from the original study that Postulates I–II hold for ASMs. So,
we only need to show that explore terms, as defined for ASMs in Section 5.4,
satisfy Postulate IIIe.

Limitation clearly holds, since ASM programs are finite and all terms in any
Γ(X) appear in the program.

Furthermore, if X =Γ(X) Y , then, in particular, all tests performed by the
algorithm have the same outcome in Y as in X , since they are included in Γ(X).
So Γ+(X) = Γ+(Y ), and, hence, Γ(X) = Γ(Y ), as demanded by Determination.

Appealing to Theorem 18, we show Discrimination for ASMs by showing
that agreeability of a set of states implies its uniformity. This follows by induc-
tion on the syntax of ASM programs: Assignments contribute uniform explore
sets always. Parallel composition preserves uniformity, assuming agreeability.
Conditions of if statements are always in the explore sets, so, by agreeability,
either all states get the contributions of the then-branch, or none do.

7.4 Refined ASM Theorem

The differences between this paper and the original study have no impact on
the following observation [15, Lemma 6.2], other than to localize critical terms:

Lemma 21. For every exacting algorithm, if f(ā) 7→ b is an update in ∆(X)
for some state X, then there are terms t and s̄ in Γ(X) such that JtKX = b and
JsiKX = ai for each ai of ā.

It follows that for any update f(ā) 7→ b in ∆(X) there is an assignment
statement f(s̄) := t that has the desired effect and which is constructed only
from explore terms in Γ(X) (and the symbol f).

The result we have been seeking is the following:

Theorem 22 (Refined ASM Theorem). Each exacting algorithm has an equiv-
alent (clash-free) ASM.

Section 10.2 addresses the case when assignments may clash.
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Gε

G1

G1;1

. . . G1;1;k′′

G1;2 · · ·

...

G2 · · · Gk

· · · Gk;k′

. . .

Figure 2: Exploration tree.

Proof. Let S be the set of states of algorithm Q, with explore set Γ and update
set ∆. The equivalent ASM P operates over the same states S. Its program is
P (S), defined recursively as follows:

P (V ) =























[ ] if V = ∅

[if C1 then P (V ↾C1)‖ · · · ‖

if Ck then P (V ↾Ck)] if V is not agreeable

if C then R if V is agreeable

where C1, . . . , Ck are mutually-exclusive Boolean conditions for partitioning the
states in V according to all possible truth assignments to Boolean terms in
Γ(V ) (those terms whose value is not agreed upon by all states in V ), and
V ↾ Ci are those states X ∈ V for which X |= Ci. When V is agreeable, there
is no partitioning, as all states in V have the same explore and update sets
(Theorem 16 and Corollary 17).

In the agreeable case, the program is of the form if C then R. The test
C is a conjunction of all the (unexplored) Boolean terms c ∈ Γ(V ), or their
negations ¬c, depending on whether V |= c or V |= ¬c. The purpose of C is to
ensure that all explore terms are indeed explored. If there are none, then C is
vacuously true and the condition may be omitted entirely. The program R is a
parallel collection of assignments for all the updates in ∆(X), for any one state
X ∈ V , the existence of which follows from Lemma 21 and the uniqueness of
which follows from Corollary 17.

To see why the recursion terminates, consider Figure 2, depicting the above
construction. The root Gε contains Γ(S), those terms that are invariably ex-
plored. Every other node corresponds to a call P (V ↾Ci), and contains the next
level of discriminating terms, namely, Γ(V ↾ Ci) \ Γ(V ). The second layer of
the tree is populated by finitely many nodes, each for a possible combination of
values for the terms in Gε, with G1 = Γ(S ↾C1) \ Γ(S), G2 = Γ(S ↾C2) \ Γ(S),
and so on. Since every node contains a nonempty set of explore terms from the
finite set

⋃

X∈S Γ(X), none of which appear above it in the tree, all paths are
finite.
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It can be seen that this program has the same explore and update sets as
does the original algorithm, since for any X ∈ S the appropriate statement
if C then R is executed.

Example 23. Returning to Example 9, we have Γ(S) = {d}, and
Γ({X, Y0, Y1, Y2}) = {d, c, b}. The above construction yields

[ if d then [ if c ∧ b then s := x
‖ if c ∧ ¬b then t := x
‖ if ¬c ∧ b then s := y
‖ if ¬c ∧ ¬b then [t := x‖s := y] ]

‖ if ¬d then [ ] ]

which is equivalent to the original.

For reasons similar to those for Theorem 16:

Lemma 24. For every exacting algorithm, set of states V , and state X ∈ V ,
it is the case that for each term t ∈ Γ(X) \ Γ(V ), there is some term s ∈ Γ(V )
such that s ≺X t.

Proof. It suffices to show this for all minimal elements t ∈ Γ(X) \ Γ(V ). Since
t /∈ Γ(V ), there must be a Y ∈ V such that t /∈ Γ(Y ). Discrimination implies
there is some s ∈ Γ(X) such that s ≺X t. Since t is minimal, it must be that
s ∈ Γ(V ).

8 Partiality

The refined ASM Theorem of the previous section allows us to model truly
partial functions and relations.

8.1 Partial Equality

Equality was sacrosanct in the original study, in that each and every state of
an algorithm is endowed with the logical equality relation between arbitrary
elements of its base set. This may be unrealistic, however. An algorithm might
need to divide arbitrary real numbers, but not have the ability to test for zero.
So, suppose, instead, that equality is internal to states. In other words, the vo-
cabulary itself includes a symbol “=” for equality. Normally, equality evaluates
to one of two Boolean values, true and false. But, in some cases, an equal-
ity test might realistically “hang” and not return any answer. In other cases,
an equality test might return undef, thereby explicitly informing the algorithm
that no definite answer is forthcoming. The difference is that hanging is more
insidious—the computation gets stuck in a catatonic limbo, while an explicit
undefined answer is more like an error message—for the algorithm to handle as
it sees fit. In any case, we do insist that the defined (non-hanging, not-undef)
values of “=” agree with true equality. With this flexibility, for states to be
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isomorphic, the isomorphism must, of course, also respect the provided equality
relations.

Consider the following scenario: The base set of states includes expressions
(like definite integrals) that represent real numbers. A natural equality relation
on such expressions (in contradistinction to identity of expressions) deems two
expressions “equal” iff they represent the same number. States might imple-
ment a partial version (≈) of this equivalence, which need not be transitive.
Furthermore, it could be that a test s ≈ t yields false, whereas t ≈ u yields true,
yet when asked about s ≈ u, no answer is forthcoming, though the truth of the
matter must be that s 6≈ u.

8.2 Partial Operations

All function symbols were total in the original study. With the machinery
developed here, one need not insist that states interpret each function symbol
fully.

Instead, let a state be a structure that allows for truly partial functions.
Whenever an algorithm explores an undefined location, the computation hangs.
One may, of course, have “error” values, such as undef, as used extensively in
the ASM literature, but these are in fact “defined values”, which do not cause
irrecoverable execution collapse. In cases where the domain of definition is
undecidable, it may not be accurate to fill those non-domain points with undef,
especially if one wants an implementation whose initial states are computable.

We need to give semantics to terms involving partial functions. The sensible
choice is to make a term “truly” indeterminate if any of the locations indicated
by any of its subterms is indeterminate. We consider that accessing a location
f(x̄) hangs when x̄ is not in the domain of definition of f , extended to include all
known undef cases. All operations, including equality and Boolean operations,
are strict in the sense that if any operand is indeterminate, then that operation
is also. By convention, we will indicate such circumstances by writing JtKX = •,
with • standing for “no value at all” (not even undef), whenever term t does
not evaluate in state X to an element in its base set. So,

Jf(. . . ,•, . . .)KX = •

for all states X and operations f , regardless of argument values for the terms
of the ellipses. This is in contrast with the explicit undefined value for which
the test undef = undef returns true.

In general, should an algorithm ask a state X for the value of an operation
at a point where it is undefined, the state will be unable to answer, and the
program must hang. Thus, any attempt to access an undefined value means
that there will be no next state, and—what is worse—no way for an observer to
know that the algorithm is stuck, that there is no point waiting for an answer.
We write ∆(X) = •.

For example, if the base set includes programs in some language and states
include a black-box operation that interprets programs on inputs, any test
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whether the result of applying a program to given inputs yields a particular
output should hang whenever the program does not halt for those inputs.

Since terms might have no value in a given state, the agreement relation
between states must include this possibility. So, we have X =T Y , for a set of
critical terms T , if JtKX = JtKY for all t ∈ T , including the case where one of
JtKX and JtKY is •, in which case both must be.

Imagine that accessing f(a) hangs and the algorithm is simply if x 6=
a then y := f(x). In contrast to the emulating ASM of Theorem 22, the
ASM of the original study hangs even when the algorithm does not, since it
would include the statement if x = a ∧ f(x) = a then [ ], which looks at f(a)
unnecessarily.

Example 25. Back to sorting. Suppose now that the elements of the input
“array” F are computable reals, represented as programs in some fashion. And
suppose, realistically, that equality is defined for all integers, but not for all
reals. In particular, the inequality relation > (on the representations) gives no
result, in general, when both arguments represent the same real number, but
otherwise behaves as expected. Then the algorithm in Figure 1 sorts F properly
when the F (i) are distinct. But when F (i) and F (j) represent the same number
for two distinct elements in the initial F , the algorithm will not return a result,
since at some point it will question whether F (i) > F (j) and receive no answer
from the state.

There are idealized models of computation with reals, such as the BSS model
[8], for which real equality is made available. Still, one may want for division
by zero to hang, and for tests to return true or false, unless a subterm involves
division by zero, in which event the test should also hang.

In practice, one often uses a näıve floating-point approximation to reals, in
which case the results of comparisons are well defined, but may not be very
meaningful. Better, one can deterministically approximate reals by rationally-
bounded intervals, for which arithmetic operations are well-defined, but equality
and inequality comparisons can only provide the “right” answer when (non-
point) intervals do not overlap.

All the above examples fit perfectly within the framework developed here.

9 Case Selection

If an algorithm requires information from a state to decide how to proceed, it
needs to query the state. The only means it has for this purpose is to pose a
question in the form of a term. The answer to the query must be explicit in
the state, without need for recourse to any algorithm. Similarly, the algorithm
needs to be able to understand answers without further processing, since any
such processing ought to be part of the algorithm itself.

We have been assuming, without loss of generality, that all updates can be
postponed until all questions have been asked and answered. (If not, we need
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to worry whether subsequent queries use old or new values.) Furthermore, the
question period must eventually end for there to be a next state.

Until now, we have also assumed that all such communication is phrased
as Boolean queries, always resulting in a response of true or false.13 More
generally, however, we may presume that there is a fixed, finite set K of distinct
“distinguished” values. Clearly, there need to be at least two elements in K,
so that there is more than one possible outcome of a test, and clearly K must
be finite, or else there would be no possibility of immediate understanding.
Typically, K would include, at a minimum, the constants true, false, and undef.14

It is most sensible for each element of K to have its own self-denoting immutable
constant (that is, static nullary) symbol. So let |K| ≥ 2 and let K be symbols
carrying those values.

Queried regarding a term t, a state X can evaluate JtKX and, if the result
is one of the distinguished values in K, respond with the symbol κ ∈ K corre-
sponding to that value JtKX . To account for distinguished non-Boolean values,
the Discrimination clause of the Exact Exploration Postulate should be modified
to read as follows:

• Discrimination. For each state X ∈ S there is a partial order ≺X of
Γ(X) such that for every other state Y ∈ S, and for every t ∈ Γ(X)\Γ(Y ),
if any, there is a discrimination term s ∈ Γ(X) such that s ≺X t and
JsKX = JκKX , JsKY = JλKY , for distinct nullaries κ, λ ∈ K.

To reflect the more complicated case analysis, with a richer than Boolean
class of distinguished values governing intra-step behavior, an ASM can use
compound case statements.15 The form of the statement is

case q1, . . . , qn of



















when a11, . . . , a1n then S1 ;
when a21, . . . , a2n then S2 ;

...
when am1, . . . , amn then Sm

Each of the qj is a term; each of the aij , etc. is a nullary element of K. The
cases āi need not be mutually exclusive.16 A statement Sj can be an update or
another case statement, or a parallel mix of updates and/or cases.

The case statement supplants the if statement we used earlier.17 It is not,
of course, strictly necessary, because one could use parallel conditionals of the

13Actually, we treated all values other than true as though they were false.
14These are what Kleene [18] suggested in his famous 3-valued logic.
15Case statements were introduced in the Pascal programming language. They resemble

the switch statement of the C family of languages. The syntax we chose is akin to that of
SQL.

16The syntax could be sugared to also allow wildcards or a “catch-all” case.
17It also subsumes parallel composition, leaving out query terms.
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following form, instead:

[ if q1 = a11 ∧ . . . ∧ qn = a1n then S1 ‖
if q1 = a21 ∧ . . . ∧ qn = a2n then S2 ‖

...
if q1 = am1 ∧ . . . ∧ qn = amn then Sm ]

(8)

Operationally, the following transpires: The state is “queried” for the values
of all the terms q1, . . . , qn. The locations corresponding to these terms qi are,
indeed, explored. If the results agree with one or more of the listed cases of
values aj1, . . . , ajn, then each such Sj is evaluated and whatever needs to be
explored in the evaluation process is also explored. Other components Sk, those
for which the qi do not match the aik, are not explored. If the results agree
with none of the cases, then the statement does nothing other than locate and
explore the queried locations. When, for some state X , one of the query terms
qi does not yield a distinguished value in K, the case statement fails and the
whole algorithm comes to a standstill; then we will have ∆(X) = •.

The semantics of ASMs is extended with the following clauses:

∆+

case q̄ of W
(X) =

⋃

j Dq̄
Wj

(X)

Dq̄

when ā then P
(X) =















∆+
P (X) if X |= q̄ = ā

{•} if ā /∈ Kn

∅ otherwise

Γcase q̄ of W
(X) = {q1, . . . , qn} ∪

⋃

j Gq̄
Wj

(X)

Gq̄

when ā then P
(X) =

{

ΓP (X) if X |= q̄ = ā

∅ otherwise .

(9)

Actually, the constant terms in K are also explored, but we may just as well
assume that they are all explored in all states, and not bother include them
explicitly in Γ (much as we did not explicitly include true and false until now).

One need only presume that states can recognize equality with the distin-
guished values in K. Equality between other values can be partial, as in Sec-
tion 8.1.

Now, we modify the definition of the update set for ASMs to incorporate
case statements and black holes as follows:

∆(X) =







• if • ∈ ∆+(X)
⊥ if ∆+(X) ∈ {∅,⊥}
∆+(X) \ ∆0(X) otherwise .

The compound case condition makes it easier to model the possibility of an
algorithm posing questions for which it may not end up caring about the answer,
nor caring about the order in which that batch of questions is answered.

Redundancies can be omitted. In other words, if any path asks the same
query term twice, the inner one may be removed. By Bounded Exploration, we
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know that under all circumstances only a finite number of different questions can
be asked. So for a given set of critical terms, only a finite number of irredundant
case statements are possible.

It is straightforward to reprove Theorem 22 for algorithms with richer-than-
Boolean queries. Instead of creating parallel conditionals when V is not agree-
able, create a case statement. Using the case statement makes it an easy matter
to build a unique, “normal-form” emulating ASM for any exacting algorithm.

10 Three Variations

10.1 Access

Locations are used in tests, to extract contents, and for addressing. Consider
ASM programs.

(a) We have seen how critical terms are used in the conditional tests of if

statements and in the queries of the case statement. The values in the
indicated locations determine what else transpires.

(b) We have also seen that the term on the right-hand side of an assignment
is one of the critical terms (Lemma 21). The content of such a location is
copied into another location as part of an update.

(c) Lastly, critical terms are used indirectly to determine locations needed
for tests or updates. (Depending on the internal workings of states, that
determination may involve equality checks.)

In the statement if p(x) then f(g(x)) := h(f(x)), the critical term p(x)
points to a Boolean location of the first variety, h(f(x)) is of the second, and x,
f(x), and g(x) serve the third purpose.

When a location is used for copying, the state manager (see Section 6.1)
need not understand anything about it. It simply needs to copy the contents,
as is, to another location. On the other hand, locations whose values are used
as tests must be understood.

So, one might want to partition Γ(X) into three: ΓD(X) for the discrim-
inating terms used in conditional and case statements; ΓC(X) for obtaining
the contents of locations indicated by right-hand sides of assignments; ΓA(X)
for addressing locations. Looking back at the computation of Γ for ASMs in
Eqs. (5,9), the allocation of terms to the parts of Γ is as follows:

• in the assignment case, the si go into ΓA, while t goes into ΓC ;

• in the conditional case, the condition C goes into ΓC ;

• the same goes for case-statement queries qi;

• subterms of everything in any part of Γ also go into ΓA.

One can ascertain that the construction of the emulating ASM respects this
partition of uses of explore terms.
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10.2 Clash

Clashes are used by ASMs to model failure. When an attempt is made to assign
different values to the same location, the standard semantics of ASMs says that
the update fails and there is no next state. Until now, we have not considered
such ASMs.

To model such behavior, we need to emulate all proposed updates, even
when there is no next state. To that end, ∆ in the Determination clause of
Postulate IIIe should be changed to ∆+. Furthermore, there need to be some
behind-the-scenes tests. For any state X , with proposed updates ∆+(X) (Eq. 4),
we might add the following two sets of equality-terms to Γ(X):

{ui = vi | f(ū) := s, f(v̄) := t ∈ ∆+(X), ui 6≡ vi s 6≡ t}

{s = t | f(ū) := s, f(v̄) := t ∈ ∆+(X), Jū = v̄KX , s 6≡ t} ,

where ≡ denotes syntactic identity of terms, to reflect the implicit tests for
clashes. The ordering ≺X should place (the new terms in) these after the part
of Γ(X) obtained from the tests, both followed by the terms contributed by the
assignments themselves.

10.3 Bounding Explore Sets

An algorithm, when presented with a state X , can only perform a finite amount
of work on X in one step. Work, here, includes the exploration of locations, and
perhaps updating some of them. As explained above, the only means by which
an algorithm can identify specific locations within a state is via terms. So, we
clearly must have |Γ(X)| < ∞ for all states X , as expressed in Postulate IIIe.

Just because each explore set Γ(X) is finite does not, of course, mean that
the sum total of explore terms is finite, since different terms can appear in each
set. Because an algorithm must be finitely describable, Postulate IIIe includes
the Limitation clause. As it turns, out, however, that clause can be stated in a
weaker form.

Theorem 26. The following formulations of the Limitation clause of Postu-
late IIIe are equivalent:

(a) There are only finitely many explore terms:
∣

∣

⋃

X∈S Γ(X)
∣

∣ < ∞.

(b) There is a uniform bound on explore sets: for some bound N , |Γ(X)| < N
for all states X ∈ S.

(c) There are no infinite sequences X1, X2, . . . of states and s1, s2, . . . of terms
such that for all i, we have s1 ≺Xi

s2 ≺Xi
· · · ≺Xi

si, where si discrimi-
nates Xi from all Xj, j > i.

Proof. Clearly (a) implies (b). And (b) implies (c), because the chain of distinct
si’s in (c) cannot comprise more than the N terms of (b).

Every state X corresponds to a path in the tree of Figure 2, with Γ(X)
consisting of all terms in the path’s nodes. Thus, by Lemma 24, terms get
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bigger along paths, so (c) implies that all paths are finite (whether conditions
are rich or Boolean, and without recourse to overall finiteness, as needed for
Theorem 22). By König’s Lemma, (a) follows.18

11 Discussion

We have shown that every classical algorithm, which satisfies natural postu-
lates, can be step-by-step emulated by an abstract state machine that does not
attempt to apply equality or functions to more values than does the algorithm.
This significantly strengthens the thesis, propounded in [15], that abstract state
machines faithfully model any and all sequential algorithms.

The easing of the requirements on fully defined equality and other functions
lends strong support to the contention—put forth in [9, 12]—that the Church-
Turing Thesis is provably true from first principles. In addition to the Sequential
Postulates, the arguments for Church’s Thesis require that initial states contain
only free constructors and functions that can be programmed from constructors.
Our refinement of the ASM Theorem strengthens those results by showing that
the simulation of an algorithm, having no (unprogrammable) oracles, by an
effective abstract state machine need not involve any operations not available
to the original algorithm. It also follows from this work that there is no harm in
incorporating partial operations in the initial states of effective algorithms, as
long as they too can be computed effectively. Even with this relaxation of the
limitations on initial states, it remains provable that no super-recursive function
can be computed algorithmically.
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