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ABSTRACT

The recognition of categories of objects in images has become a cen-
tral topic in computer vision. Automatic visual recognition systems
are rapidly becoming central to applications such as image search,
robotics, vehicle safety systems, and image editing. This work ad-
dresses three sub-problems of recognition: image classification, ob-
ject detection, and semantic segmentation. The task of classification
is to determine whether an object of a particular category is present
or not. Object detection aims to localize any objects of the category.
Semantic segmentation is a more complete image understanding,
whereby an image is partitioned into coherent regions that are as-
signed meaningful class labels. This thesis proposes novel discrim-
inative learning approaches to these problems.

Our primary contributions are threefold. Firstly, we demonstrate
that the contours (the outline and interior edges) of an object are,
alone, sufficient for accurate visual recognition. Secondly, we pro-
pose two powerful new feature types: (i) a learned codebook of con-
tour fragments matched with an improved oriented chamfer dis-
tance, and (ii) a set of texture-based features that simultaneously ex-
ploit local appearance, approximate shape, and appearance context.
The efficacy of these new features types is evaluated on a wide va-
riety of datasets. Thirdly, we show how, in combination, these two
largely orthogonal feature types can substantially improve recogni-
tion performance above that achieved by either alone.
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CHAPTER 1

INTRODUCTION

1.1 Objective

This thesis proposes new techniques for the automatic recognition of categories of objects

in images. We address three sub-goals of recognition: image classification, categorical object

detection, and semantic segmentation. These tasks, illustrated in Figure 1.1, are defined as

follows:

Image classification aims to group together images containing similar objects, such as horses

and airplanes. There may also be a number of background images that contain none of

the objects under consideration.

Categorical object detection addresses determining the number of instances of a particular

object category in an image, and localizing those instances in space and scale.

Semantic segmentation aims to segment an image into semantically coherent regions, and

simultaneously assign a class label to each region.

The term category will be used throughout this document synonymously with class, to de-

note a particular type of object. A class may contain discrete and structured objects, such as

cars and faces, or more amorphous entities such as grass and sky.

1.2 Motivation

Vision has evolved as one of our most important senses. Even deprived of the additional

cues of balance, sound, known location, etc., that we use to aid visual perception of the real

world, understanding a complex photograph is usually an effortless task. Carefully crafted

images, such as those in Figure 1.2, do however trip us up occasionally. We sub-consciously

1



1.2. Motivation CHAPTER 1. INTRODUCTION

Figure 1.1: Visual recognition sub-goals. See text for definitions of terms. The examples of
detection and segmentation are actual results from Chapters 2 and 3 respectively.

Figure 1.2: Optical illusions and surrealist art. Image understanding is usually, but not
always, straightforward for the human visual system. While the brain can understand each
of these images at a local level, parsing the scene is difficult and ambiguous. [Left: “Forever
Always” by Octavio Ocampo. Right: “Apparition of Face and Fruit Dish on a Beach” by
Salvador Dalı́].
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CHAPTER 1. INTRODUCTION 1.2. Motivation

exploit knowledge of the world around us, learned over many years, to give us context

within which to interpret images. The particular sub-goals of recognition that we address

in this thesis (classification, detection and segmentation) are clearly achievable by human

endeavor, though are impractical across large image databases and the world wide web.

The human visual system is one inspiration for our investigation of computer-based vi-

sual recognition, although we do not attempt to directly emulate it in approach, merely in

outcome. Motivation beyond that of pure scientific curiosity is provided by several impor-

tant applications, which in many cases are only becoming feasible with recent advances in

the field:

Image search: The world-wide web contains vast quantities of information. Textual infor-

mation is reliably indexed by search engines such as Google, Live Search, and Yahoo!

[Google; Live; Yahoo], allowing almost instantaneous access to billions of documents

worldwide. Image search however is still at a nascent stage. Random, accurate se-

mantic access to images and videos on the web would find use in many areas, such

as scientific research, illustrating documents and news reports, and for simple web

exploration. The current generation of image search engines is based only on meta-

data and textual cues associated with the image, rather than the image content itself,

and this so-called semantic gap leads to many incorrect results. Clearly, exploiting the

appearance of the image should significantly improve matters.

Medicine: Discovering tumors and other abnormalities in medical scans is an intensive

and skilled task. A carefully designed automatic system (e.g. [Cootes & Taylor, 2001])

may be able to both speed up diagnosis and cut down on human error.

Robotics: The field of robotics has advanced dramatically over the last few years. Already,

the control systems of humanoid robots allow them to walk and run. However, their

usefulness is severely limited without real-time visual understanding of the world that

they inhabit. See e.g. [Davison et al., 2007; Se et al., 2005].

Security: Accurate automatic recognition of particular individuals or suspicious behavior

could detect nefarious activity in public spaces. Home security systems could also

benefit, for example to differentiate between a cat and a burglar in an alarm system.

Transportation: Much current effort is being directed towards improving the safety sys-

tems of vehicles, for example, by automatically alerting the driver to pedestrians and

3



1.3. Sources of Visual Variability CHAPTER 1. INTRODUCTION

other potential hazards. Automatic license plate and car model recognition has been

used to enforce traffic restrictions with the aim of improving road safety.

Image editing: As we describe in more detail at the end of Chapter 3, a semantic under-

standing of images enables the user interface to be attuned to the semantic class of

the region being edited, so that, for example, a gray sky could automatically be made

more blue, or the background of a scene could be defocused to concentrate attention

on the foreground.

Note that the degree of accuracy required and the consequences of mistakes for these dif-

ferent applications vary considerably. Clearly great care must be taken deploying automatic

systems in critical or sensitive applications.

1.3 Sources of Visual Variability

Lacking our human high-level knowledge of visual semantics, computer-based recognition

systems face a daunting challenge. We illustrate in Figure 1.3 some of the particular sources

of the extreme visual variability that images of objects present due to changes in viewing

angle, lighting, scale, and object pose, partial occlusions, and environmental factors. Fur-

thermore, for categorical recognition, commonalities must be found to generalize across the

variability within the class, while determining differences to discriminate between classes, as

illustrated in Figure 1.4. In this thesis we specifically address the within-class vs. between-

class variability, changes in scale, object articulation, and to some extent, lighting and view-

ing angle. Other work has focused on coping with partial occlusion, e.g. [Winn & Shotton,

2006]. For the tasks of classification and detection we shall assume a particular viewing

angle (e.g. side-on), although this assumption is relaxed when investigating semantic seg-

mentation in Chapter 3.

1.4 Approach

We take a modern approach to visual recognition, aiming to learn from a set of training

images the within-class commonalities, and the between-class differences, that enable us to

generalize to recognizing unseen test images. To this end, we employ proven and efficient

machine learning techniques, specifically various discriminative classifiers (see Appendix B

and Section 3.3).

4



CHAPTER 1. INTRODUCTION 1.4. Approach

Figure 1.3: Sources of visual variability. Automatic visual recognition systems must deal
with visual variability arising from the viewing angle, the pose and articulation of the object,
the lighting of the scene, partial occlusions obscuring the object, widely varying scales, and
environmental conditions.

Figure 1.4: Within-class and between-class variability. Above: example images of build-
ings and faces illustrate the wide within-class variability in appearance of objects from par-
ticular categories. Below: depending on the application, horse, zebra, donkey, and mule
could be considered (i) different classes, in which case their visual differences are important,
or (ii) the same class (Equidae), in which case their visual similarities are important.

5



1.5. Contributions CHAPTER 1. INTRODUCTION

We focus on two particular types of features, that are notably different from the sparse in-

terest points and local descriptors in vogue with the computer vision community at present

(see Appendix A). Firstly, we investigate the use of fragments of contour (edges), and show

that in combination a powerful classifier can be built that is capable of determining the

presence or absence of an object in a given region of an image. The second type of feature

is based on textural image properties, and is capable of exploiting the appearance, shape

(layout), and appearance context of an object. These contour and texture based features are

proven on several challenging image datasets, using standard experimental procedure and

quantitative measures. Across many different object classes, we obtain very encouraging

results, which are in some cases state-of-the-art.

1.5 Contributions

The primary contributions of this thesis are threefold:

• We investigate contour, the outline and interior edges of an object, as a recognition cue.

A powerful cue in human visual perception [Biederman & Ju, 1988], we demonstrate

that contour is, alone, sufficient for accurate automatic visual recognition.

• We propose two powerful new image feature types. The first of these is a learned

codebook of local contour fragments, which are matched using a novel formulation of

the oriented chamfer distance. The second feature type is texture-based. These fea-

tures, called shape filters, can simultaneously exploit local appearance, approximate

shape, and appearance context for accurate and efficient recognition.

• We show how the combination of these two largely orthogonal feature types substan-

tially improves recognition performance above that achieved by either alone.

1.6 Outline

The body of this thesis is divided into five chapters, the first of which is this introduction.

Chapter 2 investigates the cue of contour for classification and detection, and presents con-

tour fragments. Chapter 3 introduces shape filters, and shows how they are combined

in a conditional random field to give accurate semantic segmentation. Chapter 4 then re-

turns to the tasks of classification and detection, and discusses the combination of contour

6



CHAPTER 1. INTRODUCTION 1.6. Outline

fragments with shape filters. We give concluding remarks and discuss limitations and po-

tential future directions in Chapter 5. Finally, Appendix A presents a summary of related

work, Appendix B describes the Gentle AdaBoost and Joint Boost algorithms that are used

throughout the thesis, and Appendix C illustrates the datasets used in the evaluations of

Chapters 2 and 4.

7
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CHAPTER 2

CONTOUR

2.1 Introduction

Consider the images in Figure 2.1, and try to identify the objects present. The object iden-

tities are hopefully readily apparent. This simple demonstration confirms the intuition that

contour can be used to successfully recognize objects in images, and detailed psychophysi-

cal studies such as those of [Biederman & Ju, 1988] bear this out. With this inspiration, we set

out to build an automatic object category recognition system that uses only the cue of con-

tour. The most significant contribution of this chapter and its precursor [Shotton et al., 2005]

is the demonstration that such a system can accurately recognize objects from challenging

and varied object categories. In Chapter 4, we show how to combine several different recog-

nition cues (contour, texture, color, etc.), but for the didactic purposes of this chapter we

deliberately throw away color and textural information.

Our system aims to learn, from a small set of training images, a class-specific model for

classification and detection in unseen test images. The task of classification is to determine

Figure 2.1: Can you identify the objects from the fragments of contour? Our innate bi-
ological vision system is able to interpret spatially arranged local fragments of contour to
recognize the objects present. In this work we show that an automatic computer vision sys-
tem can also successfully exploit the cue of contour for object recognition. (Object identities
are given in Figure 2.3).

9



2.1. Introduction CHAPTER 2. CONTOUR

the presence or absence of objects of a particular class (category) within an image, answering

the question “does this image contain at least one X?”, while detection aims to localize any

such objects in space and scale, answering “how many Xs are in this image, and where are

they?”.

We define contour as the outline (silhouette) together with the internal edges of the object,

while the term shape is used to denote the spatial arrangement of object parts. Contour has

several advantages over other cues: for example, it is largely invariant to lighting conditions

(even silhouetting) and variations in object color and texture, it can efficiently represent im-

age structures with large spatial extents, it varies smoothly with object pose change (up to

genus change), and can be matched even in the presence of background clutter. By con-

trast, image patches and local descriptor vectors tend to match an image less reliably at the

boundary, due to interaction with the varying background.

However, the evident power of contour as a recognition cue in nature is somewhat mit-

igated in computer-based systems by practical realities. Contour is matched against some

form of image edge map, but the reliability of general purpose figure-ground segmentation

and edge detection is still an area of active research [Boykov & Jolly, 2001; Rother et al.,

2004; Dollár et al., 2006]. Indeed the problems of object detection, figure-ground segmen-

tation, and edge detection are intimately bound together: a good segmentation mask gives

extremely clean contours, useful for recognition, while localizing the object in scale-space

gives an excellent initialization for bottom-up segmentation (see Figure 5.1).

The most significant problem faced by contour-based recognition techniques is that of

noisy edge maps and background clutter; the images in Figure 2.3, for example, contain

many strong background edges to which the system must be robust. Whole object contours

are fairly robust to this clutter, but have poor generalization qualities, and therefore require

many exemplars, often arranged hierarchically [Gavrila, 1998], to be useful for detecting

deformable objects. Recently, improved models, where whole object templates are divided

into parts, have become prominent in computer vision [Fischler & Elschlager, 1973; Burl

et al., 1998; Felzenszwalb & Huttenlocher, 2000; Weber et al., 2000; Fergus et al., 2003; Felzen-

szwalb & Huttenlocher, 2005; Winn & Shotton, 2006]. Parts are individually quite likely to

match to background clutter, but in ensemble prove robust and are able to generalize across

both rigid and articulated object classes. In Section 2.3 we show how our system learns parts

based on contour fragments that in combination robustly match both the object outline and

repeatable internal edges.

10
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Our preliminary work [Shotton et al., 2005] proved that automatic object recognition was

indeed achievable using only contour information. This chapter strengthens and extends

that thesis in the following respects:

• A codebook of scale-normalized contour exemplars is learned automatically from the

training images (Section 2.2.2), no longer requiring figure-ground segmentation masks

for training.

• Recognition is now performed at multiple scales (Section 2.3.2).

• Contour fragments are matched using a new multi-scale formulation of chamfer match-

ing with an explicit penalty for orientation mismatch (Section 2.2.1).

• Object detections are found as the strongest responses of a cascaded sliding-window

classifier by the mean shift mode detection algorithm [Comaniciu & Meer, 2002]. We

also discuss the probabilistic interpretation of object detection (Section 2.3).

• We demonstrate the effectiveness of a boot-strapping technique which augments the

sparse set of training examples used to learn the classifier. This is applied to the train-

ing data (Section 2.4.3), and additionally, by assigning a level of trust to the classifier

and without compromising procedural integrity, to the test data (Section 2.4.4).

• The evaluation (Section 2.5) is extended to 17 categories, embracing both classification

and detection. We introduce a new challenging multi-scale horse dataset, and compare

performance with two other contour-based techniques [Opelt et al., 2006c; Ferrari et al.,

2006a] and against an interest-point based method [Sivic et al., 2005].

Note that the notation used in this chapter differs somewhat from [Shotton et al., 2005].

A schematic diagram of the algorithm presented in this chapter is shown in Figure 2.2.

This references ahead to the relevant sections of this chapter, which is structured as follows.

In Section 2.2, we define contour fragments as sets of oriented edgels (2D points at im-

age edges). A new formulation of chamfer distance, including an explicit cost for orientation

mismatch, is explained, and its application to matching at multiple scales is presented. Fi-

nally, we discuss how a codebook of robust contour exemplars is learned using a clustering

algorithm.

Section 2.3 presents the object detection model. A star constellation of parts arranged

about an object centroid is employed, and each part (a contour exemplar) is matched to

11
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Figure 2.2: Schema of the contour-based object detection algorithm presented in this
chapter. A set of class images labeled with bounding boxes is merged with a set of back-
ground images, and then divided into training and test sets. The training set is used to build
a codebook of contour fragments, which are used to construct a classifier for detection. This
classifier is evaluated on the test data, and if required, retraining iterates the learning step.

the image edge map using a chamfer distance that incorporates a spatial prior. A boosted

classifier infers object presence or absence for centroid hypotheses across scale-space, and

mean shift locates a final set of likely detections.

The learning of the classifier is described in Section 2.4. A feature vector of chamfer dis-

tances for all exemplars is calculated for a sparse scale-space pattern of training examples,

and boosting is used to select discriminative exemplars while learning the classification pa-

rameters. A cascade is also learned to speed up the classifier at test time. Lastly, we discuss

retraining. Here, an initial classifier is used to identify false positive and false negative

detections. The training set is then augmented with examples placed so as to correct these

12
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mistakes, and learning is iterated, resulting in a final classifier with improved generalization

properties.

The evaluation is presented in Section 2.5. We use standard classification and detection

measures to quantify performance of our technique over several challenging datasets in-

cluding 17 object classes. The results confirm our hypothesis that contour is a powerful cue

for automatic visual recognition, and we demonstrate excellent results for both rigid and

articulated classes (see Figures 2.12 and 2.15). Our comparisons with other contour-based

techniques, and with a method that uses sparse local descriptors, show strong, state-of-the-

art recognition performance.

Finally, Section 2.6 concludes this chapter with a summary of our findings.

Related Work

First, however, we briefly discuss other techniques that use contour fragments. Broader

references, including those to methods that match whole contour templates, are presented

in Appendix A.

[Fergus et al., 2004] augmented the constellation model with contour fragment features,

but their technique only exploits fairly clean, planar curves with at least two points of inflec-

tion. In [Kumar et al., 2004], contour fragments learned from video sequences were arranged

in Pictorial Structures [Fischler & Elschlager, 1973; Felzenszwalb & Huttenlocher, 2000, 2005]

and used for detection of articulated objects; good results were obtained, although tracking

of video sequences or manual labeling of parts was needed for learning. [Borenstein et al.,

2004] used image and contour fragments for segmentation, but did not address classifica-

tion or detection. A similar technique to [Shotton et al., 2005] was proposed in [Opelt et al.,

2006a].

Other methods have also used local contour descriptors. Rigid objects were addressed

effectively in [Mikolajczyk et al., 2003]. Shape contexts [Belongie et al., 2002] describe sam-

pled edge points in a log-polar histogram. The geometric blur descriptor was used in [Berg

et al., 2005] to match deformable objects between pairs of images. Most recently, [Ferrari

et al., 2006a] combined groups of adjacent segments of contour into invariant descriptors,

and the use of sliding windows of localized histograms enabled object detection.

13



2.2. Contour Fragments CHAPTER 2. CONTOUR

Figure 2.3: Answers for the recognition question posed in Figure 2.1.

2.2 Contour Fragments

In this section we discuss contour fragments, giving their precise definition and detailing

how they are extracted from image edge maps and clustered into a class-specific codebook

of exemplars (Section 2.2.2). First however, we present our new formulation of chamfer

matching with an explicit penalty for mismatch in orientation.

2.2.1 Chamfer Matching

The chamfer distance function, originally proposed in [Barrow et al., 1977], measures the

similarity of two contours at a certain relative location. It is a smooth measure with con-

siderable tolerance to noise and misalignment in position, scale and rotation, and hence

very suitable for matching our locally rigid contour fragments to noisy edge maps. It has

already proven capable of and efficient at recognizing whole object outlines (e.g. [Gavrila,

1998; Stenger et al., 2003; Leibe et al., 2005]), and here we extend it for use in a multi-scale

parts-based categorical recognition model.

In its most basic form, chamfer distance (for 2D relative translation x) takes two sets of

edgels, a template T and an edge map E, and evaluates the (asymmetric) distance as:

d
(T,E)
cham (x) =

1
|T |

∑
xt∈T

min
xe∈E

‖(xt + x)− xe‖2 , (2.1)

where |T | denotes the number of edgels in template T , and ‖ · ‖2 denotes the l2 norm. The

chamfer distance therefore gives the mean distance of edgels in T to their closest edgels in

E. For clarity of presentation, we omit the superscript (T,E) below where possible.

The chamfer distance can be efficiently computed via the distance transform (DT) of E,
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DTE . This is an image in which each pixel gives the distance to the closest edgel in E:

DTE(x) = min
xe∈E

‖x− xe‖2 . (2.2)

Hence the min operation in (2.1) becomes a simple look-up such that dcham(x) can be com-

puted as:

dcham(x) =
1
|T |

∑
xt∈T

DTE(xt + x) . (2.3)

We also compute the argument distance transform (ADT) which gives the locations of the

closest points in E:

ADTE(x) = arg min
xe∈E

‖x− xe‖2 . (2.4)

The exact Euclidean DT and ADT can be computed simultaneously in linear time using the

algorithm of [Felzenszwalb & Huttenlocher, 2004].

It is standard practice to truncate the distance transform to a value τ :

DTτE(x) = min(DTE(x), τ) , (2.5)

which adds robustness to the basic chamfer distance by ensuring that missing edgels due

to noisy edge detection do not have too severe an effect. Additionally it allows the chamfer

distance to be normalized to a standard range [0, 1]:

dcham,τ (x) =
1

τ |T |
∑
xt∈T

DTτE(xt + x) . (2.6)

Edge Orientation

A further, much greater improvement than truncation by τ is given by exploiting edge ori-

entation information in the form of edge gradients. This orientation cue alleviates problems

caused by background clutter edgels since they are unlikely to align in both orientation and

position. One popular extension to basic chamfer matching is to divide the edge map and

template into discrete orientation channels and sum the individual chamfer scores [Olson &

Huttenlocher, 1997; Stenger et al., 2003]. However, it is not clear how many channels to use,

nor how to avoid artifacts at the channel boundaries.

Instead, we augment the robust chamfer distance (2.6) with a continuous and explicit

cost for orientation mismatch, given by the mean difference in orientation between edgels
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in template T and the nearest edgels in edge map E:

dorient(x) =
2

π|T |
∑
xt∈T

|φ(xt)− φ(ADTE(xt + x))| . (2.7)

The function φ(x) gives the orientation of edgel x modulo π, and |φ(x1) − φ(x2)| gives the

smallest circular difference between φ(x1) and φ(x2). Edgels are taken modulo π because,

for edgels on the outline of an object, the sign of the edgel gradient is not a reliable signal

since it depends on the intensity of the background. The normalization by π
2 ensures that

dorient(x) ∈ [0, 1], since |φ(x1)− φ(x2)| < π
2 .

Our final improved distance function, which we call the oriented chamfer distance, is then

a simple linear interpolation between the distance and orientation terms

dλ(x) = (1− λ) · dcham,τ (x) + λ · dorient(x) , (2.8)

where the orientation specificity parameter λ weights the distance and orientation terms. As

we shall see below, λ is learned for each contour fragment separately, giving improved dis-

crimination power compared with a shared, constant λ. The distance and orientation terms

in (2.8) are illustrated in Figure 2.4. Note that oriented chamfer matching is considerably

more storage efficient than using discrete orientation channels. The precise mathematical

form of the oriented chamfer distance (2.8) has been clarified slightly since our original for-

mulation in [Shotton et al., 2005].

In Section 2.5.3 and Figure 2.10, we compare the performance of our oriented cham-

fer distance against 8-channel chamfer matching and Hausdorff matching [Huttenlocher &

Rucklidge, 1992]. The Hausdorff distance function is essentially the basic chamfer distance

(2.1), but the summation is replaced by a maximization. We show that our continuous use of

orientation information, with the ability to learn per-part orientation specificities, provides

a considerable improvement over both these methods.

Matching at Multiple Scales

We extend oriented chamfer matching to multiple scales. This extension proves to be espe-

cially simple because, rather than using an image pyramid [Borgefors, 1988], we rescale the

templates T , keeping the size of edge map E constant. We thus redefine template T to be

a set of scale-normalized edgels. To compute the chamfer distance at scale s between T and
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Figure 2.4: Oriented chamfer matching. For edgel x1 (blue circle) in template T (dotted blue
curve), the contribution to the oriented chamfer distance is determined by the distance d
from x1 to the nearest edgel x2 (red circle) in edge mapE (solid red curve), and the difference
between the edgel gradients at these points, |φ(x1)− φ(x2)|.

the (original, unscaled) edge map E, we use the scaled edgel set sT = {sxt s.t. xt ∈ T} and

calculate:

d
(T,E)
λ (x, s) = d

(sT,E)
λ (x) . (2.9)

We round the scaled edgel positions in sT to the nearest integer; alternatively one could

interpolate the distance transform.

At smaller scales the edgels in template T are squashed closer together and some may

even alias to the same location in the distance transform, while at larger scales, the edgels

are stretched apart with gaps forming between them. However, due to the normalization

by |T |, the chamfer distances can reasonably be compared across scales, as required for a

scale-invariant model.

Approximate Chamfer Matching

For efficiency, one does not need to perform the complete sums over template edgels in (2.6)

and (2.7). Each sum represents an empirical average, and so one can sum over only a frac-

tion of the edgels, adjusting the normalization accordingly. This provides a good approxi-

mation to the true chamfer distance function in considerably reduced time. In practice, even

matching only 20% of edgels gave no decrease in detection performance, as demonstrated

in Section 2.5.5.
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2.2.2 Building a Fragment Codebook

To use contour fragments for object recognition, we must first come up with a set of rep-

resentative fragments. In selecting these, one has a choice in their specificity. One could

use completely generic fragments such as lines, corners, and T-junctions and hope that in

combination they can be made discriminative [Ferrari et al., 2006a]. Instead, we create a

class-specific set of fragments so that, for instance, the class horse will give rise to fragments

corresponding to regions we know to be head, back, and forelegs, among others, as illus-

trated in Figure 2.7. Even individually, these fragments can be indicative of object pres-

ence in an image, and in combination prove very powerful for object detection, as we shall

demonstrate.

In our earlier work [Shotton et al., 2005], we built a codebook by extracting clean frag-

ments of contour from ground truth segmentations of the training data. However, hand-

segmenting a large set of images is somewhat laborious, so in this work we present an im-

proved formulation that does not require segmentations, only bounding boxes around the

training objects.

The outline of our codebook learning algorithm is as follows. We start with a large, ran-

domly chosen initial set of fragments, which is clustered based on a symmetrized chamfer

distance (see ahead to (2.11)). Around 10000 fragments are clustered to about 500 clusters.

Each cluster is subdivided to find fragments that agree in centroid position. The resulting

sub-clusters form the final codebook of fragments. We also refer to these codebook frag-

ments as contour exemplars. We show in Section 2.5.6 that using the new learned codebook

from unsegmented images can be even more powerful than a codebook learned from seg-

mented images.

Contour fragments are extracted from edge maps computed using the Canny edge de-

tector [Canny, 1986], although at first no thresholding is applied, and hysteresis is not used.

Each training image contains a number of objects labeled with bounding boxes. Bounding

box b = (btl,bbr) implicitly defines an object centroid x = 1
2(btl + bbr), and an object scale

s =
√

area(b). The centroid and scale are illustrated in Figure 2.8. Object scales are only

used in ratios, and so their absolute values are not significant.

The initial set of contour fragments is generated as follows. A training object and a

rectangle r = (rtl, rbr) enclosed within the bounding box of the object are chosen, both

uniformly at random. We define vector xf = 1
s (rcen − x) as the (scale-normalized) vector
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from the object centroid x to the rectangle center rcen = 1
2(rtl + rbr). Let Er = {xr} denote

the set of absolute image positions of edgels within rectangle r. The set of scale-normalized

fragment edgels is:

T =
{

1
s
(xr − rcen) s.t. xr ∈ Er

}
. (2.10)

To reduce the number of empty and overly generic fragments such as small straight lines,

fragments with edgel density |Er|
area(r) below a threshold η1 are immediately discarded. Frag-

ments with edgel density above a threshold η2 are also discarded, since these are likely to

contain many background clutter edgels and even if not, will be expensive to match. Edgel

sets Er are computed as Er = {x ∈ C s.t. x ∈ r and ‖∇I‖x > t}. This equation uses

the image gradient ‖∇I‖ at the set of edge points C, given by the Canny non-maximal

suppression algorithm (see examples in Figure 2.14). Rather than fix an arbitrary thresh-

old t, we choose a random t for each fragment (uniformly, within the central 50% of the

range [minx ‖∇I‖x,maxx ‖∇I‖x]), so that at least some of the initial fragments are rela-

tively clutter-free. As we shall see shortly, the clustering step can then pick out these cleaner

fragments to use as exemplars.

Finally, to ensure the initial set of contour fragments covers the possible appearances of

an object, a small uniformly random transformation is applied to each fragment: a scaling

log s ∈ [− log srnd, log srnd] and rotation θ ∈ [−θrnd, θrnd] about the fragment center is ap-

plied to the edgels, and the vector xf is translated (by x ∈ [−trnd, trnd] and y ∈ [−trnd, trnd])

and rotated (by φ ∈ [−φrnd, φrnd]) about the object centroid. Several differently perturbed

but otherwise similar fragments are likely to result, given the large number of fragments

extracted.

Fragment Clustering

Figure 2.5 shows example fragments extracted at random, for both segmented and unseg-

mented training images. Clearly, the fragments from unsegmented images are fairly noisy,

though some are less cluttered than others. A clustering step is therefore employed with the

intuition that the resulting exemplars (cluster centers) are likely to be relatively clean and

clutter free.

To this end we compare all pairs (Ti, Tj) of fragments in the initial set. This is done in a

symmetric fashion as follows:

di,j = d
(sjTi,sjTj)
λ (0) + d

(siTj ,siTi)
λ (0) , (2.11)
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Figure 2.5: Initial set of contour fragments. Examples of contour fragments extracted at
random from horse images. The red crosses represent the origins of the fragments, i.e. the
vectors (0, 0)T in the coordinate systems implicitly defined in (2.10). Top: clean fragments
can be extracted from segmented training images. Bottom: much noisier fragments tend to
be extracted when segmentations are not provided.

so that the fragments are scaled (first both to sj , then both to si) and compared at zero

relative offset. Clustering is performed on the matrix di,j using the k-medoids algorithm,

the analogue of k-means for non-metric spaces. For the purposes of clustering, a (single)

value for λ is used. This was chosen to maximize the difference between histograms of

distances di,j for within-cluster and between-cluster fragment pairs.

Example fragment clusters are shown in Figure 2.6. As hoped, clusters contain contour

fragments of similar appearance, and even for unsegmented ground truth, the cluster cen-

ters tend to be clean contour fragments. However, this purely appearance-based clustering

does not take the vectors xf from the object centroid into account. We desire each contour

fragment to give a unique and reliable estimate of the object centroid, and so we split each

cluster into sub-clusters which agree on xf , as follows. Each fragment casts a vote for the

object centroid, and modes in the voting space are found using mean shift mode estimation

[Comaniciu & Meer, 2002]. Each mode defines a sub-cluster, with all fragments within a

certain radius of the mode of xf assigned to that sub-cluster. To ensure high quality sub-

clusters, only those with a sufficient number of fragments are kept (in all experiments in

this chapter, five fragments were required). The sub-clustering procedure is iterated for

those fragments not assigned to a sub-cluster, until no new sub-clusters are generated.

Contour fragments within each sub-cluster now agree both in appearance, in terms of
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Figure 2.6: Fragment clustering. Top: example clusters from segmented images. Bottom:
example clusters from unsegmented images. In each example, shown left is the cluster cen-
ter (exemplar), and right are the locations xf (black diagonal crosses) of all the cluster mem-
ber fragments, relative to the object centroid (green cross). Note that (i) appearance-only
clustering can give clusters with multiple modes in the voting space (e.g. (a) and (b)), (ii)
segmented fragments tend to cluster more cleanly than unsegmented fragments, and (iii) the
locations of background cluster members (e.g. (f)) are scattered widely with no discernible
pattern.

low mutual chamfer distances (2.11), and also location relative to the object centroid. Within

each sub-cluster, the center fragment (the fragment T̄ with lowest average distance to other

fragments) is used to form an exemplar F = (T̄ , x̄f , σ), where x̄f and σ are respectively

the scale-normalized mean and radial variance of the centroid vectors xf . The exemplars

from all sub-clusters are combined to form the codebook F = {F}. Figure 2.7 illustrates the

sub-clustered contour fragments. Note that the final exemplars are very class specific since

random background fragments are highly unlikely to repeatably agree in position as well as

appearance. Our clustering algorithm has also been able to obtain clean contour exemplars

from unsegmented images.

The clustering step is somewhat similar to that used in [Leibe & Schiele, 2003], except

that (i) we cluster contour fragments rather than image patches, and (ii) each resulting sub-

cluster has a particular location relative to the centroid as opposed to having the multiple

centroid votes of [Leibe & Schiele, 2003].

2.3 Object Detection

In this section we describe how contour exemplars are combined in a parts-based object

detection model. Parts are matched to an image edge map using the scale-invariant oriented
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Figure 2.7: Example contour exemplars. Left: exemplars from segmented horse images.
Right: exemplars from unsegmented images. Each row represents a sub-cluster containing
contour fragments that agree on centroid location xf as well as in appearance, in terms of
low mutual chamfer distances (2.11). Within each row are shown the contour exemplar (the
center of the sub-cluster), example sub-cluster members, and the locations xf (black diagonal
crosses) of the sub-cluster member fragments relative to the object centroid (large green
cross). The red circle is centered on a small red cross, and these indicate, respectively, the
radial uncertainty σ, and the mean x̄f of votes relative to the centroid. Note that (i) we obtain
representative, class specific fragments of contour to use as exemplars for recognition, (ii)
through clustering we get clean contour exemplars even without segmented training data,
and (iii) we obtain an accurate estimate of location and location uncertainty relative to the
object centroid.
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chamfer distance with priors on their spatial layout, and combined in a boosted classifier.

The classifier is evaluated across the scale-space of the image, and mean shift mode detection

produces a final set of confidence-valued object detections. The only image information

used by the detector is the edge map E, which is computed using the Canny edge detector

[Canny, 1986] (although no hysteresis is applied).

2.3.1 Parts-Based Object Model

Most modern categorical object recognition systems such as [Agarwal & Roth, 2002; Fer-

gus et al., 2003; Felzenszwalb & Huttenlocher, 2005] attempt to recognize an object as the

sum of its parts, rather than the object as a whole. This gives numerous advantages, al-

lowing recognition of partially occluded objects [Winn & Shotton, 2006], and significantly

improving efficiency and accuracy while decreasing training data requirements when mod-

eling classes with considerable articulation and within-class variation (different individuals,

body configurations, facial expressions). Some existing systems, e.g. [Fergus et al., 2003], are

computationally limited to a small number of parts, but our technique can efficiently cope

with larger numbers, of the order of 100. The resulting over-complete model has built-in

redundancy with tolerance to within-class variation and different imaging conditions such

as lighting, occlusion, clutter, and small pose changes.

The spatial layout of parts is clearly informative, although the degree to which it is mod-

eled varies enormously. One popular and remarkably successful technique, the bag-of-words

model [Sivic & Zisserman, 2003; Csurka et al., 2004; Sivic et al., 2005; Fergus et al., 2005]

throws away all spatial information and exploits the repeatable co-occurrence of features to

recognize objects or scenes. At the opposite extreme, for a small number of parts, a full joint

spatial layout distribution can be learned [Fergus et al., 2003].

Our algorithm lies between these two extremes, using a star shaped constellation illus-

trated in Figure 2.8, where the locations of the parts are constrained through a single fiducial

point on the object, the centroid. A part P = (F, λ, θ, a, b) in our model is a contour exem-

plar F = (T̄ , x̄f , σ) paired with several learned parameters: λ is the orientation specificity of

the part in (2.8), while θ thresholds, and a and b confidence-weight the part detections, as

described below.

For an object centroid hypothesis with location x and scale s, part P is expected to match

the image edge map E near position x + sx̄f , with spatial uncertainty sσ. The chamfer dis-

tance is therefore weighted with a cost increasing away from the expected position. Finding
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(x, s)

sσ

sxf

Figure 2.8: Object star constellation. Object parts (black fragments of contour) are located
about the object centroid at (x, s) (green cross). The object bounding box is shown in green.
Each part has a spatial location x̄f relative to the centroid (blue arrow) and a spatial un-
certainty σ (red circle), both learned when constructing the fragment codebook. Both the
spatial location and uncertainty are scaled by object scale s. For clarity of presentation, only
four parts are shown here; in practice, about 100 parts are used.

the minimum weighted distance thus allows a degree of spatial flexibility in matching. The

location of this minimum is given by

x? = arg min
x′

(
d

(T̄ ,E)
λ (x′, s) + wsσ(‖x′ − (x + sx̄f)‖2)

)
, (2.12)

where wσ(x) is the radially symmetric spatial weighting function for which we use the

quadratic

wσ(x) =


x2

σ2 if |x| ≤ σ

∞ otherwise.
(2.13)

The part response v for centroid hypothesis (x, s) is defined as the chamfer distance at the

best match x?

v[F,λ](x, s) = d
(T̄ ,E)
λ (x?, s) , (2.14)

and this is used in the classifier (2.15) described below.

The most efficient method of finding the minimum in (2.12) depends on the density of

candidate centroids x. With candidates very close together it is best to use the algorithm

of [Felzenszwalb & Huttenlocher, 2004], which can compute x? over the whole image at

once (since w is a convex function). For our purposes however, we found it more efficient

to perform a brute force search where required, as the candidate centroids were sufficiently

24



CHAPTER 2. CONTOUR 2.3. Object Detection

far apart.

2.3.2 Detecting Objects

Sliding window classification [Viola & Jones, 2001; Agarwal & Roth, 2002; Ferrari et al.,

2006a] is a simple, effective technique for object detection. A probability P (obj(x,s)) of object

presence at location (x, s) is calculated across scale-space using a boosted classifier which

combines multiple part responses v from (2.14). These probabilities are far from indepen-

dent, since the presence of two distinct neighboring detections is highly unlikely, for exam-

ple. Hence a non-maximal suppression step, for which we employ mean shift mode estima-

tion [Comaniciu & Meer, 2002], is used to select local maxima as the final set of detections.

One must choose a setX of centroid scale-space location hypotheses, sampled frequently

enough to allow detection of all objects present, but sparsely enough to avoid undue com-

putational overhead. A fixed number of scales is chosen, equally spaced logarithmically to

cover the range of scales in the training data, which we assume is representative. Space

is sampled over a regular grid with spacing s∆grid for constant ∆grid (optimized by hand

against the validation set). By increasing the spacing with scale, we can safely improve ef-

ficiency due to the greater tolerance to misalignment given by the enlarged search window

in (2.12).

Classifier

We employ a boosted classifier to compute probabilities P (obj(x,s)). This combines the part

responses v (2.14) for parts P1, . . . , PM in an additive model of the form

H(x, s) =
M∑
m=1

hm(x, s) =
M∑
m=1

am[v[Fm,λm](x, s) > θm] + bm , (2.15)

with the binary indicator function [condition] = 1 if condition is true, 0 otherwise. Each weak

learner hm (corresponding to part Pm in the model) is a decision stump which assigns a weak

confidence value (in the range −∞ to +∞) according to the comparison of part response

v[Fm,λm] to threshold θm. The weak learner confidences are summed to produce a strong

hypothesis confidence H , which can then be interpreted as a probability using the logistic

transformation [Friedman et al., 2000]:

P (obj(x,s)) =
1

1 + exp(−H(x, s))
. (2.16)
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Mode Detection

Evaluating P (obj(x,s)) for all scale-space centroid hypotheses (x, s) ∈ X is the starting point

for classification and detection. We can write the classification task as that of estimating

P (
⋃

(x,s)∈X

obj(x,s)) = 1− P (
⋂

(x,s)∈X

obj(x,s)) , (2.17)

and the detection task as finding the set of detections D that maximizes

P (
⋂

(x,s)∈D

obj(x,s)
⋂

(x,s)∈X\D

obj(x,s)) , (2.18)

where obj(x,s) represents the event that an object is not present at (x, s).

Unfortunately, the posteriors of neighboring windows (x1, s1) and (x2, s2) cannot be

treated as independent, in other words

P (obj(x1,s1), obj(x2,s2)) 6= P (obj(x1,s1))P (obj(x2,s2)) , (2.19)

and this greatly complicates the matter of computing (2.17) and (2.18). Finding a method to

calculate or approximate the classification and detection probabilities in a principled man-

ner is a very hard challenge, and one that the authors do not believe the community has

yet satisfactorily addressed. We leave this challenge, beyond the scope of this work, for

future endeavors; one possible solution could incorporate a Markov random field [Geman

& Geman, 1984] prior over the hypotheses, disallowing overlapping detections so that the

remaining detections are truly independent.

Instead, we use the powerful and now fairly standard technique of mean shift mode es-

timation [Comaniciu & Meer, 2002] on the hypothesized locations (x, s) ∈ X weighted by

their scaled posterior probabilities s2P (obj(x,s)), similarly to [Leibe & Schiele, 2004]. Multi-

plying by s2 compensates for the proportionally less dense hypotheses at larger scales. The

algorithm models the non-parametric distribution over the hypothesis space with the kernel

density estimator

P (x, s) ∝
∑

(xi,si)∈X

s2iP (obj(xi,si)
)K

(
x− xi
hx

,
y − yi
hy

,
log s− log si

hs

)
, (2.20)

where x = (x, y)T , the Gaussian kernel K uses bandwidths hx, hy and hs for the x, y, and
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scale dimensions respectively, and the scale dimension is linearized by taking logarithms.

The mean shift mode estimation procedure efficiently locates modes (local maxima) of the

distribution, which are used as the final set of detections. The density estimate at each

mode is used as a confidence value for the detection. To get a confidence value for image

classification, we simply take the density estimate at the global maximum.

2.4 Learning

We describe in this section how the set of parts P is learned from the contour exemplars F .

Recall that a part P = (F, λ, θ, a, b) consists of a contour exemplar F ∈ F and parameters λ,

θ, a and b. The challenge of learning is therefore to select discriminative exemplars F from

the codebook and learn the parameters of the classifier (2.15). We describe the boosting

algorithm as applied to our problem, discuss how a cascade can be learned to improve test

speed, and finally how retraining on both the training and test sets can improve detection

accuracy.

2.4.1 Boosting

We employ the Gentle AdaBoost algorithm [Friedman et al., 2000], detailed in Appendix B,

to learn the classifier in (2.15). The algorithm takes as input a set of training examples i

each consisting of feature vector fi paired with target value zi = ±1, and iteratively builds a

classifier which should generalize to new data.

For our purposes, training example i represents location (xi, si) in one of the training

images. The target value zi specifies the presence (zi = +1) or absence (zi = −1) of the

object class. The feature vector fi contains the responses v[F,λ](xi, si) (2.14) for all contour

exemplars F ∈ F , and all orientation specificities λ from a discrete set Λ. A given dimension

d in the feature vector therefore encodes a pair (F, λ), and, since decision stumps are used

[Torralba et al., 2007], each learned weak learner directly corresponds to an object model part

P .

We are free to choose the number, locations, and target values of the training examples.

One could densely sample each training image, computing feature vectors for examples at

every point on a grid in scale-space. This is however unnecessarily inefficient because the

minimization over x′ in (2.12) means that neighboring locations often have near identical

feature vectors.
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Figure 2.9: Training examples. (a) A pattern of positive (green ⊕) and negative (red 	) ex-
amples are arranged about the true object centroid (the central, larger green⊕). The positive
and negative examples are spaced on a grid of size δ1 and δ2 respectively, scaled by the object
scale s. At each example, a feature vector of part responses is computed and passed to the
boosting algorithm. (b) For images with no objects present (background images), copies of
the same pattern as before (though now with all negative examples) are placed at a number
of random scale-space locations. Note that the patterns of examples are repeated at different
scales, but for clarity these are not drawn here; see text for details.

Instead, we use a sparse pattern of training examples as illustrated in Figure 2.9. For an

object in the training set at location (x, s), positive examples are taken at the 3x3x3 scaled

grid locations x′ = x + [zxs′δ1, zys′δ1]T for scales s′ = sγzs1 , where (zx, zy, zs) ∈ {−1, 0,+1}3.

The grid is spaced by δ1 in (scale-normalized) space and γ1 in scale. One scale, zs = 0, of this

grid is shown in Figure 2.9(a). The positive examples ensure a strong classification response

near the true centroid, wide enough that the sliding window need not be evaluated at every

pixel (see Section 2.3.2). To ensure the response is localized, negative examples (the outer

grid of red circles in Figure 2.9(a)) are taken at positions x′ = x + [zxs′δ2, zys′δ2]T for scales

s′ = sγzs2 , with a larger spacing δ2 > δ1 and scaling γ2 > γ1, and using the same (zx, zy, zs)

though now excluding (0, 0, 0). This particular pattern results in a total of 53 examples for

each object; while this may seem a large number it is vastly fewer than the total number of

scale-space locations in the image. For training images not containing an object, we create

(all negative) examples in the same pattern, at a number of random scale-space locations, as

illustrated in Figure 2.9(b).

For the size of learning problems addressed in this chapter, feature vectors can be pre-

computed for all examples. This usually takes less than an hour depending on the dataset.

The boosting procedure is then relatively quick, taking typically less than a minute to con-
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verge, since the weak learners are individually quite powerful.

2.4.2 Classification Cascade

The ordering of the weak learners selected by boosting is important: early rounds select

more general weak learners which classify the bulk of the training examples well, while

later rounds concentrate on more particular troublesome examples. This ordering can be

exploited for efficiency at test time by building a cascade [Viola & Jones, 2001].

We use a very simple form of cascade, similar to that in [Schneiderman & Kanade, 2004]:

after each round m of boosting, a threshold ρm is chosen as the minimum classification

confidence value Hm across all positive training examples:

ρm = min
i s.t. zi=+1

Hm(xi, si)− ε , (2.21)

with a small constant ε subtracted to aid generalization. Threshold ρm is used at test time, for

each round, to determine locations which are very unlikely to be true detections: if, at round

m, the classification confidenceHm(x, s) is less than ρm, then location (x, s) is removed from

further consideration so that weak learners for roundsm′ > m are not evaluated there. Note

that ρm is the largest threshold to give no false negatives across the training set. The cascade

gives a considerable speed-up, with almost no performance degradation. On real data we

have observed that the average number of rounds computed per point drops to about 20%,

giving about a 2x speed-up in detection time per image.1

2.4.3 Retraining on Training Data

It is unclear how to place the sparse negative training examples optimally throughout the

training images, and hence initially they are placed at random, as described above. How-

ever, once a detector is learned using these examples, a retraining step is used to boot-strap

the set of training examples, in a similar manner to [Zhu & Ghahramani, 2002]. We evaluate

the detector on the training images, and record all detections not marked as correct (as de-

fined in Section 2.5.1) and any false negatives. The classifier is then retrained on the original

example set, augmented with new negative examples at the locations of incorrect detec-

tions, and duplicate positive examples to correct the false negatives. As we demonstrate in

1For implementation reasons, the speed-up is not directly inversely proportional to the drop in the average
number of rounds computed.
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Section 2.5.4, this procedure allows us to learn the parameters of more parts without over-

fitting. In [Shotton et al., 2005] we referred to a very similar procedure as partially supervised

learning.

2.4.4 Retraining on Test Data

The same idea can be put to work on the test data, if one assigns a degree of trust to the

output of the classifier. One can take a fixed proportion ξ (e.g. ξ = 10%) of detections

with strongest confidence and assume these are correct, positive detections, and the same

proportion of detections with weakest confidence and assume there are no objects present at

those locations. The boosted classifier is learned again with the new positive and negative

training examples further augmenting the training set.

2.5 Evaluation

In this section we present a thorough evaluation of our technique on several challenging

datasets. Our technique is applied to the problems of classification and detection. We in-

vestigate the performance of different aspects of our system, and compare against other

state-of-the-art methods. The standard experimental procedure is detailed in Section 2.5.1,

the datasets in Section 2.5.2, and the results begin in Section 2.5.3.

2.5.1 Procedure

In each experiment, the image datasets are split into training and test sets. Each model is

learned from the training set with ground truth bounding boxes provided. At test time, the

bounding boxes are only used to compute detection accuracy, as follows.

The mode detection procedure, described in Section 2.3, results in a set of centroid hy-

potheses and confidence values for object presence at these points. We assign a scaled

bounding box centered on each detection, with aspect-ratio proportional to that of the aver-

age training bounding box. For a detection to be marked as correct, its inferred bounding

box binf must agree with the ground truth bounding box bgt based on an overlap criterion

(as used in [VOC]):
area(binf ∩ bgt)
area(binf ∪ bgt)

> 0.5 . (2.22)

Each ground truth bounding box can match against only one inferred bounding box, so

that spurious detections of the same object count as false positives. For the task of image
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classification, we take the single most confident detection within each image, and use its

confidence as the classification confidence. The nature of the mean shift detection procedure

ensures that every image has at least one detection.

For the task of classification, we use the receiver operating characteristic (ROC) curve to

measure performance. This plots the trade-off between false positives and false negatives

as a global confidence threshold is applied. The equal-error rate (EER) gives an easy-to-

interpret measure of quality of classification, while the area under the curve (AUC) which

takes the whole curve into account gives a better measure for comparison purposes.

For detection we use two closely related measures. The first, the recall-precision (RP)

curve, plots the trade-off between recall and precision as one varies the global threshold.

Where necessary for comparison with previous work, we use the EER measure on the RP

curve, though wherever possible we use the more representative AUC measure.2 The sec-

ond measure plots recall against the average number of false positives per image (RFPPI) as

the detection threshold is varied [Ferrari et al., 2006a]. The RFPPI curve seems more natural

for human interpretation than the RP curve, since it is monotonic and stabilizes as more neg-

ative images are tested (the RP curve can only deteriorate). Note that the legends in Figures

2.10, 2.13(b), 4.4(b), and 4.7(b) contain RP AUC figures even though the graphs show RFPPI.

2.5.2 Datasets

We specify here the datasets used in the evaluations below. Bounding boxes are used, but

apart from Section 2.5.7, no figure-ground segmentations are used (a few were used in [Shot-

ton et al., 2005]). Example images from the datasets are shown in Appendix C.

Weizmann Horses

The Weizmann horse database [Weizmann] is a very challenging set of side-on horse images.

Used for evaluating segmentation accuracy in [Borenstein et al., 2004], we introduced it for

evaluation of detection in [Shotton et al., 2005]. A wide variety of horses breeds, colors,

and textures are represented, with different articulations, lighting conditions and scales.

While they are nominally viewed side-on and facing left, considerable out-of-plane rotation

is evident.3

2Strictly speaking, it is the area to the right of the curve in a recall against 1−precision plot.
3Although not required here, it is fairly simple to extend our algorithm to allow the detection of objects facing

in both directions. The standard detector is evaluated on both the original image and a left-right mirrored copy
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In [Shotton et al., 2005], we evaluated our detector against a single-scale version of the

database paired with background images from the Caltech database [Caltech]: 50 horse

images (10 of which were segmented) and 50 background images were used for training,

and the remaining 277 horse images and 277 background images for testing.

In this work, we extend the evaluation to a multi-scale version of this image database,

and to improve the quality of the benchmark, use a much harder set of background images

from the Caltech 101 dataset [Caltech 101] and [Fei-Fei et al., 2006]. While these image sets

have very different textural characteristics (and hence we would expect texture-based meth-

ods to work well at classification), the background images containing lots of clutter edges

pose a hard challenge to our contour-only detector. All images were down-sampled to a

maximum image dimension of 320 pixels where necessary; the resulting horses have a scale

range of roughly 2.5 from smallest to largest. For this dataset, the first 50 images from horse

and background sets were used for training, the next 50 as a validation set for optimizing pa-

rameters, and a final 228 as the test set. We have made both the multi-scale and single-scale

datasets available from our website at [Shotton].

Graz 17

We compare our method against the results obtained by [Opelt et al., 2006c] on their 17 class

database (listed in Table 2.1). We use the same training and test sets, including for training

the ‘validation’ set, which is integral to the learning algorithm of [Opelt et al., 2006c]. Images

are down-sampled to a maximum image dimension of 320 pixels where necessary. For some

classes, the resulting scale range is more than 5 times from smallest to largest. We investigate

each class individually and evaluate against the class test set and an equal number of images

from the background test set (where possible, since only 166 background images are in the

dataset). We make the comparison as fair as possible, though for some classes the number

of training and test images quoted in the paper vary slightly to those in the online dataset.

2.5.3 Matching Measures

We now turn to the results, beginning by comparing the performance of the detector using

several different matching measures: our proposed oriented chamfer matching with learned

of the image. The detections from both images are then combined while removing duplicates. See e.g. [Shotton
et al., 2005].
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Figure 2.10: Detection performance of different contour matching measures. Recall is
plotted as a function of the number of false positives per image averaged over the dataset.
We observe the best performance is obtained by our oriented chamfer matching technique
with a learned λ parameter, although a fixed λ = 1 also performs well.

λ and with constant λ ∈ {0, 0.5, 1}, standard 8-channel chamfer matching, and Hausdorff

matching. The experiment was performed against 100 images in the multi-scale Weizmann

test set using 100 parts without retraining.

Figure 2.10 superimposes the RFPPI curves for each matching measure, and the legend

reports the corresponding RP AUC statistics. Observe that with no orientation information

(λ = 0, identical to a 1-channel, non-oriented chamfer distance), performance is very poor.

Hausdorff distance also fails to work well, since it too does not use orientation information.

The 8-channel chamfer matching performs fairly well, but by modeling the orientation ex-

plicitly, our oriented chamfer distance (for λ > 0) performs as well or better, even if λ is

kept constant. The RFPPI curve for λ = 1 appears almost as good as the learned λ curve,

although the AUC numbers confirm that learning λ per part, in order to weight optimally

between distance and orientation in (2.8), is noticeably better.
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2.5.4 Retraining

As described in Sections 2.4.3 and 2.4.4, one can boot-strap the detector by retraining firstly

on the training data to prevent the detector firing in background clutter, and secondly on

the test data by assigning a degree of confidence ξ to the results. For this experiment we

recorded the performance of the detector (RP AUC) against the number of parts: (i) with-

out retraining, (ii) retraining only on the training data (identified in Figures 2.11 and 2.13

as ‘retrained training’), and (iii) retraining both on the training and test data (identified as

‘retrained test’), against the multi-scale Weizmann validation dataset. The confidence pa-

rameter was set to ξ = 10%.

We can draw several conclusions from the plot of these results in Figure 2.11 (the slight

noise is due to the considerable impact that even one false negative has on the RP AUC).

Adding more parts (by performing more rounds of boosting) helps performance on the test

data up to a point, but eventually the detector starts to over-fit to the training data and

generalization decreases. By providing more training examples, by retraining on the train-

ing data, we can use more weak learners without over-fitting (though of course over-fitting

will recur eventually), and obtain improved detection performance at the expense of more

parts. Retraining on both the training and test data allows a further improvement. Note that

with fewer parts (40), retraining in either way can actually decrease performance, since the

strongest and weakest detections are not sufficiently reliable. Note also the significant extra

effort that retraining entails, for the relatively small performance gain.

2.5.5 Approximate Chamfer Matching

The results of our evaluation make use of the approximation described at the end of Sec-

tion 2.2.1, whereby only a subset of fragment edgels are used for chamfer matching. For all

experiments, only every fifth edgel (sorted in scan-line order) in each fragment is used,

giving a commensurate speed improvement. To determine whether this approximation

adversely affects performance, we compare detection performance with and without the

approximation, on the Weizmann multi-scale validation dataset using 100 features. With

the approximation, a RP AUC of 0.9547 was achieved, whereas without the approximation

(matching every edgel) only 0.9417 was obtained. We conclude that the approximation can

improve speed without degrading detection performance. The slight improvement in per-

formance may even be significant, since the variance of the part responses in the training
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Figure 2.11: Performance before and after retraining. Detection performance is graphed
as a function of the number of parts (rounds of boosting) for the initial detector and for the
detectors when retrained either on the training dataset or on the training and test datasets.
While the initial detector starts to over-fit as the number of parts is increased above 100, re-
training prevents over-fitting (over the range of the graph), allowing an overall performance
improvement at the expense of more parts.

data is increased slightly, which may prevent over-fitting.

2.5.6 Multi-Scale Weizmann Horses

We now evaluate on the full Weizmann multi-scale dataset, showing example detections

in Figure 2.12 and quantitative results for classification and detection in Figure 2.13. With

retraining, we achieve a final ROC AUC of 0.9400 for classification, and a final RP AUC of

0.8903 for detection.

There are several conclusions to draw from these results. Firstly, we have confirmed the

results of Section 2.5.4 that retraining on the training and test sets can improve performance.

Next, turning to the correct and incorrect detections in Figure 2.12, we observe that the

detector works very well on the extremely challenging horse images, despite wide within-

class variation, extensive background clutter and some extreme lighting conditions. Missed

detections (false negatives) have occurred when there is significant pose change or out-of-

plane rotation beyond the range for which we would expect our side-on detector to work.

Training explicitly for these poses or rotations, perhaps using a multi-class classifier such as

[Torralba et al., 2007], should allow detection of these objects. False positives occur when

the pattern of clutter edgels is sufficiently similar to our model, as for example the case
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Figure 2.12: Example detections in the multi-scale Weizmann horse test set. Bounding
boxes around objects indicate detections: green represents correct detections, red false pos-
itives, and yellow the ground truth for false negatives. The final column visualizes the
contour fragments for the detections of the penultimate column. Note accurate scale-space
localization in the presence of highly variable object appearance, significant background
clutter, extreme lighting conditions (including silhouetting), articulation, and pose changes.

(middle column, penultimate row) of the man standing in front of the horse, where the

man’s legs look sufficiently similar to the front legs of a horse in terms of image edges. We

show in Chapter 4 that simple texture based features are sufficient to discount many such

false positives, and that the combination of contour and texture based features significantly

improves performance. For object classes such as horses with very distinctive contour but

variable texture, we show that contour gives important cues about where the object is, while

texture gives strong cues about where the object is not (for example, blue sky or green grass

is unlikely to signify horse presence).

Our C# implementation on a 2.2 GHz machine takes approximately 2 hours to train
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Figure 2.13: Performance on the Weizmann horse test set with and without retraining. (a)
ROC curves showing classification performance, with the curve for the pLSA classification
benchmark included (Section 2.5.9). To aid readability, only the top-left corner is shown. (b)
RFPPI curves showing detection performance. Note how both stages of retraining improve
both classification and detection performance.

and 10 seconds per image to test. For these and all other experiments, unless stated other-

wise, the following parameters were used. The distance transform truncation was τ = 30,

and fragments were randomly chosen with the following transformation parameters: scal-

ing srnd = 1.2, rotation about fragment center θrnd = π
8 , (scale-normalized) translation

trnd = 0.05, and rotation about centroid φrnd = π
16 . To learn the dictionary, 10000 raw frag-

ments, with edgel density bounded as (η1, η2) = (1%, 5%), were clustered using a constant

λ = 0.4, to produce 500 exemplars. To learn the classifier, examples were taken with grid

spacings δ1 = 0.03 and δ2 = 0.25, and grid scale scalings γ1 = 1.1 and γ2 = 1.4. Three

patterns of negative examples were used for background images, and λ was allowed values

in {0, 0.2, . . . , 1}. Evaluation took place with the cascade constant ε = 3, and used a grid

spacing of ∆grid = 0.07 scaled by each of 6 test scales over M = 100 rounds. The top and

bottom ξ = 10% of detections were used for retraining on the test set.

2.5.7 Training from Segmented Data

To investigate whether the contour codebook learned from unsegmented data works well,

we performed the same detection experiment on the multi-scale Weizmann dataset but now

with the codebook learned from segmented training data. We obtained a detection RP AUC

of 0.8637, slightly worse than the performance on unsegmented images (0.8903). This some-
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Canny BEL Canny BEL

Figure 2.14: Example edge maps from Canny [Canny, 1986] and boosted edge learning
(BEL) [Dollár et al., 2006]. One horse image, and one background image are shown. By
learning a model of horse edges, BEL is able to produce edge maps with visibly less clutter.
We demonstrate how this substantially improves detection performance in Section 2.5.8.

what unexpected result, possibly due to over-fitting or to the importance of interior edgels,

shows the strength of our algorithm for learning the codebook.

2.5.8 Learned Edge Detection

The Canny edge detector [Canny, 1986] has thus far proved a capable basis for our features.

However, recent developments such as [Martin et al., 2004; Dollár et al., 2006] take a more

modern approach to edge detection, whereby a model of edges is learned from training

data. To determine whether the choice of edge detector has a significant impact, we com-

pared performance on the multi-scale Weizmann dataset using two models trained by the

boosted edge learning (BEL) algorithm from [Dollár et al., 2006]. The first was trained on a

set of natural images with corresponding hand-drawn edge labels, and the second on our

segmented horse training set with the aim of detecting only horse edges. The edge maps

returned by [Dollár et al., 2006] are soft, and so standard non-maximal suppression is used

to give ‘thin’ edges. The image edge gradient is used to obtain edge orientation information,

just as for Canny edges.

The detection results were as follows. For 100 parts, without retraining, the Canny edge

detector gives us a RP AUC of 0.8498. The first BEL model, trained on natural images, gave

no improvement with a RP AUC of 0.8354. However, the second BEL model, trained on

segmented horse images, gave 0.8976 RP AUC, a very significant improvement, and even

slightly better than the best performance using Canny with retraining (0.8903). There is an

even more noticeable improvement in classification performance: from 0.9127 ROC AUC

for Canny, up to 0.9518 for the BEL. We attribute this improvement to the reduced number

of clutter edges found by the BEL: even to the naked eye, there is a marked difference in

edge density between the horse and background images (illustrated in Figure 2.14).
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Of note in the qualitative results was that the learned codebook contained noticeably

cleaner contour fragments than those learned from Canny edge maps, with very little noise.

Most of the quantitative improvement was due to several detections that had previously

been missed. This experiment has confirmed that a modern learned edge detection algo-

rithm complements our object detection system; future work remains to extend this evalua-

tion to the other datasets in this chapter.

2.5.9 Comparison with Sparse Local Descriptors

To compare contour fragments with sparse local descriptors, and to determine the challenge

that the multi-scale Weizmann horse dataset poses to them, we evaluated a benchmark using

probabilistic latent semantic analysis (pLSA) [Sivic et al., 2005; Hofmann, 2001], adapted

to give image classification. With such a wide variety of texture- and interest point-based

methods in the literature it would be impossible to evaluate them all; bag-of-words models

were shown to perform best in the PASCAL Visual Object Challenge 2006 [VOC], and we

choose pLSA as a simple-to-implement but powerful modern representative of these, to give

us an indicative comparison.

The technique takes SIFT descriptors [Lowe, 2004] and clusters them into a number of

visual words w so that each image (or document) d is represented by the counts of words

present. The unsupervised pLSA algorithm then mines the word-document co-occurrence

table looking for recurring topics k.

We first run pLSA on both training and test data combined, resulting in a distribution

p(k|d) for each image. For the training images, we know p(obj|d) ∈ {0, 1} where the event

‘obj’ denotes the presence of an object in the image, and so can learn distributions p(obj|k) ∝∑
d p(k|d)p(obj|d)p(d) (using uniform priors). Hence for test images we can compute the

posterior classification as p(obj|d) =
∑

k p(obj|k)p(k|d).

To obtain the best performance this model would allow, we optimized the parameters

against the test set, giving 200 SIFT clusters and 15 topics shared between the object and

background classes. In Figure 2.13(a) we plot the ROC curve for the pLSA benchmark. We

observe considerably worse performance than our contour based classifiers achieve, sug-

gesting that these images are difficult to classify based on sparse local descriptors alone.
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2.5.10 Single-Scale Weizmann Horses

Using the original single-scale Weizmann horse dataset, we compare our results with those

of [Shotton et al., 2005], where a RP EER of 92.1% was achieved (using some segmented data).

Further experiments on this dataset in [Ferrari et al., 2006a] improved on this figure with an

RP EER of 94.2% for contour based features only, and 95.7% combining contour features and

local descriptors. Our improved method presented in this chapter, using only contour and

without segmented training data, obtains an RP EER of 95.68% (with a corresponding RP

AUC of 0.9496), as good as [Ferrari et al., 2006a] even though they employ an additional

feature type. We speculate that the improved performance over our previous method is due

to the better generalization given by our learned codebook, and the use of the mean shift

algorithm to select detections.

2.5.11 Graz 17

Number of images Classification (ROC) Detection (RP)
Class Training Test AUC EER AUC EER Opelt EER

Airplanes 100 400 0.9953 3.4% 0.9310 6.8% 7.4%
Cars (rear) 100 400 0.9992 1.5% 0.9912 1.8% 2.3%
Motorbikes 100 400 1.0000 0.4% 1.0000 0.3% 4.4%

Faces 100 217 0.9966 2.4% 0.9850 2.8% 3.6%
Bikes (side) 90 53 0.9366 13.2% 0.6959 32.1% 28.0%
Bikes (rear) 29 13 0.9172 15.4% 0.6398 26.7% 25.0%
Bikes (front) 19 12 0.9375 16.7% 0.6344 41.7% 41.7%
Cars ( 2

3
rear) 32 14 0.9000 20.9% 0.6925 30.0% 12.5%

Cars (front) 34 16 0.9727 12.5% 0.7233 29.4% 10.0%
Bottles 54 64 0.9802 7.8% 0.9468 9.4% 9.0%

Cows (side) 45 65 0.9992 1.7% 0.9975 1.5% 0.0%
Horses (side) 55 96 0.9816 6.3% 0.9680 6.3% 8.2%
Horses (front) 44 22 0.9566 13.6% 0.7852 27.3% 13.8%
Cows (front) 34 16 0.9727 6.3% 0.8575 18.8% 18.0%

People 39 18 0.9321 16.7% 0.4271 47.6% 47.4%
Mugs 30 20 0.9600 5.0% 0.9035 10.0% 6.7%
Cups 31 20 0.9825 5.0% 0.9158 15.0% 18.8%

Table 2.1: Classification and detection performance on the Graz 17 dataset. The final
column compares detection performance with [Opelt et al., 2006c].

We conclude our evaluation by investigating performance on the Graz 17 class dataset.

Our results are compared to [Opelt et al., 2006c] in Table 2.1, and Figures 2.15 and 2.16

show example detections. Parameter values were unchanged from the previous multi-scale

Weizmann experiments, although the number of parts and number of scales were adjusted

against the training data.
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Figure 2.15: Example detections for the Graz 17 class test set. Green bounding boxes
around objects indicate detections. Note accurate scale-space localization of objects de-
spite wide within-class appearance variation, significant pose changes, partial occlusion,
and background clutter, and detection of multiple objects.
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Figure 2.16: Example contour visualizations from detections in Figure 2.15. These visu-
alizations superimpose, at their detected positions, all contour fragments that contributed
positively to the object detections. This gives an indication of which parts of object contour
are useful for recognition. For example, in (9c), the cow is recognized using head and rear
contour fragments with little useful information used from its back.

There are several conclusions to draw from these results. Firstly, in almost every case we

perform comparably to [Opelt et al., 2006c], and for the larger datasets we show a signifi-

cant improvement, with almost perfect performance on motorbikes. As one would expect,

classification proves easier than detection in most cases, since strong but poorly localized

detections contribute positively to classification but negatively to detection. Performance is

worse for a few classes, such as cars (2
3 rear) and cars (front), and poor for both techniques

for bikes (front) and people. There are few training images of these classes, and objects ex-

hibit considerably more out-of-plane rotation. Also, the small number of test images means

that even one missed detection has a very large effect on the RP EER (up to 100
N % for N test

images). Much more significant therefore is our sustained improvement for classes with

more test images.

2.6 Conclusions

Our thorough evaluation has demonstrated that contour can be used to successfully recog-

nize objects from a wide variety of object classes at multiple scales. Our new approximate

oriented chamfer distance outperformed existing contour matching methods, and enabled

us to build a class-specific codebook of local contour fragments, even without segmented

training data. We observed that retraining on both the training and test data can improve

generalization and test performance. Finally, we showed how modern, learned edge detec-

tion gave an improvement over the traditional Canny edge detector.
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CHAPTER 3

TEXTURE

3.1 Introduction

In this chapter, we turn our attention to the problem of automatically achieving semantic

segmentations of photographs. We propose a system, called TextonBoost, that automatically

partitions a given image into semantically meaningful regions, each labeled with a specific

object class, as illustrated in Figure 3.1.

The challenge is to model the visual variability of a large number of both structured and

unstructured object classes, to be invariant to viewpoint and illumination, and to be robust

to occlusion. Our focus is not only the accuracy of segmentation and recognition, but also

the efficiency of the algorithm, which becomes particularly important when dealing with

large image collections or video sequences.

At a local level, the appearance of an image patch leads to ambiguities in its class label.

For example, a window could be part of a car, a building or an airplane. To overcome these

ambiguities, it is necessary to incorporate longer range information such as the spatial con-

figuration of an object (the object shape) and also contextual information from the surround-

ing image. To achieve this, we construct a discriminative model for labeling images which

exploits all three types of information: appearance, shape, and context. Our technique can

model very long-range contextual relationships extending over half the size of the image.

Additionally, our technique overcomes several problems typically associated with object

recognition techniques that rely on sparse features (such as [Lowe, 2004; Mikolajczyk &

Schmid, 2002]). These problems are mainly related to textureless or very highly textured

image regions. Figure 3.2 shows some examples of images with which those techniques

would very likely struggle. In contrast, our technique based on dense features is capable of

coping with both textured and untextured objects, and with multiple objects which inter- or
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Figure 3.1: Example results of our new simultaneous object class recognition and seg-
mentation algorithm. Up to 21 object classes (color-coded in the key) are recognized, and
the corresponding object instances segmented in the images. For clarity, textual labels have
been superimposed on the resulting segmentations. Note, for instance, how the airplane has
been correctly recognized and separated from the building, the sky, and the grass lawn. In
these experiments only one learned multi-class model has been used to segment all the test
images. Further results from this system are given in Figure 3.21.

self-occlude, while retaining high efficiency.

The contributions in this chapter are threefold. First, we present a discriminative model

which is capable of fusing shape, appearance and context information to recognize effi-

ciently the object classes present in an image, whilst exploiting edge information to provide

an accurate segmentation. Second, we propose features, based on textons, which are capable

of modeling object shape, appearance and context. Finally, we demonstrate how to train the

model efficiently on a very large dataset by exploiting both boosting and piecewise training

methods.

The TextonBoost system originally appeared in [Shotton et al., 2006]. This chapter builds

on that work, with clarified explanations, new variants of our texture-based features, and

an extended evaluation.

The chapter is organized as follows. We briefly discuss closely related work below. In the

Section 3.2, we describe the image databases used in our experiments. Section 3.3 introduces

the high-level model, a conditional random field (CRF), while Section 3.4 presents our novel

low-level image features and their use in constructing a boosted classifier. Experiments,
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Figure 3.2: Example problem images for techniques based on sparse features. Sparse
feature based techniques struggle with textureless and very highly textured regions, and
multiple objects, especially those that severely inter-occlude.

performance evaluations and conclusions are given in the final two sections. Note that the

notation in this chapter should be treated separately from that of Chapter 2. An overview of

the TextonBoost system is shown in Figure 3.3; the terms in this figure will become clear as

the reader continues through the chapter.

Related Work

The reader is referred to Appendix A for a fuller discussion of related work, but we briefly

highlight some directly related research here.

[Duygulu et al., 2002] used a classifier, trained from images with associated textual class

labels, to label regions found by bottom-up segmentation. Such segmentations often do not

correlate with semantic objects, for example an object in shadow may be divided into a shad-

owed versus non-shadowed part. Our solution to this problem is to perform segmentation

and recognition in the same unified framework rather than in two separate steps. Such a

unified approach was presented in [Tu et al., 2003], but there only text and faces were rec-

ognized, and at a high computational cost. In [Konishi & Yuille, 2000], images were labeled

using only a unary classifier and hence did not achieve spatially coherent segmentations.

The most similar work to ours [He et al., 2004] incorporates region and global label fea-

tures to model shape and context in a conditional random field. Their work uses Gibbs

sampling for both the parameter learning and label inference, and is therefore limited in the

size of dataset and number of classes that can be handled efficiently. Our focus on the speed

of training and inference allows us to use larger datasets with many more object classes. We

currently handle 21 classes (compared to the seven classes of [He et al., 2004]); it would be

tractable to train our model on even larger datasets than presented here.

More recent work [He et al., 2006] by the same group presented a related technique,

where images are first segmented with a bottom-up algorithm to give ‘super-pixels’ which
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Figure 3.3: Overview of the TextonBoost algorithm presented in this chapter. A set of
images with associated ground truth segmentations is divided into training and test sets.
The responses of a filter bank convolved with the training images are clustered, and the
resulting clusters are used to textonize the images (see Section 3.4.1). The parameters of the
potentials in the CRF are then learned. Finally, inference is run on the test images, giving
semantic segmentations as outputs.

are then merged together and semantically labeled using a combination of several scene-

specific CRF models. Their technique improved slightly the quantitative results from [He

et al., 2004], but still has not been demonstrated to handle more than 11 classes. Additionally,

the super-pixelization is a hard decision from which their CRF-based model cannot recover.

Our technique instead works efficiently at a per-pixel level.
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Figure 3.4: The MSRC labeled image database. (a-d) A selection of images in the 21-class
database. (e) The ground truth annotations corresponding to column (d). Each color maps
uniquely to an object class label. All images are approximately 320× 240 pixels.

3.2 Image Databases

Our object class models are learned from a set of labeled training images. In this chapter we

consider four different labeled image databases. The Microsoft Research Cambridge (MSRC)

database, available at [MSRC 21], is composed of 591 photographs of the following 21 object

classes: building, grass, tree, cow, sheep, sky, airplane, water, face, car, bicycle, flower, sign,

bird, book, chair, road, cat, dog, body, boat. Examples are shown in Figure 3.4. The training

images were hand-labeled by means of a ‘paint’ interface, with the assigned colors acting

as indices into the list of object classes. One could instead use one of the novel ‘user-centric

computation’ methods such as [Russel et al., 2005] or [Peekaboom]. Note that we consider

general lighting conditions, camera viewpoint, scene geometry, object pose and articulation.

Our database is split randomly into roughly 45% training, 10% validation and 45% test sets.

This is done per class to ensure approximately proportional contributions from each class.

Note that the ground truth labeling of the 21-class database contains pixels labeled as

void. These were included both to cope with pixels that do not belong to a class in the

database, and also to allow for a rough and quick hand-segmentation which does not align

exactly with the object boundaries. Due to this ambiguity in meaning, it was not sensible to
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learn a background class based on these regions, and hence void pixels are ignored for both

training and testing.

For comparison with previous work [He et al., 2004], we also used the 7-class Corel

database subset (where images are 180×120 pixels) and the 7-class Sowerby database (96×64

pixels). For those two databases, the numbers of images in the training and test sets we used

are exactly as for [He et al., 2004], although their precise train-test split was not known. Nei-

ther of these data sets include the void label.

The final evaluation we present was performed on a set of nine 20-minute video se-

quences of Japanese television programs: modern drama, news, golf, soccer, cooking, va-

riety, music, historical drama, and business news. The set of classes used for this evalu-

ation was as for the MSRC evaluation, but without sign, book or chair, and including the

new classes hand, table and headgear. For speed of evaluation, video frames were down-

sampled to 336x224 pixel resolution, but were otherwise not preprocessed. For both training

purposes and quantitative evaluation, a total of about 120 frames (one every 300 frames) in

each sequence were labeled by hand; since images change smoothly from one frame to the

next (apart from at scene changes), labeling more images would be unlikely to improve a

learned model.

3.3 A Conditional Random Field Model of Object Classes

We use a conditional random field (CRF) model [Lafferty et al., 2001] to learn the conditional

distribution over the class labeling given an image. The use of a conditional random field

allows us to incorporate shape, texture, color, location and edge cues in a single unified

model. We define the conditional probability of the class labels c given an image x as

logP (c|x,θ) =
∑
i

shape−texture︷ ︸︸ ︷
ψi(ci,x;θψ) +

color︷ ︸︸ ︷
π(ci, xi;θπ) +

location︷ ︸︸ ︷
λ(ci, i;θλ)

+
∑

(i,j)∈E

edge︷ ︸︸ ︷
φ(ci, cj ,gij(x);θφ)− logZ(θ,x) (3.1)

where E is the set of edges in a 4-connected grid structure, Z(θ,x) is the partition function

which normalizes the distribution, θ = {θψ,θπ,θλ,θφ} are the model parameters, and i and

j index pixels in the image, which correspond to sites in the graph. Note that our model

consists of three unary potentials which depend only on one node i in the graph, and one
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pairwise potential depending on pairs of neighboring nodes in the graph. We next define the

form of the four potential functions and their parameters.

Shape-texture potentials: The unary shape-texture potentials ψ use features selected by

boosting to represent the shape, texture and appearance context of the object classes.

These features and the boosting procedure used to perform feature selection while

training a multi-class logistic classifier are described in detail in Section 3.4. We use

this classifier directly as a potential in the CRF, so that

ψi(ci,x;θψ) = logP (ci|x, i) (3.2)

where P (ci|x, i) is the normalized distribution given by the boosted classifier, (3.16).

Color potentials: The unary color potentials capture the color distribution of instances of

a class in a particular image. While the distribution of color across an entire class of

objects is broad, the color distribution across one or a few instances of the class is rela-

tively compact. Exploiting an accurate instance color model can therefore dramatically

improve segmentation results [Blake et al., 2004]. The parameters θπ must be learned

separately for each image, and so this learning step needs to be carried out at test

time. It is this potential that captures the more precise image-specific appearance that

a solely class-specific recognition system cannot.

Our color models are represented as Gaussian Mixture Models (GMM) in CIELab color

space where the mixture coefficients depend on the class label. The conditional prob-

ability of the color x of a pixel is given by

P (x|c) =
∑
k

P (x|k)P (k|c) (3.3)

with

P (x|k) = N (x |µk,Σk) (3.4)

where k represents the mixture component the pixel is assigned to, and µk and Σk are

the mean and variance respectively of mixture k. Notice that the mixture components

are shared between different classes, and that only the coefficients P (k|c) depend on

the class label, making the model more efficient to learn than a separate GMM for each

class. For a particular pixel xi we compute a fixed soft assignment to the mixture com-

49



3.3. A Conditional Random Field Model of Object Classes CHAPTER 3. TEXTURE

tree sky roadgrass face

Figure 3.5: Example location potentials. Note how, for example, tree and sky pixels tend
to occur in the upper half of images, while road pixels tends to occur at the bottom of the
image. (White indicates increased probability).

ponents P (k|xi) ∝ P (xi|k) assuming a uniform prior P (k).1 Given this assignment,

we specify our color potential to have the form

π(ci, xi;θπ) = log
∑
k

θπ(ci, k)P (k|xi) (3.5)

where learned parameters θπ represent the distribution P (c|k); note the conditional

independence of c from x given k. (3.11) details the learning of θπ.

Location potentials: The unary location potentials capture the (relatively weak) dependence

of the class label on the absolute location of the pixel in the image. The potential takes

the form of a look-up table with an entry for each class and pixel location:

λi(ci, i;θλ) = log θλ(ci, î) . (3.6)

The index î is the normalized version of the pixel index i, where the normalization

allows for images of different sizes: the image is mapped onto a canonical square and

î indicates the pixel position within this square. Some learned location potentials are

illustrated in Figure 3.5.

Edge potentials: The pairwise edge potentials φ have the form of a contrast sensitive Potts

model [Boykov & Jolly, 2001],

φ(ci, cj ,gij(x);θφ) = −θTφgij(x)[ci 6= cj ] , (3.7)

1A soft assignment was found to give a marginal improvement over a hard assignment, at negligible extra
cost.

50



CHAPTER 3. TEXTURE 3.3. A Conditional Random Field Model of Object Classes

original image edge potentials

Figure 3.6: Edge potentials for an example image. The edge potentials in the CRF explicitly
penalize neighboring nodes in the graph having different class labels, except where there
is a corresponding edge in the image. Darker pixels in this image represent stronger edge
responses and therefore lower costs.

with [·] the zero-one indicator function. In this work, the edge feature gij measures

the difference in color between the neighboring pixels, as suggested by [Rother et al.,

2004],

gij =

 exp(−β‖xi − xj‖2)

1

 (3.8)

where xi and xj are three-dimensional vectors representing the colors of pixels i and j

respectively. Including the unit element allows a bias to be learned, to remove small,

isolated regions. The quantity β is an image-dependent contrast term, and is set sepa-

rately for each image to (2〈‖xi−xj‖2〉)−1, where 〈·〉 denotes an average over the image.

An example using the function exp(−β‖xi − xj‖2) is shown in Figure 3.6.

3.3.1 Learning the CRF: MAP Training

Ideally, the parameters of the model should be learned with maximum likelihood (ML) esti-

mation [Kumar & Hebert, 2003] or, better, maximum aposteriori (MAP) learning: these meth-

ods maximize the conditional likelihood of the labels given the training data, and for MAP

learning incorporate a prior term to prevent over-fitting:

L(θ) =
∑
n

logP (cn|xn,θ) + P (θ) . (3.9)

The maximization of L(θ) with respect to θ can be achieved using a gradient ascent algo-

rithm, iteratively computing the gradient of the conditional likelihood with respect to each

parameter, ∂
∂θi
L(θ), and moving up the gradient. This requires the evaluation of marginal
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probabilities over the class labels at each pixel for all training images.

Exact computation of these marginals is sadly infeasible, since it would require vast

computational effort to perform the numerous marginalizations of (3.1). Instead, we ap-

proximated the label marginals by the mode, the most probable labeling, inferred using

alpha-expansion graph cuts as described in Section 3.3.3. This approximation was made be-

cause the size of our datasets limited the time available to estimate marginals; alternative,

slower but more accurate approximations such as loopy belief propagation (BP) [Pearl, 1988;

Yedidia et al., 2003] or variational methods [Beal, 2003] could also be investigated.

We attempted MAP learning of the several thousand shape-texture potential parameters

θψ and the two edge potential parameters θφ. For the θψ, the optimization was performed

over the a and b parameters of the weak learners in (3.17), initialized at the values given by

boosting.

However, the modal approximation used proved insufficient for estimating such a large

number of parameters. Conjugate gradient ascent did eventually converge to a solution,

but evaluating the learned parameters against validation data gave poor results with almost

no improvement on unary classification alone. Additionally, for the learning of the edge

potential parameters, the lack of alignment between object edges and label boundaries in

the roughly labeled training set forced the learned parameters to tend toward zero.

3.3.2 Learning the CRF: Piecewise Training

Given these problems with directly maximizing the conditional likelihood, we decided in-

stead to use a method based on piecewise training [Sutton & McCallum, 2005]. Piecewise

training involves dividing the CRF model into pieces corresponding to the different terms

in (3.1). Each of these pieces is then trained independently, as if it were the only term in the

conditional model. For example, if we apply piecewise training to the CRF model of Fig-

ure 3.7(a), the parameter vectors θφ, θψ and θπ are learned by maximizing the conditional

likelihood in each of the three models of Figure 3.7(b). In each case, only the factors in the

model that contain the relevant parameter vector are retained.

As discussed in [Sutton & McCallum, 2005], this training method minimizes an upper

bound on the log partition function, as follows: if we define the logarithm of the partition

function z(θ,x) = logZ(θ,x) and index the terms in the model by r, then

z(θ,x) ≤
∑
r

zr(θr,x) (3.10)
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Figure 3.7: Piecewise training of the CRF parameters. (a) The factor graph (see e.g. [Bishop,
2006]) for a simplified CRF model. Each black square represents a term in (3.1) and each
circle represents a latent variable. Terms are connected to all variables that they depend
on. (b) When piecewise training is applied to the CRF model of (a), the parameters θφ, θψ
and θπ are learned by maximizing conditional likelihood in the top, middle and bottom
models respectively. In each model, only the terms relating to the parameter being learned
are retained. (c) A model in which the term ψ has been duplicated. In this case, piecewise
training will learn model parameters which are twice those learned in the original non-
duplicated model. Hence, piecewise training will lead to over-counting errors when terms
in the model are correlated. See text for more details.

where θr are the parameters of the rth term and zr(θr) is the partition function for a model

containing only the rth term. Replacing z(θ,x) with
∑

r zr(θr) in (3.1) then gives a lower

bound on the conditional likelihood. It is this bound which is maximized during piecewise

learning.

Unfortunately, this bound can be loose, especially if the terms in the model are corre-

lated. In this case, performing piecewise parameter training leads to over-counting during

inference in the combined model. To understand this, consider the case where we duplicate

a term of the model ψ(θψ), so that there is an additional term ψ(θ′ψ) which has the same

functional form but new parameters θ′ψ. A model with duplicated terms is shown in Fig-

ure 3.7(c). As the duplicate terms have the same form and are based on the same features,

these terms are perfectly correlated.

Piecewise training will learn that θψ and θ′ψ are the same and equal to the parameters

θold
ψ learned for this term in the original model. Since the log potential function logψ is

linear in the parameters, the duplicate model will be equivalent to the original model but

with θnew
ψ = 2θold

ψ , i.e. twice the correct value. To offset this over-counting effect and recover

the original parameters, it would be necessary to weight the logarithm of each duplicate

term by a factor of 0.5, or equivalently raise the term to the power of 0.5.
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It is difficult to assess analytically the degree of over-counting introduced by dependen-

cies between the different terms in our CRF model. Instead, we introduce scalar powers

for each term and optimize these powers discriminatively using cross-validation on a set of

validation images. We found that it was only necessary to introduce powers for the location

and color potentials. It can be shown that this leads to an approximate partition function

of similar form to (3.10), except that it is no longer an upper bound on the true partition

function.

Piecewise training with powers is therefore used to train the parameters of each of the

potential types separately as follows.

Shape-texture potential parameters: The shape-texture potential parameters are learned dur-

ing boosting, described in Section 3.4.

Color potential parameters: At test time the color potential parameters are learned for each

image in a piecewise fashion, similarly to [Rother et al., 2004]. First a class labeling c?

is inferred (see Section 3.3.3) and then the color parameters are updated using

θπ(ci, k) =
(∑

i[ci = c?i ]P (k|xi) + απ∑
i P (k|xi) + απ

)wπ

. (3.11)

Given this new parameter setting, a new class labeling is inferred and this procedure

is iterated. In practice, the Dirichlet prior parameter απ was set to 0.1, the power

parameter was set as wπ = 3, and fifteen color components and two iterations gave

good results. Because we are training in pieces, the color parameters do not need to be

learned for the training set.

Location potential parameters: We train the location potential parameters by maximizing

the likelihood of the normalized model containing just that potential and raising the

result to a fixed power wλ to compensate for over-counting. This corresponds to

θλ(c, î) =
(
Nc,̂i + αλ

Nî + αλ

)wλ

(3.12)

where Nc,̂i is the number of pixels of class c at normalized location î in the training

set, Nî is the total number of pixels at location î and αλ is a small integer (we use

αλ = 1) corresponding to a weak Dirichlet prior on θλ. The parameterwλ was changed

between the different datasets; the relevant values are given in Section 3.5.
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Edge potential parameters: The values of the two contrast-related parameters were manu-

ally selected to minimize the error on the validation set.

3.3.3 Inference in the CRF Model

Given a set of parameters learned for the CRF model, we wish to find the most probable

labeling c?, i.e. the labeling that maximizes the conditional probability of (3.1). The optimal

labeling is found by applying the alpha-expansion graph-cut algorithm of [Boykov & Jolly,

2001]. Note that the energy is alpha-expansion submodular (this term has superseded the

original term regular; see [Kolmogorov & Zabih, 2004] for details).

The idea of the expansion move algorithm is to reduce the problem of maximizing a

function f(c) (corresponding to (3.1)) with multiple labels to a sequence of binary maximiza-

tion problems. These sub-problems are called alpha-expansions. They can be described as

follows (see [Boykov & Jolly, 2001] for details). Suppose that we have a current configura-

tion (set of labels) c and a fixed label α ∈ {1, . . . , C}, where C is the number of classes. In the

alpha-expansion operation, each pixel i makes a binary decision: it can either keep its old

label or switch to label α. Therefore, we introduce a binary vector s ∈ {0, 1}P which defines

the auxiliary configuration c[s] as follows:

ci[s] =


ci if si = 0

α if si = 1.
(3.13)

This auxiliary configuration c[s] transforms the function f with multiple labels into a function

of binary variables f ′(s) = f(c[s]). Because our edge potentials are attractive, the global

maximum of this binary function can be found exactly using graph cuts.

The expansion move algorithm starts with an initial configuration c0.2 It then computes

optimal alpha-expansion moves for labels α in some order, accepting the moves only if they

increase the objective function. The algorithm is guaranteed to converge and its output

is a strong local maximum, characterized by the property that no further α-expansion can

increase the function f .

2In our case, the initial configuration c0 for the alpha-expansion is given by the mode of the shape-texture po-
tentials, though the final MAP solution was not in practice sensitive to this. Additionally, the order of expansion
moves did not have a noticeable effect on performance.
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texton map
(colors texton indices)

input image



filter bank

clustering and 

assignment

Figure 3.8: The process of image textonization. An input image is convolved with a filter
bank. The filter responses for all pixels in training images are clustered. Finally each pixel is
assigned a texton index corresponding to the nearest cluster center to its filter responses.

3.4 Boosted Learning of Shape, Texture and Context

The most important term in the CRF energy is the unary shape-texture potential of (3.2),

which is based on a novel set of features which we call shape filters. These features are capable

of capturing shape, texture and appearance context jointly. In this section, we describe shape

filters and the boosting process for automatic feature selection and learning of the shape-

texture potentials.

3.4.1 Textons

Efficiency demands a compact representation for the range of different appearances of an

object. For this we use textons [Leung & Malik, 2001] which have been proven effective in

categorizing materials [Varma & Zisserman, 2005] as well as generic object classes [Winn

et al., 2005]. The term texton was coined by [Julesz, 1981] for describing human textural

perception, and is somewhat analogous to phonemes used in speech recognition.

The training images are convolved with a 17-dimensional filter bank at scale κ.3 The

17-D responses for all training pixels are then whitened (to give zero mean and unit co-

variance), and an unsupervised clustering is performed. We employ the Euclidean-distance

K-means clustering algorithm, which can be made dramatically faster by using the tech-

niques of [Elkan, 2003]. Finally, each pixel in each image is assigned to the nearest cluster

3The choice of filter bank is somewhat arbitrary, as long as it is sufficiently representative. We use the same
filter bank as [Winn et al., 2005], which consists of Gaussians at scales κ, 2κ and 4κ, x and y derivatives of
Gaussians at scales 2κ and 4κ, and Laplacians of Gaussians at scales κ, 2κ, 4κ and 8κ. The Gaussians are
applied to all three color channels, while the other filters are applied only to the luminance. The perceptually
uniform CIELab color space is used.
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Figure 3.9: Textons for the MSRC 21 class dataset. 400 patches corresponding to the K =
400 learned textons are shown. The patch corresponding to texton t shows the average
across the dataset of 25x25 pixel windows centered on all pixels i with Ti = t. Observe
structures corresponding to untextured regions of constant color, horizontal and vertical
bars and edges (including some colored edges), blobs, rings, and crosses. Due to the choice
of filter bank, no diagonal edges are present, although the learning algorithm is to some
extent able to compensate for such missing types of texture.

center, producing the texton map. We will denote the texton map as T where the pixel i has

value Ti ∈ {1, . . . ,K}.

This process of textonization is illustrated in Figure 3.8, and a visualization of the result-

ing textons is shown in Figure 3.9. Additionally, a simplistic reconstruction, termed inverse

textonization, in which the average texton patches from Figure 3.9 are superimposed and

averaged, is illustrated in Figure 3.10.

Note that for efficiency one can use the k-d tree algorithm [Beis & Lowe, 1997] to perform

the nearest neighbor search; without any approximation, textonization using k-d trees with

leaf-node bins containing 30 cluster centers gave a speed up of about 5 times over simple

linear search.

3.4.2 Shape Filters

Each shape filter is a pair (r, t) of an arbitrary shape, r, and a texton t. In our implemen-

tation, the allowed shapes are rectangular regions, in coordinates relative to a pixel i being
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Figure 3.10: Inverse textonization. Given the texton map and the average texton patches
from Figure 3.9, a good approximation to the original image can be reconstructed. This
highlights the representative power of textons.

classified. For simplicity, a set of NR candidate rectangles are chosen at random, such that

their top-left and bottom-right corners lie within a fixed bounding box covering about half

the image area.4 The feature response at location i is the count of instances of texton t under

the offset rectangle mask r + i

v[r,t](i) =
∑

j∈(r+i)

[Tj = t] . (3.14)

Outside the image boundary there is zero contribution to the feature response. Figure 3.11

illustrates this process.

The filter responses can be efficiently computed over a whole image with integral im-

ages [Viola & Jones, 2001; Porikli, 2005]. Figure 3.12 illustrates this process: the texton map

is separated into K channels (one for each texton) and then, for each channel, a separate

integral image is calculated. These can later be used to compute the shape filter responses in

constant time: if T̂ (t) is the integral image of T for texton channel t, then the feature response

is computed as:

v[r,t](i) = T̂ (t)
rbr
− T̂ (t)

rbl
− T̂ (t)

rtr + T̂ (t)
rtl

(3.15)

4For the evaluations in this chapter, the bounding box was ±100 pixels in x and y. This allows the model
to exploit appearance context over a long range, despite the CRF having connections only to pixel-wise neigh-
bors. The CRF is still very important however: it allows us additionally to exploit the edge, color, and location
potentials to achieve near pixel-perfect segmentation.
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Figure 3.11: Calculating feature responses and capturing appearance context. (a, b) An
image and its corresponding texton map (colors map uniquely to texton indices). (c) A
rectangle mask r1 (white) is defined relative to the yellow cross which represents the point
i being classified, and paired with texton t1 which here maps to the blue color. (d) As an
example, the feature response v[r1,t1](i) is calculated at three positions in the texton map
(zoomed). If A is the area of r, then in this example v[r1,t1](i1) ≈ 0, v[r1,t1](i2) ≈ A, and
v[r1,t1](i3) ≈ A/2. (e) A second feature with a different rectangle mask r2 is paired with
texton t2 which maps to the green color. (f) For this feature where t2 corresponds to grass,
our algorithm learns that points i (such as i4) belonging to sheep regions tend to produce
large counts v[r2,t2](i), and hence exploits the contextual information that sheep pixels tend
to be surrounded by grass pixels.
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Figure 3.12: Separating the texton map into multiple channels. The texton map of an
image, containing K textons, is split into K channels. An integral image is built for each
channel and used to compute shape filter responses in constant time.

where rbr, rbl, rtr and rtl denote the bottom right, bottom left, top right and top left corners

of rectangle r.

Shape filters, as pairs of rectangular masks and textons, can be seen as an extension of

the features used in [Viola & Jones, 2001]. Our features are sufficiently general to allow us to

learn automatically shape and context information, in contrast to techniques such as shape

context [Belongie et al., 2002] which utilize a hand-picked shape descriptor. Figure 3.11

illustrates how shape filters are able to model appearance-based context, and a toy example

in Figure 3.13 demonstrates how shape filters model shape and layout.

Variations on Shape Filters

A further appearance-independent shape filter can also be used to model just shape. This

special feature acts exactly like a normal shape filter, except that it does not have a particular

texton to which it is applied, but rather uses whichever texton is at the pixel being classified,

i.e. the feature response calculated is v[r,Ti](i). The addition of this appearance-independent

shape filter is evaluated in Section 3.5.3.

Additionally, we investigated other types of shape beyond simple rectangles. In particu-

lar we evaluated rectangles rotated by 45◦, and pairs of rectangles with the texton responses

either added (v[r1,t](i) + v[r2,t](i)) or subtracted (v[r1,t](i) − v[r2,t](i)). However, despite con-

siderable extra computational expense (since these new combinations of features must be

tested at each round of boosting; see below), the more complicated features did not produce
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Figure 3.13: Capturing local shape information. This toy example illustrates how our shape
filters capture relative positions of textons. (a) Input texton map. (b) Input binary ground
truth label map (foreground=white, background=black). (c) Example rectangle masks (r1
and r2). (d) The feature response image v[r1,t1](i) shows a positive response within the fore-
ground region and zero in the background. An identical response image is computed for
feature (r2, t2). Boosting would pick both these features as discriminative. (e) A test input
with textons t1 and t2 in the same relative position as that of training. (f) Illustration that the
two feature responses reinforce each other. (e’) A second test with t1 and t2 swapped. (f’) The
summed feature responses do not reinforce, giving a weaker signal for classification. Note
that (f) and (f’) are illustrative only, since boosting actually combines thresholded feature
responses, though the principle still applies.
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noticeably better results. We believe this to be due to over-fitting.

We have also tried modeling appearance using the learned visual words of [Winn et al.,

2005]. Unsurprisingly, the classification results were worse than using the raw K-means

clusters, since the learning algorithm in [Winn et al., 2005] performs clustering so as to be

invariant to the spatial layout of the textons – exactly the opposite of what is required here.

3.4.3 Learning Shape Filters using Joint Boost

We employ an adapted version of the Joint Boost algorithm of [Torralba et al., 2004] to se-

lect discriminative shape filters, while simultaneously learning the shape-texture potentials.

This multi-class extension of the Gentle AdaBoost algorithm (used in Chapter 2) is detailed

in Section B.3. The algorithm iteratively builds an accurate, strong classifier as a sum of

weak learners, while simultaneously selecting discriminative features. Each weak learner is

a decision stump based on a weighted, thresholded feature response v[r,t](i), and is shared

between a set of classes C, allowing a single feature to support the classification of several

classes at once. This sharing of features over classes allows for classification with cost sub-

linear in the number of classes, and leads to improved generalization; see [Torralba et al.,

2004].

The learned strong classifier is an additive model of the form H(c, i) =
∑M

m=1 hm(c, i),

summing the classification confidence of M weak classifiers. This confidence value can be

reinterpreted as a probability distribution over c using the soft-max or multi-class logistic

transformation [Friedman et al., 2000] to give the shape-texture potentials:

P (c|x, i) ∝ expH(c, i) . (3.16)

Each weak learner is a decision stump of the form

h(c, i) =

 a[v[r,t](i) > θ] + b if c ∈ C

kc otherwise,
(3.17)

with parameters (a, b, {kc}c/∈C , θ, C, r, t). The r and t indices together specify the shape filter

feature (rectangle mask and texton respectively), with v[r,t](i) representing the correspond-

ing feature response at position i. For those classes that share this feature (c ∈ C), the weak

learner gives h(c, i) ∈ {a+ b, b} depending on the comparison of v[r,t](i) to a threshold θ. For

each class not sharing the feature (c /∈ C), the constant kc ensures that unequal numbers of
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examples (image locations i)

shape filters

(shape r × texton t)

boosting as

feature 

selection

Figure 3.14: Boosting as feature selection. The Joint Boost algorithm acts on a matrix of
shape filter responses v[r,t](i), and iteratively picks out a feature dimension corresponding
to a particular shape filter. The algorithm also selects a set of classes C between which the
chosen shape filter is shared. In this illustration, after two rounds, two shape filters have
been selected from the pool of six. For the datasets considered in this work, thousands of
shape filters are selected from a pool of hundreds of thousands.

training examples of each class do not adversely affect the learning procedure.

As illustrated in Figure 3.14, the boosting algorithm is given a matrix of responses v[r,t](i),

calculated for all NR candidate shapes and all textons t at a number of example image lo-

cations i. Additionally, a target class zi ∈ {1, . . . , C} is provided from the ground truth

labeling. Each weak learner (3.17) selected by boosting corresponds directly to a shape fil-

ter (r, t), and hence, over a number of rounds, boosting builds the strong classifier H(c, i)

and thereby the shape-texture potentials P (c|x, i), by combining many shape filters. Note

that in practice, the matrix of feature responses is too large to fit entirely in memory and is

efficiently computed on-the-fly.

We conclude our discussion of the learning algorithm with important comments on effi-

ciency.

Sub-sampling: The considerable memory and processing requirements of this procedure

make training with an example at every pixel impractical. Hence we take examples

only at pixels lying on a ∆ss × ∆ss grid (∆ss = 3 for the Corel and Sowerby datasets,

which contain smaller images, and ∆ss = 5 for the other datasets with larger images).

The shape filter responses are still calculated at full resolution to allow for per-pixel

accurate classification at test time; we simply calculate and store the responses at fewer

image locations.

One consequence of this sub-sampling is that a small degree of shift-invariance is

learned. On its own, this might lead to inaccurate segmentation at object boundaries.

However, when applied in the context of the CRF, the edge and color potentials come
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Figure 3.15: Effect of random feature selection on a toy example. (a) Training error as
a function of the number of rounds (axis scales are unimportant). (b) Training error as a
function of time. Randomization makes learning two orders of magnitude faster here, with
very little increase in training error for the same number of rounds. The initial peak in error
is due to the imbalance in the number of training examples for each class; on the log scale
this appears quite significant, but in fact it affects at most the first five rounds of boosting.

into effect to locate the object boundary accurately.

Random feature selection: Even when using sub-sampling, exhaustive search over all fea-

tures (r, t) at each round of boosting is prohibitive. For efficiency therefore, our algo-

rithm examines only a randomly chosen fraction ζ � 1 of the possible features (see

[Baluja & Rowley, 2005]). All results in this chapter use ζ = 0.003 so that, over sev-

eral thousand rounds, there is high probability of testing all features at least once, and

hence good features should eventually get selected.

To analyze the effect of random feature selection, we compared the results of boost-

ing on a toy data set of ten images with ten rectangle masks, and 400 textons. The

results in Figure 3.15 show that random feature selection improves the training time

by two orders of magnitude whilst having only a small impact on the training error.

Additionally, although we have no formal experiments to prove this, our experience

with randomization has been that decreasing ζ occasionally gives an overall gain in

test performance. This perhaps suggests that randomization is not only speeding up

learning, but also improving generalization by preventing over-fitting to the training

data.

Forests of boosted classifiers: A further possible efficiency, though not evaluated here, is

the use of a forest of TextonBoost classifiers. In a similar manner to [Lepetit et al.,
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2005], several shape-texture potential classifiers can be trained on random subsets of

the image data and combined by averaging:

P (c|x, i) =
1
W

W∑
w=1

P [w](c|x, i) . (3.18)

This allows infeasibly large datasets to be partitioned into smaller, manageable sub-

sets, and has the potential to improve the generalization ability of the shape-texture

potentials.

3.4.4 Separable Shape Filters

We propose a final variation for speed critical applications, e.g. processing video sequences

or large images. Here, two TextonBoost classifiers are learned to act on the two separate

Cartesian axes. A horizontal classifier P (cx|x,θx), representing the class probabilities for

each column, and a vertical classifier P (cy|x,θy), representing the class probabilities for

each row, can be combined as the outer product

P (c|x,θ) ≈ P (cx|x,θx)× P (cy|x,θy) . (3.19)

This factorized approximation is clearly less powerful than learning the full joint classifier,

but as shown in Section 3.5.4, gives acceptable quantitative performance and a considerable

speed-up.

We investigate these 1D classifiers using the shape-texture potentials without the other

terms in the CRF. As illustrated in Figure 3.16, separable shape filters use spans instead of

rectangles: horizontal spans count the number of textons agreeing in texton index that lie in

a horizontal strip relative to the y coordinate being classified; vertical spans do similarly for

a vertical strip. The target values for training the separable classifiers become the set of all

classes present in column x or row y.

3.5 Results and Comparisons

In this section we investigate the performance of our semantic segmentation algorithm on

several challenging datasets, and compare our results with existing work. We first inves-

tigate the effect of different aspects of the model, and then show the full quantitative and

qualitative results.
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Figure 3.16: Separable shape filters. For speed, separable shape filters may be used. Hor-
izontal spans are defined relative to the y coordinate being classified, and vertical spans
relative to the x coordinate. The response of separable shape filter (r, t) is computed as the
count of pixels within the span r that have texton index t (cf. Figure 3.11). The classifiers for
the two separate axes are combined as (3.19). In this example, separable shape filter (r1, t1)
uses the presence of texton t1 in span r1 as evidence that sheep is present at coordinate x.
Feature (r2, t2) exploits appearance context, looking for regions of grass texton t2 in span r2
above the sheep at coordinate y.

3.5.1 Boosting Accuracy

In Figure 3.17 we illustrate how boosting gradually selects new shape filters to improve

classification accuracy. Initially, after 30 rounds of boosting corresponding to 30 shape filters,

a very poor classification is given, with low confidence. As more shape filters are added, the

classification accuracy improves greatly, and after 2000 rounds a very accurate classification

is given. Note that this illustrates only the shape-texture potentials, and not the full CRF

model.

Figure 3.18(a) illustrates the effect of training the shape-texture potentials using boosting

on the MSRC dataset. As expected, the training error Jwse (B.13) decreases non-linearly as

the number of weak classifiers increases. Furthermore, Figure 3.18(b) shows the accuracy of

classification with respect to the validation set, which after about 5000 rounds flattens out

to a value of approximately 73%. The accuracy against the validation set is measured as the

pixel-wise segmentation accuracy, in other words the percentage of pixels that are assigned

the correct class label.
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Figure 3.17: More shape filters improve classification. Top row: Unseen test images and
the corresponding ground truth. Lower three rows: classification output of the shape-
texture potentials trained by boosting, as more shape filters are used. The three rows show
the most likely label maps and the confidence maps with 30, 1000 and 2000 weak learners.
Colors represent class labels (see Figure 3.21 for color key). White represents low confidence,
black high confidence. Confidence is computed as the entropy of the class label distribution
at each point.

3.5.2 The Effect of Different Model Potentials

Figure 3.19 shows results for variations of our model with different potentials included. It is

evident that imposing spatial coherency (c) as well as an image dependent color model (d)

improves the results considerably.

The percentage accuracies in Figure 3.19 show that each term in our model captures es-

sential information from the training set. Note that the improvement given by the full model

over just the shape-texture potentials, while numerically small, corresponds to a significant

increase in perceived accuracy (compare (b) with (d) in Figure 3.19), since the object contour

is more accurately delineated.
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Figure 3.18: Training and validation error. Training error (a) and accuracy on the validation
set (b) as functions of the number of weak classifiers. While the training error decreases
almost to zero, the validation set accuracy rises to a maximum of about 73%. Validation
accuracy values given are pixel-wise segmentation accuracies.

(a) (b) 69.6% (c) 70.3% (d) 72.2%

Figure 3.19: Effect of different model potentials. The original input image (a) and the result
from the boosted classifier alone (b), with no explicit spatial coherency; at the boundary
between blue and green, darker pixels correspond to higher entropy of the unary potentials.
(c) Results for the CRF model without color modeling, i.e. omitting term π in (3.1), and (d)
for the full CRF model. Segmentation accuracy figures are given over the whole dataset.
Observe the marked improvement in perceived segmentation accuracy of the full model
over the boosted classifier alone, despite a seemingly small numerical improvement.

3.5.3 Appearance-Independent Shape Filters

As described in Section 3.4.2, we investigated the use of appearance-independent shape fil-

ters, that used the texton at the pixel being classified to calculate the feature responses. An

experiment was performed on the Corel dataset with 1000 rounds of boosting, κ = 0.45,

and using just the shape-texture potentials. We compared the performance on the test set in

terms of pixel-wise segmentation accuracy of the boosted classifier, learned with and with-

out appearance-independent features, as a function ofK, the numbers of textons. The graph

of results is shown in Figure 3.20. As one would expect, the extra flexibility accorded by the

additional appearance-independent features gave a small but significant improvement in re-

sults. Also of note is that there is a definite peak in performance as a function of the number

of textons. With too few textons performance is very poor, but also with too many textons

the boosting algorithm was seen to over-fit.
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Figure 3.20: Performance of appearance-independent features. Performance against a test
set in terms of pixel-wise segmentation accuracy is plotted against the number of textons,
K. See text for explanation.

3.5.4 MSRC 21-Class Database Results

This section presents results of object class recognition and image segmentation for the full

CRF model on the MSRC 21-class database. Our unoptimized implementation takes approx-

imately three minutes to segment each test image. The majority of this time is spent evaluat-

ing all the shape-texture potentials P (c|x, i), involving a few thousand weak-classifier eval-

uations. Sub-sampling at test time by evaluating the shape-texture potentials on a ∆ss×∆ss

grid (with ∆ss = 5) produces results almost as good in about twenty-five seconds per test

image.

Training the model took about 42 hours for 5000 rounds of boosting on the 21-class train-

ing set of 276 images on a 2.1 GHz machine with 2GB memory.5 Without random feature

selection, the training time would have been around 14000 hours. Note that due to memory

constraints on this large dataset, the training integral images had to be computed on-the-fly

which slowed the learning down by at least a factor two.

Example results of simultaneous recognition and segmentation are shown in Figures 3.1

and 3.21. These show both the original photographs and the color-coded output labeling.

5Simple optimizations subsequent to these experiments have reduced test time to about 10 seconds per image
for the shape-texture potentials, and 20 seconds per image for the CRF inference. Training time was also reduced
drastically to about 4 hours.
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Note the quality of both recognition and segmentation. For instance, despite large occlu-

sions, bicycles are recognized and segmented correctly, and large variations in the appear-

ance of grass and road are correctly modeled.

In order to better understand the behavior of our algorithm, we also present some exam-

ples which work less well. In Figure 3.22(a) a very dark dog has been incorrectly classified

as a cow. However, note that the segmentation accuracy is still very high; similarly Fig-

ure 3.22(c) gets a good segmentation, due to the strong color model in the CRF, but fails to

get the semantic labels correct. In Figure 3.22(b) a large wooden boat was incorrectly clas-

sified as tree. Once again the segmentation mask is not bad. In Figure 3.22(d) the dog’s

shadow has been classified as building. This shows that the proper modeling of shadow is

required. Finally, Figure 3.22(e) shows how the algorithm struggles with a dark and unusual

image of water, due to the fact that water of this appearance does not occur in the training

set.

Quantitative Evaluation

Figure 3.23 shows the confusion matrix obtained by applying our algorithm to the test set.

Accuracy values in the table are computed as the percentage of image pixels assigned to the

correct class label, ignoring pixels labeled as void in the ground truth. The overall classi-

fication accuracy is 72.2%; random chance would give 1/21 = 4.76%, and thus our results

are about 15 times better than chance. For comparison, the boosted classifier alone gives an

overall accuracy of 69.6%, thus the color, edge and location potentials increase the accuracy

by 2.6%. This seemingly small numerical improvement corresponds to a large perceptual

improvement (cf. Figure 3.19). The parameter settings, learned against the validation set,

were M = 5000 rounds, K = 400 textons, NR = 100 candidate shapes, edge potential pa-

rameters θφ = [45, 10]T , filter-bank scale κ = 1.0, and location potential power wλ = 0.1.

The greatest accuracies are for classes which have low visual variability and many train-

ing examples (such as grass, book, tree, road, sky and bicycle) whilst the lowest accuracies

are for classes with high visual variability and fewer training examples (for example boat,

chair, bird, dog). We expect more training data to boost considerably the recognition accu-

racy for those difficult classes. Additionally, using features with better lighting invariance

properties should help considerably.

Let us now focus on some of the largest mistakes in the confusion matrix, to gather some

intuition on how the algorithm may be improved. Structured objects such as airplanes,
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Figure 3.21: Example results on the MSRC 21-class database. Above, test images with
inferred color-coded output object-class maps. Below, color-coding legend for the 21 object
classes. For clarity, textual labels have also been superimposed on the resulting segmenta-
tions. Note that all images were processed using the same learned model. Further results
from this system are given in Figure 3.1.
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Figure 3.22: Some examples where recognition works less well. Input test images with
corresponding color-coded output object-class maps. Note that even when recognition fails
segmentation may still be quite accurate.

chairs, signs, boats are sometimes incorrectly classified as buildings. This kind of problem

may be ameliorated using a parts-based modeling approach, such as [Winn & Shotton, 2006].

For example, detecting windows and roofs should resolve many such ambiguities. Further-

more, objects such as cows, sheep and chairs, which in training are always seen standing

on grass, can be confused with grass. This latter effect is partially attributable to inaccura-

cies in the manual ground truth labeling, where pixels belonging to such classes are often

mislabeled as grass near the boundary.

Separable TextonBoost

We investigated performance on the MSRC 21-class database using the separable 1D Tex-

tonBoost described towards the end of Section 3.4.2. Since this uses only the shape-texture

potentials, we compare it with the 2D shape-texture potentials only result. For the full, joint

model, recall that we obtained 69.6% pixel-wise segmentation accuracy. Using the separable

model, we obtain the respectable 64.9%. Part of the success is due to the separable Texton-

Boost being good at getting the larger regions of classes such as sky and grass. Using this

1D method, there is a very noticeable speed-up of over 5 times for both training and test

time. With optimizations, this speed improvement could be increased dramatically since

the critical path of the algorithm has reduced from O(NM) to O(N + M) for an N × M

image. Separable TextonBoost also requires considerably less memory during training, and

so more training data could be employed if available.
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16.5 25.5 4.8 1.9 50.4 0.6 0.2
3.4 0.2 1.1 82.6 7.5 5.2
21.5 7.2 3.0 59.6 8.5
8.7 7.5 1.5 0.2 4.5 52.9 0.7 4.9 0.2 4.2 14.1 0.4
4.1 1.1 73.5 7.1 8.4 0.4 0.2 5.2
10.1 1.7 62.5 3.8 5.9 0.2 15.7
9.3 1.3 1.0 74.5 2.5 3.9 5.9 1.6

6.6 19.3 3.0 62.8 7.3 1.0
31.5 0.2 11.5 2.1 0.5 6.0 1.5 2.5 35.1 3.6 2.7 0.8 0.3 1.8
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Figure 3.23: Accuracy of segmentation for the 21-class database. Confusion matrix with
percentages row-normalized. The overall pixel-wise accuracy is 72.2%.

Comparison with Winn et al.

To assess how much the shape and context modeling help with recognition we have com-

pared the accuracy of our system against the framework of [Winn et al., 2005], i.e. given a

(manually) selected region, assign one single class label to it and then measure classification

accuracy. On the 21-class database, our algorithm achieves 70.5% region-based recognition

accuracy beating [Winn et al., 2005] which achieves 67.6% using 5000 textons and their Gaus-

sian class models. Moreover, the significant advantages of our proposed algorithm are that:

(i) no regions need to be specified manually, and (ii) a pixel-wise semantic segmentation of

the image is obtained.

3.5.5 Comparison with He et al.

We have also compared our results with those of [He et al., 2004] on their Corel and Sowerby

databases, as shown in Table 3.1 and Figure 3.24. For both models we show the results of

the unary classifier alone as well as results for the full model. For the Sowerby database

the parameters were set as M = 6500, K = 250, κ = 0.7, θφ = [10, 2]T , and wλ = 2.

For the Corel database, all images were first automatically color and intensity normalized,

and the training set was augmented by applying random affine intensity changes to give
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Accuracy Speed (Train/Test)
Sowerby Corel Sowerby Corel

TextonBoost – full CRF model 88.6% 74.6% 20 m / 1.1 s 30 m / 2.5 s
TextonBoost – shape-texture only 85.6% 68.4%
He et al. – mCRF model 89.5% 80.0% 24 h / 30 s 24 h / 30 s
He et al. – unary classifier only 82.4% 66.9%

Table 3.1: Comparison of segmentation/recognition accuracy and efficiency. Timings for
[He et al., 2004] are from correspondence with authors.

Figure 3.24: Example results on the Corel and Sowerby databases. A different set of object
class labels and thus different color-coding is used here. Textual labels are superimposed for
clarity.

the classifier improved invariance to illumination. The parameters were set as M = 5000,

K = 400, κ = 0.7, θφ = [20, 2]T , and wλ = 4.

Our method gives comparable or better (with only unary classification) results than [He

et al., 2004]. However, the careful choice of efficient features and learning techniques, and the

avoidance of inefficient Gibbs sampling, enables our algorithm to scale much better with the

number of training images and object classes. Incorporating semantic context information as

in [He et al., 2004] is likely to further improve our performance.

In the Corel database, the ground truth labeling between the ground and vegetation

classes was often quite ambiguous to human observers. The confusion matrix of our results

also bore this out, and merging these two classes results in significantly improved perfor-

mance: 75.9% with just the shape-texture potentials, and 82.5% with the full CRF model.

3.5.6 Japanese Television Sequences

A separate model was trained for each of the nine Japanese television video sequences. A

model could have been trained across all sequences simultaneously, but for the applica-

tion of semantically segmenting a known television series, the extra flexibility of a generic
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Figure 3.25: Example results on the Japanese television sequences. (a) The test image.
Note that faces and text have been blurred out in this figure for copyright reasons. (b)
The hand-labeled ground truth. (c) The most likely labels inferred by the shape-texture
potentials. (d) The entropy of the inferred class label distributions; white is high entropy,
black low entropy.
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Sequence Accuracy
Modern Drama 67.8%

News 67.8%
Golf 71.0%

Soccer 92.4%
Cooking 68.7%
Variety 64.2%
Music 60.5%

Historical drama 70.5%
Business news 58.1%

Table 3.2: Quantitative results from evaluation on the Japanese television sequences. Fig-
ures show pixel-wise segmentation accuracy.

model is unnecessary and would probably slightly worsen performance. Approximately

120 frames in each sequence were selected randomly. Half of these were used for training,

and the other half used for testing. The training data was combined with the MSRC train-

ing data, and the shape-texture potentials were learned by boosting. Only the shape-texture

potentials, as the most important part of the model, were used for evaluation. For more

polished and visually pleasing results, the full CRF inference could be run, though as illus-

trated in Figure 3.19 only a small quantitative improvement would be seen. The parameters

were set as M = 700, K = 400, and κ = 0.7.

Quantitative results of the overall segmentation accuracy are given in Table 3.2, and

some qualitative results are given in Figure 3.25. The numbers show considerable accuracy

across very varied sets of images, with on average two-thirds of all pixels being correctly

classified into one of 21 classes, indicating significant potential for the application of Tex-

tonBoost to automatic analysis of video sequences. As can be seen from the images, the

technique works well across very varied sequences. One slight limitation is that the system

tends to get the larger objects in the scene classified correctly, but smaller objects such as

hands can get missed off. This is at least partially due to the filter bank used during the

textonization: the width of the Gaussian blur tends to over-smooth small objects.

The particularly strong result for the soccer sequence is perhaps slightly skewed by the

large amount of grass present in the images. Additionally, due to the random selection

of training and test images from the sequences, there are probably a few test frames that

look extremely similar to training frames. This would skew the results slightly positively;

perhaps further evaluation could employ on multiple episodes of the same television series.
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Figure 3.26: Semantic Photo Synthesis. Left: user-drawn query. Here, the user has re-
quested a photograph that has a large region of water underneath the Taj Mahal. Right:
example automatic semantic photo synthesis results.

3.6 Applications

We briefly discussed general applications of visual recognition in Section 1.2. In this sec-

tion we mention further exciting applications of TextonBoost and the concept of semantic

segmentation.

AutoCollage

The work of [Rother et al., 2006] takes a collection of images and automatically blends them

together to create a visually pleasing collage; by choosing image regions of particular inter-

est to humans (such as faces), detected through semantic segmentation, a more interesting

collage could be generated. Additionally, images could be placed in suitable regions of the

collage, so that for example, images with sky might be placed towards the top of the image.

Semantic Photo Synthesis

In [Johnson et al., 2006], the user draws both particlar objects (the Taj Mahal, for example)

and regions assigned a particular semantic label (sky, water, car, etc.) onto a canvas. The

system then automatically queries a database containing images labeled by TextonBoost,

to find relevant images that match the user-drawn query. Finally, it creates novel photo-

realistic images by stitching together the image fragments that matched the individual parts

of the query. Two example results of photo synthesis are shown in Figure 3.26.

Interactive Semantic Segmentation

An optimized implementation of our system could be used as a complete interactive se-

mantic segmentation tool, as demonstrated in Figure 3.27. With only one user click on the

incorrectly labeled part of the building, a correct and accurate segmentation was achieved.
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Figure 3.27: Interactive object labeling. Left: input test image. Middle: for this example,
the automatic recognition failed to classify the building correctly. The user then clicks the
mouse at the blue cross, stating that this part of the image is currently misclassified. Right:
after this one click, the recognition algorithm is run again and now the building is now
correctly classified and the segmentation is improved.

Internally, the unary potential of pixels within a small radius of the clicked pixel is set to

infinity for its initial label, tree. The result of the graph cut optimization for this new CRF

energy is the correct labeling. A further speed-up can potentially be achieved by re-using

the flow of the previous solution, as described for the binary interactive systems in [Boykov

& Jolly, 2001], or similarly to the method of [Kohli & Torr, 2005].

Interactive Image Editing

We suggest one final exciting application: interactive image editing. Imagine that Texton-

Boost produces a perfect semantic segmentation of an image. It is then possible to tailor

image editing tools presented to the user according to the semantic type: for example, tools

for editing ‘sky’ could allow the user to tint it more blue or increase the contrast; for fore-

ground objects, such as the person in Figure 3.28, options could be given to automatically

erase the object from the image (using image in-painting, for example [Criminisi et al., 2004]),

change the focus of background, fix red eye, or adjust the color balance just for that object.

3.7 Conclusions

This chapter has presented a novel discriminative model for efficient and effective recog-

nition and simultaneous semantic segmentation of objects in images. We have: (i) intro-

duced new features which simultaneously capture appearance, shape and context informa-

tion, and shown that they outperform other existing techniques for this problem; (ii) trained

our model efficiently by exploiting both randomized boosting and piecewise training tech-

niques; and (iii) achieved efficient labeling by a combination of integral image processing
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before after

Figure 3.28: Semantic-aware interactive image editing. Left: the semantic segmentation
given by TextonBoost is used to drive a semantic-aware user interface. Here the user has
selected the person, and a context sensitive menu presents editing options specific for the
‘person’ class. Right: after the user clicks ‘Erase...’, an automatic system [Criminisi et al.,
2004] removes the person from the image by filling in over the top of her.

and feature sharing. The result is an algorithm which accurately recognizes and segments a

large number of object classes in photographs much faster than existing systems. We have

performed a thorough evaluation of the system on several varied image databases and have

achieved accurate and competitive results.

To encourage and stimulate the application of and further development into the Texton-

Boost system, source code has been made available at [Shotton].
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CHAPTER 4

CONTOUR AND TEXTURE COMBINED

4.1 Introduction

We have demonstrated in the preceding chapters the power of both contour and texture as

recognition cues. In this chapter, we return to the tasks of classification and detection ad-

dressed in Chapter 2, and show that the combination of the contour-based features of Chap-

ter 2 and the texture-based features of Chapter 3 can give superior recognition performance

than either individually.

Chapter 2 demonstrated the power of contour fragments. The invariance properties of

these features allow accurate recognition, even for classes of highly varied surface color and

texture. However, contour fragments are not suited for detecting background. In contrast,

color provides significant semantic cues. For example, a blue or green image region is very

unlikely to represent a horse, even if the edges present resemble a horse. Additionally, con-

textual information, such as the fact that cars often appear above a road surface, cannot be

exploited using contour-based methods, except perhaps where background edges repeat-

ably co-occur with the object.

The texture-based features, called shape filters, presented in Chapter 3, gave excellent re-

sults for multi-class semantic segmentation. Shape filters characterize the color and texture

of regions of image, and, as opposed to contour fragments, are particularly useful for detect-

ing background and exploiting appearance context. Clearly, contour and texture features

complement each other, and in this chapter we demonstrate their powerful synergy.

Given the groundwork of the previous two chapters, the combination of feature types

proves particularly simple. An overview of the algorithm is given in Figure 4.1. Addi-

tionally, we demonstrate cost-based learning, whereby feature selection is steered both by the

error on the training set and also the computational cost of the potential features at test time.
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We show that cost-based learning can reduce run-time cost considerably while maintaining

good quantitative performance.

We discuss in Section 4.2 the adaptation of shape filters for multi-scale recognition. Then

in Section 4.3 we show how the learning and detection algorithms combine the responses

of heterogeneous feature types in a principled manner. We compare performance of the

individual and combined texture and contour features in Section 4.4, and conclude in Sec-

tion 4.5.

Related Work

We briefly discuss work particularly related to the combination of feature types. Further

references are given in Appendix A. The Normalized Cuts framework [Malik et al., 2001]

addressed bottom-up segmentation by combining contour features, based on orientation en-

ergy, and texture features, based on textons. Object recognition techniques have, for the most

part, combined different interest point detectors and descriptor vectors, rather than funda-

mentally different feature types. Examples of such systems include [Zhang et al., 2005a,b].

Some work has, however, successfully combined different types of features. In [Fergus et al.,

2004], a generative model of objects combines local SIFT descriptors [Lowe, 2004] with in-

variant curve descriptors. This performs well, although, as a constellation model [Fergus

et al., 2003], it scales badly with the number of parts. In [Kumar et al., 2004], the outline con-

tour and the interior texture were combined in a pictorial structures model, learned from

video sequences. Most recently, [Opelt et al., 2006b] has combined contour-based features

with local descriptors to good effect.

4.2 Adapting Shape Filters for Recognition

In this section, we describe the simple adaptation of shape filters, originally used for seman-

tic segmentation in [Shotton et al., 2006] and detailed in Section 3.4.2, for multi-scale object

detection. Three adaptations are made. Firstly, note that the task is no longer to infer the

class label of a particular pixel, but instead, as in Chapter 2, the presence or absence of an

object at a particular centroid hypothesis. Therefore, shape filters are evaluated relative to

the centroid hypothesis (x, s). Secondly, we must scale the shapes (here, rectangles) to the

hypothesis scale s. The scale-normalized rectangle r = (rtl, rbr) is therefore scaled up to

sr = (srtl, srbr). Finally, to make responses at different scales comparable, we normalize by
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Dataset (Section 2.5.2)

Training set Test set

Build 

Contour 

Codebook
(Section 2.2.2)

Heterogeneous Boosting
(Section 4.3.2)

Detection
(Section 4.3.1)

Results (Section 4.4)

Learn Texton Dictionary & 

Textonize Images
(Section 3.4.1)

Figure 4.1: Overview of the combined contour and texture detection algorithm. A contour
codebook is learned using the methods from Chapter 2. The images are textonized using
the procedure from Chapter 3. A heterogeneous boosting algorithm learns how to combine
contour and texture features into a discriminative classifier. Finally, the detection algorithm
localizes objects in the test images. Compare with the detection algorithm outlined in Fig-
ure 2.2 and the segmentation algorithm outlined in Figure 3.3.

the area of the rectangle, so that the shape filter response becomes

v[r,t](x, s) =
1

area(sr)

∑
j∈(sr+x)

[Tj = t] (4.1)

where Tj represents the jth pixel of texton map T .

The new shape filters are illustrated in Figure 4.2, which demonstrates how these simple

changes allow us to exploit shape, appearance, and appearance context for object detection.

As we shall see in Section 4.4, these shape filters alone provide a strong recognition cue, but,

in combination with contour fragments, result in considerably improved object recognition
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Figure 4.2: Shape filters for recognition. The texton map for a horse image is shown. Three
example rectangles r1, r2 and r3, each defined relative to the centroid hypothesis (x, s), are
scaled by s. Shape filter (r1, t1) uses the object appearance by looking for the strong presence
of texton t1 (top right). Shape filter (r2, t2) exploits appearance context, since a strong response
to texton t2 (middle right) correlates with object presence at (x, s). The third shape filter,
(r3, t2), exploits appearance in a more subtle way: the absence of texton t2 (which we can
identify as grass) in rectangle sr3 gives evidence for the object being present at (x, s).

performance.

4.3 Heterogeneous Detection and Learning

In this section, we describe the modifications needed to extend detection and learning to use

both contour and texture features.

4.3.1 Detection

The detection algorithm is identical to that in Section 2.3, other than a small change in the

classification equation, which becomes (cf. (2.15)):

H(x, s) =
M∑
m=1

hm(x, s) =
M∑
m=1

am[vm(x, s) > θm] + bm , (4.2)
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examples (image I × location (x, s))

texture features 

(shape r × texton t)

contour features

(exemplar F × parameter λ)

boosting as

feature 

selection

Figure 4.3: Training matrix for boosting with combined features. Each row contains re-
sponses for either (upper) a contour fragment, or (lower) a shape filter. Columns represent
training examples. For illustration, each dash in the matrix corresponds to an image I , with
length proportional to the number of example locations x in that image (see Figure 2.9). The
boosting algorithm performs combined feature selection by iteratively choosing the row that
minimizes a cost function (B.3). In this example, three rows (highlighted) were chosen: two
contour features and one texture feature. Compare with Figure 3.14.

where the feature response vm is:

vm(x, s) =

 v[Fm,λm](x, s) if round m uses a contour feature

v[rm,tm](x, s) otherwise.
(4.3)

4.3.2 Learning

We showed in the preceding two chapters how boosting is used for feature selection of

contour fragments and shape filters. In this chapter, we use the single-class Gentle AdaBoost

algorithm, as used in Section 2.4, and detailed in Appendix B. Recall that boosting learns

from a set of training examples that here correspond to image locations. Each example

consists of a target class label and a feature vector. Each dimension in the feature vector

corresponds to a particular feature. The set of all feature vectors is denoted the training

matrix.

The algorithm is extended for heterogeneous feature selection by simply expanding the

training matrix, as illustrated in Figure 4.3. The matrix is divided into two portions: in the

upper portion are the contour fragment responses v[F,λ](x, s) from (2.14), and in the lower

portion are the scale-invariant shape filter responses v[r,t](x, s) (4.1). Recall that both feature

responses are already normalized to the range [0, 1]. The weak learners in (4.2) are decision

stumps of the form a[v > θ] + b where threshold θ is chosen from a discrete set Θc ⊂ [0, 1]
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for contour features, or from Θt ⊂ [0, 1] for texture features. Boosting repeatedly selects the

most discriminative weak learner that minimizes the error (B.4) across the training exam-

ples (the columns of the matrix). Each resulting weak learner corresponds directly to either

a contour or a texture feature. This heterogeneous feature selection mechanism could eas-

ily be extended to additional feature types, by further extending the training matrix. An

alternative is to learn separate classifiers, and combine them post-hoc [Opelt et al., 2006b],

although this is not investigated here.

The upper contour portion of the matrix contains |F|× |Λ| rows (about 1000), with F the

set of all contour exemplars, and Λ a discrete set for orientation specificity λ from (2.8). The

lower texture portion contains NR ×K rows (about 20000), with NR the number of shapes,

and K the number of textons. To save on storage requirements, and given the low cost

of computing shape filter responses on-the-fly, only the contour feature responses are pre-

computed. Additionally, randomization (Section B.4.2) is employed on the texture features

only.

Cost-Based Learning

As we shall see in Section 4.4, the two feature types carry different computational costs: con-

tour fragment responses are about ten times more expensive to evaluate than shape filters

responses (after all pre-processing). The standard learning algorithm greedily selects the

optimal weak learner, based on training set classification performance alone. However, if

run-time speed is important, we can bias the weak learner selection with a cost associated

with the feature type.

Let us write these costs for contour and texture features as Qc and Qt respectively, al-

though it is only the ratio of these costs that is important. The original boosting minimiza-

tion of (B.3) is modified, so that, at round m, weak learner hm is selected as:

hm = arg max
h∈H

1
Qh

(J ′wse − Jwse[h]) , (4.4)

where Qh ∈ {Qc, Qt} according to the feature type of candidate weak learner h, and J ′wse

denotes the total training error at the previous round. This maximizes the improvement in

classification accuracy on the training set per unit of computation cost. Therefore, boosting

selects the weak learner that gives the greatest reduction in training error, divided by the

run-time cost of the feature.
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Figure 4.4: Comparing contour and texture performance on the Weizmann horse test set.
(a) ROC curves showing classification performance. To aid readability only the top-left cor-
ner is shown. (b) RFPPI curves showing detection performance. Texture alone is better than
contour at classification, but due to its poor localization, worse at detection. However, the
combination of contour and texture is substantially better for both classification and detec-
tion. By weighting combined feature selection according to the computational cost of the
features, cost-based learning enables performance almost as good as standard learning, but
in a fraction of the cost.

In Section 4.4.1, we show that this procedure can increase run-time speed while main-

taining good performance. A related cost-based learning approach based on decision trees

and applied to real-time stereo is proposed in [Yin et al., 2007].

4.4 Evaluation

We investigate the performance of the combined detector, using the same experimental pro-

cedure as that in Section 2.5.1. The same Weizmann and Graz 17 datasets from Section 2.5.2

are used, for comparison with the results of Section 2.5. These datasets are illustrated in

Appendix C.

4.4.1 Multi-scale Weizmann Horses

For fair comparison, all parameters are kept the same as in Section 2.5.6. In particular,

the number of features (homogeneous or heterogeneous) is fixed at M = 100.1 The ad-

1This number of features is an order of magnitude smaller than used in Chapter 3. This is partly due to
the simpler, binary, classification task, since even when sharing features, the number of weak learners required
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ditional parameters needed to incorporate shape filters were set as follows: filter-bank scale

factor κ = 0.7, K = 200 textons, and sub-sampling ∆ss = 5. The number of candidate

rectangles was NR = 100, and each scale-normalized rectangle r was randomly sampled

from a uniform distribution to have 0.1 ≤ rw ≤ 1.0 and 0.1 ≤ rh ≤ 1.0 within rectangle

(−0.75,−0.75, 0.75, 0.75).

We show in Figure 4.4 the classification and detection results for the detector trained us-

ing (i) only contour, (ii) only texture, (iii) the combination of contour and texture, and (iv)

the detector trained with cost-based learning. The combination of contour and texture fea-

tures gives significantly superior performance to either individually, for both classification

and detection. Interestingly, texture features are better individually at classification, while

contour features are better individually at detection. This is probably because shape filters

have fairly large spatial extent and are therefore poor at localizing the object. The combina-

tion seems to use contour fragments to accurately localize the object, and texture to further

improve the classification confidence at that location.

We recorded the run-times in our unoptimized C# implementation: alone, contour took

an average of 17.5 seconds per image, and texture took 4.6 seconds, while the combination

took 12.5 seconds. In each of these timings, 3.4 seconds is spent executing the mean shift al-

gorithm. The contour features are therefore approximately 12 times more expensive than the

texture features. The combination is able to substantially increase quantitative performance

above that achieved by contour features alone, while decreasing the computational cost. We

further investigate run-time efficiency below, where we discuss the results for cost-based

learning.

Feature Analysis

We examined the types of features chosen by the learning algorithm. Of the total 100 features

selected, 65 were contour fragments and 35 were shape filters. This suggests that, for this

dataset, contour is a slightly more useful recognition cue than texture, although both play

an important role. We also computed the mean round number of each type of feature. These

were 48 and 52 for contour and texture respectively, indicating a fairly even distribution of

feature types in round number. Since more generic features are selected at earlier rounds of

for accurate classification increases with the number of classes. Additionally, the adapted shape filters (4.1) are
explicitly scale-invariant, so that this invariance need not be learned implicitly at the cost of more features.
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Figure 4.5: Results and shape filter visualization for the Weizmann horse test set. In the
visualization, each shape filter (r, t) used is drawn using white to indicate the detected pres-
ence of texton t in image rectangle r, and black to indicate detected absence of t (see text).
A general trend in these results is a black region over the body of the horse, although a
counter-example is shown bottom-right. The black regions suggest that the large within-
class textural variation prevents boosting from selecting features that use the presence of
horse textures. Instead, it selects features that respond to the absence of certain textures, e.g.
green grass or blue sky.

boosting, this result suggests similar generality of the contour and texture features.

Figure 4.5 shows a few example detections given by the combined detector, and visual-

izes the shape filters used. The visualization overlays each shape r, and indicates whether

the presence (white) or the absence (black) of texton t positively contributed to the detection.

This is determined by inspecting the weak learner a[v[r,t](x, s) > θ] + b. If classification con-

fidence a is positive, it is the presence of texton t (quantified through response v[r,t](x, s)

from (4.1)) that contributes positively to the classification, whereas if a is negative, it is the

absence of t that contributes positively.2 We see from the black regions in Figure 4.5 that

the absence of particular textures on the horses’ bodies contributes to their detections. This

makes sense, given the extreme within-class textural variation of horses.

Figure 4.6 shows particular features selected by boosting. Of these features, rounds 1

& 3 are contour features corresponding to our notion of ‘body’, rounds 2 & 7 correspond

2In practice, the signs of a and b are always opposite, otherwise the weak learner would not improve the
classification of the training set.
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Figure 4.6: Weak learners for the Weizmann horse dataset. Ten weak learners of the com-
bined detector are shown. The round numbers m are shown. In each, the green cross in-
dicates the object centroid, and for contour fragments, the red cross indicates the fragment
origin. For shape filters, we show inset right the texton visualisation (cf. Figure 3.9), and fill
the rectangle white or black for texton presence or absence detection respectively (see text).

to ‘hind legs’, and rounds 4 & 8 to ‘head and neck’. Of the texture features, round 5 looks

for the presence of vertical edges in a region below the centroid (‘legs’), round 6 looks for

horizontal edges just below the centroid (‘belly’), and round 9 looks for the absence of the

the ring-like texton in a region surrounding the centroid (‘body’). At round 24, the shape

filter uses the presence of ‘grass’ as appearance context.

Cost-Based Learning

We show in Figure 4.4 the quantitative performance of the combined recognition system,

with and without cost-based learning. As before, M = 100 cascaded weak learners are

used. For this experiment, the relative costs were set as Qc = 5Qt. This resulted in 22 con-

tour features and 78 texture features being chosen. We see that quantitative performance

is slightly reduced, since fewer of the more discriminative, but expensive, contour features

are chosen. However, the time per image is reduced to 7.8 seconds per image (from 12.5

seconds). Accounting for time taken performing the mean shift, this is a doubling in speed,

with accuracy still substantially above what either feature type achieves individually. The

average round number was 46 for the contour features, and 50 for the texture features, sug-

gesting that the distribution of the feature types remains fairly even.
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Figure 4.7: Comparison between the edge detectors of Canny [Canny, 1986] and BEL
[Dollár et al., 2006]. Results are for the Weizmann horse dataset, using combined contour
and texture features. (a) The ROC curves show that contour features derived from, and
matched against, BEL edge maps noticeably improve classification performance in combi-
nation with texture features. (b) For detection, the RFPPI curves appear similar, although
the RP AUCs show a slight improvement with BEL. A similar improvement in performance
was observed in Section 2.5.8, using contour only.

Learned Edge Detection

The experiments so far have used the Canny edge detector [Canny, 1986]. The comparison in

Section 2.5.8 showed that, for contour fragments, detecting edges using instead the boosted

edge learning (BEL) of [Dollár et al., 2006] considerably improved both classification and

detection performance. We perform a similar experiment here, but use the combination of

contour and texture features for recognition. The results in Figure 4.7 confirm that using

the modern BEL technique noticeably improves performance, both for classification and

detection, and gives the overall best results we obtain on the Weizmann horse dataset: 0.9745

ROC AUC for classification, and 0.9496 ROC AUC for detection. For the BEL result, 66

contour features and 34 texture features were selected.

4.4.2 Graz 17

Figure 4.8 shows classification and detection results for the Graz 17 dataset. The Canny edge

detector is used throughout. Several trends are evident:

Classification: Classification performance is shown in Figure 4.8 (left). For roughly half
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the classes, contour features alone give superior performance, while texture features

alone give superior performance for the remainder. We see that, for almost every class,

performance of the combined detector is at least as good as, and in some cases signifi-

cantly better than, the performance of contour or texture alone. For several very chal-

lenging classes we achieve perfect or near perfect performance: airplanes, cars (rear),

motorbikes, faces, cows (side), cows (front), and cups.

Detection: Detection performance is shown in Figure 4.8 (middle), and quantified as RP

EER for comparison with [Opelt et al., 2006c]. We reiterate the observation of Chap-

ter 2 that detection is considerably harder than classification, since a precise localiza-

tion must be achieved. The algorithm performs as well as, or significantly better than,

[Opelt et al., 2006c], for more than half of the classes: airplanes, cars (rear), motorbikes,

faces, bikes (side), bikes (front), cars (front), bottles, cows, horses (side), cows(front),

and cups. For two classes, motorbikes and cows (side), (near) perfect performance

is achieved. For 14 of the classes, contour features alone perform better than texture

alone, probably because shape filters are poor at precisely localizing objects. For the

large majority of classes, the combination of contour and texture is better than either

alone. There are still some classes for which performance is poor: bikes (rear), bikes

(front), and people. We believe this is due to the very small numbers of training im-

ages for these classes (see Table 2.1). There does appear to be a general correlation

between the number of training images and performance, and we postulate that re-

sults for classes with few training images would be improved considerably with more

examples.

Feature Types: Shown in Figure 4.8 (right) are the proportions of contour and texture fea-

tures used in the combined detector. These proportions are roughly equal for most

classes, although certain classes show a significant bias. For motorbikes, faces, mugs,

and cups, contour features are selected significantly more frequently. These classes do

tend to have very distinctive contours, but less distinctive textures. Conversely, for

cars (rear) and bikes (rear), more texture features are selected.
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Figure 4.8: Results on the Graz 17 dataset. Performance is compared between only contour,
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cation performance. Middle: detection performance. Right: the proportions of contour and
texture features used in the combination. See text for analysis.
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4.5 Conclusions

We have extended shape filters, proposed in Chapter 3, for multi-scale object detection. The

thorough demonstration, on 17 challenging object classes, confirms our hypothesis that the

boosted combination of shape filters with contour fragments can markedly improve results,

above what either feature type can attain individually. Additionally, the combination con-

siderably increases the speed of the detector, compared to using contour fragments alone.

We saw how the detector can exploit both the presence and the absence of particular tex-

tures, and also how appearance context is harnessed. A new, cost-based learning algorithm

was proposed, and shown to maintain good performance while significant reducing the

computational cost.
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CHAPTER 5

DISCUSSION

5.1 Findings

In Chapter 2 we proved experimentally that contour can be used successfully to perform

image classification and categorical object detection. We demonstrated that our new ap-

proximate oriented chamfer distance gave superior performance to existing contour match-

ing methods. This distance was used to learn a class-specific codebook of local contour

fragments. We showed that boot-strapping by retraining on both the training and test data

could improve performance and generalization. Additionally, the use of a modern learned

edge detector substantially improved results over those attained using the Canny edge de-

tector.

Chapter 3 investigated texture. We presented a new discriminative model based on a

conditional random field, which was applied to the problem of semantic segmentation. We

introduced a new set of features, shape filters, that can simultaneously represent appear-

ance, shape, and context. We concentrated on the efficiency of training, exploiting random-

ized boosting, piecewise training, and sub-sampling. By using integral images and feature

sharing, efficiency at test time was also achieved. We compared against other work, achiev-

ing competitive and visually pleasing results.

The cues of contour and texture were combined in Chapter 4, and applied to the tasks

of classification and detection. Shape filters were extended for multi-scale detection. We

showed that the combination of contour fragments and the extended shape filters signifi-

cantly improved performance for most classes investigated, compared to either feature type

individually. The combined detector was able to improve efficiency noticeably when com-

pared to using contour fragments alone. By analyzing the features chosen by the heteroge-

neous boosting algorithm, we gained insight into how texture was being used: the presence
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of particular textures, either on the object (utilizing appearance and shape) or on the back-

ground (utilizing appearance context), and the absence of particular textures, were both

important. We proposed a form of cost-based learning, whereby the run-time cost of the

features is used to bias feature selection. This maintained excellent performance while sig-

nificantly increasing speed.

5.2 Limitations

While the techniques presented in this thesis have proved powerful, they are not able to

cope with all the appearance variations that natural images present. In particular, the pro-

posed classification and detection algorithms only tackle objects viewed from one angle,

and the range of scales that can be handled is somewhat limited, both by computational

efficiency and by the representational power of the features. The requirements for labeled

data, bounding boxes for detection, and ground truth for semantic segmentation, are bur-

densome. The current implementations of the work presented here are also too slow for

real-time applications.

The semantic segmentation method of Chapter 3 does not model a background class. It

implicitly assumes that every pixel in a test image can be meaningfully assigned to one of

the learned classes. This is an over-simplification of real-world images, since clearly, short

of modeling thousands of classes, some regions of test images are likely not to correspond

to any learned class.

We are still some way off a system that can cope adequately with the extreme examples

of Figures 1.3 and 1.4. Substantial improvement in object representation and contextual

modeling are required. As illustrated in Figure 3.22(b), we have started to reach the limits

of the simple ontological model used in our work on semantic segmentation. That a single

semantic class label is sufficient to completely describe a pixel is overly simplistic: should

a dog pixel be labeled dog, pet, mammal, or all of the above? As the field moves towards

more complicated datasets, improvements to ontologies will have more profound effects on

performance.

5.3 Future Work

To address these limitations, we propose several avenues for future research.
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Figure 5.1: Example GrabCut [Rother et al., 2004] segmentations. Our detection algorithm
localizes the objects in scale-space with a bounding rectangle. This rectangle is used to
initialize GrabCut, which automatically learns foreground and background color models
and uses iterated graph cuts to segment the object from the background.

Contour: We are interested in developing a more probabilistic fusion of the classification

probabilities from multiple sliding windows, as mentioned in Section 2.3.2. We plan

to investigate further our codebook of contour fragments. The clustering algorithm

used presently is inefficient, and perhaps an agglomerative clustering method would

be faster. We are currently investigating how the codebook might be used in a bag-

of-words recognition model, in place of sparse local descriptors. Our investigation of

modern, learned edge detection algorithms is preliminary and more work is desirable

there. Considerable optimization is possible. Given the results that show our approxi-

mate chamfer matching does not harm performance, perhaps down-sampled distance

transforms could also be used.

A few preliminary results of combining our detection technique with a segmentation

algorithm are presented in Figure 5.1. These results took the inferred object bound-

ing rectangles as initializations to GrabCut [Rother et al., 2004; Blake et al., 2004]. We

would like to further investigate this to see if individually segmented fragments could

serve as a segmentation prior similar to [Kumar et al., 2005]. An alternative method

proposed in [Zheng et al., 2007] is to learn to segment directly from the image.

Texture: We hope to integrate explicit semantic context information, in addition to the ap-
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pearance context information used in Chapters 3 and 4. Work such as [He et al., 2004]

uses semantic context to improve segmentation accuracy. Our brief investigation into

separable TextonBoost could be extended. Perhaps more interesting factorizations

similar to (3.19) could be used, for example including diagonal terms. We would like to

investigate other forms of textonization. For example, alternative filter banks includ-

ing cross derivatives or clustered SIFT descriptors [Lowe, 2004] might provide extra

representational flexibility and additional invariance properties. Also, other forms of

clustering, such as [Jurie & Triggs, 2005], might improve results over k-means. A soft

assignment of pixels to textons might produce better results. We are currently investi-

gating simple extensions to shape filters to incorporate motion cues when applied to

video sequences.

Combining Features: The proposed framework for heterogeneous learning and detection

could be straightforwardly extended to incorporate additional cues, and of particular

interest is the further fusion with sparse local descriptors. We also believe that an

optimized real-time implementation is feasible. This would allow accurate tracking as

detection; preliminary results in this direction are shown in Figure 5.2. Additionally,

the detector could be trained to discriminate between different poses of the tracked

object, for example, between open and closed hands.

5.4 Final Remarks

Visual recognition of object categories has advanced dramatically over the last few years.

The community is gradually extending the range of variabilities, illustrated in Figures 1.3

and 1.4, that can be handled successfully. For example, new work into view-point invariant

recognition is proposed in [Hoiem et al., 2007]. The boundary between the appearance of

objects at large scales and at small scales is of particular interest. As one zooms out from

a single flower to a whole field of flowers, for example, at what point should one change

from modeling the individual to modeling the group. These ‘phase shifts’ in appearance

have not been adequately investigated, and perhaps a fusion of the detection and semantic

segmentation methods presented in this work would help. The ability to cope with partially

occluded objects is also of considerable concern, and some preliminary work in this direction

is presented in [Winn & Shotton, 2006]. The forthcoming PASCAL Visual Object Challenge

2007 [VOC] will also try to push the envelope of achievable recognition tasks.
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Figure 5.2: Preliminary results of hand tracking as detection. A real-time implementation
of our combined detector would allow automatic hand tracking.

From a learning point of view, the challenges lie in exploiting unlabeled or partially

labeled data. Such unsupervised and semi-supervised techniques will become more impor-

tant as we move to more sophisticated ontological models that deal with more classes.

While we are still a considerable way from accurately recognizing the tens of thousands

of classes that humans effortlessly distinguish despite incredible variations in appearance,

we believe that this thesis has taken a positive step towards a solution.
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APPENDIX A

BIBLIOGRAPHIC NOTES

This appendix briefly describes some of the important and exciting research related to this

thesis. As far as possible, we have arranged this literature survey hierarchically, although

not all papers are straightforwardly categorized. Within each section, work is presented

roughly chronologically. When referencing a body of work presented over several papers,

the most modern, definitive source is cited first.

This appendix is divided into four sections. Section A.1 discusses image features, in-

cluding interest point detectors, local descriptors, contour-based features, and methods that

combine feature types. In Section A.2 we discuss bottom-up and top-down segmentation al-

gorithms, and also work on semantic segmentation. In Section A.3 we explore research into

visual recognition, including image classification and categorical object detection. Finally,

we discuss recent developments that combine recognition and segmentation, in Section A.4.

A.1 Image Features

This thesis has proposed two new types of image feature, contour fragments in Chapter 2,

and shape filters in Chapters 3 and 4. In this section, we discuss alternative image features.

In general, features are either computed densely, on a grid of points, or sparsely, at a set of

interest points. Dense features can handle texture well (see e.g. Figure 3.2) and can be used for

segmentation, but by their nature are computationally expensive. Sparse features are more

efficient, since there are fewer of them per image. They also have invariance properties, such

as affine geometric invariance, that have made them popular for solving the correspondence

problem for wide-baseline matching, e.g. [Schaffalitzky & Zisserman, 2002a].

In Section A.1.1, we discuss methods that localize sparse features (i.e. detect interest

points). Many techniques use local descriptors to describe image regions, and these methods

are explored in Section A.1.2. We talk about contour-based features in Section A.1.3, and
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texture-based features in Section A.1.4. The combination of features types is discussed in

Section A.1.5.

A.1.1 Localizing Sparse Features

Sparse features, computed at interest points, allow a significant computational saving by

focusing attention on salient image regions. All the algorithms discussed here use hand-

designed low-level image cues, although recent work [Kienzle et al., 2006] has suggested

learning interest point detectors.

The Canny edge detector [Canny, 1986] can be viewed as a primitive form of interest

point detector, and is still in active use today in, for example, Chapters 2 and 4 and [Fer-

rari et al., 2006b; Mikolajczyk et al., 2003]. However, most recent interest point detectors

infer a region of spatial support at particular sparse points. Much effort has be focused on

improving the Förstner or Harris-Stephens corner detector [Förstner & Gülch, 1987; Har-

ris & Stephens, 1988] with various geometrical invariances. The Harris-Laplace detector of

[Mikolajczyk & Schmid, 2001] added scale-invariance. Further research, relying on earlier

work on shape-from-texture in [Lindeberg & Gårding, 1997], extended Harris-Laplace with

affine invariance in [Mikolajczyk & Schmid, 2004, 2002; Baumberg, 2000]. Lowe used the

difference of Gaussians operator to provide scale-invariant interest points for SIFT descrip-

tors in [Lowe, 2004, 1999]. An affine invariant region detector was proposed in [Tuytelaars

& Van Gool, 2000] that finds intensity extrema that are robust to large illumination changes.

The scale saliency method from [Kadir et al., 2004, 2003; Kadir & Brady, 2001] suggested

localizing interest points at regions of high intensity entropy. Matas et al. proposed the very

efficient and affine invariant Maximally Stable Extremal regions in [Matas et al., 2002]. An

extension of interest-points to spatio-temporal volumes was suggested in [Laptev & Linde-

berg, 2003].

A.1.2 Local Descriptors

The development of affine invariant region detectors was matched by new local descrip-

tors. These were designed to describe image regions in a fairly low-dimensional vector

with certain geometric and photometric invariances. Local descriptors were used first for

wide-baseline matching, and more recently for categorical recognition. We used one such

local descriptor, SIFT (described shortly), for comparison against contour fragments, in Sec-

tion 2.5.9. While descriptors are usually computed sparsely at interest points, they can be
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computed densely, e.g. [Kapoor & Winn, 2006].

The simplest descriptors are raw patches of image, which are often matched using sum

of squared differences, or normalized cross correlation. Patches were used for example in

[Leibe & Schiele, 2003] for recognition, and in [Criminisi et al., 2007] for dense-stereo. The

image epitome model of [Jojic et al., 2003; Cheung et al., 2005] is a compact method for rep-

resenting a dictionary of image patches. Recently, the Jigsaw model of [Kannan et al., 2006]

allows the compact representation of image patches with non-rectangular extents.

Beyond simple patches, many descriptors aim at invariance to rotation and affine inten-

sity changes. Steerable Filters [Freeman, 1992] achieve rotation invariance by steering local

image derivatives in the direction of the local image gradient. Moment invariants were pro-

posed by [Van Gool et al., 1996], and differential invariants by [Schmid & Mohr, 1997]. The

SIFT descriptor was proposed in [Lowe, 2004, 1999]. This computes histograms of oriented

gradients, and was shown to out-perform several other descriptors in the thorough com-

parison of [Mikolajczyk & Schmid, 2003]. Variants of SIFT were proposed in [Mikolajczyk

et al., 2005] and [Brown et al., 2005]. The rotation invariant modulus of complex filters was

used in [Schaffalitzky & Zisserman, 2002b]. A descriptor specifically designed to operate at

sparse edge points for the recognition of tubular structures was proposed in [Mikolajczyk

et al., 2003].

A.1.3 Contour Features

Contour, defined in terms of the edges of an image, was already considered a useful cue

for recognition in Marr’s Primal Sketch [Marr, 1982]. The standard Canny edge detector

[Canny, 1986] has recently been improved by learning edge detection from a set of training

images in [Dollár et al., 2006; Martin et al., 2004].

Contour was first used for detecting particular objects, matched as complete, rigid tem-

plates. The Generalized Hough Transform [Ballard, 1981] is one matching method. Alter-

natively, the Chamfer [Barrow et al., 1977] and Hausdorff [Huttenlocher & Rucklidge, 1992]

distances have been used to detect and track articulated objects: people in [Gavrila, 2000;

Felzenszwalb, 2001; Toyama & Blake, 2002], hands in [Stenger et al., 2003; Thayananthan

et al., 2004], and the upper body in [Navaratnam et al., 2005]. [Leibe et al., 2005] used cham-

fer matched pedestrian outlines in a recognition verification stage. Techniques such as these

require a large set of templates to represent all joint object configurations, and often a hier-

archy is used for efficiency.
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Alternative approaches use fragments of contour. Inspired by Cubist art, [Nelson &

Selinger, 1998] used semi-invariant local keys to compare test images against a database.

[Fergus et al., 2004] augmented the constellation model (described below) with contour frag-

ment features, but only exploited fairly clean, planar curves with at least two points of inflec-

tion. In [Kumar et al., 2004], contour fragments learned from video sequences were arranged

in Pictorial Structures and used for detection of articulated objects. Good results were ob-

tained, although a fairly complex tracking of video sequences or manual labeling of parts

was needed for learning. [Borenstein et al., 2004] used both image and contour fragments

for segmentation, though did not address classification or detection. A similar technique to

[Shotton et al., 2005] was subsequently presented in [Opelt et al., 2006a].

Shape contexts [Belongie et al., 2002] use a log-polar histogram of edgels for shape match-

ing. A similar descriptor based on geometric blur was presented in [Berg & Malik, 2001], and

was used for matching under considerable deformation in [Berg et al., 2005]. A generative

model of shape matching was proposed in [Tu & Yuille, 2004]. A classification cascade was

used in [Carmichael & Hebert, 2004] to localize the edges of wiry objects. [Jurie & Schmid,

2004] proposed contour-based features that characterize the local edge convexity. In [An-

derson et al., 2006], rotation invariant object recognition was proposed that used clusters of

wavelet-based edge features. The contour segment network [Ferrari et al., 2006b,a] builds a

graph connecting neighboring edge fragments.

A.1.4 Texture Features

Texture has long been seen as a useful image feature. Gabor filters were proposed in [Daug-

man, 1980], and have subsequently been used for iris recognition in [Daugman, 2003]. Ma-

lik & Perona presented a model of human preattentive texture perception in [Malik & Per-

ona, 1990]. Textons, detailed in Chapter 3, were investigated in [Leung & Malik, 2001] and

[Varma & Zisserman, 2005]. Kingsbury proposed a family of complex wavelets with shift

invariant properties in [Kingsbury, 2001]. Leung proposed modeling the conditional distri-

bution of database textons given image textons for recognition in [Leung, 2004]. Correlatons

were used to model some rigid spatial relationships between textons in [Savarese et al., 2006].

A.1.5 Combining Features

As investigated in Chapter 4, the combination of different feature types can dramatically

improve performance. Video Google, a system for image-based search of videos, was pre-
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sented in [Sivic & Zisserman, 2003] and combined different local descriptors. Similarly,

different descriptors were combined in [Zhang et al., 2005a,b]. Fergus et al. used both local

descriptors and contour features for object detection in [Fergus et al., 2004]. Pedestrian de-

tection was tackled in [Leibe et al., 2005], where a set of object detections based on image

patches was post-processed using outline contours. Opelt et al. proposed augmenting their

contour-based technique with local descriptors in [Opelt et al., 2006b].

A.2 Segmentation

Chapter 3 addresses the task of semantic segmentation. We discuss in this section related

work on segmentation and semantic segmentation. In Section A.2.1, we see that segmenta-

tion was originally posed as a bottom-up problem that used only low-level image informa-

tion. Later, top-down, class-specific knowledge was incorporated (Section A.2.2), and then

combined with bottom-up information (Section A.2.3). Most recently, semantic segmenta-

tion has become possible (Section A.2.4).

A.2.1 Bottom-Up

Normalized cuts [Shi & Malik, 1997; Malik et al., 2001] incorporated both texture and edge

based cues for bottom-up segmentation. Graph cuts were proposed for fast, accurate seg-

mentation in [Boykov et al., 2001; Kolmogorov & Zabih, 2004; Boykov & Jolly, 2001; Boykov

et al., 1999], and exploited for interactive image segmentation by the GrabCut system [Boykov

& Jolly, 2001; Rother et al., 2004; Blake et al., 2004].

A.2.2 Top-Down

[Borenstein & Ullman, 2002] presented a novel class-specific segmentation algorithm based

on matching image fragments. In [Ferrari et al., 2004], initial local correspondences against

a template initialized an ‘image exploration’, locating and segmenting the object even un-

der deformation. Discriminative random fields were suggested by [Kumar & Hebert, 2003]

and used for image de-noising and detecting man-made structure in images.1 Weakly-

supervised top-down segmentation was investigated in [Vasconcelos et al., 2006].

1Discriminative random fields are simply conditional random fields [Lafferty et al., 2001] over two-
dimensional images.
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A.2.3 Combined Top-Down & Bottom-Up

The combination of bottom-up and top-down segmentation cues was suggested by [Boren-

stein et al., 2004; Borenstein & Ullman, 2004; Borenstein & Malik, 2006]. LOCUS [Winn &

Jojic, 2005] presented an generative probabilistic model of segmentation, which unlike many

other techniques does not require segmented training data. [Levin & Weiss, 2006] showed

how to combine bottom-up and top-down cues in a conditional random field for segmenta-

tion.

A.2.4 Semantic Segmentation

[Konishi & Yuille, 2000] used color and texture statistics to achieve a semantic segmenta-

tion, with accurate but grainy results, since no spatial coherence was enforced. Ideas from

machine translation were used in [Duygulu et al., 2002] to get a rough semantic segmenta-

tion from training data labeled only with textual labels. Accurate but expensive data-driven

Markov chain Monte Carlo was used in [Tu et al., 2003] to give a coherent semantic scene

analysis, and to specifically recognize text and faces. Conditional random fields were used

for semantic segmentation by [He et al., 2004, 2006]. A hierarchical field framework was pro-

posed in [Kumar & Hebert, 2005]. Approximate three-dimensional geometric information

was inferred from two-dimensional images (without using stereo) by exploiting geometric

context, in [Hoiem et al., 2005].

A.3 Recognition

Chapters 2 and 4 addressed two recognition sub-goals: image classification and categorical

object detection. In this section, we discuss work that directly relates to these tasks. Most

modern work recognizes objects as the sum of their constituent parts. We can notionally

divide such parts-based methods into those that use spatial models (Section A.3.1), and

those that do not, the so-called bag-of-words models (Section A.3.2). In Section A.3.3, we

describe work that uses context to recognize objects.

A.3.1 Spatial Models

The constellation model of [Fergus et al., 2003; Weber et al., 2000; Burl et al., 1998] learned a

joint generative model of the layout of parts without requiring labeled parts. The statistics

of wavelet-based parts were used in [Schneiderman & Kanade, 2004, 2000]. Class-specific
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fragments of image patches were selected using mutual information in [Ullman et al., 2001].

The pictorial structures model [Felzenszwalb & Huttenlocher, 2005] connected parts with

virtual springs. Mixtures of trees were suggested by [Ioffe & Forsyth, 2001]. [Agarwal &

Roth, 2002] suggested sparse image patches for recognition. The selection of scale-invariant

parts using likelihood ratio and mutual information was investigated in [Dorkó & Schmid,

2005, 2003]. Humans were detected in [Mikolajczyk et al., 2004]. [Torralba et al., 2007, 2004]

investigated how features could be shared across classes for multi-class detection. A hierar-

chy of parts was proposed by [Bouchard & Triggs, 2005] and [Epshtein & Ullman, 2005].

A.3.2 Bag-of-Words Models

Spatial information is deliberately thrown away in bag-of-words models. These take in-

spiration from the textual information retrieval community [Baeza-Yates & Ribeiro-Neto,

1999], and extend textual words to visual words. These were used by [Sivic & Zisserman,

2003] for efficiently searching long video sequences. Naı̈ve Bayes and SVM classifiers were

compared in [Csurka et al., 2004]. Probabilistic latent semantic analysis (pLSA) [Hofmann,

2001] was used for visual categories in [Sivic et al., 2005], and robust learning from Google

image search results was achieved in [Fergus et al., 2005]. A hierarchical Bayesian extension

to pLSA, latent Dirichlet allocation [Blei et al., 2003], was used for learning unsupervised

image segmentations in [Russel et al., 2006].

A.3.3 Modeling Context

The concept of a scene gist was used to model context for object detection in [Torralba et al.,

2003, 2005]. The framework of [Kumar & Hebert, 2005] modeled semantic context in a dis-

criminative hierarchy. Hierarchical Bayesian models of scenes, objects, and parts were sug-

gested by [Sudderth et al., 2005].

A.4 Combined Recognition & Segmentation

Most recently, research has investigated the fundamental combination of object recognition

with segmentation. The Implicit Shape Model [Leibe & Schiele, 2004; Leibe et al., 2004; Leibe

& Schiele, 2003] uses segmented image patches to detect and segment objects. OBJ CUT by

[Kumar et al., 2005] detected and segmented objects using a Markov random field combined

with pictorial structures. Winn & Shotton addressed the detection and segmentation of par-

107



A.4. Combined Recognition & Segmentation APPENDIX A. BIBLIOGRAPHIC NOTES

tially occluded objects in [Winn & Shotton, 2006]. This has been extended to recognizing

three-dimensional objects in [Hoiem et al., 2007].
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APPENDIX B

BOOSTING ALGORITHMS

B.1 Introduction

For completeness, we include in this appendix a summary of the boosting algorithms em-

ployed for learning our recognition models. We first describe the binary Gentle AdaBoost

algorithm [Friedman et al., 2000], used in Chapters 2 and 4. We then detail the multi-class

extension, Joint Boost, which was proposed in [Torralba et al., 2004] and aims to share fea-

tures between classes (e.g. blue is indicative of sky and water). Joint Boost was used for

semantic segmentation in Chapter 3. Note that the abstract notation of this appendix differs

very slightly from the concrete implementations used in the main text.

B.2 Gentle AdaBoost

The Gentle AdaBoost algorithm, from [Friedman et al., 2000], is used to learn a classifier of

the form

H(v) =
M∑
m=1

hm(v) , (B.1)

which takes a feature vector v and computes a strong classification value H as a sum of

M weak learners. Each weak learner h(v) contributes to the classification but individually

need not be particularly discriminative. In the combination in (B.1) however, they form a

powerful, discriminative classifier. The classification H can be reinterpreted as a posterior

class probability using the logistic transformation:

P (c = +1|v) =
1

1 + exp(−H(v))
, (B.2)

with class c ∈ {+1,−1}.
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Gentle AdaBoost is a particular algorithm for constructing the additive model of (B.1) in

a greedy, iterative fashion. Afterm−1 rounds (iterations) of boosting, the next weak learner

hm is chosen from a pool H to minimize a weighted squared error functional on a set of

training examples i = 1, . . . , N :

hm = arg min
h∈H

Jwse[h] , (B.3)

Jwse[h] =
N∑
i=1

wi,m−1 (zi − h(vi))
2 , (B.4)

where training example i consists of feature vector vi and target label zi ∈ {+1,−1}. The

weights are

wi,m = exp(−ziHm(vi)) , (B.5)

where Hm =
∑m

m′=1 hm′ is the strong classifier up to round m. The weights represent the

mis-classification of each training example after m rounds, so that the minimization in (B.3)

gives more emphasis to poorly classified examples. The weights are all initialized as wi,0 =

1,1 and can be efficiently updated after each iteration of boosting, maintaining (B.5) as an

invariant, by

wi,m = wi,m−1 exp(−zihm(vi)) . (B.6)

B.2.1 Decision Stumps

The weak learners in pool H can in general take any form, but in this work we use the

decision stumps of [Torralba et al., 2004, 2007] which have the form

h(v) = a[vd > θ] + b , (B.7)

where vd is the dth dimension of vector v, and the binary indicator function [condition] =

1 if condition is true, 0 otherwise. These decision stumps divide the feature space in two along

an axis-aligned hyper-plane, and weight the two sides differently. The axis-alignment means

that feature selection can be performed: by setting M � D, where D is the number of di-

mensions of v, only a discriminative subset of feature dimensions (and thereby features) is

1The weights could in fact be initialized non-uniformly, and in this boosting variant need not sum to 1 since
a constant scaling factor does not affect (B.3). Informal experiments suggested that initializing weights to nor-
malize for imbalanced numbers of positive and negative training examples gave worse performance. This is
likely due to the removal of the implicit and useful class priors that the classifier otherwise learns.
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selected. At test time only those features that were selected need be evaluated. The order-

ing of the weak learners shows a general trend due to the weighting of the examples (B.5):

early rounds select more general features, while later rounds concentrate on more specific

troublesome examples. This ordering can be exploited in a cascade.

The decision stumps also have convenient analytical properties: for the minimization

of (B.3), although a brute-force search is required for feature dimensions d and threshold θ

(from a discrete set), given these values, a closed-form minimum for a and b exists:

b =
∑

iwizi[vi,d ≤ θ]∑
iwi[vi,d ≤ θ]

, (B.8)

a =
∑

iwizi[vi,d > θ]∑
iwi[vi,d > θ]

− b , (B.9)

where weights wi = wi,m−1 when minimizing (B.3) at round m.

B.3 Joint Boost

The Joint Boost algorithm is an extension of Gentle AdaBoost to multiple classes by Torralba

et al. in [Torralba et al., 2004], who use the novel insight that individual features can con-

tribute towards the classification of several classes at once. This sharing of features across

classes allows for classification with cost sub-linear in the number of classes, and leads to

improved generalization; see [Torralba et al., 2004]. Here, the classifier takes the form

H(c,v) =
M∑
m=1

hm(c,v) , (B.10)

which now additionally takes a class label c ∈ {1, . . . , C} as parameter (cf. (B.1)). The soft-

max or multi-class logistic transformation gives a class probability distribution:

P (c|v) =
1
Z

expH(c,v) (B.11)

where Z =
∑

c expH(c,v) normalizes the distribution.

The minimization to determine the optimal weak learner at each round becomes

hm = arg min
h∈H

Jwse[h] , (B.12)

Jwse[h] =
C∑
c=1

N∑
i=1

wci,m−1(z
c
i − h(c,vi))2 , (B.13)
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where now there are C weights and targets for each example, and the superscript c denotes

an index rather than an exponentiation. Target zci ∈ {+1,−1} is positive if example i is of

class c, and negative otherwise.2 The weights become

wci,m = exp(−zciHm(c,vi)) , (B.14)

with the corresponding update equation

wci,m = wci,m−1 exp(−zcihm(c,vi)) . (B.15)

B.3.1 Decision Stumps

The Joint Boost decision stumps take the form:

h(c,v) =

 a[vd > θ] + b if c ∈ C,

kc otherwise.
(B.16)

Here, C ⊆ {1, . . . , C} is the set of classes between which the weak learner is shared. The

constants kc for c /∈ C ensure that unequal numbers of training examples of each class do

not adversely affect the learning procedure.

The parameters of each weak learner are therefore sharing set C, the set of constants kc,

weights a and b, feature dimension d, and threshold θ. The set of all possible sharing sets

is exponentially large, so we employ the quadratic-cost greedy approximation of [Torralba

et al., 2004]. This finds the optimal one-class sharing set, C1 = {c1}, then, keeping the first

class c1 fixed, the optimal two-class sharing set, C2 = {c1, c2}, etc. Finally the best set C

is chosen from {C1, . . . , CC}. As with the binary Gentle AdaBoost algorithm, a brute-force

search is then required to find d and θ, but given these, the remaining parameters come out

2In this work, we only allow one target to be positive for each example, except for the separable TextonBoost
described in Section 3.4.2. Perhaps multiple targets could be also used to learn a hierarchical class structure,
such as that cows and horses are both mammals.
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analytically:

b =
∑

c∈C
∑

iw
c
i z
c
i [vi,d ≤ θ]∑

c∈C
∑

iw
c
i [vi,d ≤ θ]

, (B.17)

a =
∑

c∈C
∑

iw
c
i z
c
i [vi,d > θ]∑

c∈C
∑

iw
c
i [vi,d > θ]

− b , (B.18)

kc =
∑

iw
c
i z
c
i∑

iw
c
i

, (B.19)

where weights wci = wci,m−1 when performing the minimization (B.12) at round m.

B.4 Optimizations

We briefly describe two optimizations of the above algorithms.

B.4.1 Search for θ

Brute-force search for θ from a discrete set Θ can be made efficient (giving identical results)

by careful use of histograms of weighted feature responses: by treating Θ as an ordered

set, histograms of feature values vi,d weighted appropriately by wci z
c
i and wci , are built over

bins corresponding to the thresholds in Θ; these histogram are accumulated to give the

thresholded sums necessary for the direct calculation of a, b for all values of θ at once.

B.4.2 Randomization

A full search over all possible feature dimensions d at each round need not be performed.

Instead, one can investigate only a small random fraction of feature dimensions. We inves-

tigate this approximation in Section 3.4.3.
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APPENDIX C

WEIZMANN & GRAZ DATASETS

Figure C.1: Example images from the multi-scale Weizmann horse dataset. The dataset can
be downloaded from [Shotton]. The bottom two rows contain example background images.
This dataset was used in the evaluations of Chapters 2 and 4.
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Figure C.2: Example images from the Graz 17 class dataset from [Opelt et al., 2006c]. This
dataset was used in the evaluations of Chapters 2 and 4.
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Figure C.3: Example images from the Graz 17 class dataset from [Opelt et al., 2006c]. This
dataset was used in the evaluations of Chapters 2 and 4.
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