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ABSTRACT

The recognition of categories of objects in images has become a cen-
tral topic in computer vision. Automatic visual recognition systems
are rapidly becoming central to applications such as image search,
robotics, vehicle safety systems, and image editing. This work ad-
dresses three sub-problems of recognition: image classification, ob-
ject detection, and semantic segmentation. The task of classification
is to determine whether an object of a particular category is present
or not. Object detection aims to localize any objects of the category.
Semantic segmentation is a more complete image understanding,
whereby an image is partitioned into coherent regions that are as-
signed meaningful class labels. This thesis proposes novel discrim-
inative learning approaches to these problems.

Our primary contributions are threefold. Firstly, we demonstrate
that the contours (the outline and interior edges) of an object are,
alone, sufficient for accurate visual recognition. Secondly, we pro-
pose two powerful new feature types: (i) a learned codebook of con-
tour fragments matched with an improved oriented chamfer dis-
tance, and (ii) a set of texture-based features that simultaneously ex-
ploit local appearance, approximate shape, and appearance context.
The efficacy of these new features types is evaluated on a wide va-
riety of datasets. Thirdly, we show how, in combination, these two
largely orthogonal feature types can substantially improve recogni-
tion performance above that achieved by either alone.
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CHAPTER 1

INTRODUCTION

1.1 Objective

This thesis proposes new techniques for the automatic recognition of categories of objects
in images. We address three sub-goals of recognition: image classification, categorical object
detection, and semantic segmentation. These tasks, illustrated in Figure are defined as

follows:

Image classification aims to group together images containing similar objects, such as horses
and airplanes. There may also be a number of background images that contain none of

the objects under consideration.

Categorical object detection addresses determining the number of instances of a particular

object category in an image, and localizing those instances in space and scale.

Semantic segmentation aims to segment an image into semantically coherent regions, and

simultaneously assign a class label to each region.

The term category will be used throughout this document synonymously with class, to de-
note a particular type of object. A class may contain discrete and structured objects, such as

cars and faces, or more amorphous entities such as grass and sky.

1.2 Motivation

Vision has evolved as one of our most important senses. Even deprived of the additional
cues of balance, sound, known location, etc., that we use to aid visual perception of the real
world, understanding a complex photograph is usually an effortless task. Carefully crafted

images, such as those in Figure do however trip us up occasionally. We sub-consciously

1



1.2. Motivation CHAPTER 1. INTRODUCTION

image classification categorical object detection

A

horses airplanes background

semantic segmentation

building

tree
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o
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Figure 1.1: Visual recognition sub-goals. See text for definitions of terms. The examples of
detection and segmentation are actual results from Chapters 2]and [B|respectively.

Figure 1.2: Optical illusions and surrealist art. Image understanding is usually, but not
always, straightforward for the human visual system. While the brain can understand each
of these images at a local level, parsing the scene is difficult and ambiguous. [Left: “Forever
Always” by Octavio Ocampo. Right: “Apparition of Face and Fruit Dish on a Beach” by
Salvador Dali].



CHAPTER 1. INTRODUCTION 1.2. Motivation

exploit knowledge of the world around us, learned over many years, to give us context
within which to interpret images. The particular sub-goals of recognition that we address
in this thesis (classification, detection and segmentation) are clearly achievable by human
endeavor, though are impractical across large image databases and the world wide web.
The human visual system is one inspiration for our investigation of computer-based vi-
sual recognition, although we do not attempt to directly emulate it in approach, merely in
outcome. Motivation beyond that of pure scientific curiosity is provided by several impor-
tant applications, which in many cases are only becoming feasible with recent advances in

the field:

Image search: The world-wide web contains vast quantities of information. Textual infor-
mation is reliably indexed by search engines such as Google, Live Search, and Yahoo!
[Google; |Live; |Yahool, allowing almost instantaneous access to billions of documents
worldwide. Image search however is still at a nascent stage. Random, accurate se-
mantic access to images and videos on the web would find use in many areas, such
as scientific research, illustrating documents and news reports, and for simple web
exploration. The current generation of image search engines is based only on meta-
data and textual cues associated with the image, rather than the image content itself,
and this so-called semantic gap leads to many incorrect results. Clearly, exploiting the

appearance of the image should significantly improve matters.

Medicine: Discovering tumors and other abnormalities in medical scans is an intensive
and skilled task. A carefully designed automatic system (e.g. [Cootes & Taylor, 2001])

may be able to both speed up diagnosis and cut down on human error.

Robotics: The field of robotics has advanced dramatically over the last few years. Already,
the control systems of humanoid robots allow them to walk and run. However, their
usefulness is severely limited without real-time visual understanding of the world that

they inhabit. See e.g. [Davison et al., 2007; Se et al.,2005].

Security: Accurate automatic recognition of particular individuals or suspicious behavior
could detect nefarious activity in public spaces. Home security systems could also

benefit, for example to differentiate between a cat and a burglar in an alarm system.

Transportation: Much current effort is being directed towards improving the safety sys-

tems of vehicles, for example, by automatically alerting the driver to pedestrians and

3



1.3. Sources of Visual Variability CHAPTER 1. INTRODUCTION

other potential hazards. Automatic license plate and car model recognition has been

used to enforce traffic restrictions with the aim of improving road safety.

Image editing: As we describe in more detail at the end of Chapter (3| a semantic under-
standing of images enables the user interface to be attuned to the semantic class of
the region being edited, so that, for example, a gray sky could automatically be made
more blue, or the background of a scene could be defocused to concentrate attention

on the foreground.

Note that the degree of accuracy required and the consequences of mistakes for these dif-
ferent applications vary considerably. Clearly great care must be taken deploying automatic

systems in critical or sensitive applications.

1.3 Sources of Visual Variability

Lacking our human high-level knowledge of visual semantics, computer-based recognition
systems face a daunting challenge. We illustrate in Figure[I.3|some of the particular sources
of the extreme visual variability that images of objects present due to changes in viewing
angle, lighting, scale, and object pose, partial occlusions, and environmental factors. Fur-
thermore, for categorical recognition, commonalities must be found to generalize across the
variability within the class, while determining differences to discriminate between classes, as
illustrated in Figure In this thesis we specifically address the within-class vs. between-
class variability, changes in scale, object articulation, and to some extent, lighting and view-
ing angle. Other work has focused on coping with partial occlusion, e.g. [Winn & Shotton,
2006]]. For the tasks of classification and detection we shall assume a particular viewing
angle (e.g. side-on), although this assumption is relaxed when investigating semantic seg-

mentation in Chapter

1.4 Approach

We take a modern approach to visual recognition, aiming to learn from a set of training
images the within-class commonalities, and the between-class differences, that enable us to
generalize to recognizing unseen test images. To this end, we employ proven and efficient
machine learning techniques, specifically various discriminative classifiers (see Appendix|[B|

and Section 3.3).
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viewing angle
object pose

lighting
occlusion

environment

Figure 1.3: Sources of visual variability. Automatic visual recognition systems must deal
with visual variability arising from the viewing angle, the pose and articulation of the object,
the lighting of the scene, partial occlusions obscuring the object, widely varying scales, and
environmental conditions.

within

between?

Figure 1.4: Within-class and between-class variability. Above: example images of build-
ings and faces illustrate the wide within-class variability in appearance of objects from par-
ticular categories. Below: depending on the application, horse, zebra, donkey, and mule
could be considered (i) different classes, in which case their visual differences are important,
or (ii) the same class (Equidae), in which case their visual similarities are important.
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We focus on two particular types of features, that are notably different from the sparse in-
terest points and local descriptors in vogue with the computer vision community at present
(see Appendix[A). Firstly, we investigate the use of fragments of contour (edges), and show
that in combination a powerful classifier can be built that is capable of determining the
presence or absence of an object in a given region of an image. The second type of feature
is based on textural image properties, and is capable of exploiting the appearance, shape
(layout), and appearance context of an object. These contour and texture based features are
proven on several challenging image datasets, using standard experimental procedure and
quantitative measures. Across many different object classes, we obtain very encouraging

results, which are in some cases state-of-the-art.

1.5 Contributions

The primary contributions of this thesis are threefold:

e We investigate contour, the outline and interior edges of an object, as a recognition cue.
A powerful cue in human visual perception [Biederman & Ju, 1988], we demonstrate

that contour is, alone, sufficient for accurate automatic visual recognition.

e We propose two powerful new image feature types. The first of these is a learned
codebook of local contour fragments, which are matched using a novel formulation of
the oriented chamfer distance. The second feature type is texture-based. These fea-
tures, called shape filters, can simultaneously exploit local appearance, approximate

shape, and appearance context for accurate and efficient recognition.

e We show how the combination of these two largely orthogonal feature types substan-

tially improves recognition performance above that achieved by either alone.

1.6 Outline

The body of this thesis is divided into five chapters, the first of which is this introduction.
Chapter 2| investigates the cue of contour for classification and detection, and presents con-
tour fragments. Chapter 3| introduces shape filters, and shows how they are combined
in a conditional random field to give accurate semantic segmentation. Chapter [ then re-

turns to the tasks of classification and detection, and discusses the combination of contour

6
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fragments with shape filters. We give concluding remarks and discuss limitations and po-
tential future directions in Chapter [f| Finally, Appendix [A] presents a summary of related
work, Appendix |B| describes the Gentle AdaBoost and Joint Boost algorithms that are used
throughout the thesis, and Appendix |C|illustrates the datasets used in the evaluations of
Chapters 2]and [4
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CHAPTER 2

CONTOUR

2.1 Introduction

Consider the images in Figure and try to identify the objects present. The object iden-
tities are hopefully readily apparent. This simple demonstration confirms the intuition that
contour can be used to successfully recognize objects in images, and detailed psychophysi-
cal studies such as those of [Biederman & Ju, [1988] bear this out. With this inspiration, we set
out to build an automatic object category recognition system that uses only the cue of con-
tour. The most significant contribution of this chapter and its precursor [Shotton ef al.,|[2005]]
is the demonstration that such a system can accurately recognize objects from challenging
and varied object categories. In Chapter [ we show how to combine several different recog-
nition cues (contour, texture, color, etc.), but for the didactic purposes of this chapter we
deliberately throw away color and textural information.

Our system aims to learn, from a small set of training images, a class-specific model for

classification and detection in unseen test images. The task of classification is to determine

—
N

-3 VRN E&r_
/\3 P o) -

Figure 2.1: Can you identify the objects from the fragments of contour? Our innate bi-
ological vision system is able to interpret spatially arranged local fragments of contour to
recognize the objects present. In this work we show that an automatic computer vision sys-
tem can also successfully exploit the cue of contour for object recognition. (Object identities

are given in Figure 2.3).
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2.1. Introduction CHAPTER 2. CONTOUR

the presence or absence of objects of a particular class (category) within an image, answering
the question “does this image contain at least one X?”, while detection aims to localize any
such objects in space and scale, answering “how many Xs are in this image, and where are
they?”.

We define contour as the outline (silhouette) together with the internal edges of the object,
while the term shape is used to denote the spatial arrangement of object parts. Contour has
several advantages over other cues: for example, it is largely invariant to lighting conditions
(even silhouetting) and variations in object color and texture, it can efficiently represent im-
age structures with large spatial extents, it varies smoothly with object pose change (up to
genus change), and can be matched even in the presence of background clutter. By con-
trast, image patches and local descriptor vectors tend to match an image less reliably at the

boundary, due to interaction with the varying background.

However, the evident power of contour as a recognition cue in nature is somewhat mit-
igated in computer-based systems by practical realities. Contour is matched against some
form of image edge map, but the reliability of general purpose figure-ground segmentation
and edge detection is still an area of active research [Boykov & Jolly, 2001; |[Rother et al.,
2004; |Dollar et al., [2006]. Indeed the problems of object detection, figure-ground segmen-
tation, and edge detection are intimately bound together: a good segmentation mask gives
extremely clean contours, useful for recognition, while localizing the object in scale-space

gives an excellent initialization for bottom-up segmentation (see Figure[5.).

The most significant problem faced by contour-based recognition techniques is that of
noisy edge maps and background clutter; the images in Figure for example, contain
many strong background edges to which the system must be robust. Whole object contours
are fairly robust to this clutter, but have poor generalization qualities, and therefore require
many exemplars, often arranged hierarchically [Gavrila, 1998], to be useful for detecting
deformable objects. Recently, improved models, where whole object templates are divided
into parts, have become prominent in computer vision [Fischler & Elschlager, (1973} Burl
et al.,1998; Felzenszwalb & Huttenlocher, 2000; |Weber et al.,|2000; Fergus et al., 2003; Felzen-
szwalb & Huttenlocher) 2005; Winn & Shotton, |2006]. Parts are individually quite likely to
match to background clutter, but in ensemble prove robust and are able to generalize across
both rigid and articulated object classes. In Section[2.3]we show how our system learns parts
based on contour fragments that in combination robustly match both the object outline and

repeatable internal edges.

10



CHAPTER 2. CONTOUR 2.1. Introduction

Our preliminary work [Shotton et al., 2005]] proved that automatic object recognition was
indeed achievable using only contour information. This chapter strengthens and extends

that thesis in the following respects:

e A codebook of scale-normalized contour exemplars is learned automatically from the
training images (Section[2.2.2), no longer requiring figure-ground segmentation masks

for training.
e Recognition is now performed at multiple scales (Section [2.3.2).

¢ Contour fragments are matched using a new multi-scale formulation of chamfer match-

ing with an explicit penalty for orientation mismatch (Section[2.2.1).

e Object detections are found as the strongest responses of a cascaded sliding-window
classifier by the mean shift mode detection algorithm [Comaniciu & Meer, 2002]. We

also discuss the probabilistic interpretation of object detection (Section 2.3).

e We demonstrate the effectiveness of a boot-strapping technique which augments the
sparse set of training examples used to learn the classifier. This is applied to the train-
ing data (Section [2.4.3), and additionally, by assigning a level of trust to the classifier
and without compromising procedural integrity, to the test data (Section[2.4.4).

e The evaluation (Section[2.5) is extended to 17 categories, embracing both classification
and detection. We introduce a new challenging multi-scale horse dataset, and compare
performance with two other contour-based techniques [Opelt ef al., 2006¢; |Ferrari ef al.}

2006a] and against an interest-point based method [Sivic et al.,|[2005].

Note that the notation used in this chapter differs somewhat from [Shotton et al., 2005].

A schematic diagram of the algorithm presented in this chapter is shown in Figure
This references ahead to the relevant sections of this chapter, which is structured as follows.

In Section we define contour fragments as sets of oriented edgels (2D points at im-
age edges). A new formulation of chamfer distance, including an explicit cost for orientation
mismatch, is explained, and its application to matching at multiple scales is presented. Fi-
nally, we discuss how a codebook of robust contour exemplars is learned using a clustering
algorithm.

Section [2.3| presents the object detection model. A star constellation of parts arranged

about an object centroid is employed, and each part (a contour exemplar) is matched to

11
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( )

\_ Training set Test set y

P

Build Codebook
(Section 2.2.2)

Learn Classifier Test Classifier
(Section 2.4) (Section 2.3)

/\\ O
p
Results (Section 2.5)

o

Retraining
(Section 2.4.3)
————

Figure 2.2: Schema of the contour-based object detection algorithm presented in this
chapter. A set of class images labeled with bounding boxes is merged with a set of back-
ground images, and then divided into training and test sets. The training set is used to build
a codebook of contour fragments, which are used to construct a classifier for detection. This
classifier is evaluated on the test data, and if required, retraining iterates the learning step.

the image edge map using a chamfer distance that incorporates a spatial prior. A boosted
classifier infers object presence or absence for centroid hypotheses across scale-space, and

mean shift locates a final set of likely detections.

The learning of the classifier is described in Section[2.4] A feature vector of chamfer dis-
tances for all exemplars is calculated for a sparse scale-space pattern of training examples,
and boosting is used to select discriminative exemplars while learning the classification pa-
rameters. A cascade is also learned to speed up the classifier at test time. Lastly, we discuss
retraining. Here, an initial classifier is used to identify false positive and false negative

detections. The training set is then augmented with examples placed so as to correct these

12



CHAPTER 2. CONTOUR 2.1. Introduction

mistakes, and learning is iterated, resulting in a final classifier with improved generalization

properties.

The evaluation is presented in Section 2.5 We use standard classification and detection
measures to quantify performance of our technique over several challenging datasets in-
cluding 17 object classes. The results confirm our hypothesis that contour is a powerful cue
for automatic visual recognition, and we demonstrate excellent results for both rigid and
articulated classes (see Figures and [2.15). Our comparisons with other contour-based
techniques, and with a method that uses sparse local descriptors, show strong, state-of-the-

art recognition performance.

Finally, Section 2.6|concludes this chapter with a summary of our findings.

Related Work

First, however, we briefly discuss other techniques that use contour fragments. Broader
references, including those to methods that match whole contour templates, are presented
in Appendix

[Fergus et al., 2004] augmented the constellation model with contour fragment features,
but their technique only exploits fairly clean, planar curves with at least two points of inflec-
tion. In [Kumar et al.,[2004]], contour fragments learned from video sequences were arranged
in Pictorial Structures [Fischler & Elschlager, 1973; Felzenszwalb & Huttenlocher, 2000,[2005]]
and used for detection of articulated objects; good results were obtained, although tracking
of video sequences or manual labeling of parts was needed for learning. [Borenstein ef al.,
2004] used image and contour fragments for segmentation, but did not address classifica-
tion or detection. A similar technique to [Shotton et al., 2005] was proposed in [Opelt et al.,

2006al.

Other methods have also used local contour descriptors. Rigid objects were addressed
effectively in [Mikolajczyk et al., 2003]. Shape contexts [Belongie et al., 2002] describe sam-
pled edge points in a log-polar histogram. The geometric blur descriptor was used in [Berg
et al., 2005] to match deformable objects between pairs of images. Most recently, [Ferrari
et al., 2006a] combined groups of adjacent segments of contour into invariant descriptors,

and the use of sliding windows of localized histograms enabled object detection.

13
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Figure 2.3: Answers for the recognition question posed in Figure

2.2 Contour Fragments

In this section we discuss contour fragments, giving their precise definition and detailing
how they are extracted from image edge maps and clustered into a class-specific codebook
of exemplars (Section 2.2.2). First however, we present our new formulation of chamfer

matching with an explicit penalty for mismatch in orientation.

221 Chamfer Matching

The chamfer distance function, originally proposed in [Barrow ef al) [1977], measures the

similarity of two contours at a certain relative location. It is a smooth measure with con-
siderable tolerance to noise and misalighment in position, scale and rotation, and hence
very suitable for matching our locally rigid contour fragments to noisy edge maps. It has

already proven capable of and efficient at recognizing whole object outlines (e.g.

11998; Stenger et al., 2003; Leibe et al., 2005]), and here we extend it for use in a multi-scale

parts-based categorical recognition model.

In its most basic form, chamfer distance (for 2D relative translation x) takes two sets of

edgels, a template 7" and an edge map E, and evaluates the (asymmetric) distance as:

T,E 1 ,
do) (x) = il D min (¢ +%) = Xef2, 2.1)
xt €T
where |T'| denotes the number of edgels in template 7', and || - ||2 denotes the I; norm. The

chamfer distance therefore gives the mean distance of edgels in 7 to their closest edgels in

E. For clarity of presentation, we omit the superscript (T, E') below where possible.

The chamfer distance can be efficiently computed via the distance transform (DT) of E,

14



CHAPTER 2. CONTOUR 2.2. Contour Fragments

DTg. This is an image in which each pixel gives the distance to the closest edgel in E:
DTg(x) = min ||x — Xc||2 - (2.2)
XeEE

Hence the min operation in becomes a simple look-up such that dcham(x) can be com-
puted as:
denam (%) = !111 S Drp(x + %) 23)
x¢€T
We also compute the argument distance transform (ADT) which gives the locations of the
closest points in E:

ADTg(x) = arginé% Ix — xel|2 - (2.4)

The exact Euclidean DT and ADT can be computed simultaneously in linear time using the

algorithm of [Felzenszwalb & Huttenlocher, |[2004].

It is standard practice to truncate the distance transform to a value 7:
DTy (x) = min(DTg(x),7) , (2.5)

which adds robustness to the basic chamfer distance by ensuring that missing edgels due
to noisy edge detection do not have too severe an effect. Additionally it allows the chamfer

distance to be normalized to a standard range [0, 1]:

1 T
dcham,‘r(x> = W Z DTE(Xt + X) . (2.6)

xt €T

Edge Orientation

A further, much greater improvement than truncation by 7 is given by exploiting edge ori-
entation information in the form of edge gradients. This orientation cue alleviates problems
caused by background clutter edgels since they are unlikely to align in both orientation and
position. One popular extension to basic chamfer matching is to divide the edge map and
template into discrete orientation channels and sum the individual chamfer scores [Olson &
Huttenlocher, [1997; Stenger et al., 2003]. However, it is not clear how many channels to use,

nor how to avoid artifacts at the channel boundaries.
Instead, we augment the robust chamfer distance with a continuous and explicit

cost for orientation mismatch, given by the mean difference in orientation between edgels
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in template 7" and the nearest edgels in edge map E:

dorons (%) = =0 3~ [9(x) — (ADT5x + %)) )
x¢€T
The function ¢(x) gives the orientation of edgel x modulo 7, and |¢(x1) — ¢(x2)| gives the
smallest circular difference between ¢(x;) and ¢(x2). Edgels are taken modulo 7 because,
for edgels on the outline of an object, the sign of the edgel gradient is not a reliable signal
since it depends on the intensity of the background. The normalization by § ensures that
dorient (%) € [0, 1], since [p(x1) — ¢(x2)| < 3.
Our final improved distance function, which we call the oriented chamfer distance, is then

a simple linear interpolation between the distance and orientation terms
d)\(X) = (1 - )\) ) dcham,r(x) + A dorient(x) ) (2.8)

where the orientation specificity parameter A weights the distance and orientation terms. As
we shall see below, A is learned for each contour fragment separately, giving improved dis-
crimination power compared with a shared, constant A. The distance and orientation terms
in (2.8) are illustrated in Figure Note that oriented chamfer matching is considerably
more storage efficient than using discrete orientation channels. The precise mathematical
form of the oriented chamfer distance has been clarified slightly since our original for-
mulation in [Shotton et al.,[2005].

In Section and Figure we compare the performance of our oriented cham-
fer distance against 8-channel chamfer matching and Hausdorff matching [Huttenlocher &
Rucklidge| 1992]. The Hausdorff distance function is essentially the basic chamfer distance
(2.1), but the summation is replaced by a maximization. We show that our continuous use of
orientation information, with the ability to learn per-part orientation specificities, provides

a considerable improvement over both these methods.

Matching at Multiple Scales

We extend oriented chamfer matching to multiple scales. This extension proves to be espe-
cially simple because, rather than using an image pyramid [Borgefors, 1988, we rescale the
templates T, keeping the size of edge map E constant. We thus redefine template T" to be

a set of scale-normalized edgels. To compute the chamfer distance at scale s between 7" and

16



CHAPTER 2. CONTOUR 2.2. Contour Fragments

Figure 2.4: Oriented chamfer matching. For edgel x; (blue circle) in template 7" (dotted blue
curve), the contribution to the oriented chamfer distance is determined by the distance d
from x; to the nearest edgel x; (red circle) in edge map FE (solid red curve), and the difference
between the edgel gradients at these points, |¢(x1) — ¢(x2)].

the (original, unscaled) edge map E, we use the scaled edgel set sT' = {sx; s.t. x; € T'} and
calculate:

A" (x,5) = dP (%) . (2.9)

We round the scaled edgel positions in s7' to the nearest integer; alternatively one could
interpolate the distance transform.

At smaller scales the edgels in template 1" are squashed closer together and some may
even alias to the same location in the distance transform, while at larger scales, the edgels
are stretched apart with gaps forming between them. However, due to the normalization
by |T|, the chamfer distances can reasonably be compared across scales, as required for a

scale-invariant model.

Approximate Chamfer Matching

For efficiency, one does not need to perform the complete sums over template edgels in
and (2.7). Each sum represents an empirical average, and so one can sum over only a frac-
tion of the edgels, adjusting the normalization accordingly. This provides a good approxi-
mation to the true chamfer distance function in considerably reduced time. In practice, even

matching only 20% of edgels gave no decrease in detection performance, as demonstrated

in Section[2.5.51
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2.2.2 Building a Fragment Codebook

To use contour fragments for object recognition, we must first come up with a set of rep-
resentative fragments. In selecting these, one has a choice in their specificity. One could
use completely generic fragments such as lines, corners, and T-junctions and hope that in
combination they can be made discriminative [Ferrari et al., 2006a]. Instead, we create a
class-specific set of fragments so that, for instance, the class horse will give rise to fragments
corresponding to regions we know to be head, back, and forelegs, among others, as illus-
trated in Figure 2.7 Even individually, these fragments can be indicative of object pres-
ence in an image, and in combination prove very powerful for object detection, as we shall

demonstrate.

In our earlier work [Shotton et al., 2005], we built a codebook by extracting clean frag-
ments of contour from ground truth segmentations of the training data. However, hand-
segmenting a large set of images is somewhat laborious, so in this work we present an im-
proved formulation that does not require segmentations, only bounding boxes around the
training objects.

The outline of our codebook learning algorithm is as follows. We start with a large, ran-
domly chosen initial set of fragments, which is clustered based on a symmetrized chamfer
distance (see ahead to ). Around 10000 fragments are clustered to about 500 clusters.
Each cluster is subdivided to find fragments that agree in centroid position. The resulting
sub-clusters form the final codebook of fragments. We also refer to these codebook frag-
ments as contour exemplars. We show in Section that using the new learned codebook
from unsegmented images can be even more powerful than a codebook learned from seg-

mented images.

Contour fragments are extracted from edge maps computed using the Canny edge de-
tector [Canny, 1986, although at first no thresholding is applied, and hysteresis is not used.
Each training image contains a number of objects labeled with bounding boxes. Bounding
box b = (by, by,) implicitly defines an object centroid x = %(bﬂ + by,), and an object scale
s = y/area(b). The centroid and scale are illustrated in Figure Object scales are only

used in ratios, and so their absolute values are not significant.

The initial set of contour fragments is generated as follows. A training object and a
rectangle » = (ry,rp,) enclosed within the bounding box of the object are chosen, both

uniformly at random. We define vector x; = % (rcen — X) as the (scale-normalized) vector
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from the object centroid x to the rectangle center rec, = %(rtl + rp;). Let B, = {x,} denote
the set of absolute image positions of edgels within rectangle r. The set of scale-normalized
fragment edgels is:

1
T = {S(xr — Teen) St X, € E,n} . (2.10)
To reduce the number of empty and overly generic fragments such as small straight lines,

|Ex]
area(r)

fragments with edgel density below a threshold 7; are immediately discarded. Frag-
ments with edgel density above a threshold 7, are also discarded, since these are likely to
contain many background clutter edgels and even if not, will be expensive to match. Edgel
sets E, are computed as E, = {x € C s.t. x € rand ||VI|x > t}. This equation uses
the image gradient |[VI|| at the set of edge points C, given by the Canny non-maximal
suppression algorithm (see examples in Figure 2.14). Rather than fix an arbitrary thresh-
old t, we choose a random ¢ for each fragment (uniformly, within the central 50% of the
range [miny || VI||x, maxx |[VI|x]), so that at least some of the initial fragments are rela-
tively clutter-free. As we shall see shortly, the clustering step can then pick out these cleaner
fragments to use as exemplars.

Finally, to ensure the initial set of contour fragments covers the possible appearances of
an object, a small uniformly random transformation is applied to each fragment: a scaling
logs € [—1og g, log Sina] and rotation 6 € [—6inq, brna] about the fragment center is ap-
plied to the edgels, and the vector x is translated (by « € [—tind, trna] and y € [—tind, tind])
and rotated (by ¢ € [—¢ind, érnd]) about the object centroid. Several differently perturbed
but otherwise similar fragments are likely to result, given the large number of fragments

extracted.

Fragment Clustering

Figure [2.5/ shows example fragments extracted at random, for both segmented and unseg-
mented training images. Clearly, the fragments from unsegmented images are fairly noisy,
though some are less cluttered than others. A clustering step is therefore employed with the
intuition that the resulting exemplars (cluster centers) are likely to be relatively clean and
clutter free.

To this end we compare all pairs (7}, 7};) of fragments in the initial set. This is done in a

symmetric fashion as follows:

dij = dT 0 (0) + d T (0) 2.11)
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Figure 2.5: Initial set of contour fragments. Examples of contour fragments extracted at
random from horse images. The red crosses represent the origins of the fragments, i.e. the
vectors (0,0)7 in the coordinate systems implicitly defined in . Top: clean fragments
can be extracted from segmented training images. Bottom: much noisier fragments tend to
be extracted when segmentations are not provided.

so that the fragments are scaled (first both to s;, then both to s;) and compared at zero
relative offset. Clustering is performed on the matrix d; ; using the k-medoids algorithm,
the analogue of k-means for non-metric spaces. For the purposes of clustering, a (single)
value for A\ is used. This was chosen to maximize the difference between histograms of

distances d; ; for within-cluster and between-cluster fragment pairs.

Example fragment clusters are shown in Figure As hoped, clusters contain contour
fragments of similar appearance, and even for unsegmented ground truth, the cluster cen-
ters tend to be clean contour fragments. However, this purely appearance-based clustering
does not take the vectors x; from the object centroid into account. We desire each contour
fragment to give a unique and reliable estimate of the object centroid, and so we split each
cluster into sub-clusters which agree on x¢, as follows. Each fragment casts a vote for the
object centroid, and modes in the voting space are found using mean shift mode estimation
[Comaniciu & Meer, 2002]. Each mode defines a sub-cluster, with all fragments within a
certain radius of the mode of x; assigned to that sub-cluster. To ensure high quality sub-
clusters, only those with a sufficient number of fragments are kept (in all experiments in
this chapter, five fragments were required). The sub-clustering procedure is iterated for

those fragments not assigned to a sub-cluster, until no new sub-clusters are generated.

Contour fragments within each sub-cluster now agree both in appearance, in terms of
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Figure 2.6: Fragment clustering. Top: example clusters from segmented images. Bottom:
example clusters from unsegmented images. In each example, shown left is the cluster cen-
ter (exemplar), and right are the locations x¢ (black diagonal crosses) of all the cluster mem-
ber fragments, relative to the object centroid (green cross). Note that (i) appearance-only
clustering can give clusters with multiple modes in the voting space (e.g. (a) and (b)), (ii)
segmented fragments tend to cluster more cleanly than unsegmented fragments, and (iii) the
locations of background cluster members (e.g. (f)) are scattered widely with no discernible
pattern.

low mutual chamfer distances , and also location relative to the object centroid. Within
each sub-cluster, the center fragment (the fragment T with lowest average distance to other
fragments) is used to form an exemplar F' = (T,%¢,0), where X; and o are respectively
the scale-normalized mean and radial variance of the centroid vectors x;. The exemplars
from all sub-clusters are combined to form the codebook F = {F'}. Figure[2.7|illustrates the
sub-clustered contour fragments. Note that the final exemplars are very class specific since
random background fragments are highly unlikely to repeatably agree in position as well as
appearance. Our clustering algorithm has also been able to obtain clean contour exemplars
from unsegmented images.

The clustering step is somewhat similar to that used in [Leibe & Schiele, 2003], except
that (i) we cluster contour fragments rather than image patches, and (ii) each resulting sub-
cluster has a particular location relative to the centroid as opposed to having the multiple

centroid votes of [Leibe & Schiele, [2003].

2.3 Object Detection

In this section we describe how contour exemplars are combined in a parts-based object

detection model. Parts are matched to an image edge map using the scale-invariant oriented
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Figure 2.7: Example contour exemplars. Left: exemplars from segmented horse images.
Right: exemplars from unsegmented images. Each row represents a sub-cluster containing
contour fragments that agree on centroid location x; as well as in appearance, in terms of
low mutual chamfer distances (2.11). Within each row are shown the contour exemplar (the
center of the sub-cluster), example sub-cluster members, and the locations x; (black diagonal
crosses) of the sub-cluster member fragments relative to the object centroid (large green
cross). The red circle is centered on a small red cross, and these indicate, respectively, the
radial uncertainty o, and the mean X; of votes relative to the centroid. Note that (i) we obtain
representative, class specific fragments of contour to use as exemplars for recognition, (ii)
through clustering we get clean contour exemplars even without segmented training data,

and (iii) we obtain an accurate estimate of location and location uncertainty relative to the
object centroid.
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chamfer distance with priors on their spatial layout, and combined in a boosted classifier.
The classifier is evaluated across the scale-space of the image, and mean shift mode detection
produces a final set of confidence-valued object detections. The only image information
used by the detector is the edge map E, which is computed using the Canny edge detector
[Canny, 1986] (although no hysteresis is applied).

2.3.1 Parts-Based Object Model

Most modern categorical object recognition systems such as [Agarwal & Roth, 2002; Fer-
gus et al., 2003; Felzenszwalb & Huttenlocher|, 2005] attempt to recognize an object as the
sum of its parts, rather than the object as a whole. This gives numerous advantages, al-
lowing recognition of partially occluded objects [Winn & Shotton, 2006], and significantly
improving efficiency and accuracy while decreasing training data requirements when mod-
eling classes with considerable articulation and within-class variation (different individuals,
body configurations, facial expressions). Some existing systems, e.g. [Fergus et al.,2003], are
computationally limited to a small number of parts, but our technique can efficiently cope
with larger numbers, of the order of 100. The resulting over-complete model has built-in
redundancy with tolerance to within-class variation and different imaging conditions such
as lighting, occlusion, clutter, and small pose changes.

The spatial layout of parts is clearly informative, although the degree to which it is mod-
eled varies enormously. One popular and remarkably successful technique, the bag-of-words
model [Sivic & Zisserman, 2003; Csurka et al., 2004; Sivic et al., [2005; Fergus et al., 2005
throws away all spatial information and exploits the repeatable co-occurrence of features to
recognize objects or scenes. At the opposite extreme, for a small number of parts, a full joint
spatial layout distribution can be learned [Fergus et al., 2003].

Our algorithm lies between these two extremes, using a star shaped constellation illus-
trated in Figure 2.8, where the locations of the parts are constrained through a single fiducial
point on the object, the centroid. A part P = (F, \,0,a,b) in our model is a contour exem-
plar F = (T,%¢, 0) paired with several learned parameters: ) is the orientation specificity of
the part in (2.8), while 6 thresholds, and a and b confidence-weight the part detections, as
described below.

For an object centroid hypothesis with location x and scale s, part P is expected to match
the image edge map E near position x + sX¢, with spatial uncertainty so. The chamfer dis-

tance is therefore weighted with a cost increasing away from the expected position. Finding
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Figure 2.8: Object star constellation. Object parts (black fragments of contour) are located
about the object centroid at (x, s) (green cross). The object bounding box is shown in green.
Each part has a spatial location X relative to the centroid (blue arrow) and a spatial un-
certainty o (red circle), both learned when constructing the fragment codebook. Both the
spatial location and uncertainty are scaled by object scale s. For clarity of presentation, only
four parts are shown here; in practice, about 100 parts are used.

the minimum weighted distance thus allows a degree of spatial flexibility in matching. The

location of this minimum is given by
x* = arg min (dE\T’E) (%', 8) + wse (||x" — (x + sif)Hg)> , (2.12)

where w, () is the radially symmetric spatial weighting function for which we use the
quadratic

if|z] <o
we(x) = (2.13)

oo otherwise.

QM‘ 8

The part response v for centroid hypothesis (x, s) is defined as the chamfer distance at the
best match x*

viE (X, 8) = dE\T’E) (x*,s), (2.14)

and this is used in the classifier (2.15) described below.
The most efficient method of finding the minimum in (2.12) depends on the density of

candidate centroids x. With candidates very close together it is best to use the algorithm

of [Felzenszwalb & Huttenlocher| 2004], which can compute x* over the whole image at

once (since w is a convex function). For our purposes however, we found it more efficient

to perform a brute force search where required, as the candidate centroids were sufficiently
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far apart.

2.3.2 Detecting Objects

Sliding window classification [Viola & Jones| 2001; |Agarwal & Roth, 2002; [Ferrari et al.,
2006a] is a simple, effective technique for object detection. A probability P(obj, ,)) of object
presence at location (x, s) is calculated across scale-space using a boosted classifier which
combines multiple part responses v from (2.14). These probabilities are far from indepen-
dent, since the presence of two distinct neighboring detections is highly unlikely, for exam-
ple. Hence a non-maximal suppression step, for which we employ mean shift mode estima-
tion [Comaniciu & Meer, 2002], is used to select local maxima as the final set of detections.
One must choose a set X of centroid scale-space location hypotheses, sampled frequently
enough to allow detection of all objects present, but sparsely enough to avoid undue com-
putational overhead. A fixed number of scales is chosen, equally spaced logarithmically to
cover the range of scales in the training data, which we assume is representative. Space
is sampled over a regular grid with spacing sA;iq for constant Ag,iq (optimized by hand
against the validation set). By increasing the spacing with scale, we can safely improve ef-

ficiency due to the greater tolerance to misalignment given by the enlarged search window

in (2.12).

Classifier

We employ a boosted classifier to compute probabilities P(obj ( )). This combines the part

X,S

responses v (2.14) for parts Py, ..., Py in an additive model of the form

M M
H(x,s) = Z hm(x,8) = Z am [V[Fy ] (X5 8) > O] + by (2.15)
m=1 m=1

with the binary indicator function [condition] = 1 if condition is true, 0 otherwise. Each weak
learner h,,, (corresponding to part P, in the model) is a decision stump which assigns a weak
confidence value (in the range —oo to 4-00) according to the comparison of part response
V[F,, Am] tO threshold 6,,. The weak learner confidences are summed to produce a strong
hypothesis confidence H, which can then be interpreted as a probability using the logistic

transformation [Friedman et al., 2000]:

1

Ty exp(—H(x,s)) (2.16)

P(obj(x’s))

25



2.3. Object Detection CHAPTER 2. CONTOUR

Mode Detection

Evaluating P(obj, ,)) for all scale-space centroid hypotheses (x, s) € A is the starting point

for classification and detection. We can write the classification task as that of estimating

P( |J objys) = 1=P( [] Objy.) (2.17)

(x,8)€X (x,8)€X

and the detection task as finding the set of detections D that maximizes

P( ) Obj(y N 0bjy ) (2.18)

(x,5)€D (x,8)eX\D

where obj, ) represents the event that an object is not present at (x, s).

Unfortunately, the posteriors of neighboring windows (xi, s1) and (x2, s2) cannot be

treated as independent, in other words

P(obj(xlﬁl),obj(xZ’SQ)) # P(obj(xlm))P(obj(x%sﬂ) , (2.19)

and this greatly complicates the matter of computing and (2.18). Finding a method to
calculate or approximate the classification and detection probabilities in a principled man-
ner is a very hard challenge, and one that the authors do not believe the community has
yet satisfactorily addressed. We leave this challenge, beyond the scope of this work, for
future endeavors; one possible solution could incorporate a Markov random field [Geman
& Geman, 1984] prior over the hypotheses, disallowing overlapping detections so that the

remaining detections are truly independent.

Instead, we use the powerful and now fairly standard technique of mean shift mode es-
timation [Comaniciu & Meer, [2002] on the hypothesized locations (x,s) € X weighted by
their scaled posterior probabilities s2P(obj (x,5))- similarly to [Leibe & Schiele, 2004]. Multi-
plying by s? compensates for the proportionally less dense hypotheses at larger scales. The
algorithm models the non-parametric distribution over the hypothesis space with the kernel

density estimator

—xi y—yi logs—logs;
P(x, s) 7 P(0bjx, ) K (”““ S 2R ) .20
(x4,8:)€X * Y s

where x = (z, y)T, the Gaussian kernel K uses bandwidths hy, hy and hg for the x, y, and
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scale dimensions respectively, and the scale dimension is linearized by taking logarithms.
The mean shift mode estimation procedure efficiently locates modes (local maxima) of the
distribution, which are used as the final set of detections. The density estimate at each
mode is used as a confidence value for the detection. To get a confidence value for image

classification, we simply take the density estimate at the global maximum.

24 Learning

We describe in this section how the set of parts P is learned from the contour exemplars F.
Recall that a part P = (F, A, 0, a,b) consists of a contour exemplar F' € F and parameters ),
6, a and b. The challenge of learning is therefore to select discriminative exemplars F' from
the codebook and learn the parameters of the classifier (2.15). We describe the boosting
algorithm as applied to our problem, discuss how a cascade can be learned to improve test
speed, and finally how retraining on both the training and test sets can improve detection

accuracy.

241 Boosting

We employ the Gentle AdaBoost algorithm [Friedman et al., 2000], detailed in Appendix
to learn the classifier in (2.15). The algorithm takes as input a set of training examples i
each consisting of feature vector f; paired with target value z; = £1, and iteratively builds a
classifier which should generalize to new data.

For our purposes, training example i represents location (x;, s;) in one of the training
images. The target value z; specifies the presence (z; = +1) or absence (z; = —1) of the
object class. The feature vector f; contains the responses v|r 5 (X, si) for all contour
exemplars F' € F, and all orientation specificities A from a discrete set A. A given dimension
d in the feature vector therefore encodes a pair (£, \), and, since decision stumps are used
[Torralba et al., 2007], each learned weak learner directly corresponds to an object model part
P.

We are free to choose the number, locations, and target values of the training examples.
One could densely sample each training image, computing feature vectors for examples at
every point on a grid in scale-space. This is however unnecessarily inefficient because the
minimization over x’ in (2.12) means that neighboring locations often have near identical

feature vectors.
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(b)

Figure 2.9: Training examples. (a) A pattern of positive (green ) and negative (red ©) ex-
amples are arranged about the true object centroid (the central, larger green ). The positive
and negative examples are spaced on a grid of size §; and J; respectively, scaled by the object
scale s. At each example, a feature vector of part responses is computed and passed to the
boosting algorithm. (b) For images with no objects present (background images), copies of
the same pattern as before (though now with all negative examples) are placed at a number
of random scale-space locations. Note that the patterns of examples are repeated at different
scales, but for clarity these are not drawn here; see text for details.

Instead, we use a sparse pattern of training examples as illustrated in Figure For an
object in the training set at location (x, s), positive examples are taken at the 3x3x3 scaled
grid locations x’ = x + [2x8'81, 2,8'01]7 for scales s’ = s77°, where (zy, 2y, 25) € {—1,0,+1}3.
The grid is spaced by ¢; in (scale-normalized) space and ~; in scale. One scale, z; = 0, of this
grid is shown in Figure[2.9(a). The positive examples ensure a strong classification response
near the true centroid, wide enough that the sliding window need not be evaluated at every
pixel (see Section [2.3.2). To ensure the response is localized, negative examples (the outer
grid of red circles in Figure a)) are taken at positions x’ = x + [25d2, 2y 52)7 for scales
s’ = sv5°, with a larger spacing d, > d; and scaling 2 > 71, and using the same (zy, 2y, )
though now excluding (0, 0,0). This particular pattern results in a total of 53 examples for
each object; while this may seem a large number it is vastly fewer than the total number of
scale-space locations in the image. For training images not containing an object, we create
(all negative) examples in the same pattern, at a number of random scale-space locations, as

illustrated in Figure 2.9(b).

For the size of learning problems addressed in this chapter, feature vectors can be pre-
computed for all examples. This usually takes less than an hour depending on the dataset.

The boosting procedure is then relatively quick, taking typically less than a minute to con-
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verge, since the weak learners are individually quite powerful.

2.4.2 C(lassification Cascade

The ordering of the weak learners selected by boosting is important: early rounds select
more general weak learners which classify the bulk of the training examples well, while
later rounds concentrate on more particular troublesome examples. This ordering can be
exploited for efficiency at test time by building a cascade [Viola & Jones| 2001].

We use a very simple form of cascade, similar to that in [Schneiderman & Kanade} 2004]:
after each round m of boosting, a threshold p,, is chosen as the minimum classification
confidence value H,, across all positive training examples:

pm = min  Hn(xi,si)—e, (2.21)

with a small constant € subtracted to aid generalization. Threshold p,, is used at test time, for
each round, to determine locations which are very unlikely to be true detections: if, at round
m, the classification confidence H,,(x, s) is less than p,,, then location (x, s) is removed from
further consideration so that weak learners for rounds m’ > m are not evaluated there. Note
that p,, is the largest threshold to give no false negatives across the training set. The cascade
gives a considerable speed-up, with almost no performance degradation. On real data we
have observed that the average number of rounds computed per point drops to about 20%,

giving about a 2x speed-up in detection time per image

2.4.3 Retraining on Training Data

It is unclear how to place the sparse negative training examples optimally throughout the
training images, and hence initially they are placed at random, as described above. How-
ever, once a detector is learned using these examples, a retraining step is used to boot-strap
the set of training examples, in a similar manner to [Zhu & Ghahramani| 2002]. We evaluate
the detector on the training images, and record all detections not marked as correct (as de-
fined in Section[2.5.1) and any false negatives. The classifier is then retrained on the original
example set, augmented with new negative examples at the locations of incorrect detec-

tions, and duplicate positive examples to correct the false negatives. As we demonstrate in

!For implementation reasons, the speed-up is not directly inversely proportional to the drop in the average
number of rounds computed.
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Section this procedure allows us to learn the parameters of more parts without over-
fitting. In [Shotton et al.,2005] we referred to a very similar procedure as partially supervised

learning.

2.4.4 Retraining on Test Data

The same idea can be put to work on the test data, if one assigns a degree of trust to the
output of the classifier. One can take a fixed proportion ¢ (e.g. £ = 10%) of detections
with strongest confidence and assume these are correct, positive detections, and the same
proportion of detections with weakest confidence and assume there are no objects present at
those locations. The boosted classifier is learned again with the new positive and negative

training examples further augmenting the training set.

2.5 Evaluation

In this section we present a thorough evaluation of our technique on several challenging
datasets. Our technique is applied to the problems of classification and detection. We in-
vestigate the performance of different aspects of our system, and compare against other
state-of-the-art methods. The standard experimental procedure is detailed in Section
the datasets in Section[2.5.2] and the results begin in Section[2.5.3|

2.5.1 Procedure

In each experiment, the image datasets are split into training and test sets. Each model is
learned from the training set with ground truth bounding boxes provided. At test time, the
bounding boxes are only used to compute detection accuracy, as follows.

The mode detection procedure, described in Section results in a set of centroid hy-
potheses and confidence values for object presence at these points. We assign a scaled
bounding box centered on each detection, with aspect-ratio proportional to that of the aver-
age training bounding box. For a detection to be marked as correct, its inferred bounding
box bi,s must agree with the ground truth bounding box bs; based on an overlap criterion

(as used in [VOC]):
area(bins N bgt)

5. 2.22
area(bins U bgt) > 05 ( )

Each ground truth bounding box can match against only one inferred bounding box, so

that spurious detections of the same object count as false positives. For the task of image
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classification, we take the single most confident detection within each image, and use its
confidence as the classification confidence. The nature of the mean shift detection procedure
ensures that every image has at least one detection.

For the task of classification, we use the receiver operating characteristic (ROC) curve to
measure performance. This plots the trade-off between false positives and false negatives
as a global confidence threshold is applied. The equal-error rate (EER) gives an easy-to-
interpret measure of quality of classification, while the area under the curve (AUC) which
takes the whole curve into account gives a better measure for comparison purposes.

For detection we use two closely related measures. The first, the recall-precision (RP)
curve, plots the trade-off between recall and precision as one varies the global threshold.
Where necessary for comparison with previous work, we use the EER measure on the RP
curve, though wherever possible we use the more representative AUC measureE] The sec-
ond measure plots recall against the average number of false positives per image (RFPPI) as
the detection threshold is varied [Ferrari ef al., 2006al]. The RFPPI curve seems more natural
for human interpretation than the RP curve, since it is monotonic and stabilizes as more neg-

ative images are tested (the RP curve can only deteriorate). Note that the legends in Figures

b),[4.4(b), and [4.7(b) contain RP AUC figures even though the graphs show RFPPL.

2.5.2 Datasets

We specify here the datasets used in the evaluations below. Bounding boxes are used, but
apart from Section[2.5.7, no figure-ground segmentations are used (a few were used in [Shot-
ton et al., 2005]). Example images from the datasets are shown in Appendix

Weizmann Horses

The Weizmann horse database [Weizmann] is a very challenging set of side-on horse images.
Used for evaluating segmentation accuracy in [Borenstein et al., 2004], we introduced it for
evaluation of detection in [Shotton et al., 2005]. A wide variety of horses breeds, colors,
and textures are represented, with different articulations, lighting conditions and scales.
While they are nominally viewed side-on and facing left, considerable out-of-plane rotation

is evident[]

*Strictly speaking, it is the area to the right of the curve in a recall against 1—precision plot.
? Although not required here, it is fairly simple to extend our algorithm to allow the detection of objects facing
in both directions. The standard detector is evaluated on both the original image and a left-right mirrored copy
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In [Shotton et al., 2005], we evaluated our detector against a single-scale version of the
database paired with background images from the Caltech database [Caltech]: 50 horse
images (10 of which were segmented) and 50 background images were used for training,
and the remaining 277 horse images and 277 background images for testing.

In this work, we extend the evaluation to a multi-scale version of this image database,
and to improve the quality of the benchmark, use a much harder set of background images
from the Caltech 101 dataset [Caltech 101] and [Fei-Fei et al., 2006]. While these image sets
have very different textural characteristics (and hence we would expect texture-based meth-
ods to work well at classification), the background images containing lots of clutter edges
pose a hard challenge to our contour-only detector. All images were down-sampled to a
maximum image dimension of 320 pixels where necessary; the resulting horses have a scale
range of roughly 2.5 from smallest to largest. For this dataset, the first 50 images from horse
and background sets were used for training, the next 50 as a validation set for optimizing pa-
rameters, and a final 228 as the test set. We have made both the multi-scale and single-scale

datasets available from our website at [Shotton].

Graz 17

We compare our method against the results obtained by [Opelt et al., 2006c] on their 17 class
database (listed in Table 2.1). We use the same training and test sets, including for training
the ‘validation’ set, which is integral to the learning algorithm of [Opelt et al., 2006c]. Images
are down-sampled to a maximum image dimension of 320 pixels where necessary. For some
classes, the resulting scale range is more than 5 times from smallest to largest. We investigate
each class individually and evaluate against the class test set and an equal number of images
from the background test set (where possible, since only 166 background images are in the
dataset). We make the comparison as fair as possible, though for some classes the number

of training and test images quoted in the paper vary slightly to those in the online dataset.

2.5.3 Matching Measures

We now turn to the results, beginning by comparing the performance of the detector using

several different matching measures: our proposed oriented chamfer matching with learned

of the image. The detections from both images are then combined while removing duplicates. See e.g. [Shotton
et al.,2005].

32



CHAPTER 2. CONTOUR 2.5. Evaluation

1.0 -
—
1 : J
09 - — E
0.8 -
0.7 -
0.6 -
g 0.5 -
-4
04 - RP AUC
“~Hausdorff 0.6519
03 «©-8-channel chamfer 0.7254
<A Non-oriented chamfer (A = 0.0) 0.5653
02 - <€ Oriented chamfer (A = 0.5) 0.7233
ol Fully oriented chamfer (A = 1.0) 0.7658
' -®-Oriented chamfer (A learned) 0.8086
0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

False Positives Per Image

Figure 2.10: Detection performance of different contour matching measures. Recall is
plotted as a function of the number of false positives per image averaged over the dataset.
We observe the best performance is obtained by our oriented chamfer matching technique
with a learned )\ parameter, although a fixed A = 1 also performs well.

A and with constant A € {0,0.5,1}, standard 8-channel chamfer matching, and Hausdorff
matching. The experiment was performed against 100 images in the multi-scale Weizmann

test set using 100 parts without retraining.

Figure superimposes the RFPPI curves for each matching measure, and the legend
reports the corresponding RP AUC statistics. Observe that with no orientation information
(A = 0, identical to a 1-channel, non-oriented chamfer distance), performance is very poor.
Hausdorff distance also fails to work well, since it too does not use orientation information.
The 8-channel chamfer matching performs fairly well, but by modeling the orientation ex-
plicitly, our oriented chamfer distance (for A > 0) performs as well or better, even if \ is
kept constant. The RFPPI curve for A = 1 appears almost as good as the learned A curve,
although the AUC numbers confirm that learning A per part, in order to weight optimally

between distance and orientation in (2.8), is noticeably better.
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2.5.4 Retraining

As described in Sections and one can boot-strap the detector by retraining firstly
on the training data to prevent the detector firing in background clutter, and secondly on
the test data by assigning a degree of confidence ¢ to the results. For this experiment we
recorded the performance of the detector (RP AUC) against the number of parts: (i) with-
out retraining, (ii) retraining only on the training data (identified in Figures and
as ‘retrained training’), and (iii) retraining both on the training and test data (identified as
‘retrained test’), against the multi-scale Weizmann validation dataset. The confidence pa-
rameter was set to £ = 10%.

We can draw several conclusions from the plot of these results in Figure (the slight
noise is due to the considerable impact that even one false negative has on the RP AUC).
Adding more parts (by performing more rounds of boosting) helps performance on the test
data up to a point, but eventually the detector starts to over-fit to the training data and
generalization decreases. By providing more training examples, by retraining on the train-
ing data, we can use more weak learners without over-fitting (though of course over-fitting
will recur eventually), and obtain improved detection performance at the expense of more
parts. Retraining on both the training and test data allows a further improvement. Note that
with fewer parts (40), retraining in either way can actually decrease performance, since the
strongest and weakest detections are not sufficiently reliable. Note also the significant extra

effort that retraining entails, for the relatively small performance gain.

2.5.5 Approximate Chamfer Matching

The results of our evaluation make use of the approximation described at the end of Sec-
tion [2.2.1} whereby only a subset of fragment edgels are used for chamfer matching. For all
experiments, only every fifth edgel (sorted in scan-line order) in each fragment is used,
giving a commensurate speed improvement. To determine whether this approximation
adversely affects performance, we compare detection performance with and without the
approximation, on the Weizmann multi-scale validation dataset using 100 features. With
the approximation, a RP AUC of 0.9547 was achieved, whereas without the approximation
(matching every edgel) only 0.9417 was obtained. We conclude that the approximation can
improve speed without degrading detection performance. The slight improvement in per-

formance may even be significant, since the variance of the part responses in the training
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Figure 2.11: Performance before and after retraining. Detection performance is graphed
as a function of the number of parts (rounds of boosting) for the initial detector and for the
detectors when retrained either on the training dataset or on the training and test datasets.
While the initial detector starts to over-fit as the number of parts is increased above 100, re-
training prevents over-fitting (over the range of the graph), allowing an overall performance
improvement at the expense of more parts.

data is increased slightly, which may prevent over-fitting.

2.5.6 Multi-Scale Weizmann Horses

We now evaluate on the full Weizmann multi-scale dataset, showing example detections
in Figure and quantitative results for classification and detection in Figure With
retraining, we achieve a final ROC AUC of 0.9400 for classification, and a final RP AUC of
0.8903 for detection.

There are several conclusions to draw from these results. Firstly, we have confirmed the
results of Section[2.5.4]that retraining on the training and test sets can improve performance.
Next, turning to the correct and incorrect detections in Figure we observe that the
detector works very well on the extremely challenging horse images, despite wide within-
class variation, extensive background clutter and some extreme lighting conditions. Missed
detections (false negatives) have occurred when there is significant pose change or out-of-
plane rotation beyond the range for which we would expect our side-on detector to work.
Training explicitly for these poses or rotations, perhaps using a multi-class classifier such as
[Torralba et al., 2007], should allow detection of these objects. False positives occur when

the pattern of clutter edgels is sufficiently similar to our model, as for example the case
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Figure 2.12: Example detections in the multi-scale Weizmann horse test set. Bounding
boxes around objects indicate detections: green represents correct detections, red false pos-
itives, and yellow the ground truth for false negatives. The final column visualizes the
contour fragments for the detections of the penultimate column. Note accurate scale-space
localization in the presence of highly variable object appearance, significant background
clutter, extreme lighting conditions (including silhouetting), articulation, and pose changes.

(middle column, penultimate row) of the man standing in front of the horse, where the
man’s legs look sufficiently similar to the front legs of a horse in terms of image edges. We
show in Chapter [4 that simple texture based features are sufficient to discount many such
false positives, and that the combination of contour and texture based features significantly
improves performance. For object classes such as horses with very distinctive contour but
variable texture, we show that contour gives important cues about where the object is, while
texture gives strong cues about where the object is not (for example, blue sky or green grass

is unlikely to signify horse presence).

Our C# implementation on a 2.2 GHz machine takes approximately 2 hours to train
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Figure 2.13: Performance on the Weizmann horse test set with and without retraining. (a)
ROC curves showing classification performance, with the curve for the pLSA classification
benchmark included (Section[2.5.9). To aid readability, only the top-left corner is shown. (b)
RFPPI curves showing detection performance. Note how both stages of retraining improve
both classification and detection performance.

and 10 seconds per image to test. For these and all other experiments, unless stated other-
wise, the following parameters were used. The distance transform truncation was 7 = 30,
and fragments were randomly chosen with the following transformation parameters: scal-
ing s;ng = 1.2, rotation about fragment center 6,,q = %, (scale-normalized) translation
tmma = 0.05, and rotation about centroid ¢.,q = 5. To learn the dictionary, 10000 raw frag-
ments, with edgel density bounded as (1, 72) = (1%, 5%), were clustered using a constant
A = 0.4, to produce 500 exemplars. To learn the classifier, examples were taken with grid
spacings 6; = 0.03 and d> = 0.25, and grid scale scalings v; = 1.1 and 2 = 1.4. Three
patterns of negative examples were used for background images, and A was allowed values
in {0,0.2,...,1}. Evaluation took place with the cascade constant ¢ = 3, and used a grid
spacing of Agiq = 0.07 scaled by each of 6 test scales over M/ = 100 rounds. The top and

bottom ¢ = 10% of detections were used for retraining on the test set.

2.5.7 Training from Segmented Data

To investigate whether the contour codebook learned from unsegmented data works well,
we performed the same detection experiment on the multi-scale Weizmann dataset but now
with the codebook learned from segmented training data. We obtained a detection RP AUC

of 0.8637, slightly worse than the performance on unsegmented images (0.8903). This some-
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Figure 2.14: Example edge maps from Canny [Canny, 1986] and boosted edge learning
(BEL) [Dollar et al., 2006]. One horse image, and one background image are shown. By
learning a model of horse edges, BEL is able to produce edge maps with visibly less clutter.
We demonstrate how this substantially improves detection performance in Section[2.5.8|

what unexpected result, possibly due to over-fitting or to the importance of interior edgels,

shows the strength of our algorithm for learning the codebook.

2.5.8 Learned Edge Detection

The Canny edge detector [Canny), 1986] has thus far proved a capable basis for our features.
However, recent developments such as [Martin et al., [2004; |Dollar et al., 2006] take a more
modern approach to edge detection, whereby a model of edges is learned from training
data. To determine whether the choice of edge detector has a significant impact, we com-
pared performance on the multi-scale Weizmann dataset using two models trained by the
boosted edge learning (BEL) algorithm from [Dollar et al., 2006]. The first was trained on a
set of natural images with corresponding hand-drawn edge labels, and the second on our
segmented horse training set with the aim of detecting only horse edges. The edge maps
returned by [Dolldr et al., 2006] are soft, and so standard non-maximal suppression is used
to give ‘thin” edges. The image edge gradient is used to obtain edge orientation information,
just as for Canny edges.

The detection results were as follows. For 100 parts, without retraining, the Canny edge
detector gives us a RP AUC of 0.8498. The first BEL model, trained on natural images, gave
no improvement with a RP AUC of 0.8354. However, the second BEL model, trained on
segmented horse images, gave 0.8976 RP AUC, a very significant improvement, and even
slightly better than the best performance using Canny with retraining (0.8903). There is an
even more noticeable improvement in classification performance: from 0.9127 ROC AUC
for Canny, up to 0.9518 for the BEL. We attribute this improvement to the reduced number
of clutter edges found by the BEL: even to the naked eye, there is a marked difference in

edge density between the horse and background images (illustrated in Figure 2.14).
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Of note in the qualitative results was that the learned codebook contained noticeably
cleaner contour fragments than those learned from Canny edge maps, with very little noise.
Most of the quantitative improvement was due to several detections that had previously
been missed. This experiment has confirmed that a modern learned edge detection algo-
rithm complements our object detection system; future work remains to extend this evalua-

tion to the other datasets in this chapter.

2.5.9 Comparison with Sparse Local Descriptors

To compare contour fragments with sparse local descriptors, and to determine the challenge
that the multi-scale Weizmann horse dataset poses to them, we evaluated a benchmark using
probabilistic latent semantic analysis (pLSA) [Sivic et al., 2005; [Hofmann, 2001], adapted
to give image classification. With such a wide variety of texture- and interest point-based
methods in the literature it would be impossible to evaluate them all; bag-of-words models
were shown to perform best in the PASCAL Visual Object Challenge 2006 [VOC]||, and we
choose pLSA as a simple-to-implement but powerful modern representative of these, to give

us an indicative comparison.

The technique takes SIFT descriptors [Lowe, |2004] and clusters them into a number of
visual words w so that each image (or document) d is represented by the counts of words
present. The unsupervised pLSA algorithm then mines the word-document co-occurrence

table looking for recurring topics k.

We first run pLSA on both training and test data combined, resulting in a distribution
p(k|d) for each image. For the training images, we know p(obj|d) € {0,1} where the event
‘obj” denotes the presence of an object in the image, and so can learn distributions p(obj|k) o
>4 p(k|d)p(obj|d)p(d) (using uniform priors). Hence for test images we can compute the
posterior classification as p(obj|d) = >, p(obj|k)p(k|d).

To obtain the best performance this model would allow, we optimized the parameters
against the test set, giving 200 SIFT clusters and 15 topics shared between the object and
background classes. In Figure 2.13(a) we plot the ROC curve for the pLSA benchmark. We
observe considerably worse performance than our contour based classifiers achieve, sug-

gesting that these images are difficult to classify based on sparse local descriptors alone.
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2.5.10 Single-Scale Weizmann Horses

Using the original single-scale Weizmann horse dataset, we compare our results with those
of [Shotton et al.,2005], where a RP EER of 92.1% was achieved (using some segmented data).
Further experiments on this dataset in [Ferrari et al., 2006a] improved on this figure with an
RP EER of 94.2% for contour based features only, and 95.7% combining contour features and
local descriptors. Our improved method presented in this chapter, using only contour and
without segmented training data, obtains an RP EER of 95.68% (with a corresponding RP
AUC of 0.9496), as good as [Ferrari et al., 2006a] even though they employ an additional
feature type. We speculate that the improved performance over our previous method is due
to the better generalization given by our learned codebook, and the use of the mean shift

algorithm to select detections.

2511 Graz17

Number of images || Classification (ROC) Detection (RP)

Class Training |  Test AUC | EER AUC | EER | Opelt EER
Airplanes 100 400 0.9953 3.4% 0.9310 6.8% 7.4%
Cars (rear) 100 400 0.9992 1.5% 0.9912 1.8% 2.3%
Motorbikes 100 400 1.0000 0.4% 1.0000 0.3% 4.4%
Faces 100 217 0.9966 2.4% 0.9850 2.8% 3.6%
Bikes (side) 90 53 0.9366 13.2% 0.6959 | 32.1% 28.0%
Bikes (rear) 29 13 0.9172 15.4% 0.6398 | 26.7% 25.0%
Bikes (front) 19 12 0.9375 16.7% 0.6344 | 41.7% 41.7%
Cars (% rear) 32 14 0.9000 20.9% 0.6925 | 30.0% 12.5%
Cars (front) 34 16 0.9727 12.5% 0.7233 | 29.4% 10.0%
Bottles 54 64 0.9802 7.8% 0.9468 9.4% 9.0%
Cows (side) 45 65 0.9992 1.7% 0.9975 1.5% 0.0%
Horses (side) 55 96 0.9816 6.3% 0.9680 6.3% 8.2%
Horses (front) 44 22 0.9566 13.6% 0.7852 | 27.3% 13.8%
Cows (front) 34 16 0.9727 6.3% 0.8575 18.8% 18.0%
People 39 18 0.9321 16.7% 0.4271 47.6% 47.4%
Mugs 30 20 0.9600 5.0% 0.9035 10.0% 6.7%
Cups 31 20 0.9825 5.0% 0.9158 15.0% 18.8%

Table 2.1: Classification and detection performance on the Graz 17 dataset. The final
column compares detection performance with [Opelt ef al., 2006c].

We conclude our evaluation by investigating performance on the Graz 17 class dataset.
Our results are compared to [Opelt ef al., 2006c] in Table and Figures and
show example detections. Parameter values were unchanged from the previous multi-scale
Weizmann experiments, although the number of parts and number of scales were adjusted

against the training data.
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Figure 2.15: Example detections for the Graz 17 class test set. Green bounding boxes
around objects indicate detections. Note accurate scale-space localization of objects de-
spite wide within-class appearance variation, significant pose changes, partial occlusion,
and background clutter, and detection of multiple objects.
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Figure 2.16: Example contour visualizations from detections in Figure These visu-
alizations superimpose, at their detected positions, all contour fragments that contributed
positively to the object detections. This gives an indication of which parts of object contour
are useful for recognition. For example, in (9¢), the cow is recognized using head and rear
contour fragments with little useful information used from its back.

There are several conclusions to draw from these results. Firstly, in almost every case we
perform comparably to [Opelt et al., 2006c], and for the larger datasets we show a signifi-
cant improvement, with almost perfect performance on motorbikes. As one would expect,
classification proves easier than detection in most cases, since strong but poorly localized
detections contribute positively to classification but negatively to detection. Performance is
worse for a few classes, such as cars (% rear) and cars (front), and poor for both techniques
for bikes (front) and people. There are few training images of these classes, and objects ex-
hibit considerably more out-of-plane rotation. Also, the small number of test images means
that even one missed detection has a very large effect on the RP EER (up to 232% for N test
images). Much more significant therefore is our sustained improvement for classes with

more test images.

2.6 Conclusions

Our thorough evaluation has demonstrated that contour can be used to successfully recog-
nize objects from a wide variety of object classes at multiple scales. Our new approximate
oriented chamfer distance outperformed existing contour matching methods, and enabled
us to build a class-specific codebook of local contour fragments, even without segmented
training data. We observed that retraining on both the training and test data can improve
generalization and test performance. Finally, we showed how modern, learned edge detec-

tion gave an improvement over the traditional Canny edge detector.
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TEXTURE

3.1 Introduction

In this chapter, we turn our attention to the problem of automatically achieving semantic
segmentations of photographs. We propose a system, called TextonBoost, that automatically
partitions a given image into semantically meaningful regions, each labeled with a specific
object class, as illustrated in Figure

The challenge is to model the visual variability of a large number of both structured and
unstructured object classes, to be invariant to viewpoint and illumination, and to be robust
to occlusion. Our focus is not only the accuracy of segmentation and recognition, but also
the efficiency of the algorithm, which becomes particularly important when dealing with
large image collections or video sequences.

At a local level, the appearance of an image patch leads to ambiguities in its class label.
For example, a window could be part of a car, a building or an airplane. To overcome these
ambiguities, it is necessary to incorporate longer range information such as the spatial con-
figuration of an object (the object shape) and also contextual information from the surround-
ing image. To achieve this, we construct a discriminative model for labeling images which
exploits all three types of information: appearance, shape, and context. Our technique can
model very long-range contextual relationships extending over half the size of the image.

Additionally, our technique overcomes several problems typically associated with object
recognition techniques that rely on sparse features (such as [Lowe, 2004; Mikolajczyk &
Schmid| 2002]). These problems are mainly related to textureless or very highly textured
image regions. Figure 3.2/ shows some examples of images with which those techniques
would very likely struggle. In contrast, our technique based on dense features is capable of

coping with both textured and untextured objects, and with multiple objects which inter- or

43



3.1. Introduction CHAPTER 3. TEXTURE

~ sky

tree

building
&

body 3. road airplane

grass grass

;:’;:‘:s building = grass tree cow sheep sky airplane = water face car

bicycle = flower sign bird book chair; road cat body boat

Figure 3.1: Example results of our new simultaneous object class recognition and seg-
mentation algorithm. Up to 21 object classes (color-coded in the key) are recognized, and
the corresponding object instances segmented in the images. For clarity, textual labels have
been superimposed on the resulting segmentations. Note, for instance, how the airplane has
been correctly recognized and separated from the building, the sky, and the grass lawn. In
these experiments only one learned multi-class model has been used to segment all the test
images. Further results from this system are given in Figure[3.21}

self-occlude, while retaining high efficiency.

The contributions in this chapter are threefold. First, we present a discriminative model
which is capable of fusing shape, appearance and context information to recognize effi-
ciently the object classes present in an image, whilst exploiting edge information to provide
an accurate segmentation. Second, we propose features, based on textons, which are capable
of modeling object shape, appearance and context. Finally, we demonstrate how to train the
model efficiently on a very large dataset by exploiting both boosting and piecewise training

methods.

The TextonBoost system originally appeared in [Shotton et al.,[2006]. This chapter builds

on that work, with clarified explanations, new variants of our texture-based features, and
an extended evaluation.

The chapter is organized as follows. We briefly discuss closely related work below. In the
Section 3.2} we describe the image databases used in our experiments. Section[3.3]introduces
the high-level model, a conditional random field (CRF), while Sectionpresents our novel

low-level image features and their use in constructing a boosted classifier. Experiments,
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Figure 3.2: Example problem images for techniques based on sparse features. Sparse
feature based techniques struggle with textureless and very highly textured regions, and
multiple objects, especially those that severely inter-occlude.

performance evaluations and conclusions are given in the final two sections. Note that the
notation in this chapter should be treated separately from that of Chapter[2] An overview of
the TextonBoost system is shown in Figure the terms in this figure will become clear as

the reader continues through the chapter.

Related Work

The reader is referred to Appendix[A]for a fuller discussion of related work, but we briefly

highlight some directly related research here.

[Duygulu et al., 2002] used a classifier, trained from images with associated textual class

labels, to label regions found by bottom-up segmentation. Such segmentations often do not
correlate with semantic objects, for example an object in shadow may be divided into a shad-
owed versus non-shadowed part. Our solution to this problem is to perform segmentation
and recognition in the same unified framework rather than in two separate steps. Such a

unified approach was presented in [Tu et al., 2003], but there only text and faces were rec-

ognized, and at a high computational cost. In [Konishi & Yuille, 2000], images were labeled

using only a unary classifier and hence did not achieve spatially coherent segmentations.

The most similar work to ours incorporates region and global label fea-
tures to model shape and context in a conditional random field. Their work uses Gibbs
sampling for both the parameter learning and label inference, and is therefore limited in the
size of dataset and number of classes that can be handled efficiently. Our focus on the speed
of training and inference allows us to use larger datasets with many more object classes. We
currently handle 21 classes (compared to the seven classes of 2004]); it would be
tractable to train our model on even larger datasets than presented here.

More recent work [He et al. 2006] by the same group presented a related technique,

where images are first segmented with a bottom-up algorithm to give ‘super-pixels” which
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Figure 3.3: Overview of the TextonBoost algorithm presented in this chapter. A set of
images with associated ground truth segmentations is divided into training and test sets.
The responses of a filter bank convolved with the training images are clustered, and the
resulting clusters are used to textonize the images (see Section [3.4.1). The parameters of the
potentials in the CRF are then learned. Finally, inference is run on the test images, giving
semantic segmentations as outputs.

are then merged together and semantically labeled using a combination of several scene-
specific CRF models. Their technique improved slightly the quantitative results from
et al.},[2004], but still has not been demonstrated to handle more than 11 classes. Additionally,
the super-pixelization is a hard decision from which their CRF-based model cannot recover.

Our technique instead works efficiently at a per-pixel level.
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@) (®) © (d)

Figure 3.4: The MSRC labeled image database. (a-d) A selection of images in the 21-class
database. (e) The ground truth annotations corresponding to column (d). Each color maps
uniquely to an object class label. All images are approximately 320 x 240 pixels.

3.2 Image Databases

Our object class models are learned from a set of labeled training images. In this chapter we
consider four different labeled image databases. The Microsoft Research Cambridge (MSRC)
database, available at [MSRC 21], is composed of 591 photographs of the following 21 object
classes: building, grass, tree, cow, sheep, sky, airplane, water, face, car, bicycle, flower, sign,
bird, book, chair, road, cat, dog, body, boat. Examples are shown in Figure The training
images were hand-labeled by means of a “paint” interface, with the assigned colors acting
as indices into the list of object classes. One could instead use one of the novel ‘user-centric
computation” methods such as [Russel ef al.,[2005] or [Peekaboom]. Note that we consider

general lighting conditions, camera viewpoint, scene geometry, object pose and articulation.

Our database is split randomly into roughly 45% training, 10% validation and 45% test sets.
This is done per class to ensure approximately proportional contributions from each class.
Note that the ground truth labeling of the 21-class database contains pixels labeled as
void. These were included both to cope with pixels that do not belong to a class in the
database, and also to allow for a rough and quick hand-segmentation which does not align

exactly with the object boundaries. Due to this ambiguity in meaning, it was not sensible to
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learn a background class based on these regions, and hence void pixels are ignored for both
training and testing.

For comparison with previous work [He et al 2004], we also used the 7-class Corel
database subset (where images are 180x 120 pixels) and the 7-class Sowerby database (96 x 64
pixels). For those two databases, the numbers of images in the training and test sets we used
are exactly as for [He et al.,[2004], although their precise train-test split was not known. Nei-
ther of these data sets include the void label.

The final evaluation we present was performed on a set of nine 20-minute video se-
quences of Japanese television programs: modern drama, news, golf, soccer, cooking, va-
riety, music, historical drama, and business news. The set of classes used for this evalu-
ation was as for the MSRC evaluation, but without sign, book or chair, and including the
new classes hand, table and headgear. For speed of evaluation, video frames were down-
sampled to 336x224 pixel resolution, but were otherwise not preprocessed. For both training
purposes and quantitative evaluation, a total of about 120 frames (one every 300 frames) in
each sequence were labeled by hand; since images change smoothly from one frame to the
next (apart from at scene changes), labeling more images would be unlikely to improve a

learned model.

3.3 A Conditional Random Field Model of Object Classes

We use a conditional random field (CRF) model [Lafferty et al.,[2001] to learn the conditional
distribution over the class labeling given an image. The use of a conditional random field
allows us to incorporate shape, texture, color, location and edge cues in a single unified

model. We define the conditional probability of the class labels ¢ given an image x as

shape—texture color location

log P(c|x,0) = Z i(ciy x5 0y) +7(ci, i 0x) + Nei, i3 6)

edge

+ > Bl ¢, 8ij(x); 05) —log Z(6, %) 3.1)
(i,9)€€

where £ is the set of edges in a 4-connected grid structure, Z(0, x) is the partition function
which normalizes the distribution, @ = {6, 0~,0,,0,} are the model parameters, and i and
J index pixels in the image, which correspond to sites in the graph. Note that our model

consists of three unary potentials which depend only on one node i in the graph, and one
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pairwise potential depending on pairs of neighboring nodes in the graph. We next define the

form of the four potential functions and their parameters.

Shape-texture potentials: The unary shape-texture potentials 1) use features selected by
boosting to represent the shape, texture and appearance context of the object classes.
These features and the boosting procedure used to perform feature selection while
training a multi-class logistic classifier are described in detail in Section We use

this classifier directly as a potential in the CREF, so that
Vi(ci, x; 0y) = log P(c;|x, 1) (3.2)

where P(c;|x, ) is the normalized distribution given by the boosted classifier, (3.16).

Color potentials: The unary color potentials capture the color distribution of instances of
a class in a particular image. While the distribution of color across an entire class of
objects is broad, the color distribution across one or a few instances of the class is rela-
tively compact. Exploiting an accurate instance color model can therefore dramatically
improve segmentation results [Blake ef al.,2004]. The parameters 8, must be learned
separately for each image, and so this learning step needs to be carried out at test
time. It is this potential that captures the more precise image-specific appearance that

a solely class-specific recognition system cannot.

Our color models are represented as Gaussian Mixture Models (GMM) in CIELab color
space where the mixture coefficients depend on the class label. The conditional prob-

ability of the color z of a pixel is given by
P(xlc) =Y P(x|k)P(klc) (3.3)
k

with
P(z|k) = N(z | e, ) (34)

where k represents the mixture component the pixel is assigned to, and p, and X, are
the mean and variance respectively of mixture k. Notice that the mixture components
are shared between different classes, and that only the coefficients P(k|c) depend on
the class label, making the model more efficient to learn than a separate GMM for each

class. For a particular pixel z; we compute a fixed soft assignment to the mixture com-
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YamWwi)

grass tree road face

Figure 3.5: Example location potentials. Note how, for example, tree and sky pixels tend
to occur in the upper half of images, while road pixels tends to occur at the bottom of the
image. (White indicates increased probability).

ponents P(k|x;) «x P(x;|k) assuming a uniform prior P(k;)ﬂ Given this assignment,

we specify our color potential to have the form
m(ci, 45 Or) logza ciy k) P(kl|z;) (3.5)

where learned parameters 6, represent the distribution P(c|k); note the conditional

independence of ¢ from z given k. (3.11)) details the learning of 6.

Location potentials: The unary location potentials capture the (relatively weak) dependence
of the class label on the absolute location of the pixel in the image. The potential takes

the form of a look-up table with an entry for each class and pixel location:
Ni(ei,i303) = log Ox(ci, 1) - (3.6)

The index i is the normalized version of the pixel index 4, where the normalization
allows for images of different sizes: the image is mapped onto a canonical square and
i indicates the pixel position within this square. Some learned location potentials are

illustrated in Figure

Edge potentials: The pairwise edge potentials ¢ have the form of a contrast sensitive Potts

model [Boykov & Jolly, 2001],

d(ciy cj, 8ij(%); 04) = =058 (x)[ci # ¢j] (3.7)

! A soft assignment was found to give a marginal improvement over a hard assignment, at negligible extra
cost.
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original image edge potentials

Figure 3.6: Edge potentials for an example image. The edge potentials in the CRF explicitly
penalize neighboring nodes in the graph having different class labels, except where there
is a corresponding edge in the image. Darker pixels in this image represent stronger edge
responses and therefore lower costs.

with [-] the zero-one indicator function. In this work, the edge feature g;; measures

the difference in color between the neighboring pixels, as suggested by [Rother et al.
2004],

B [ exp(—Bz; — ;%) ] (3.8)

gij =
1
where z; and x; are three-dimensional vectors representing the colors of pixels i and j
respectively. Including the unit element allows a bias to be learned, to remove small,
isolated regions. The quantity (3 is an image-dependent contrast term, and is set sepa-
rately for each image to (2(||z; —z;||?*)) ~!, where (-) denotes an average over the image.

An example using the function exp(—/3||z; — z;||?) is shown in Figure

3.3.1 Learning the CRF: MAP Training

Ideally, the parameters of the model should be learned with maximum likelihood (ML) esti-

mation [Kumar & Hebert, 2003] or, better, maximum aposteriori (MAP) learning: these meth-

ods maximize the conditional likelihood of the labels given the training data, and for MAP

learning incorporate a prior term to prevent over-fitting:
L(6) = log P(cy|xn, 0) + P(6) . (3.9)

The maximization of L(@) with respect to 6 can be achieved using a gradient ascent algo-
rithm, iteratively computing the gradient of the conditional likelihood with respect to each

parameter, %L(G), and moving up the gradient. This requires the evaluation of marginal
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probabilities over the class labels at each pixel for all training images.

Exact computation of these marginals is sadly infeasible, since it would require vast
computational effort to perform the numerous marginalizations of (3.1I). Instead, we ap-
proximated the label marginals by the mode, the most probable labeling, inferred using
alpha-expansion graph cuts as described in Section 3.3.3] This approximation was made be-
cause the size of our datasets limited the time available to estimate marginals; alternative,
slower but more accurate approximations such as loopy belief propagation (BP) [Pearl, [1988;
Yedidia et al.,|2003|] or variational methods [Beal, 2003] could also be investigated.

We attempted MAP learning of the several thousand shape-texture potential parameters
0., and the two edge potential parameters 8. For the 6, the optimization was performed
over the a and b parameters of the weak learners in (3.17), initialized at the values given by
boosting.

However, the modal approximation used proved insufficient for estimating such a large
number of parameters. Conjugate gradient ascent did eventually converge to a solution,
but evaluating the learned parameters against validation data gave poor results with almost
no improvement on unary classification alone. Additionally, for the learning of the edge
potential parameters, the lack of alignment between object edges and label boundaries in

the roughly labeled training set forced the learned parameters to tend toward zero.

3.3.2 Learning the CRF: Piecewise Training

Given these problems with directly maximizing the conditional likelihood, we decided in-
stead to use a method based on piecewise training [Sutton & McCallum) 2005]. Piecewise
training involves dividing the CRF model into pieces corresponding to the different terms
in (3.1). Each of these pieces is then trained independently, as if it were the only term in the
conditional model. For example, if we apply piecewise training to the CRF model of Fig-
ure [3.7(a), the parameter vectors 84, 8,, and 6 are learned by maximizing the conditional
likelihood in each of the three models of Figure [3.7(b). In each case, only the factors in the
model that contain the relevant parameter vector are retained.

As discussed in [Sutton & McCallum, 2005], this training method minimizes an upper
bound on the log partition function, as follows: if we define the logarithm of the partition

function z(6, x) = log Z(0, x) and index the terms in the model by r, then

2(0,x) <Y %(0,,%) (3.10)
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Figure 3.7: Piecewise training of the CRF parameters. (a) The factor graph (see e.g. [Bishop,
2006]) for a simplified CRF model. Each black square represents a term in and each
circle represents a latent variable. Terms are connected to all variables that they depend
on. (b) When piecewise training is applied to the CRF model of (a), the parameters 84, 8.,
and 0, are learned by maximizing conditional likelihood in the top, middle and bottom
models respectively. In each model, only the terms relating to the parameter being learned
are retained. (c¢) A model in which the term 1 has been duplicated. In this case, piecewise
training will learn model parameters which are twice those learned in the original non-
duplicated model. Hence, piecewise training will lead to over-counting errors when terms
in the model are correlated. See text for more details.

where 6, are the parameters of the rth term and z,(6,) is the partition function for a model
containing only the rth term. Replacing z(8,x) with ), 2,(,) in (8.1) then gives a lower
bound on the conditional likelihood. It is this bound which is maximized during piecewise
learning.

Unfortunately, this bound can be loose, especially if the terms in the model are corre-
lated. In this case, performing piecewise parameter training leads to over-counting during
inference in the combined model. To understand this, consider the case where we duplicate
a term of the model 9(6,,), so that there is an additional term 4(6;,) which has the same
functional form but new parameters 6;,. A model with duplicated terms is shown in Fig-
ure C). As the duplicate terms have the same form and are based on the same features,
these terms are perfectly correlated.

Piecewise training will learn that 6, and 6;; are the same and equal to the parameters
Bf’z}d learned for this term in the original model. Since the log potential function log ) is
linear in the parameters, the duplicate model will be equivalent to the original model but
with 07" = 209/, i.e. twice the correct value. To offset this over-counting effect and recover
the original parameters, it would be necessary to weight the logarithm of each duplicate

term by a factor of 0.5, or equivalently raise the term to the power of 0.5.
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It is difficult to assess analytically the degree of over-counting introduced by dependen-
cies between the different terms in our CRF model. Instead, we introduce scalar powers
for each term and optimize these powers discriminatively using cross-validation on a set of
validation images. We found that it was only necessary to introduce powers for the location
and color potentials. It can be shown that this leads to an approximate partition function
of similar form to (3.10), except that it is no longer an upper bound on the true partition
function.

Piecewise training with powers is therefore used to train the parameters of each of the

potential types separately as follows.

Shape-texture potential parameters: The shape-texture potential parameters are learned dur-

ing boosting, described in Section

Color potential parameters: At test time the color potential parameters are learned for each
image in a piecewise fashion, similarly to [Rother et al., 2004]. First a class labeling c*

is inferred (see Section 3.3.3) and then the color parameters are updated using

0. (cs, k) — <Zi[ci = c1P(kl|z:) +oz7r>w" . (3.11)

22 Pklzi) + ax

Given this new parameter setting, a new class labeling is inferred and this procedure
is iterated. In practice, the Dirichlet prior parameter o, was set to 0.1, the power
parameter was set as w, = 3, and fifteen color components and two iterations gave
good results. Because we are training in pieces, the color parameters do not need to be

learned for the training set.

Location potential parameters: We train the location potential parameters by maximizing
the likelihood of the normalized model containing just that potential and raising the

result to a fixed power w) to compensate for over-counting. This corresponds to
. N -+ oay\"™
0x(c,t) = <”> (3.12)

where N_; is the number of pixels of class ¢ at normalized location i in the training
set, N: is the total number of pixels at location i and « is a small integer (we use
ay = 1) corresponding to a weak Dirichlet prior on 8. The parameter w) was changed

between the different datasets; the relevant values are given in Section
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Edge potential parameters: The values of the two contrast-related parameters were manu-

ally selected to minimize the error on the validation set.

3.3.3 Inference in the CRF Model

Given a set of parameters learned for the CRF model, we wish to find the most probable
labeling c*, i.e. the labeling that maximizes the conditional probability of (3.I). The optimal
labeling is found by applying the alpha-expansion graph-cut algorithm of [Boykov & Jolly,
2001]. Note that the energy is alpha-expansion submodular (this term has superseded the
original term regular; see [Kolmogorov & Zabih, 2004] for details).

The idea of the expansion move algorithm is to reduce the problem of maximizing a
function f(c) (corresponding to (3.1)) with multiple labels to a sequence of binary maximiza-
tion problems. These sub-problems are called alpha-expansions. They can be described as
follows (see [Boykov & Jolly, 2001] for details). Suppose that we have a current configura-
tion (set of labels) c and a fixed label « € {1,...,C}, where C is the number of classes. In the
alpha-expansion operation, each pixel ¢ makes a binary decision: it can either keep its old
label or switch to label a. Therefore, we introduce a binary vector s € {0, 1}” which defines

the auxiliary configuration c|s] as follows:

C; if S; = 0
cils] = (3.13)
o if S; = 1.

This auxiliary configuration c[s| transforms the function f with multiple labels into a function
of binary variables f'(s) = f(c[s]). Because our edge potentials are attractive, the global
maximum of this binary function can be found exactly using graph cuts.

The expansion move algorithm starts with an initial configuration CUEI It then computes
optimal alpha-expansion moves for labels « in some order, accepting the moves only if they
increase the objective function. The algorithm is guaranteed to converge and its output
is a strong local maximum, characterized by the property that no further a-expansion can

increase the function f.

*In our case, the initial configuration c° for the alpha-expansion is given by the mode of the shape-texture po-
tentials, though the final MAP solution was not in practice sensitive to this. Additionally, the order of expansion
moves did not have a noticeable effect on performance.
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Figure 3.8: The process of image textonization. An input image is convolved with a filter
bank. The filter responses for all pixels in training images are clustered. Finally each pixel is
assigned a texton index corresponding to the nearest cluster center to its filter responses.

3.4 Boosted Learning of Shape, Texture and Context

The most important term in the CRF energy is the unary shape-texture potential of (3.2),
which is based on a novel set of features which we call shape filters. These features are capable
of capturing shape, texture and appearance context jointly. In this section, we describe shape
filters and the boosting process for automatic feature selection and learning of the shape-

texture potentials.

3.4.1 Textons

Efficiency demands a compact representation for the range of different appearances of an
object. For this we use textons [Leung & Malik| [2001] which have been proven effective in
categorizing materials [Varma & Zisserman, 2005] as well as generic object classes [Winn
et al., 2005]. The term texton was coined by [Julesz, 1981] for describing human textural
perception, and is somewhat analogous to phonemes used in speech recognition.

The training images are convolved with a 17-dimensional filter bank at scale K,E| The
17-D responses for all training pixels are then whitened (to give zero mean and unit co-
variance), and an unsupervised clustering is performed. We employ the Euclidean-distance
K-means clustering algorithm, which can be made dramatically faster by using the tech-

niques of [Elkan, 2003]. Finally, each pixel in each image is assigned to the nearest cluster

*The choice of filter bank is somewhat arbitrary, as long as it is sufficiently representative. We use the same
filter bank as [Winn ef al., |2005|]], which consists of Gaussians at scales x, 2k and 4k, x and y derivatives of
Gaussians at scales 2x and 4, and Laplacians of Gaussians at scales «, 2k, 4x and 8x. The Gaussians are
applied to all three color channels, while the other filters are applied only to the luminance. The perceptually
uniform CIELab color space is used.
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Figure 3.9: Textons for the MSRC 21 class dataset. 400 patches corresponding to the K =
400 learned textons are shown. The patch corresponding to texton ¢ shows the average
across the dataset of 25x25 pixel windows centered on all pixels ¢ with 7; = ¢. Observe
structures corresponding to untextured regions of constant color, horizontal and vertical
bars and edges (including some colored edges), blobs, rings, and crosses. Due to the choice
of filter bank, no diagonal edges are present, although the learning algorithm is to some
extent able to compensate for such missing types of texture.

center, producing the texton map. We will denote the texton map as 7" where the pixel ¢ has
value T; € {1,...,K}.

This process of textonization is illustrated in Figure 3.8, and a visualization of the result-
ing textons is shown in Figure Additionally, a simplistic reconstruction, termed inverse
textonization, in which the average texton patches from Figure are superimposed and
averaged, is illustrated in Figure

Note that for efficiency one can use the k-d tree algorithm [Beis & Lowe, [1997] to perform

the nearest neighbor search; without any approximation, textonization using k-d trees with
leaf-node bins containing 30 cluster centers gave a speed up of about 5 times over simple

linear search.

3.4.2 Shape Filters

Each shape filter is a pair (r,¢) of an arbitrary shape, r, and a texton ¢. In our implemen-

tation, the allowed shapes are rectangular regions, in coordinates relative to a pixel i being
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Figure 3.10: Inverse textonization. Given the texton map and the average texton patches

from Figure a good approximation to the original image can be reconstructed. This
highlights the representative power of textons.

classified. For simplicity, a set of Vg candidate rectangles are chosen at random, such that
their top-left and bottom-right corners lie within a fixed bounding box covering about half
the image areaﬁ The feature response at location 7 is the count of instances of texton ¢ under

the offset rectangle mask r + ¢

v ()= Y [Ty =1]. (3.14)
JE(r+i)
Outside the image boundary there is zero contribution to the feature response. Figure m
illustrates this process.

The filter responses can be efficiently computed over a whole image with integral im-

ages [Viola & Jones| 2001} |Porikli, [2005]. Figure [3.12|illustrates this process: the texton ma
& g p P

is separated into K channels (one for each texton) and then, for each channel, a separate

integral image is calculated. These can later be used to compute the shape filter responses in
constant time: if 7(*) is the integral image of T for texton channel ¢, then the feature response
is computed as:

g (i) = T — T8 — 70 4 70 (3.15)

1 Ttr Tt1

“For the evaluations in this chapter, the bounding box was +100 pixels in # and y. This allows the model
to exploit appearance context over a long range, despite the CRF having connections only to pixel-wise neigh-
bors. The CREF is still very important however: it allows us additionally to exploit the edge, color, and location
potentials to achieve near pixel-perfect segmentation.
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(a) input image

(b) texton map (e) feature, = (r,,t,) (f) feature, response

Figure 3.11: Calculating feature responses and capturing appearance context. (a, b) An
image and its corresponding texton map (colors map uniquely to texton indices). (c) A
rectangle mask r; (white) is defined relative to the yellow cross which represents the point
i being classified, and paired with texton ¢; which here maps to the blue color. (d) As an
example, the feature response vy, ;(i) is calculated at three positions in the texton map
(zoomed). If A is the area of r, then in this example v, 4,1(i1) =~ 0, v}, 4,1(i2) = A, and
Uy 01(33) ~ A/2. (e) A second feature with a different rectangle mask 3 is paired with
texton ¢t which maps to the green color. (f) For this feature where ¢, corresponds to grass,
our algorithm learns that points 7 (such as i4) belonging to sheep regions tend to produce
large counts vy, ;,1(7), and hence exploits the contextual information that sheep pixels tend
to be surrounded by grass pixels.
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Figure 3.12: Separating the texton map into multiple channels. The texton map of an
image, containing K textons, is split into K channels. An integral image is built for each
channel and used to compute shape filter responses in constant time.

where 71, rp1, 74 and 7y denote the bottom right, bottom left, top right and top left corners
of rectangle r.

Shape filters, as pairs of rectangular masks and textons, can be seen as an extension of
the features used in [Viola & Jones, 2001]]. Our features are sufficiently general to allow us to
learn automatically shape and context information, in contrast to techniques such as shape
context [Belongie et al., 2002] which utilize a hand-picked shape descriptor. Figure
illustrates how shape filters are able to model appearance-based context, and a toy example

in Figure demonstrates how shape filters model shape and layout.

Variations on Shape Filters

A further appearance-independent shape filter can also be used to model just shape. This
special feature acts exactly like a normal shape filter, except that it does not have a particular
texton to which it is applied, but rather uses whichever texton is at the pixel being classified,
i.e. the feature response calculated is v}, ;) (7). The addition of this appearance-independent
shape filter is evaluated in Section

Additionally, we investigated other types of shape beyond simple rectangles. In particu-
lar we evaluated rectangles rotated by 45°, and pairs of rectangles with the texton responses
either added (v, (i) + v, 4 (7)) or subtracted (v}, (4) — v}, (7). However, despite con-
siderable extra computational expense (since these new combinations of features must be

tested at each round of boosting; see below), the more complicated features did not produce
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Figure 3.13: Capturing local shape information. This toy example illustrates how our shape
filters capture relative positions of textons. (a) Input texton map. (b) Input binary ground
truth label map (foreground=white, background=black). (c¢) Example rectangle masks (r
and 73). (d) The feature response image vy, ;,1(7) shows a positive response within the fore-
ground region and zero in the background. An identical response image is computed for
feature (ro,t2). Boosting would pick both these features as discriminative. (e) A test input
with textons ¢; and ¢, in the same relative position as that of training. (f) Illustration that the
two feature responses reinforce each other. (e’) A second test with t; and t swapped. (f') The
summed feature responses do not reinforce, giving a weaker signal for classification. Note
that (f) and (f’) are illustrative only, since boosting actually combines thresholded feature
responses, though the principle still applies.
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noticeably better results. We believe this to be due to over-fitting.

We have also tried modeling appearance using the learned visual words of [Winn et al.,
2005]. Unsurprisingly, the classification results were worse than using the raw K-means
clusters, since the learning algorithm in [Winn et al., 2005] performs clustering so as to be

invariant to the spatial layout of the textons — exactly the opposite of what is required here.

3.4.3 Learning Shape Filters using Joint Boost

We employ an adapted version of the Joint Boost algorithm of [Torralba et al., 2004] to se-
lect discriminative shape filters, while simultaneously learning the shape-texture potentials.
This multi-class extension of the Gentle AdaBoost algorithm (used in Chapter [2) is detailed
in Section The algorithm iteratively builds an accurate, strong classifier as a sum of
weak learners, while simultaneously selecting discriminative features. Each weak learner is
a decision stump based on a weighted, thresholded feature response vy, ;1 (i), and is shared
between a set of classes C, allowing a single feature to support the classification of several
classes at once. This sharing of features over classes allows for classification with cost sub-
linear in the number of classes, and leads to improved generalization; see [Torralba et al.,
2004].

The learned strong classifier is an additive model of the form H(c,i) = Z%zl hm (e, 1),
summing the classification confidence of M weak classifiers. This confidence value can be
reinterpreted as a probability distribution over c using the soft-max or multi-class logistic

transformation [Friedman et al., 2000] to give the shape-texture potentials:
P(c|x,i) o< exp H(c, 1) . (3.16)
Each weak learner is a decision stump of the form

() >0 +b  ifcec
heiy= 4 “lrali) >0+ ife (3.17)

k¢ otherwise,
with parameters (a, b, {k“}.¢c,0,C,r,t). The r and t indices together specify the shape filter
feature (rectangle mask and texton respectively), with v, ,; (i) representing the correspond-
ing feature response at position i. For those classes that share this feature (c € C), the weak
learner gives h(c, i) € {a+0b,b} depending on the comparison of v}, (i) to a threshold . For

each class not sharing the feature (¢ ¢ C), the constant k¢ ensures that unequal numbers of

62



CHAPTER 3. TEXTURE 3.4. Boosted Learning of Shape, Texture and Context

examples (image locations i)

shape filters boosting as
(shape r x texton t) feature
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Figure 3.14: Boosting as feature selection. The Joint Boost algorithm acts on a matrix of
shape filter responses vy, (i), and iteratively picks out a feature dimension corresponding
to a particular shape filter. The algorithm also selects a set of classes C between which the
chosen shape filter is shared. In this illustration, after two rounds, two shape filters have
been selected from the pool of six. For the datasets considered in this work, thousands of
shape filters are selected from a pool of hundreds of thousands.

training examples of each class do not adversely affect the learning procedure.

Asillustrated in Figure the boosting algorithm is given a matrix of responses vy ;1 (),
calculated for all Ng candidate shapes and all textons ¢ at a number of example image lo-
cations i. Additionally, a target class z; € {1,...,C} is provided from the ground truth
labeling. Each weak learner (3.17) selected by boosting corresponds directly to a shape fil-
ter (r,t), and hence, over a number of rounds, boosting builds the strong classifier H (c, 7)
and thereby the shape-texture potentials P(c|x, i), by combining many shape filters. Note
that in practice, the matrix of feature responses is too large to fit entirely in memory and is
efficiently computed on-the-fly.

We conclude our discussion of the learning algorithm with important comments on effi-

ciency.

Sub-sampling: The considerable memory and processing requirements of this procedure
make training with an example at every pixel impractical. Hence we take examples
only at pixels lying on a Ags x Ags grid (Ags = 3 for the Corel and Sowerby datasets,
which contain smaller images, and Ay = 5 for the other datasets with larger images).
The shape filter responses are still calculated at full resolution to allow for per-pixel
accurate classification at test time; we simply calculate and store the responses at fewer

image locations.

One consequence of this sub-sampling is that a small degree of shift-invariance is
learned. On its own, this might lead to inaccurate segmentation at object boundaries.

However, when applied in the context of the CREF, the edge and color potentials come
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Figure 3.15: Effect of random feature selection on a toy example. (a) Training error as
a function of the number of rounds (axis scales are unimportant). (b) Training error as a
function of time. Randomization makes learning two orders of magnitude faster here, with
very little increase in training error for the same number of rounds. The initial peak in error
is due to the imbalance in the number of training examples for each class; on the log scale
this appears quite significant, but in fact it affects at most the first five rounds of boosting.

into effect to locate the object boundary accurately.

Random feature selection: Even when using sub-sampling, exhaustive search over all fea-
tures (r, t) at each round of boosting is prohibitive. For efficiency therefore, our algo-
rithm examines only a randomly chosen fraction ( < 1 of the possible features (see
[Baluja & Rowley, 2005]). All results in this chapter use ¢ = 0.003 so that, over sev-
eral thousand rounds, there is high probability of testing all features at least once, and

hence good features should eventually get selected.

To analyze the effect of random feature selection, we compared the results of boost-
ing on a toy data set of ten images with ten rectangle masks, and 400 textons. The
results in Figure show that random feature selection improves the training time
by two orders of magnitude whilst having only a small impact on the training error.
Additionally, although we have no formal experiments to prove this, our experience
with randomization has been that decreasing ¢ occasionally gives an overall gain in
test performance. This perhaps suggests that randomization is not only speeding up
learning, but also improving generalization by preventing over-fitting to the training

data.

Forests of boosted classifiers: A further possible efficiency, though not evaluated here, is

the use of a forest of TextonBoost classifiers. In a similar manner to [Lepetit ef al.,
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2005], several shape-texture potential classifiers can be trained on random subsets of

the image data and combined by averaging;:

“l(clx, 4) (3.18)

P(clx, 1)

||M%

This allows infeasibly large datasets to be partitioned into smaller, manageable sub-
sets, and has the potential to improve the generalization ability of the shape-texture

potentials.

3.4.4 Separable Shape Filters

We propose a final variation for speed critical applications, e.g. processing video sequences
or large images. Here, two TextonBoost classifiers are learned to act on the two separate
Cartesian axes. A horizontal classifier P(ck|x,0y), representing the class probabilities for
each column, and a vertical classifier P(cy|x, 6y), representing the class probabilities for

each row, can be combined as the outer product
P(c|x,0) = P(ck|x,0y) x P(cy|x,60y) . (3.19)

This factorized approximation is clearly less powerful than learning the full joint classifier,
but as shown in Section [3.5.4] gives acceptable quantitative performance and a considerable
speed-up.

We investigate these 1D classifiers using the shape-texture potentials without the other
terms in the CRF. As illustrated in Figure separable shape filters use spans instead of
rectangles: horizontal spans count the number of textons agreeing in texton index that lie in
a horizontal strip relative to the y coordinate being classified; vertical spans do similarly for
a vertical strip. The target values for training the separable classifiers become the set of all

classes present in column x or row y.

3.5 Results and Comparisons

In this section we investigate the performance of our semantic segmentation algorithm on
several challenging datasets, and compare our results with existing work. We first inves-
tigate the effect of different aspects of the model, and then show the full quantitative and

qualitative results.
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textons

Figure 3.16: Separable shape filters. For speed, separable shape filters may be used. Hor-
izontal spans are defined relative to the y coordinate being classified, and vertical spans
relative to the = coordinate. The response of separable shape filter (r,t) is computed as the
count of pixels within the span r that have texton index ¢ (cf. Figure 3.11). The classifiers for
the two separate axes are combined as (3.19). In this example, separable shape filter (r1,#;)
uses the presence of texton ¢; in span 7 as evidence that sheep is present at coordinate z.
Feature (rg, t2) exploits appearance context, looking for regions of grass texton t, in span
above the sheep at coordinate y.

3.5.1 Boosting Accuracy

In Figure we illustrate how boosting gradually selects new shape filters to improve
classification accuracy. Initially, after 30 rounds of boosting corresponding to 30 shape filters,
a very poor classification is given, with low confidence. As more shape filters are added, the
classification accuracy improves greatly, and after 2000 rounds a very accurate classification
is given. Note that this illustrates only the shape-texture potentials, and not the full CRF

model.

Figure[3.18(a) illustrates the effect of training the shape-texture potentials using boosting
on the MSRC dataset. As expected, the training error Jyge decreases non-linearly as
the number of weak classifiers increases. Furthermore, Figure 3.18(b) shows the accuracy of
classification with respect to the validation set, which after about 5000 rounds flattens out
to a value of approximately 73%. The accuracy against the validation set is measured as the
pixel-wise segmentation accuracy, in other words the percentage of pixels that are assigned

the correct class label.
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S o

test image ground truth test image ground truth
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Figure 3.17: More shape filters improve classification. Top row: Unseen test images and
the corresponding ground truth. Lower three rows: classification output of the shape-
texture potentials trained by boosting, as more shape filters are used. The three rows show
the most likely label maps and the confidence maps with 30, 1000 and 2000 weak learners.
Colors represent class labels (see Figure 3.21]for color key). White represents low confidence,
black high confidence. Confidence is computed as the entropy of the class label distribution
at each point.

3.5.2 The Effect of Different Model Potentials

Figure 3.19shows results for variations of our model with different potentials included. Itis
evident that imposing spatial coherency (c) as well as an image dependent color model (d)

improves the results considerably.

The percentage accuracies in Figure .19 show that each term in our model captures es-
sential information from the training set. Note that the improvement given by the full model
over just the shape-texture potentials, while numerically small, corresponds to a significant
increase in perceived accuracy (compare (b) with (d) in Figure|3.19), since the object contour

is more accurately delineated.
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Figure 3.18: Training and validation error. Training error (a) and accuracy on the validation
set (b) as functions of the number of weak classifiers. While the training error decreases
almost to zero, the validation set accuracy rises to a maximum of about 73%. Validation
accuracy values given are pixel-wise segmentation accuracies.

(a) " (b) 69.6% (c) 70.3% (d) 72.2%

Figure 3.19: Effect of different model potentials. The original input image (a) and the result
from the boosted classifier alone (b), with no explicit spatial coherency; at the boundary
between blue and green, darker pixels correspond to higher entropy of the unary potentials.
(c) Results for the CRF model without color modeling, i.e. omitting term 7 in , and (d)
for the full CRF model. Segmentation accuracy figures are given over the whole dataset.
Observe the marked improvement in perceived segmentation accuracy of the full model
over the boosted classifier alone, despite a seemingly small numerical improvement.

3.5.3 Appearance-Independent Shape Filters

As described in Section we investigated the use of appearance-independent shape fil-
ters, that used the texton at the pixel being classified to calculate the feature responses. An
experiment was performed on the Corel dataset with 1000 rounds of boosting, x = 0.45,
and using just the shape-texture potentials. We compared the performance on the test set in
terms of pixel-wise segmentation accuracy of the boosted classifier, learned with and with-
out appearance-independent features, as a function of K, the numbers of textons. The graph
of results is shown in Figure[3.20] As one would expect, the extra flexibility accorded by the
additional appearance-independent features gave a small but significant improvement in re-
sults. Also of note is that there is a definite peak in performance as a function of the number
of textons. With too few textons performance is very poor, but also with too many textons

the boosting algorithm was seen to over-fit.
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Figure 3.20: Performance of appearance-independent features. Performance against a test
set in terms of pixel-wise segmentation accuracy is plotted against the number of textons,
K. See text for explanation.

3.5.4 MSRC 21-Class Database Results

This section presents results of object class recognition and image segmentation for the full
CRF model on the MSRC 21-class database. Our unoptimized implementation takes approx-
imately three minutes to segment each test image. The majority of this time is spent evaluat-
ing all the shape-texture potentials P(c|x,¢), involving a few thousand weak-classifier eval-
uations. Sub-sampling at test time by evaluating the shape-texture potentials on a Ags x Agg
grid (with Ay = 5) produces results almost as good in about twenty-five seconds per test
image.

Training the model took about 42 hours for 5000 rounds of boosting on the 21-class train-
ing set of 276 images on a 2.1 GHz machine with 2GB memoryE] Without random feature
selection, the training time would have been around 14000 hours. Note that due to memory
constraints on this large dataset, the training integral images had to be computed on-the-fly
which slowed the learning down by at least a factor two.

Example results of simultaneous recognition and segmentation are shown in Figures

and These show both the original photographs and the color-coded output labeling.

>Simple optimizations subsequent to these experiments have reduced test time to about 10 seconds per image
for the shape-texture potentials, and 20 seconds per image for the CRF inference. Training time was also reduced
drastically to about 4 hours.
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Note the quality of both recognition and segmentation. For instance, despite large occlu-
sions, bicycles are recognized and segmented correctly, and large variations in the appear-
ance of grass and road are correctly modeled.

In order to better understand the behavior of our algorithm, we also present some exam-
ples which work less well. In Figure[3.22(a) a very dark dog has been incorrectly classified
as a cow. However, note that the segmentation accuracy is still very high; similarly Fig-
ure c) gets a good segmentation, due to the strong color model in the CREF, but fails to
get the semantic labels correct. In Figure 3.22(b) a large wooden boat was incorrectly clas-
sified as tree. Once again the segmentation mask is not bad. In Figure 3.22(d) the dog's
shadow has been classified as building. This shows that the proper modeling of shadow is
required. Finally, Figure e) shows how the algorithm struggles with a dark and unusual
image of water, due to the fact that water of this appearance does not occur in the training

set.

Quantitative Evaluation

Figure shows the confusion matrix obtained by applying our algorithm to the test set.
Accuracy values in the table are computed as the percentage of image pixels assigned to the
correct class label, ignoring pixels labeled as void in the ground truth. The overall classi-
fication accuracy is 72.2%; random chance would give 1/21 = 4.76%, and thus our results
are about 15 times better than chance. For comparison, the boosted classifier alone gives an
overall accuracy of 69.6%, thus the color, edge and location potentials increase the accuracy
by 2.6%. This seemingly small numerical improvement corresponds to a large perceptual
improvement (cf. Figure 3.19). The parameter settings, learned against the validation set,
were M = 5000 rounds, K = 400 textons, Ng = 100 candidate shapes, edge potential pa-
rameters 6, = [45, 10]T, filter-bank scale x = 1.0, and location potential power wy = 0.1.

The greatest accuracies are for classes which have low visual variability and many train-
ing examples (such as grass, book, tree, road, sky and bicycle) whilst the lowest accuracies
are for classes with high visual variability and fewer training examples (for example boat,
chair, bird, dog). We expect more training data to boost considerably the recognition accu-
racy for those difficult classes. Additionally, using features with better lighting invariance
properties should help considerably.

Let us now focus on some of the largest mistakes in the confusion matrix, to gather some

intuition on how the algorithm may be improved. Structured objects such as airplanes,
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Figure 3.21: Example results on the MSRC 21-class database. Above, test images with
inferred color-coded output object-class maps. Below, color-coding legend for the 21 object
classes. For clarity, textual labels have also been superimposed on the resulting segmenta-
tions. Note that all images were processed using the same learned model. Further results
from this system are given in Figure
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Figure 3.22: Some examples where recognition works less well. Input test images with
corresponding color-coded output object-class maps. Note that even when recognition fails
segmentation may still be quite accurate.

chairs, signs, boats are sometimes incorrectly classified as buildings. This kind of problem

may be ameliorated using a parts-based modeling approach, such as [Winn & Shotton, 2006

For example, detecting windows and roofs should resolve many such ambiguities. Further-
more, objects such as cows, sheep and chairs, which in training are always seen standing
on grass, can be confused with grass. This latter effect is partially attributable to inaccura-
cies in the manual ground truth labeling, where pixels belonging to such classes are often

mislabeled as grass near the boundary.

Separable TextonBoost

We investigated performance on the MSRC 21-class database using the separable 1D Tex-
tonBoost described towards the end of Section 3.4.2} Since this uses only the shape-texture
potentials, we compare it with the 2D shape-texture potentials only result. For the full, joint
model, recall that we obtained 69.6% pixel-wise segmentation accuracy. Using the separable
model, we obtain the respectable 64.9%. Part of the success is due to the separable Texton-
Boost being good at getting the larger regions of classes such as sky and grass. Using this
1D method, there is a very noticeable speed-up of over 5 times for both training and test
time. With optimizations, this speed improvement could be increased dramatically since
the critical path of the algorithm has reduced from O(NM) to O(N + M) for an N x M
image. Separable TextonBoost also requires considerably less memory during training, and

so more training data could be employed if available.
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Figure 3.23: Accuracy of segmentation for the 21-class database. Confusion matrix with
percentages row-normalized. The overall pixel-wise accuracy is 72.2%.

Comparison with Winn et al.

To assess how much the shape and context modeling help with recognition we have com-
pared the accuracy of our system against the framework of [Winn et al., 2005], i.e. given a
(manually) selected region, assign one single class label to it and then measure classification
accuracy. On the 21-class database, our algorithm achieves 70.5% region-based recognition
accuracy beating [Winn et al., 2005] which achieves 67.6% using 5000 textons and their Gaus-
sian class models. Moreover, the significant advantages of our proposed algorithm are that:
(i) no regions need to be specified manually, and (ii) a pixel-wise semantic segmentation of

the image is obtained.

3.5.5 Comparison with He et al.

We have also compared our results with those of [He et al.,2004] on their Corel and Sowerby

databases, as shown in Table [3.1|and Figure For both models we show the results of

the unary classifier alone as well as results for the full model. For the Sowerby database
the parameters were set as M = 6500, K = 250, x = 0.7, 8, = [10,2]7, and wy = 2.
For the Corel database, all images were first automatically color and intensity normalized,

and the training set was augmented by applying random affine intensity changes to give
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Accuracy Speed (Train/Test)
Sowerby  Corel | Sowerby Corel
TextonBoost — full CRF model 88.6% 74.6% | 20m /11s 30m/25s
TextonBoost — shape-texture only 85.6% 68.4%
He et al. - mCRF model 89.5% 80.0% | 24h/30s 24h/30s
He et al. — unary classifier only 82.4% 66.9%

Table 3.1: Comparison of segmentation/recognition accuracy and efficiency. Timings for

[He et al.,[2004] are from correspondence with authors.

Corel

sky
building building

vegetation

hippo/rhino

olar bear
P road

vegetation
vegetation

Figure 3.24: Example results on the Corel and Sowerby databases. A different set of object
class labels and thus different color-coding is used here. Textual labels are superimposed for
clarity.

the classifier improved invariance to illumination. The parameters were set as M/ = 5000,
K =400,k = 0.7, 0, = [20,2]7, and w) = 4.

Our method gives comparable or better (with only unary classification) results than
. However, the careful choice of efficient features and learning techniques, and the
avoidance of inefficient Gibbs sampling, enables our algorithm to scale much better with the
number of training images and object classes. Incorporating semantic context information as
in is likely to further improve our performance.

In the Corel database, the ground truth labeling between the ground and vegetation
classes was often quite ambiguous to human observers. The confusion matrix of our results
also bore this out, and merging these two classes results in significantly improved perfor-

mance: 75.9% with just the shape-texture potentials, and 82.5% with the full CRF model.

3.5.6 Japanese Television Sequences

A separate model was trained for each of the nine Japanese television video sequences. A
model could have been trained across all sequences simultaneously, but for the applica-

tion of semantically segmenting a known television series, the extra flexibility of a generic

74



CHAPTER 3. TEXTURE 3.5. Results and Comparisons

modern drama

news

cooking soccer golf

variety

drama

business historical

(2) (b) () (d)
object S .
building grass tree cow sheep sky, airplane water. face

bicycle flower. hand bird headgear road cat body

Figure 3.25: Example results on the Japanese television sequences. (a) The test image.
Note that faces and text have been blurred out in this figure for copyright reasons. (b)
The hand-labeled ground truth. (c) The most likely labels inferred by the shape-texture
potentials. (d) The entropy of the inferred class label distributions; white is high entropy,
black low entropy.
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Sequence Accuracy
Modern Drama 67.8%
News 67.8%
Golf 71.0%
Soccer 92.4%
Cooking 68.7%
Variety 64.2%
Music 60.5%
Historical drama 70.5%
Business news 58.1%

Table 3.2: Quantitative results from evaluation on the Japanese television sequences. Fig-
ures show pixel-wise segmentation accuracy.

model is unnecessary and would probably slightly worsen performance. Approximately
120 frames in each sequence were selected randomly. Half of these were used for training,
and the other half used for testing. The training data was combined with the MSRC train-
ing data, and the shape-texture potentials were learned by boosting. Only the shape-texture
potentials, as the most important part of the model, were used for evaluation. For more
polished and visually pleasing results, the full CRF inference could be run, though as illus-
trated in Figure only a small quantitative improvement would be seen. The parameters
were set as M = 700, K = 400, and x = 0.7.

Quantitative results of the overall segmentation accuracy are given in Table and
some qualitative results are given in Figure The numbers show considerable accuracy
across very varied sets of images, with on average two-thirds of all pixels being correctly
classified into one of 21 classes, indicating significant potential for the application of Tex-
tonBoost to automatic analysis of video sequences. As can be seen from the images, the
technique works well across very varied sequences. One slight limitation is that the system
tends to get the larger objects in the scene classified correctly, but smaller objects such as
hands can get missed off. This is at least partially due to the filter bank used during the

textonization: the width of the Gaussian blur tends to over-smooth small objects.

The particularly strong result for the soccer sequence is perhaps slightly skewed by the
large amount of grass present in the images. Additionally, due to the random selection
of training and test images from the sequences, there are probably a few test frames that
look extremely similar to training frames. This would skew the results slightly positively;

perhaps further evaluation could employ on multiple episodes of the same television series.
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Figure 3.26: Semantic Photo Synthesis. Left: user-drawn query. Here, the user has re-
quested a photograph that has a large region of water underneath the Taj Mahal. Right:
example automatic semantic photo synthesis results.

3.6 Applications

We briefly discussed general applications of visual recognition in Section In this sec-
tion we mention further exciting applications of TextonBoost and the concept of semantic

segmentation.

AutoCollage

The work of [Rother ef al.,2006] takes a collection of images and automatically blends them

together to create a visually pleasing collage; by choosing image regions of particular inter-
est to humans (such as faces), detected through semantic segmentation, a more interesting
collage could be generated. Additionally, images could be placed in suitable regions of the

collage, so that for example, images with sky might be placed towards the top of the image.

Semantic Photo Synthesis

In [Johnson et al., 2006], the user draws both particlar objects (the Taj Mahal, for example)

and regions assigned a particular semantic label (sky, water, car, etc.) onto a canvas. The
system then automatically queries a database containing images labeled by TextonBoost,
to find relevant images that match the user-drawn query. Finally, it creates novel photo-
realistic images by stitching together the image fragments that matched the individual parts

of the query. Two example results of photo synthesis are shown in Figure 3.26]

Interactive Semantic Segmentation

An optimized implementation of our system could be used as a complete interactive se-
mantic segmentation tool, as demonstrated in Figure With only one user click on the

incorrectly labeled part of the building, a correct and accurate segmentation was achieved.
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Figure 3.27: Interactive object labeling. Left: input test image. Middle: for this example,
the automatic recognition failed to classify the building correctly. The user then clicks the
mouse at the blue cross, stating that this part of the image is currently misclassified. Right:
after this one click, the recognition algorithm is run again and now the building is now
correctly classified and the segmentation is improved.

Internally, the unary potential of pixels within a small radius of the clicked pixel is set to
infinity for its initial label, tree. The result of the graph cut optimization for this new CRF
energy is the correct labeling. A further speed-up can potentially be achieved by re-using

the flow of the previous solution, as described for the binary interactive systems in [Boykov’
2001]], or similarly to the method of [Kohli & Torr|, 2005].

Interactive Image Editing

We suggest one final exciting application: interactive image editing. Imagine that Texton-
Boost produces a perfect semantic segmentation of an image. It is then possible to tailor
image editing tools presented to the user according to the semantic type: for example, tools
for editing ‘sky’ could allow the user to tint it more blue or increase the contrast; for fore-

ground objects, such as the person in Figure options could be given to automatically

erase the object from the image (using image in-painting, for example [Criminisi ef al., 2004]),

change the focus of background, fix red eye, or adjust the color balance just for that object.

3.7 Conclusions

This chapter has presented a novel discriminative model for efficient and effective recog-
nition and simultaneous semantic segmentation of objects in images. We have: (i) intro-
duced new features which simultaneously capture appearance, shape and context informa-
tion, and shown that they outperform other existing techniques for this problem; (ii) trained
our model efficiently by exploiting both randomized boosting and piecewise training tech-

niques; and (iii) achieved efficient labeling by a combination of integral image processing
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Color/leveks...

before after

Figure 3.28: Semantic-aware interactive image editing. Left: the semantic segmentation
given by TextonBoost is used to drive a semantic-aware user interface. Here the user has
selected the person, and a context sensitive menu presents editing options specific for the
‘person’ class. Right: after the user clicks ‘Erase...”, an automatic system [Criminisi et al.,
removes the person from the image by filling in over the top of her.

and feature sharing. The result is an algorithm which accurately recognizes and segments a
large number of object classes in photographs much faster than existing systems. We have
performed a thorough evaluation of the system on several varied image databases and have
achieved accurate and competitive results.

To encourage and stimulate the application of and further development into the Texton-

Boost system, source code has been made available at [Shotton].
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CHAPTER 4

CONTOUR AND TEXTURE COMBINED

4.1 Introduction

We have demonstrated in the preceding chapters the power of both contour and texture as
recognition cues. In this chapter, we return to the tasks of classification and detection ad-
dressed in Chapter 2, and show that the combination of the contour-based features of Chap-
ter [2/and the texture-based features of Chapter 3|can give superior recognition performance
than either individually.

Chapter 2| demonstrated the power of contour fragments. The invariance properties of
these features allow accurate recognition, even for classes of highly varied surface color and
texture. However, contour fragments are not suited for detecting background. In contrast,
color provides significant semantic cues. For example, a blue or green image region is very
unlikely to represent a horse, even if the edges present resemble a horse. Additionally, con-
textual information, such as the fact that cars often appear above a road surface, cannot be
exploited using contour-based methods, except perhaps where background edges repeat-
ably co-occur with the object.

The texture-based features, called shape filters, presented in Chapter[3} gave excellent re-
sults for multi-class semantic segmentation. Shape filters characterize the color and texture
of regions of image, and, as opposed to contour fragments, are particularly useful for detect-
ing background and exploiting appearance context. Clearly, contour and texture features
complement each other, and in this chapter we demonstrate their powerful synergy.

Given the groundwork of the previous two chapters, the combination of feature types
proves particularly simple. An overview of the algorithm is given in Figure Addi-
tionally, we demonstrate cost-based learning, whereby feature selection is steered both by the

error on the training set and also the computational cost of the potential features at test time.
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We show that cost-based learning can reduce run-time cost considerably while maintaining
good quantitative performance.

We discuss in Section[4.2] the adaptation of shape filters for multi-scale recognition. Then
in Section |4.3l we show how the learning and detection algorithms combine the responses
of heterogeneous feature types in a principled manner. We compare performance of the
individual and combined texture and contour features in Section and conclude in Sec-

tion

Related Work

We briefly discuss work particularly related to the combination of feature types. Further
references are given in Appendix |Al The Normalized Cuts framework [Malik et al., 2001
addressed bottom-up segmentation by combining contour features, based on orientation en-
ergy, and texture features, based on textons. Object recognition techniques have, for the most
part, combined different interest point detectors and descriptor vectors, rather than funda-
mentally different feature types. Examples of such systems include [Zhang et al., 2005a)b].
Some work has, however, successfully combined different types of features. In [Fergus et al.,
2004], a generative model of objects combines local SIFT descriptors [Lowe, 2004] with in-
variant curve descriptors. This performs well, although, as a constellation model [Fergus
et al.,2003], it scales badly with the number of parts. In [Kumar et al., 2004], the outline con-
tour and the interior texture were combined in a pictorial structures model, learned from
video sequences. Most recently, [Opelt et al., 2006b] has combined contour-based features

with local descriptors to good effect.

4.2 Adapting Shape Filters for Recognition

In this section, we describe the simple adaptation of shape filters, originally used for seman-
tic segmentation in [Shotton et al., 2006] and detailed in Section for multi-scale object
detection. Three adaptations are made. Firstly, note that the task is no longer to infer the
class label of a particular pixel, but instead, as in Chapter [2, the presence or absence of an
object at a particular centroid hypothesis. Therefore, shape filters are evaluated relative to
the centroid hypothesis (x, s). Secondly, we must scale the shapes (here, rectangles) to the
hypothesis scale s. The scale-normalized rectangle » = (ry, r1,) is therefore scaled up to

sr = (sry, sty ). Finally, to make responses at different scales comparable, we normalize by
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4 )
Dataset (Section 2.5.2)

Training set Test set )

<L P <

Build
Contour

Codebook
(Section 2.2.2)

Learn Texton Dictionary &
Textonize Images
(Section 3.4.1)

Heterogeneous Boosting Detection
(Section 4.3.2) (Section 4.3.1)

Figure 4.1: Overview of the combined contour and texture detection algorithm. A contour
codebook is learned using the methods from Chapter 2| The images are textonized using
the procedure from Chapter 8] A heterogeneous boosting algorithm learns how to combine
contour and texture features into a discriminative classifier. Finally, the detection algorithm
localizes objects in the test images. Compare with the detection algorithm outlined in Fig-
ure[2.2]and the segmentation algorithm outlined in Figure3.3|

the area of the rectangle, so that the shape filter response becomes

Vg (X, 8) = m | > m=1 (4.1)
JE(sr4x)
where Tj represents the jth pixel of texton map 7.
The new shape filters are illustrated in Figure[4.2) which demonstrates how these simple
changes allow us to exploit shape, appearance, and appearance context for object detection.
As we shall see in Section 4.4} these shape filters alone provide a strong recognition cue, but,

in combination with contour fragments, result in considerably improved object recognition
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textons

Figure 4.2: Shape filters for recognition. The texton map for a horse image is shown. Three
example rectangles 71, 72 and r3, each defined relative to the centroid hypothesis (x, s), are
scaled by s. Shape filter (71, 1) uses the object appearance by looking for the strong presence
of texton ¢; (top right). Shape filter (72, t2) exploits appearance context, since a strong response
to texton ¢, (middle right) correlates with object presence at (x,s). The third shape filter,
(r3,t2), exploits appearance in a more subtle way: the absence of texton t; (wWhich we can
identify as grass) in rectangle sr3 gives evidence for the object being present at (x, s).

performance.

4.3 Heterogeneous Detection and Learning

In this section, we describe the modifications needed to extend detection and learning to use

both contour and texture features.

4.3.1 Detection

The detection algorithm is identical to that in Section 2.3} other than a small change in the
classification equation, which becomes (cf. (2.15)):

NE

M
H(x,5) = Y  hm(x,s) =

m=1 m=1

am[vm(xv S) > em] + bm (4.2)
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examples (image / x location (x, s))

o 3

contour features
(exemplar F x parameter M)

/

boosting as
feature

lection
texture features selectio

(shape r x texton t)

\

"'.. \ )

Figure 4.3: Training matrix for boosting with combined features. Each row contains re-
sponses for either (upper) a contour fragment, or (lower) a shape filter. Columns represent
training examples. For illustration, each dash in the matrix corresponds to an image I, with
length proportional to the number of example locations x in that image (see Figure[2.9). The
boosting algorithm performs combined feature selection by iteratively choosing the row that
minimizes a cost function (B.3). In this example, three rows (highlighted) were chosen: two
contour features and one texture feature. Compare with Figure 3.14]

where the feature response v, is:

(x.5) V[F A (X, 8)  if round m uses a contour feature 43)
U (X, 8) = )
VUl tm] (X5 8)  Otherwise.

4.3.2 Learning

We showed in the preceding two chapters how boosting is used for feature selection of
contour fragments and shape filters. In this chapter, we use the single-class Gentle AdaBoost
algorithm, as used in Section and detailed in Appendix [Bl Recall that boosting learns
from a set of training examples that here correspond to image locations. Each example
consists of a target class label and a feature vector. Each dimension in the feature vector
corresponds to a particular feature. The set of all feature vectors is denoted the training
matrix.

The algorithm is extended for heterogeneous feature selection by simply expanding the
training matrix, as illustrated in Figure The matrix is divided into two portions: in the
upper portion are the contour fragment responses vz (X, s) from , and in the lower
portion are the scale-invariant shape filter responses vy, 4 (x, s) . Recall that both feature
responses are already normalized to the range [0, 1]. The weak learners in are decision

stumps of the form a[v > 6] + b where threshold 6 is chosen from a discrete set ©. C [0, 1]
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for contour features, or from ©; C [0, 1] for texture features. Boosting repeatedly selects the
most discriminative weak learner that minimizes the error (B.4) across the training exam-
ples (the columns of the matrix). Each resulting weak learner corresponds directly to either
a contour or a texture feature. This heterogeneous feature selection mechanism could eas-
ily be extended to additional feature types, by further extending the training matrix. An
alternative is to learn separate classifiers, and combine them post-hoc [Opelt et al., 2006b],
although this is not investigated here.

The upper contour portion of the matrix contains |F| x |A| rows (about 1000), with F the
set of all contour exemplars, and A a discrete set for orientation specificity A from (2.8). The
lower texture portion contains Ng x K rows (about 20000), with Nr the number of shapes,
and K the number of textons. To save on storage requirements, and given the low cost
of computing shape filter responses on-the-fly, only the contour feature responses are pre-
computed. Additionally, randomization (Section [B.4.2) is employed on the texture features
only.

Cost-Based Learning

As we shall see in Section 4.4} the two feature types carry different computational costs: con-
tour fragment responses are about ten times more expensive to evaluate than shape filters
responses (after all pre-processing). The standard learning algorithm greedily selects the
optimal weak learner, based on training set classification performance alone. However, if
run-time speed is important, we can bias the weak learner selection with a cost associated

with the feature type.

Let us write these costs for contour and texture features as . and @ respectively, al-
though it is only the ratio of these costs that is important. The original boosting minimiza-
tion of (B.3) is modified, so that, at round m, weak learner h,, is selected as:

1
hm = —(Jise — wse h ) 4.4
argmax o (Juse = []) (4.4)

where @5, € {Qc, Q:} according to the feature type of candidate weak learner h, and J),
denotes the total training error at the previous round. This maximizes the improvement in
classification accuracy on the training set per unit of computation cost. Therefore, boosting
selects the weak learner that gives the greatest reduction in training error, divided by the

run-time cost of the feature.
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Figure 4.4: Comparing contour and texture performance on the Weizmann horse test set.
(@) ROC curves showing classification performance. To aid readability only the top-left cor-
ner is shown. (b) RFPPI curves showing detection performance. Texture alone is better than
contour at classification, but due to its poor localization, worse at detection. However, the
combination of contour and texture is substantially better for both classification and detec-
tion. By weighting combined feature selection according to the computational cost of the
features, cost-based learning enables performance almost as good as standard learning, but
in a fraction of the cost.

In Section we show that this procedure can increase run-time speed while main-
taining good performance. A related cost-based learning approach based on decision trees

and applied to real-time stereo is proposed in [Yin et al., 2007].

4.4 Evaluation

We investigate the performance of the combined detector, using the same experimental pro-
cedure as that in Section[2.5.1] The same Weizmann and Graz 17 datasets from Section [2.5.2]

are used, for comparison with the results of Section These datasets are illustrated in
Appendix[C]
4.4.1 Multi-scale Weizmann Horses

For fair comparison, all parameters are kept the same as in Section In particular,

the number of features (homogeneous or heterogeneous) is fixed at M = 100E| The ad-

!This number of features is an order of magnitude smaller than used in Chapter El This is partly due to
the simpler, binary, classification task, since even when sharing features, the number of weak learners required
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ditional parameters needed to incorporate shape filters were set as follows: filter-bank scale
factor k = 0.7, K = 200 textons, and sub-sampling Ags = 5. The number of candidate
rectangles was Vg = 100, and each scale-normalized rectangle » was randomly sampled
from a uniform distribution to have 0.1 < r, < 1.0 and 0.1 < 7, < 1.0 within rectangle
(=0.75,-0.75,0.75,0.75).

We show in Figure 4.4| the classification and detection results for the detector trained us-
ing (i) only contour, (ii) only texture, (iii) the combination of contour and texture, and (iv)
the detector trained with cost-based learning. The combination of contour and texture fea-
tures gives significantly superior performance to either individually, for both classification
and detection. Interestingly, texture features are better individually at classification, while
contour features are better individually at detection. This is probably because shape filters
have fairly large spatial extent and are therefore poor at localizing the object. The combina-
tion seems to use contour fragments to accurately localize the object, and texture to further
improve the classification confidence at that location.

We recorded the run-times in our unoptimized C# implementation: alone, contour took
an average of 17.5 seconds per image, and texture took 4.6 seconds, while the combination
took 12.5 seconds. In each of these timings, 3.4 seconds is spent executing the mean shift al-
gorithm. The contour features are therefore approximately 12 times more expensive than the
texture features. The combination is able to substantially increase quantitative performance
above that achieved by contour features alone, while decreasing the computational cost. We
further investigate run-time efficiency below, where we discuss the results for cost-based

learning.

Feature Analysis

We examined the types of features chosen by the learning algorithm. Of the total 100 features
selected, 65 were contour fragments and 35 were shape filters. This suggests that, for this
dataset, contour is a slightly more useful recognition cue than texture, although both play
an important role. We also computed the mean round number of each type of feature. These
were 48 and 52 for contour and texture respectively, indicating a fairly even distribution of

feature types in round number. Since more generic features are selected at earlier rounds of

for accurate classification increases with the number of classes. Additionally, the adapted shape filters (4.1) are
explicitly scale-invariant, so that this invariance need not be learned implicitly at the cost of more features.
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Figure 4.5: Results and shape filter visualization for the Weizmann horse test set. In the
visualization, each shape filter (r, t) used is drawn using white to indicate the detected pres-
ence of texton ¢ in image rectangle r, and black to indicate detected absence of ¢ (see text).
A general trend in these results is a black region over the body of the horse, although a
counter-example is shown bottom-right. The black regions suggest that the large within-
class textural variation prevents boosting from selecting features that use the presence of
horse textures. Instead, it selects features that respond to the absence of certain textures, e.g.
green grass or blue sky.

boosting, this result suggests similar generality of the contour and texture features.

Figure 4.5[shows a few example detections given by the combined detector, and visual-
izes the shape filters used. The visualization overlays each shape r, and indicates whether
the presence (white) or the absence (black) of texton ¢ positively contributed to the detection.
This is determined by inspecting the weak learner a[vy, 4(x, s) > 0] + b. If classification con-
fidence a is positive, it is the presence of texton ¢ (quantified through response vy, ;j(x, s)
from (@.T)) that contributes positively to the classification, whereas if a is negative, it is the
absence of ¢ that contributes positivelyEl We see from the black regions in Figure {4.5 that
the absence of particular textures on the horses’ bodies contributes to their detections. This
makes sense, given the extreme within-class textural variation of horses.

Figure [4.6) shows particular features selected by boosting. Of these features, rounds 1

& 3 are contour features corresponding to our notion of ‘body’, rounds 2 & 7 correspond

*In practice, the signs of a and b are always opposite, otherwise the weak learner would not improve the
classification of the training set.
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4y (2 (3) 4) (5)

9 (24)

Figure 4.6: Weak learners for the Weizmann horse dataset. Ten weak learners of the com-
bined detector are shown. The round numbers m are shown. In each, the green cross in-
dicates the object centroid, and for contour fragments, the red cross indicates the fragment
origin. For shape filters, we show inset right the texton visualisation (cf. Figure[3.9), and fill
the rectangle white or black for texton presence or absence detection respectively (see text).

to ‘hind legs’, and rounds 4 & 8 to ‘head and neck’. Of the texture features, round 5 looks
for the presence of vertical edges in a region below the centroid (‘legs’), round 6 looks for
horizontal edges just below the centroid (‘belly’), and round 9 looks for the absence of the
the ring-like texton in a region surrounding the centroid (‘body’). At round 24, the shape

filter uses the presence of ‘grass’ as appearance context.

Cost-Based Learning

We show in Figure 4.4 the quantitative performance of the combined recognition system,
with and without cost-based learning. As before, M = 100 cascaded weak learners are
used. For this experiment, the relative costs were set as (). = 5Q. This resulted in 22 con-
tour features and 78 texture features being chosen. We see that quantitative performance
is slightly reduced, since fewer of the more discriminative, but expensive, contour features
are chosen. However, the time per image is reduced to 7.8 seconds per image (from 12.5
seconds). Accounting for time taken performing the mean shift, this is a doubling in speed,
with accuracy still substantially above what either feature type achieves individually. The
average round number was 46 for the contour features, and 50 for the texture features, sug-

gesting that the distribution of the feature types remains fairly even.
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Figure 4.7: Comparison between the edge detectors of Canny [Canny, 1986] and BEL
[Dollar et al., 2006]. Results are for the Weizmann horse dataset, using combined contour
and texture features. (a) The ROC curves show that contour features derived from, and
matched against, BEL edge maps noticeably improve classification performance in combi-
nation with texture features. (b) For detection, the RFPPI curves appear similar, although
the RP AUCs show a slight improvement with BEL. A similar improvement in performance
was observed in Section using contour only.

Learned Edge Detection

The experiments so far have used the Canny edge detector [Canny, 1986]. The comparison in
Section [2.5.8 showed that, for contour fragments, detecting edges using instead the boosted
edge learning (BEL) of [Dollar et al., 2006] considerably improved both classification and
detection performance. We perform a similar experiment here, but use the combination of
contour and texture features for recognition. The results in Figure .7 confirm that using
the modern BEL technique noticeably improves performance, both for classification and
detection, and gives the overall best results we obtain on the Weizmann horse dataset: 0.9745
ROC AUC for classification, and 0.9496 ROC AUC for detection. For the BEL result, 66

contour features and 34 texture features were selected.

4.4.2 Graz17

Figure[d.8[shows classification and detection results for the Graz 17 dataset. The Canny edge

detector is used throughout. Several trends are evident:

Classification: Classification performance is shown in Figure (left). For roughly half
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the classes, contour features alone give superior performance, while texture features
alone give superior performance for the remainder. We see that, for almost every class,
performance of the combined detector is at least as good as, and in some cases signifi-
cantly better than, the performance of contour or texture alone. For several very chal-
lenging classes we achieve perfect or near perfect performance: airplanes, cars (rear),

motorbikes, faces, cows (side), cows (front), and cups.

Detection: Detection performance is shown in Figure (middle), and quantified as RP
EER for comparison with [Opelt ef al., 2006c]. We reiterate the observation of Chap-
ter 2| that detection is considerably harder than classification, since a precise localiza-
tion must be achieved. The algorithm performs as well as, or significantly better than,
[Opelt et al.,2006c], for more than half of the classes: airplanes, cars (rear), motorbikes,
faces, bikes (side), bikes (front), cars (front), bottles, cows, horses (side), cows(front),
and cups. For two classes, motorbikes and cows (side), (near) perfect performance
is achieved. For 14 of the classes, contour features alone perform better than texture
alone, probably because shape filters are poor at precisely localizing objects. For the
large majority of classes, the combination of contour and texture is better than either
alone. There are still some classes for which performance is poor: bikes (rear), bikes
(front), and people. We believe this is due to the very small numbers of training im-
ages for these classes (see Table 2.1). There does appear to be a general correlation
between the number of training images and performance, and we postulate that re-
sults for classes with few training images would be improved considerably with more

examples.

Feature Types: Shown in Figure [4.8| (right) are the proportions of contour and texture fea-
tures used in the combined detector. These proportions are roughly equal for most
classes, although certain classes show a significant bias. For motorbikes, faces, mugs,
and cups, contour features are selected significantly more frequently. These classes do
tend to have very distinctive contours, but less distinctive textures. Conversely, for

cars (rear) and bikes (rear), more texture features are selected.

92



CHAPTER 4. CONTOUR AND TEXTURE

4.4. Evaluation

ROCAUC RP EER % Feature Types
0.90 0.95 1.00 50 25 0 0% 50% 100%
6.8
Airplanes [ 29.8 6.8
S 4
18
Cars (rear) S 15
S 23
0.3
Motorbikes " 125 03
44
—— 2.8
Faces 493
3%
32.1 —
Bikes (side) 24.5 | E——
28.0
L
26.7 ———
Bikes (rear) %G0.0 ——
25.0 I——
|
Bikes (f 417 e —
ikes (front ———————|
( ) 0.979 441]t'77 ——————|
|
30.0 I ——
Cars (% rear) A —
0.973 29.4
Cars (front 13.3
(front) 0.982 187
Bottl 0.980 9.4
ottles [ 0.927 |
0.982 1038
|
15
Cows (side) s a8
S 09
_ 0.982 6.3
Horses (side) [ 104
(side) 0.980 &3
£
————0.957 27.3
Horses (front) [
( ) oy 31.8 —
£ |
f 0.973 18.8
Cows (front) s 25008
8.0
T
People 0.914 ]
0.972 —_— |
S 10,0 m—
_ 0.960
Mugs [ 0.980 35.0
£ |
0.983
Cups [ 0.943 15.0
188
worse better worse better
m Contour 1 Texture
m Contour & texture m Opelt et al.

Figure 4.8: Results on the Graz 17 dataset. Performance is compared between only contour,
only texture, the combination of contour and texture, and [Opelt et al., 2006c]. Left: classifi-
cation performance. Middle: detection performance. Right: the proportions of contour and
texture features used in the combination. See text for analysis.
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4.5 Conclusions

We have extended shape filters, proposed in Chapter 3, for multi-scale object detection. The
thorough demonstration, on 17 challenging object classes, confirms our hypothesis that the
boosted combination of shape filters with contour fragments can markedly improve results,
above what either feature type can attain individually. Additionally, the combination con-
siderably increases the speed of the detector, compared to using contour fragments alone.
We saw how the detector can exploit both the presence and the absence of particular tex-
tures, and also how appearance context is harnessed. A new, cost-based learning algorithm
was proposed, and shown to maintain good performance while significant reducing the

computational cost.
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CHAPTER 5

DI1SCUSSION

5.1 Findings

In Chapter [2 we proved experimentally that contour can be used successfully to perform
image classification and categorical object detection. We demonstrated that our new ap-
proximate oriented chamfer distance gave superior performance to existing contour match-
ing methods. This distance was used to learn a class-specific codebook of local contour
fragments. We showed that boot-strapping by retraining on both the training and test data
could improve performance and generalization. Additionally, the use of a modern learned
edge detector substantially improved results over those attained using the Canny edge de-

tector.

Chapter 3| investigated texture. We presented a new discriminative model based on a
conditional random field, which was applied to the problem of semantic segmentation. We
introduced a new set of features, shape filters, that can simultaneously represent appear-
ance, shape, and context. We concentrated on the efficiency of training, exploiting random-
ized boosting, piecewise training, and sub-sampling. By using integral images and feature
sharing, efficiency at test time was also achieved. We compared against other work, achiev-
ing competitive and visually pleasing results.

The cues of contour and texture were combined in Chapter @, and applied to the tasks
of classification and detection. Shape filters were extended for multi-scale detection. We
showed that the combination of contour fragments and the extended shape filters signifi-
cantly improved performance for most classes investigated, compared to either feature type
individually. The combined detector was able to improve efficiency noticeably when com-
pared to using contour fragments alone. By analyzing the features chosen by the heteroge-

neous boosting algorithm, we gained insight into how texture was being used: the presence
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of particular textures, either on the object (utilizing appearance and shape) or on the back-
ground (utilizing appearance context), and the absence of particular textures, were both
important. We proposed a form of cost-based learning, whereby the run-time cost of the
features is used to bias feature selection. This maintained excellent performance while sig-

nificantly increasing speed.

5.2 Limitations

While the techniques presented in this thesis have proved powerful, they are not able to
cope with all the appearance variations that natural images present. In particular, the pro-
posed classification and detection algorithms only tackle objects viewed from one angle,
and the range of scales that can be handled is somewhat limited, both by computational
efficiency and by the representational power of the features. The requirements for labeled
data, bounding boxes for detection, and ground truth for semantic segmentation, are bur-
densome. The current implementations of the work presented here are also too slow for
real-time applications.

The semantic segmentation method of Chapter 3| does not model a background class. It
implicitly assumes that every pixel in a test image can be meaningfully assigned to one of
the learned classes. This is an over-simplification of real-world images, since clearly, short
of modeling thousands of classes, some regions of test images are likely not to correspond
to any learned class.

We are still some way off a system that can cope adequately with the extreme examples
of Figures and Substantial improvement in object representation and contextual
modeling are required. As illustrated in Figure 3.22(b), we have started to reach the limits
of the simple ontological model used in our work on semantic segmentation. That a single
semantic class label is sufficient to completely describe a pixel is overly simplistic: should
a dog pixel be labeled dog, pet, mammal, or all of the above? As the field moves towards
more complicated datasets, improvements to ontologies will have more profound effects on

performance.

5.3 Future Work

To address these limitations, we propose several avenues for future research.
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Figure 5.1: Example GrabCut [Rother et al., 2004] segmentations. Our detection algorithm
localizes the objects in scale-space with a bounding rectangle. This rectangle is used to
initialize GrabCut, which automatically learns foreground and background color models
and uses iterated graph cuts to segment the object from the background.

Contour: We are interested in developing a more probabilistic fusion of the classification
probabilities from multiple sliding windows, as mentioned in Section We plan
to investigate further our codebook of contour fragments. The clustering algorithm
used presently is inefficient, and perhaps an agglomerative clustering method would
be faster. We are currently investigating how the codebook might be used in a bag-
of-words recognition model, in place of sparse local descriptors. Our investigation of
modern, learned edge detection algorithms is preliminary and more work is desirable
there. Considerable optimization is possible. Given the results that show our approxi-
mate chamfer matching does not harm performance, perhaps down-sampled distance

transforms could also be used.

A few preliminary results of combining our detection technique with a segmentation

algorithm are presented in Figure These results took the inferred object bound-

ing rectangles as initializations to GrabCut [Rother et al. 2004; Blake ef al., 2004]. We

would like to further investigate this to see if individually segmented fragments could

serve as a segmentation prior similar to [Kumar et al,[2005]. An alternative method

proposed in [Zheng et al.,2007] is to learn to segment directly from the image.

Texture: We hope to integrate explicit semantic context information, in addition to the ap-
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pearance context information used in Chapters [8|and 4] Work such as [He et al., 2004]
uses semantic context to improve segmentation accuracy. Our brief investigation into
separable TextonBoost could be extended. Perhaps more interesting factorizations
similar to could be used, for example including diagonal terms. We would like to
investigate other forms of textonization. For example, alternative filter banks includ-
ing cross derivatives or clustered SIFT descriptors [Lowe, |2004] might provide extra
representational flexibility and additional invariance properties. Also, other forms of
clustering, such as [Jurie & Triggs, |2005], might improve results over k-means. A soft
assignment of pixels to textons might produce better results. We are currently investi-
gating simple extensions to shape filters to incorporate motion cues when applied to

video sequences.

Combining Features: The proposed framework for heterogeneous learning and detection
could be straightforwardly extended to incorporate additional cues, and of particular
interest is the further fusion with sparse local descriptors. We also believe that an
optimized real-time implementation is feasible. This would allow accurate tracking as
detection; preliminary results in this direction are shown in Figure Additionally,
the detector could be trained to discriminate between different poses of the tracked

object, for example, between open and closed hands.

5.4 Final Remarks

Visual recognition of object categories has advanced dramatically over the last few years.
The community is gradually extending the range of variabilities, illustrated in Figures
and that can be handled successfully. For example, new work into view-point invariant
recognition is proposed in [Hoiem et al., 2007]. The boundary between the appearance of
objects at large scales and at small scales is of particular interest. As one zooms out from
a single flower to a whole field of flowers, for example, at what point should one change
from modeling the individual to modeling the group. These ‘phase shifts” in appearance
have not been adequately investigated, and perhaps a fusion of the detection and semantic
segmentation methods presented in this work would help. The ability to cope with partially
occluded objects is also of considerable concern, and some preliminary work in this direction
is presented in [Winn & Shotton, 2006]. The forthcoming PASCAL Visual Object Challenge
2007 [VOC] will also try to push the envelope of achievable recognition tasks.
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Figure 5.2: Preliminary results of hand tracking as detection. A real-time implementation
of our combined detector would allow automatic hand tracking.

From a learning point of view, the challenges lie in exploiting unlabeled or partially
labeled data. Such unsupervised and semi-supervised techniques will become more impor-
tant as we move to more sophisticated ontological models that deal with more classes.

While we are still a considerable way from accurately recognizing the tens of thousands
of classes that humans effortlessly distinguish despite incredible variations in appearance,

we believe that this thesis has taken a positive step towards a solution.
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APPENDIX A

BIBLIOGRAPHIC NOTES

This appendix briefly describes some of the important and exciting research related to this
thesis. As far as possible, we have arranged this literature survey hierarchically, although
not all papers are straightforwardly categorized. Within each section, work is presented
roughly chronologically. When referencing a body of work presented over several papers,
the most modern, definitive source is cited first.

This appendix is divided into four sections. Section discusses image features, in-
cluding interest point detectors, local descriptors, contour-based features, and methods that
combine feature types. In Section[A.2we discuss bottom-up and top-down segmentation al-
gorithms, and also work on semantic segmentation. In Section [A.3]we explore research into
visual recognition, including image classification and categorical object detection. Finally,

we discuss recent developments that combine recognition and segmentation, in Section |A.4

A.1 Image Features

This thesis has proposed two new types of image feature, contour fragments in Chapter
and shape filters in Chapters [3{and 4| In this section, we discuss alternative image features.
In general, features are either computed densely, on a grid of points, or sparsely, at a set of
interest points. Dense features can handle texture well (see e.g. Figure[3.2) and can be used for
segmentation, but by their nature are computationally expensive. Sparse features are more
efficient, since there are fewer of them per image. They also have invariance properties, such
as affine geometric invariance, that have made them popular for solving the correspondence
problem for wide-baseline matching, e.g. [Schaftalitzky & Zisserman, 2002al.

In Section we discuss methods that localize sparse features (i.e. detect interest
points). Many techniques use local descriptors to describe image regions, and these methods

are explored in Section We talk about contour-based features in Section and
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texture-based features in Section The combination of features types is discussed in
Section[A.1.5

A.1.1 Localizing Sparse Features

Sparse features, computed at interest points, allow a significant computational saving by
focusing attention on salient image regions. All the algorithms discussed here use hand-
designed low-level image cues, although recent work [Kienzle et al., 2006] has suggested
learning interest point detectors.

The Canny edge detector [Canny, |1986] can be viewed as a primitive form of interest
point detector, and is still in active use today in, for example, Chapters 2 and [ and [Fer-
rari et al., 2006b; Mikolajczyk et al., 2003]. However, most recent interest point detectors
infer a region of spatial support at particular sparse points. Much effort has be focused on
improving the Forstner or Harris-Stephens corner detector [Forstner & Giilch, 1987; Har-
ris & Stephens, [1988|] with various geometrical invariances. The Harris-Laplace detector of
[Mikolajczyk & Schmid) 2001] added scale-invariance. Further research, relying on earlier
work on shape-from-texture in [Lindeberg & Garding), 1997], extended Harris-Laplace with
affine invariance in [Mikolajczyk & Schmid) 2004} |2002; Baumberg, 2000]. Lowe used the
difference of Gaussians operator to provide scale-invariant interest points for SIFT descrip-
tors in [Lowe, 2004, [1999]. An affine invariant region detector was proposed in [Tuytelaars
& Van Gool, 2000] that finds intensity extrema that are robust to large illumination changes.
The scale saliency method from [Kadir et al., 2004, 2003; Kadir & Brady, 2001] suggested
localizing interest points at regions of high intensity entropy. Matas et al. proposed the very
efficient and affine invariant Maximally Stable Extremal regions in [Matas et al., 2002]. An
extension of interest-points to spatio-temporal volumes was suggested in [Laptev & Linde-

berg), [2003]].

A.1.2 Local Descriptors

The development of affine invariant region detectors was matched by new local descrip-
tors. These were designed to describe image regions in a fairly low-dimensional vector
with certain geometric and photometric invariances. Local descriptors were used first for
wide-baseline matching, and more recently for categorical recognition. We used one such
local descriptor, SIFT (described shortly), for comparison against contour fragments, in Sec-

tion While descriptors are usually computed sparsely at interest points, they can be
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computed densely, e.g. [Kapoor & Winn, 2006

The simplest descriptors are raw patches of image, which are often matched using sum
of squared differences, or normalized cross correlation. Patches were used for example in
[Leibe & Schiele, 2003] for recognition, and in [Criminisi et al., 2007] for dense-stereo. The
image epitome model of [Jojic et al., 2003; Cheung et al., 2005] is a compact method for rep-
resenting a dictionary of image patches. Recently, the Jigsaw model of [Kannan et al., 2006
allows the compact representation of image patches with non-rectangular extents.

Beyond simple patches, many descriptors aim at invariance to rotation and affine inten-
sity changes. Steerable Filters [Freeman, 1992] achieve rotation invariance by steering local
image derivatives in the direction of the local image gradient. Moment invariants were pro-
posed by [Van Gool et al.,1996], and differential invariants by [Schmid & Mohr, [1997]. The
SIFT descriptor was proposed in [Lowe, 2004, |1999]. This computes histograms of oriented
gradients, and was shown to out-perform several other descriptors in the thorough com-
parison of [Mikolajczyk & Schmid, [2003|]. Variants of SIFT were proposed in [Mikolajczyk
et al, 2005] and [Brown et al., 2005]. The rotation invariant modulus of complex filters was
used in [Schaffalitzky & Zisserman, 2002b]]. A descriptor specifically designed to operate at
sparse edge points for the recognition of tubular structures was proposed in [Mikolajczyk

et al.,2003].

A.1.3 Contour Features

Contour, defined in terms of the edges of an image, was already considered a useful cue
for recognition in Marr’s Primal Sketch [Marr, 1982]. The standard Canny edge detector
[Canny| 1986] has recently been improved by learning edge detection from a set of training
images in [Dollar et al.,2006; Martin et al.,|2004].

Contour was first used for detecting particular objects, matched as complete, rigid tem-
plates. The Generalized Hough Transform [Ballard) 1981] is one matching method. Alter-
natively, the Chamfer [Barrow et al., 1977] and Hausdorff [Huttenlocher & Rucklidge, 1992
distances have been used to detect and track articulated objects: people in [Gavrila, 2000;
Felzenszwalb| 2001; Toyama & Blake, 2002], hands in [Stenger et al., 2003; Thayananthan
et al.,2004], and the upper body in [Navaratnam et al.,[2005|]. [Leibe et al., 2005] used cham-
fer matched pedestrian outlines in a recognition verification stage. Techniques such as these
require a large set of templates to represent all joint object configurations, and often a hier-

archy is used for efficiency.
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Alternative approaches use fragments of contour. Inspired by Cubist art, [Nelson &
Selinger) |1998] used semi-invariant local keys to compare test images against a database.
[Fergus et al.,[2004] augmented the constellation model (described below) with contour frag-
ment features, but only exploited fairly clean, planar curves with at least two points of inflec-
tion. In [Kumar et al.,[2004], contour fragments learned from video sequences were arranged
in Pictorial Structures and used for detection of articulated objects. Good results were ob-
tained, although a fairly complex tracking of video sequences or manual labeling of parts
was needed for learning. [Borenstein ef al., 2004] used both image and contour fragments
for segmentation, though did not address classification or detection. A similar technique to
[Shotton ef al., 2005] was subsequently presented in [Opelt et al., 2006al].

Shape contexts [Belongie ef al.,2002] use a log-polar histogram of edgels for shape match-
ing. A similar descriptor based on geometric blur was presented in [Berg & Malik| 2001], and
was used for matching under considerable deformation in [Berg ef al., 2005]. A generative
model of shape matching was proposed in [Tu & Yuille, [2004]. A classification cascade was
used in [Carmichael & Hebert, 2004] to localize the edges of wiry objects. [Jurie & Schmid,
2004] proposed contour-based features that characterize the local edge convexity. In [An-
derson et al., 2006], rotation invariant object recognition was proposed that used clusters of
wavelet-based edge features. The contour segment network [Ferrari ef al., 2006b/a|] builds a

graph connecting neighboring edge fragments.

A.14 Texture Features

Texture has long been seen as a useful image feature. Gabor filters were proposed in [Daug-
man, 1980]], and have subsequently been used for iris recognition in [Daugman, 2003]. Ma-
lik & Perona presented a model of human preattentive texture perception in [Malik & Per-
ona, |1990]. Textons, detailed in Chapter {3} were investigated in [Leung & Malik, 2001]] and
[Varma & Zisserman, 2005]. Kingsbury proposed a family of complex wavelets with shift
invariant properties in [Kingsbury, 2001]. Leung proposed modeling the conditional distri-
bution of database textons given image textons for recognition in [Leung), 2004]. Correlatons

were used to model some rigid spatial relationships between textons in [Savarese et al., 2006].

A.1.5 Combining Features

As investigated in Chapter 4, the combination of different feature types can dramatically

improve performance. Video Google, a system for image-based search of videos, was pre-
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sented in [Sivic & Zisserman), 2003 and combined different local descriptors. Similarly,
different descriptors were combined in [Zhang et al.,2005a,b]. Fergus et al. used both local
descriptors and contour features for object detection in [Fergus et al., 2004]. Pedestrian de-
tection was tackled in [Leibe et al., 2005], where a set of object detections based on image
patches was post-processed using outline contours. Opelt et al. proposed augmenting their

contour-based technique with local descriptors in [Opelt et al., 2006b].

A.2 Segmentation

Chapter [3| addresses the task of semantic segmentation. We discuss in this section related
work on segmentation and semantic segmentation. In Section we see that segmenta-
tion was originally posed as a bottom-up problem that used only low-level image informa-
tion. Later, top-down, class-specific knowledge was incorporated (Section [A.2.2), and then
combined with bottom-up information (Section [A.2.3). Most recently, semantic segmenta-

tion has become possible (Section|A.2.4).

A21 Bottom-Up

Normalized cuts [Shi & Malik, 1997; Malik et al., 2001] incorporated both texture and edge
based cues for bottom-up segmentation. Graph cuts were proposed for fast, accurate seg-
mentation in [Boykov et al., 2001; Kolmogorov & Zabih, 2004; Boykov & Jolly, 2001; Boykov
et al.,1999], and exploited for interactive image segmentation by the GrabCut system [Boykoy
& Jolly, 2001; Rother et al.,2004; Blake et al., 2004].

A.2.2 Top-Down

[Borenstein & Ullman, 2002] presented a novel class-specific segmentation algorithm based
on matching image fragments. In [Ferrari ef al.,[2004], initial local correspondences against
a template initialized an ‘image exploration’, locating and segmenting the object even un-
der deformation. Discriminative random fields were suggested by [Kumar & Hebert, [2003]]
and used for image de-noising and detecting man-made structure in imagesﬂ Weakly-

supervised top-down segmentation was investigated in [Vasconcelos et al., 2006].

!'Discriminative random fields are simply conditional random fields [Lafferty et al, 2001] over two-
dimensional images.
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A.2.3 Combined Top-Down & Bottom-Up

The combination of bottom-up and top-down segmentation cues was suggested by [Boren-
stein et al., 2004; [Borenstein & Ullman|, 2004, Borenstein & Malik, 2006]. LOCUS [Winn &
Jojic, 2005] presented an generative probabilistic model of segmentation, which unlike many
other techniques does not require segmented training data. [Levin & Weiss| 2006] showed
how to combine bottom-up and top-down cues in a conditional random field for segmenta-

tion.

A.24 Semantic Segmentation

[Konishi & Yuille, 2000] used color and texture statistics to achieve a semantic segmenta-
tion, with accurate but grainy results, since no spatial coherence was enforced. Ideas from
machine translation were used in [Duygulu et al., 2002] to get a rough semantic segmenta-
tion from training data labeled only with textual labels. Accurate but expensive data-driven
Markov chain Monte Carlo was used in [Tu ef al} 2003|] to give a coherent semantic scene
analysis, and to specifically recognize text and faces. Conditional random fields were used
for semantic segmentation by [He et al.,[2004,2006]. A hierarchical field framework was pro-
posed in [Kumar & Hebert, 2005]. Approximate three-dimensional geometric information
was inferred from two-dimensional images (without using stereo) by exploiting geometric

context, in [Hoiem et al.,[2005].

A.3 Recognition

Chapters 2] and [l addressed two recognition sub-goals: image classification and categorical
object detection. In this section, we discuss work that directly relates to these tasks. Most
modern work recognizes objects as the sum of their constituent parts. We can notionally
divide such parts-based methods into those that use spatial models (Section [A.3.), and
those that do not, the so-called bag-of-words models (Section [A.3.2). In Section we

describe work that uses context to recognize objects.

A.3.1 Spatial Models

The constellation model of [Fergus et al., 2003; \Weber et al., 2000; Burl et al., 1998] learned a
joint generative model of the layout of parts without requiring labeled parts. The statistics

of wavelet-based parts were used in [Schneiderman & Kanade} 2004} 2000]. Class-specific
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fragments of image patches were selected using mutual information in [Ullman et al., 2001].
The pictorial structures model [Felzenszwalb & Huttenlocher, 2005] connected parts with
virtual springs. Mixtures of trees were suggested by [loffe & Forsyth, 2001]. [Agarwal &
Roth, [2002] suggested sparse image patches for recognition. The selection of scale-invariant
parts using likelihood ratio and mutual information was investigated in [Dorké & Schmid,
2005, 2003]. Humans were detected in [Mikolajczyk et al., 2004]. [Torralba et al., 2007, |[2004]
investigated how features could be shared across classes for multi-class detection. A hierar-

chy of parts was proposed by [Bouchard & Triggs, 2005] and [Epshtein & Ullman), 2005].

A.3.2 Bag-of-Words Models

Spatial information is deliberately thrown away in bag-of-words models. These take in-
spiration from the textual information retrieval community [Baeza-Yates & Ribeiro-Neto,
1999], and extend textual words to visual words. These were used by [Sivic & Zisserman,
2003] for efficiently searching long video sequences. Naive Bayes and SVM classifiers were
compared in [Csurka et al.,2004]. Probabilistic latent semantic analysis (pLSA) [Hofmann,
2001] was used for visual categories in [Sivic ef al., 2005], and robust learning from Google
image search results was achieved in [Fergus ef al| 2005]. A hierarchical Bayesian extension
to pLSA, latent Dirichlet allocation [Blei ef al., 2003], was used for learning unsupervised

image segmentations in [Russel et al., 2006].

A.3.3 Modeling Context

The concept of a scene gist was used to model context for object detection in [Torralba et al.,
2003, 2005]]. The framework of [Kumar & Hebert, 2005] modeled semantic context in a dis-
criminative hierarchy. Hierarchical Bayesian models of scenes, objects, and parts were sug-

gested by [Sudderth et al., 2005].

A4 Combined Recognition & Segmentation

Most recently, research has investigated the fundamental combination of object recognition
with segmentation. The Implicit Shape Model [Leibe & Schiele} 2004; Leibe et al., 2004; Leibe
& Schiele| 2003] uses segmented image patches to detect and segment objects. OB] CUT by
[Kumar et al., 2005] detected and segmented objects using a Markov random field combined

with pictorial structures. Winn & Shotton addressed the detection and segmentation of par-
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tially occluded objects in [Winn & Shotton, 2006]. This has been extended to recognizing

three-dimensional objects in [Hoiem et al.,|2007].
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BOOSTING ALGORITHMS

B.1 Introduction

For completeness, we include in this appendix a summary of the boosting algorithms em-
ployed for learning our recognition models. We first describe the binary Gentle AdaBoost
algorithm [Friedman et al., 2000], used in Chapters [2|and {4l We then detail the multi-class
extension, Joint Boost, which was proposed in [Torralba et al., 2004] and aims to share fea-
tures between classes (e.g. blue is indicative of sky and water). Joint Boost was used for
semantic segmentation in Chapter 3| Note that the abstract notation of this appendix differs

very slightly from the concrete implementations used in the main text.

B.2 Gentle AdaBoost

The Gentle AdaBoost algorithm, from [Friedman et al., 2000], is used to learn a classifier of

the form

M
H(v) =) hm(v), (B.1)

which takes a feature vector v and computes a strong classification value H as a sum of
M weak learners. Each weak learner h(v) contributes to the classification but individually
need not be particularly discriminative. In the combination in however, they form a
powerful, discriminative classifier. The classification H can be reinterpreted as a posterior

class probability using the logistic transformation:

1
1+exp(—H(v))’

P(c=+1v) = (B.2)

with class ¢ € {+1, —1}.
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Gentle AdaBoost is a particular algorithm for constructing the additive model of (B.1) in
a greedy;, iterative fashion. After m — 1 rounds (iterations) of boosting, the next weak learner

hy, is chosen from a pool ‘H to minimize a weighted squared error functional on a set of

training examplesi = 1,..., N:
hp = in Jyselh) B.3
arg 1in Jyse[A] (B.3)
N
Juselh] = D wim-1 (2 — h(vi))* (B.4)
i=1

where training example i consists of feature vector v; and target label z; € {+1,—1}. The
weights are

Wim = eXp(_ZiHm(vi)) ’ (BS)

where Hy,, = > /_, hyy is the strong classifier up to round m. The weights represent the
mis-classification of each training example after m rounds, so that the minimization in
gives more emphasis to poorly classified examples. The weights are all initialized as w; o =
1 and can be efficiently updated after each iteration of boosting, maintaining as an

invariant, by

Wim = Wim—1€XP(—2ihm(v4)) . (B.6)

B.2.1 Decision Stumps

The weak learners in pool ‘H can in general take any form, but in this work we use the

decision stumps of [Torralba et al., 2004, 2007] which have the form
h(v) =alvg > 0] +0b, (B.7)

where v, is the dth dimension of vector v, and the binary indicator function [condition] =
1 if condition is true, 0 otherwise. These decision stumps divide the feature space in two along
an axis-aligned hyper-plane, and weight the two sides differently. The axis-alignment means
that feature selection can be performed: by setting M < D, where D is the number of di-

mensions of v, only a discriminative subset of feature dimensions (and thereby features) is

The weights could in fact be initialized non-uniformly, and in this boosting variant need not sum to 1 since
a constant scaling factor does not affect (B.3). Informal experiments suggested that initializing weights to nor-
malize for imbalanced numbers of positive and negative training examples gave worse performance. This is
likely due to the removal of the implicit and useful class priors that the classifier otherwise learns.
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selected. At test time only those features that were selected need be evaluated. The order-
ing of the weak learners shows a general trend due to the weighting of the examples (B.5):
early rounds select more general features, while later rounds concentrate on more specific
troublesome examples. This ordering can be exploited in a cascade.

The decision stumps also have convenient analytical properties: for the minimization
of , although a brute-force search is required for feature dimensions d and threshold 6

(from a discrete set), given these values, a closed-form minimum for a and b exists:

o wizivig < 0]
b= Yo wilvig < 6] (8)
Z» wizi[vi d > 9]
= L 2 —b B.9
“ S wilvia > 0] (B.9)

where weights w; = w; ,,—1 when minimizing (B.3) at round m.

B.3 Joint Boost

The Joint Boost algorithm is an extension of Gentle AdaBoost to multiple classes by Torralba
et al. in [Torralba et al} [2004], who use the novel insight that individual features can con-
tribute towards the classification of several classes at once. This sharing of features across
classes allows for classification with cost sub-linear in the number of classes, and leads to

improved generalization; see [[Torralba et al., 2004]. Here, the classifier takes the form

M
H(e,v) =Y hm(c,v), (B.10)

m=1

which now additionally takes a class label ¢ € {1,...,C} as parameter (cf. (B.1)). The soft-

max or multi-class logistic transformation gives a class probability distribution:
1
P(clv) = s H(c,v) (B.11)

where Z = ) _exp H(c,v) normalizes the distribution.

The minimization to determine the optimal weak learner at each round becomes

hm - i steha B.12
arg i Jyse[ ] (B.12)
C N
Juselh] = D> wf, 1(z = hle,vi))?, (B.13)
c=1 i=1
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where now there are C weights and targets for each example, and the superscript ¢ denotes
an index rather than an exponentiation. Target z{ € {+1, —1} is positive if example i is of

class ¢, and negative otherwiseE] The weights become
wy p, = exp(—2{ Hm(c, vi)) (B.14)
with the corresponding update equation

WSy = 0y exp(— 2 (e, Vi) (B.15)

i,m

B.3.1 Decision Stumps

The Joint Boost decision stumps take the form:

>0]+b ifceC,
hev) = 4 el ne (B.16)

k¢ otherwise.
Here, C C {1,...,C} is the set of classes between which the weak learner is shared. The
constants k¢ for ¢ ¢ C ensure that unequal numbers of training examples of each class do

not adversely affect the learning procedure.

The parameters of each weak learner are therefore sharing set C, the set of constants k¢,
weights a and b, feature dimension d, and threshold §. The set of all possible sharing sets
is exponentially large, so we employ the quadratic-cost greedy approximation of [Torralba
et al.,|2004]. This finds the optimal one-class sharing set, C; = {c;}, then, keeping the first
class ¢; fixed, the optimal two-class sharing set, Co = {c1,c2}, etc. Finally the best set C
is chosen from {Ci,...,Cc}. As with the binary Gentle AdaBoost algorithm, a brute-force

search is then required to find d and ¢, but given these, the remaining parameters come out

2In this work, we only allow one target to be positive for each example, except for the separable TextonBoost
described in Section Perhaps multiple targets could be also used to learn a hierarchical class structure,
such as that cows and horses are both mammals.
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analytically:

w2l g < 0
p = Lecc2iizilvia < 6] (B.17)
Dcec 223 Wi [via < )

2cec 221 WiF[Via > 0]

a = - —b, (B.18)
Y cee 2 Wivig > 0]

e o= 2aWiE (B.19)
Zi w§

where weights wf = wf,, _; when performing the minimization (B.12) at round m.

B.4 Optimizations

We briefly describe two optimizations of the above algorithms.

B.4.1 Search for ¢

Brute-force search for 6 from a discrete set © can be made efficient (giving identical results)
by careful use of histograms of weighted feature responses: by treating © as an ordered
set, histograms of feature values v; 4 weighted appropriately by w$z{ and w{, are built over
bins corresponding to the thresholds in ©; these histogram are accumulated to give the

thresholded sums necessary for the direct calculation of a, b for all values of § at once.

B.4.2 Randomization

A full search over all possible feature dimensions d at each round need not be performed.
Instead, one can investigate only a small random fraction of feature dimensions. We inves-

tigate this approximation in Section 3.4.3}
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APPENDIX C

WEIZMANN & GRAZ DATASETS

Figure C.1: Example images from the multi-scale Weizmann horse dataset. The dataset can
be downloaded from [Shotton]. The bottom two rows contain example background images.
This dataset was used in the evaluations of Chapters2]and 4
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Figure C.2: Example images from the Graz 17 class dataset from [Opelt et al.,
dataset was used in the evaluations of Chapters2|and [4|
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Figure C.3: Example images from the Graz 17 class dataset from [Opelt et al.,[2006c]. This
dataset was used in the evaluations of Chapters[2|and [4|
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