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Abstract

This article presents an extension to the work of Launchbury
and Peyton-Jones on the ST monad. Using a novel model
for concurrency, called concurrent revisions [3, 5], we show
how we can use concurrency together with imperative mu-
table variables, while still being able to safely convert such
computations (in the Rev monad) into pure values again.

In contrast to many other transaction models, like soft-
ware transactional memory (STM), concurrent revisions
never use rollback and always deterministically resolve con-
flicts. As a consequence, concurrent revisions integrate well
with side-effecting I/O operations. Using deterministic con-
flict resolution, concurrent revisions can deal well with sit-
uations where there are many conflicts between different
threads that modify a shared data structure. We demon-
strate this by describing a concurrent game with conflicting
concurrent tasks.

Categories and Subject Descriptors D.3.3 [Concur-
rent Programming Structures]; D.1.1 [Functional Program-
ming ]

General Terms Algorithms, Design, Languages

Keywords Concurrent Revisions, Isolation, Transaction

1. Introduction

Almost 16 years ago, Launchbury and Peyton-Jones describe
in their seminal paper “State in Haskell” [23] how stateful
computations in the ST monad can be safely converted into
pure values when their side effects are unobservable. This
is elegantly done by relying on parametricity and giving
the runST combinator a rank-2 type. This article is in
essence an extension of their result: using a novel model
for concurrency, called concurrent revisions [3, 5], we can
use concurrency together with imperative mutable variables,
while still being able to safely convert such computations (in
the Rev monad) into pure values again.

The basic idea of concurrent revisions is that on a fork,
the entire shared state is (conceptually) copied such that
each thread works in full isolation. Only at a join are
the modifications that a thread made merged back. On a
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write-write conflict a merge function is called to resolve
the conflicting writes, where the default strategy is to give
priority to the writes of the joinee.

In contrast to many other transaction models, like soft-
ware transactional memory (STM), concurrent revisions
never use rollback and always deterministically resolve con-
flicts. As a consequence, concurrent revisions integrate well
with side-effecting I/O operations. Also, due to the deter-
ministic conflict resolution, concurrent revisions can deal
well with situations where there may be many conflicts be-
tween different threads that modify a shared data structure.
In Section 5.1 we demonstrate this by creating a concurrent
game with conflicting concurrent tasks.

Specifically, we make the following contributions:

• Even though a revisional compution is fully concurrent
and can mutate versioned variables, we can use the
Haskell type system to turn such computation safely into
a pure value again. The safety result is a direct conse-
quence of the semantics of concurrent revisions which is
deterministic no matter how the threads are scheduled [5]
(Section 2.2)

• The type system also guarantees that versioned variables
do not escape the scope of a revisional computation. This
is done using the same technique as in the ST monad
using a rank-2 polymorphic type (Section 2.2).

• Haskell makes it easy to implement custom versioned
data types that can handle merge conflicts in special
ways. We demonstrate the use of cumulative counter
(Section 3), and the use of compensation tables to specify
semantics for more complex datatypes (Section 3.2).

• We show how the conflict resolution of concurrent revi-
sions can elegantly solve standard problems with trans-
actional read- and write-skew [7, 2] (Section 4).

• In contrast to most transactional models, concurrent
revisions never roll back, and therefore integrate well
with I/O effects. The type system lets us freely use
I/O operations within a revision, but such revisional
computations can only be run in IO monad themselves
(Section 5).

• We show the full implementation of a small game that
executes all its basic operations concurrently, namely ren-
dering, physics simulation, and player input. Due to the
read-write and write-write conflicts between these op-
erations traditional concurrency mechanisms like locks
and STM do not deal well with such applications (Sec-
tion 5.1).

We have a full implementation of concurrent revisions as a
small library in Haskell (available at [14]) which we describe



in detail in Section 6. All examples in this paper come with
the library.

2. An overview of concurrent revisions

Concurrent revisions simplify the parallelization of conflict-
ing tasks by conceptually copying the entire shared state on
a fork. Tasks execute in complete isolation where each has
its own copy of the shared state. This is somewhat analogous
to a source control system that allows multiple programmers
to work on code at the same time by creating local copies of
the files. For this reason, we usually call tasks in our model
revisions.

In order to guarantee safety through the type system, we
execute all revisonal code in a revision monad Rev:

data Rev s α

instance Functor (Rev s)
instance Monad (Rev s)

A value of type Rev s α signifies a revisional computation
with a result value of type α in a revisional heap s. As we will
see, the heap parameter s is used just like in the ST monad
to guarantee isolation of different revisional computations.

The shared state for a revision is constructed through
versioned variables:

data Versioned s α

vcreate :: α→ Rev s (Versioned s α)
vread :: Versioned s α→ Rev s α
(=:) :: Versioned s α→ α→ Rev s ()

vmodify :: Versioned s α→ (α → α) → Rev s ()
vmodify v f

=do x ← vread v
v =: f x

A value of type Versioned s α is a shared variable in heap s
that stores a value of type α. The function vcreate creates
a fresh versioned variable, vread reads the value stored, and
(=:) assigns a new value. Revisions can be created using
fork, and joined again with join:

data RevisionTask s α

fork :: Rev s α→ Rev s (RevisionTask s α)
join :: RevisionTask s α→ Rev s α

A call to fork returns a handle to the forked revision as a
RevisionTask s α. The join function uses this handle to join
on the specififed revision (which blocks until the revision is
done). Using the above basic functions, we can write our
first concurrent revision program in Haskell:

simple :: Rev s Int
simple =

do vx ← vcreate 0
vy ← vcreate 0
r ← fork (vx =: 1)
x ← vread vx
vy =: x
join r
vread vy

In the above code, we first allocate two versioned variables
vx and vy using vcreate. Then, we fork a concurrent revision
that just assigns 1 to vx (eg. vx =: 1). In the main revision

though we assign the value of vx to vy. After joining the
child revision we return with the current value of vy.

What will the value of vy be at this point? In traditional
forms of concurrency with shared variables, regardless of
locks or atomic blocks, the value of vy is undetermined and
could be either 1 or 0, depending on a particular scheduling
of the threads. Not so with concurrent revisions: since each
revision gets its own local copy of the state, the read vread vx
always returns 0, and therefore the final value of vy is
always 0 (and never 1, no matter how the revisions were
scheduled). The concurrent assignment in the child revision,
vx =: 1 is always fully isolated and within each concurrent
revision, one can reason about inside each revision as if it
was executed sequentially.

When a child revision is joined, the changes it has made
are merged back into the main revision; this is as if the
writes in the child revision all happened atomically at the
join time. In our example, after the join, the assignment to
vx in the child revision becomes visible in the main revision
and the final value of vx is always 1.

For any write-write conflict, a special merge function is
called that resolves the conflict. By default the merge func-
tion always lets the writes of the joinee win, but this be-
haviour can be customized on a per-type basis. For example,
one might want to use cumulative integers where the addi-
tions in all revisions are added together. We discuss this
in detail in Section 3. Note that in contrast to transactional
memory for example, there is never a read-write conflict due
to the full isolation of each revision.

2.1 Exceptions and abandonment

Exceptions can of course be raised in a revision. When one
joins on an exceptional revision, the exception is re-raised
by the join operation. However, none of the modifications
done by the joinee are merged back into the main revision.
A problem with exceptions in general is that an exceptional
computation could leave the shared state in an inconsistent
configuration where not all invariants hold. Since every
revision works in complete isolation we can simply disregard
any modifications of an exceptional revision and avoid the
need to patch up incomplete state changes. For the same
reason, we can also safely support operations to terminate
a revision:

kill :: RevisionTask s α→ Rev s ()
abandon :: RevisionTask s α→ Rev s ()

Both operations forget about a revision but kill raises
asynchronously an exception in the target revision, while
abandon blocks until the target revision is done (and then
disregards any modifications the target revision has done).
Of course, one can also just never join on a revision but
the above operations ensure that all revisions are properly
garbage collected.

2.2 Safe encapsulation of revisions

As we saw in our previous example the final result of the
computation was always the same. It turns out that, un-
der some constraints, any concurrent revision program is
actually fully deterministic despite its imperative variables
and concurrent execution. In earlier work [5], we describe a
precise operational calculus for concurrent revisions (based
on the AME calculus by Ababi [1]). Using this calculus, we
have proven various properties, including that the result of
a revisional program is always deterministic.



Of course, this result only holds for revisional programs
that have no I/O effect: if one can call the random number
generator it is easy to construct a non-deterministic pro-
gram. More insidiously, if a revisional program can take a
lock, its result could depend on a particular scheduling.

Our Haskell implementation relies on the type system to
guarantee that no arbitrary I/O takes place by restricting
the operations that can execute in the Rev-monad. This
ensures that all operations in the revision monad correspond
directly to our calculus and we are guaranteed that such
programs are determinate. As a consequence, we can safely
convert such Rev computations into pure values:

revisioned :: (∀s. Rev s α) → α

Just like the ST monad, there is one catch: we need to
ensure that we leak no versioned variables that could be
shared among different revisional computations. We apply
the same trick as in runST [23] by giving revisioned a
rank-2 polymorphic type. By requiring that the revisional
monad is polymorphic in its heap variable, we guarantee
by parametricity that there is no versioned variable in the
environment that can observe that heap. Take for example
the following (ill-typed) program:

leftRight – wrong
= let v =revisioned (vcreate True)

in revisioned (vread v) ||
revisioned (do{ vmodify v not; vread v})

If this program were to be accepted by the type system, it
could return either False or True depending on the eval-
uation order. Fortunately, the bottom two revisioned appli-
cations are rejected. Both expressions have type Rev s Bool,
where the type variable s occurs in the type environment
for the type of v :: Versioned s Bool. Therefore, both expres-
sions are not polymorphic in s and cannot be passed as an
argument to revisioned – correctly rejecting the program.

2.3 Sequential vs Concurrent reasoning

As we have seen, with concurrent revisions we can truly
reason about each branch locally without considering any
interleavings. However, at the same time there may not
always be an equivalent sequential execution for a revisioned
program! Consider the following example:

do vx ← vcreate 0
vy ← vcreate 0
r ← fork (do x ← vread vx

when (x == 0) (vmodify vy (+1)))
y ← vread vy
when (y == 0) (vmodify vx (+1))
join r
x ← vread vx
y ← vread vy
return (x,y)

The example creates two versioned variables vx and vy. In
the forked revision, we increment vy if vx is zero, and in
the main revision we do the opposite, incrementing vx if vy
is zero. Using revisions, the outcome is always determinate:
both branches get their own local (conceptual) copy of the
state, and both branches will increment the variables ending
in (1,1). Now imagine that we execute the same program
on a sequentially consistent machine using regular mutable
variables. In that case there are three possible outcomes
depending on the exact interleaving of the two threads,
namely (0,1), (1,0), and (1,1). Interestingly, the (1,1) result

is somewhat unexpected here since it requires a thread
switch just after the child thread has read the x value (or
the other way around). When using software transactional
memory [9], the situation can be improved by using TVar ’s
and wrapping both concurrent actions inside an atomically
statement. Still, the computation is non-deterministic and
returns either (0,1) or (1,0).

As the example shows, with concurrent revisions the an-
swer is always determinate, but at the same time there is
no sequential execution that gives the same result. The lack
of equivalence to some sequential execution is no accident:
requiring such equivalence fundamentally limits the concur-
rency that can be practically exploited if tasks exhibit con-
flicts. For the kind of applications we have in mind, conflicts
may be quite frequent.

2.4 Revision diagrams

Comfortably reasoning about application behavior in the
absence of serializability requires understanding and con-
ceptualizing a nonlinear history of state. We achieve this by
introducing revision diagrams that directly visualize how the
shared state can be forked, updated, and joined. In previous
work [5] we show that the revision diagrams have a formal
and well-defined meaning with a direct correspondence to
execution steps in the operational semantics. Here are some
examples of possible revision diagrams:
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In a diagram, we use a bullet • for fork nodes and a
circle ◦ for join nodes. Revisions correspond to the vertical
chains between a fork and join node in the diagram. These
diagrams visualize clearly how information may flow (it
follows the edges) and how effects become visible upon the
join. As we can see, the structure of revision diagrams is
more general than series-parallel graphs (SP graphs) since
revisions can escape the lexical scope (as shown in the right-
most diagram). At the same time, revision diagrams are
not arbitrary DAG’s, and the following diagrams are not
possible:
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The left diagram is not possible since the main branch
cannot join on the outer revision as the (fresh) outer revision
handle r cannot be part of its (isolated) state. The right-
most diagram cannot be constructed for similar reasons, in



particular, we can prove that all valid revision diagrams are
semi-lattices [5]. As we see later in Section 3 on merging,
the semi-lattice property is very important since it ensures
that there is always a least common ancestor value for
any merge (which happens to always be the fork node of
the joinee), corresponding to a three-way merge in version
control systems.

Unfortunately, in the C# implementation of concurrent
revisions [3] we have to resort to dynamic checks to confirm
that there are no improper joins that would lead to an invalid
revision diagram: this can be done for example by communi-
cating the revision handle through a (non-versioned) shared
memory location. In a side-effect free language like Haskell
this is not possible: in a pure revision, the type system en-
sures statically that the revision handles of newly forked re-
visions must flow downward along the revision diagram and
none of the invalid revision diagrams can be constructed.

Note that the structure of revision diagrams is entirely
dynamic, not lexical. In particular, once a revision is forked,
its handle can be stored in arbitrary data structures and be
joined at an arbitrary later point of time. In some sense,
revisions behave like futures whose side effects are delayed,
and take effect atomically at the moment when the future
is forced.

There is one more kind of invalid diagram: we can never
join more than once on a revision. In earlier work [5] we
show that this is essential for determinism or otherwise we
could create revisional computations that depend on a par-
ticular scheduling. Any double join should always result in
terminating the revisional computation. Fortunately, since
revisions are deterministic, if any revision is joined more
than once, this will always be the case. In our implemen-
tation we simply raise an exception whenever a revision is
joined more than once.

2.5 Limitations

Because concurrent revisions are deterministic with respect
to a particular schedule, we cannot easily describe compu-
tations that rely on arbitration: like a producer-consumer
program or the Santa Claus problem [20]. Similarly, some
concurrent algorithms rely on not being isolated, for exam-
ple, visiting a graph concurrently using a shared visited flag
in each node.

We believe that many algorithms, like graph visiting,
can be described nicely using concurrent revisions too but
need to be reformulated; much like phrasing an imperative
algorithms in a functional setting. With regard to producer-
consumer problems, we are currently working on extending
the revision model to support such applications in the form
of a distributed client-server model. An initial version can
be found as part of the library [14].

3. Custom merging

When there is a write-write conflict at the time of a join,
the default conflict resolution is to let the write of the
joinee win. Perhaps somewhat surprisingly, this strategy
works quite well in practice since it allows one to prioritize
different revisions and resolve conflicts by choosing a specific
join order. Sometimes though we need a more sophisticated
merging strategy, for example when aggregating results in
parallel.

3.1 A counter

A common versioned type is that of a cumulative integer or
counter. The idea is that a counter has only one operation,

namely inc which adds to the counter. When two revisions
concurrently add to the counter, the join should merge all
additions. This is a typical example of an aggregation vari-
able. There are many examples of such types, for example
cumulative sets merge using a union operation, or a high
score merges using the max operation.

The vcreateM function allows one to specify a custom
merge function. Using this function, we can specify a counter
as an abstract data type with a get and inc operation:

data Counter s =Counter (Versioned s Int)

createCounter :: Int → Rev s (Counter s)
createCounter i =

do v ← vcreateM merge i
return (Counter v)

where
merge main joinee orig

=main + (joinee − orig)

inc (Counter v) i =vmodify v (+i)
get (Counter v) =vread v

The merge function of the counter takes three arguments:
the value in the main revision, the value of the joinee, and
the original value orig from their least common ancestor
point (which is always the value at the start of the joined
revision). The merge function resolves the conflict by adding
the delta joinee − orig to the value of the main revision.
Here is a small example of a counter in action:

testCounter
=revisioned $

do c ← createCounter 0
r1← fork (do inc c 1

r2← fork (inc c 3)
inc c 2
return r2)

inc c 4
r2← join r1
join r2
get c

The final result of testCounter is 10, i.e. the sum of all
increment operations. This becomes more clear if we look
at the annotated revision diagram for testCounter:
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We have annoted the join nodes with the results of the merge
operations. In particular, the second merge operation gets
called with the value 1 from the least common ancestor node
which allows the merge function to calculate the proper delta
of the revision r2.

We conclude by remarking that we can easily define
vcreate in terms of vcreateM by explicitly specifying the
default merge strategy:



vcreate x =vcreateM merge x
where

merge main joinee orig = joinee

Similarly, we can specify versioned variables where the main
revision always wins:

vcreateMain x =vcreateM merge x
where

merge main joinee orig =main

3.2 Compensating actions

In practice, not all data types have such easy merge func-
tions as counters, high scores, and cumulative sets. Some
data types in particular combine both absolute operations
(like set) with relative operations (like add). A prototypical
example of such type is an integer register which we can set
to a value, or add another value to. Specifying a semantics
for such type in a concurrent setting is not entirely straight-
forward; for example, what should happen on the join if one
revision sets the register while another adds to it concur-
rently?

One way of specifying semantics for such types is through
so-called compensation functions [4]. A compensation func-
tion comp specifies for every pair of possible operations
(m1,m2) what their compensating actions (n1, n2) are, such
that composing m1;n1 is equivalent to composing m2;n2.
This is exactly what we need for implementing a merge func-
tion: if a main revision did operation m1, and the joinee m2,
we can specify the result of the merge as n1. For example,
for our Counter data type, the compensating function can
be specified as:

comp(add(i),add(j)) =(add(j),add(i))

Writing ε for an empty operation, and assign for assignment,
we can write the default merge strategy for versioned vari-
ables where the joinee wins as:

comp(assign(i),assign(j)) =(assign(j),ε)

It turns out that from these one-operation compensation ta-
bles, we can always generalize them to compensation func-
tions that work over arbitrary sequences of operations using
tiling techniques [4].

For our register example, we need to specify how we can
combine both set and add operations. For two set or add
operations, we simply use the previous semantics:

comp(set(i),set(j)) =(set(j), ε)
comp(add(i),add(j)) =(add(j), add(i))

For a set and add, we are going add bias:

comp(set(i),add(j)) =(add(j), set(i+j))
comp(add(i),set(j)) =(set(j), ε)

The philosophy behind the above semantics is that we want
to keep the strategy where writes in the joinee win. When
a joinee does a set operation, this overwrites anything the
main revision did. But if the joinee just did additions, then
all those additions are added to the value in the main
revision. Note that other choices are possible: compensation
tables are only a way to concisely describe a particular
concurrent semantics which lends itself to validation. This
becomes especially important with more complex data types
like mutable lists for example [4].

Here is a small example that demonstrates a register:

testRegister =revisioned $
do r ← createRegister

r1← fork (do add r 1
r2← fork (add r 1)
add r 1
return r2)

set r 2
r2← join r1
join r2
get r

In a moment, we will see how we can implement the register,
but for now we assume we have createRegister with the
associated add, set, and get operations.What is the final
value of this expression? Drawing a revision diagram helps
us to gain more insight in the performed operations:
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Since every forked revision just does relative operations
(add), all those additions are added to the set value in the
main revision, resulting in a final value of 5.

3.3 Eventual consistency

In the implementation, a merge function always uses the
left-side of the compensating pair since we always merge
into the main revision. So why specify the right component
too? This allows us to annotate a revision diagram on the
join points with both compensating actions. Now, we can
follow any path through the diagram composing all opera-
tions we encounter along that path – choosing the left com-
pensations along main paths, and right compensations along
joinee paths. It turns out that, given a valid compensation
function, that at a given end-point, the composition of all
operations along any path to that point results in the same
end state. This is in essence an ‘eventual consistency’ result
for concurrent revisions. Moreover, it gives us back a form of
sequential reasoning over concurrent diagrams: at any join
point, we can disregard the concurrent joinee, and instead
pretend that we atomically performed the compensating ac-
tion instead.

Let’s illustrate the above result with the register example:
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Here we annotated our previous revision diagram at the join
nodes with the compensating actions for each branch. There
are three possible paths through the diagram, that result in
the following sequences of operations:

– set 2; add 2; add 1
– add 1; add 1; set 4; add 1
– add 1; add 1; set 5

And as expected, any path results in the same final value.

3.4 Implementing the register

In principle, we could implement the custom merge function
of the register using our compensation table, and then use
the general tiling algorithm to apply the basic compensation
table on arbitrary sequences of operations. However, that
implies we would need to represent the register as a sequence
of operations – it is much more efficient and natural to
implement the register as a mutable variable.

To do so, we are going to represent the integer register
with the following abstract data type:

data Register s =Register (Versioned s Reg)

data Reg =Rel Int Int | Abs Int

get (Register v) i
=do reg ← vread v

case reg of
Rel base x → return (base+x)
Abs x → return x

add (Register v) i
=vmodify v (\reg → case reg of

Rel base x → Rel base (x+i)
Abs x → Abs (x+i))

set (Register v) i =vmodify v (\reg → Abs i)

The register can be either absolute, Abs, which means it was
set at a certain point, or it can be relative Rel which means
that only additions took place. We can see this clearly in the
code for set which always returns an Abs value, regardless if
it was relative or not. The Rel constructor has two integer
fields, the first one is the base value, while the second one
represents all additions that were done. As we can see in get,
the value of such register is the addition of the base value
to its additions, base+x.

The merge function can now be specified according to our
semantics:

merge main joinee orig
=case joinee of

Abs x → Abs x
Rel x → case main of

Rel base y → Rel base (x+y)
Abs y → Abs (x+y)

If the joinee used a set operation and is absolute, it disre-
gards anything that the main revision did. If its operations
were all relative though, the additions of the joinee are added
to the value of the main revision. There is one more thing
to take care of: in a freshly forked revision, we would like
to always start afresh with a relative register, otherwise it
would always seem as if we set the register. The vcreateMF
function allows us to specify an extra operation that is called
when a versioned variable is first accessed after a fresh fork:

createRegister :: Rev s (Register s)
createRegister

=do v ← vcreateMF merge myfork
return (Register v)

where
myfork reg

=case reg of
Abs x → return (Rel x 0)
Rel base x → return (Rel (base+x) 0)

4. Read- and write-skew

The concurrent revision model is very similar to other trans-
actional systems. In particular, we have shown in earlier
work that concurrent revisions are a generalization of snap-
shot isolation [5]. Snapshot isolation is a guarantee that all
reads made in a transaction will see a consistent snapshot of
the state, and the transaction itself commits only if no up-
dates it has made conflict with any concurrent updates made
since that snapshot. Snapshot isolation has been adopted
by many database systems, such as Oracle, PostgreSQL and
Microsoft SQL Server. The adoption of snapshot isolation
in these systems is mainly because it allows more scalable
implementations than fully serializable transactions, yet it
avoids most of the concurrency anomalies. There are two
anomalies that still plague snapshot isolation, called read-
skew and write-skew [7, 2]. In the next sections we will show
that concurrent revisions do not suffer from this.

4.1 Write skew

We talk about write-skew when two transactions safely
update separate variables x and y, but together violate an
invariant that holds between x and y. As an example of
write-skew we consider a bank account consisting of both
a checking and savings account. The bank will charge a
1 dollar overdraft fee whenever the total balance of the
accounts goes below zero. It is fine if only one of the accounts
drops below zero, as long as the total is still positive. Below
is a short example program (given by Fekete et al.[7]) that
demonstrates write-skew:

testWriteSkew :: (Int,Int)
testWriteSkew

=revisioned $
do acc ← createAccount 70 80

r1← fork (withdrawSaving acc 100)
r2← fork (withdrawChecking acc 100)
join r1
join r2
balance acc

The call createAccount savings checking creates a new bank
account with the specified amounts for the savings and
checking.1 The customer then initiates two seperate transac-
tions that both withdraw 100 dollars. Note that each trans-
action by itself should not cause an overdraft fee, but taken
together the total balance becomes negative. In a system
based on snapshot isolation the system will not charge an
overdraft fee since each transaction sees a positive total bal-
ance [7]. Not so with concurrent revisions where the final
account balance returned is (−31,−20).

For concurrent revisions, we can use a custom merge
function to charge an overdraft fee when the total balance
becomes negative. To do so, it is important to version the

1 How nice would it be to have such an API available!



savings and checking account together: since there is a
condition that spans both accounts, they must be versioned
as one such that concurrent changes to the separate accounts
are properly detected as a conflict (and the merge function
gets called). We can implement the abstract Account data
type as:

data Account s =Account (Versioned s (Int,Int))

withdrawSaving (Account v) i
=vmodify v (\(checking,saving) → (checking,saving−i))

withdrawChecking (Account v) i
=vmodify v (\(checking,saving) → (checking−i,saving))

balance (Account v) =vread v

createAccount checking saving
=do v ← vcreateM merge (checking,saving)

return (Account v)
where

merge (main1,main2) (joinee1,joinee2) (orig1,orig2)
= let new1=main1+ (joinee1 − orig1)

new2 =main2+ (joinee2 − orig2)
in if (new1 + new2< 0 && main1+ main2 > 0)

then (new1−1,new2 )
else (new1,new2 )

Since all deposits and withdrawals are cumulative, we use
the same merge function for each account as for the Counter
example. In the merge function, we first calculate the new
balances using this merge strategy. After that calculation,
we can easily check if the balance in the main revision
became negative because of the join, and in that case we
charge an overdraft fee.

4.2 Read skew

Read-skew is slightly more insidious that the write-skew.
Again, we take an example from Fekete et al.[7] to illustrate
the concept:

testReadSkew :: ((Int,Int),(Int,Int))
testReadSkew

=revisioned $
do acc ← createAccount 0 0

r1← fork (depositSaving acc 20)
r2← fork (withdrawChecking acc 10)
join r1
r3← fork (balance acc)
bal1← join r3
join r2
bal2 ← balance
return (bal1,bal2 )

The program creates an empty account, and then initiates
two concurrent transactions: one deposits 20 dollar on the
saving account, while the other withdraws 10 dollar from the
checking account. As we are unsure whether an overdraft fee
is charged, we fork a third transaction to check the balance
on the account bal1 which will be (0,20). Finally, we join on
the withdrawal transaction.

In a system based on snapshot isolation, the withdrawal
transaction sees a balance of (0,0) and will therefore charge
an overdraft fee (since the concurrent deposit is not seen
yet). Unfortunately though, the customer can show a receipt
of the intermediate positive balance of (0,20) and cause
embarrassment. This form of read-skew is addresssed again

through the merge function in concurrent revisions. Using
our above implementation, the overdraft fee is only charged
when merging into the main revision and since the balance
never becomes negative, no overdraft fee is charged and the
final result is ((0,20),(−10,20)) as expected.

5. Beyond purity: I/O and revisions

Untill now, we have restricted ourselves to purely functional
concurrent revisions. This had the obvious advantage of be-
ing able to safely convert revisional computations into pure
values. However, in contrast to many other concurrency
models, concurrent revisions integrate well with I/O opera-
tions. Now, obviously, we cannot just add a liftIO operation:

liftIO :: IO α→ Rev s α – wrong!

since that would allow us to run I/O operations inside a
supposedly pure revisional computation, i.e.

unsafePerformIO io =revisioned (liftIO io) – wrong!

What we need to do is add an extra type parameter to the
revisional monad that captures whether the revision is Pure
or did IO:

data Pure :: ∗ → ∗ – abstract
data Rev m s α

revisioned :: (∀s. Rev Pure s α) → α
revisionedIO :: (∀s. Rev IO s α) → IO α

liftIO :: IO α→ Rev IO s α
liftRev :: Rev m s α→ Rev IO s α

Other operations keep the type signatures they had and
just become polymorphic in their monadic parameter, for
example:

fork :: Rev m s α→ Rev m s (RevisionTask s α)
join :: RevisionTask s α→ Rev m s α

vcreate :: α→ Rev m s (Versioned s α)
vread :: Versioned s α→ Rev m s α
(=:) :: Versioned s α→ α→ Rev m s ()

Note how the type of fork enforces that the forking revi-
sion has the same monadic parameter as the forked revi-
sion: indeed, forking off a revision that performs IO opera-
tions should bring yourself into the Ref IO s monad too. In
contrast, the join operation does not have such a constraint.

Using the liftIO function, we can now perform arbitrary
I/O operations inside revisions (but we cannot convert such
revisional compuations into pure values again). Usually, such
extension wreaks havoc for many transactional concurrency
models. For example, software transactional memory relies
on rollback which cannot be supported for general I/O
operations.

Concurrent revisions play very well with I/O operations:
since no revision ever rolls back, I/O operations behave
just as we would expect when running multiple threads.
Of course, when using I/O operations, we lose the guaran-
tee of determinancy but all versioned variables and merging
behaves just like it did before. In particular, if concurrent
I/O operations are isolated from each other, ie. do not take
global locks, or use global variables, then a revisional com-
putation is still determinstic with respect to any particular
scheduling. If the I/O operations happen to be deterministic
themselves, the outcome of a revisional computation is also
deterministic.



module Asteroids where
import Random
import Revision

— Types ———————————————
type Pos =(Int,Int)
type Player s =Versioned s Pos
type Asteroid s =Versioned s Pos

— Constants —————————————
maxX =5
maxY =4
coords =[[(x,y) | x ← [0..maxX]] | y ← [0..maxY]]

initialPlayer =(2,2)
initialAsteroids =[(0,0),(1,1),(2,3),(4,4)]

— Main ———————————————
play :: IO ()
play

=revisionedIO $
do player ← vcreate initialPlayer

asteroids ← mapM vcreate initialAsteroids
turn asteroids player

turn :: [Asteroid s] → Player s → Rev IO s ()
turn asteroids player

=do r1← fork (playerTurn player)
r2← fork (asteroidsTurn asteroids)
r3← fork (wormhole asteroids)
render asteroids player
join r1
join r2
join r3
checkWinner asteroids player

checkWinner asteroids player
=do ps ← mapM vread asteroids

p ← vread player
if (p ‘elem‘ ps)
then liftIO (putStrLn ”You hit an asteroid!”)

else if (p == (0,0))
then liftIO (putStrLn ”You won!”)
else turn asteroids player

— Render ———————————————
render :: [Asteroid s] → Player s → Rev IO s ()
render asteroids player

=do ps ← mapM vread asteroids
p ← vread player
let lines =map (map display) coords

display pos = if p == pos then ’P’
else if pos ‘elem‘ ps then ’∗’
else ’.’

liftIO (mapM putStrLn lines)

— Wormhole ———————————————
wormhole :: [Asteroid s] → Rev IO s ()
wormhole asteroids

=do transport ← pick [False,True]
when transport $

do asteroid ← pick asteroids
pos ← pick (concat coords)
asteroid =: pos

— Asteroid ———————————————
asteroidsTurn :: [Asteroid s] → Rev IO s ()
asteroidsTurn asteroids

=mapM asteroidTurn asteroids

asteroidTurn asteroid
=do moveit ← pick [False,True]

when moveit $
do direction ← pick [left,right,up,down]

move asteroid direction

— Player ————————————————
playerTurn :: Player s → Rev IO s ()
playerTurn player

=do c ← liftIO getChar
case c of

’l’ → move player left
’r’ → move player right
’u’ → move player up
’d’ → move player down
→ return ()

— Moving ————————————————
left (x,y) =(x−1,y)
right (x,y) =(x+1,y)
up (x,y) =(x,y−1)
down (x,y) =(x,y+1)

— update a position variable within the bounds
move :: Versioned s Pos → (Pos → Pos) → Rev m s ()
move vpos adjust

=do old ← vread vpos
let (x,y) =adjust old
if (x < 0 || y < 0 || x > maxX || y > maxY)
then return ()
else vwrite vpos (x,y)

— pick a random element from a list
pick :: [a] → Rev IO s a
pick sample

= liftIO $
do i ← getStdRandom (randomR (1,length sample))

return (sample !! (i−1))

Figure 1. The Asteroids game uses concurrent revisions to concurrently execute the player input routine, the rendering, the
asteroid simulation, and the wormhole simulation.



5.1 The asteroids game

To demonstrate the integration with I/O operations, we are
going to implement a small game. In this game, the player
has to navigate a field with asteroids. The full source code
can be found in Figure 1. For demonstration purposes, we
use simple ascii art to represent the player ship P and the
asteroids *. A typical run of the program looks like:

TestAsteroids> play
*.....
.*....
..P...
..*...
....*.

u
*.....
.*P...
......
..*...
.....*

l
You hit an asteroid!

where the player moved first up (u) and then left (l). Also,
the bottom asteroid moved one field to the right on its own.
The game is turn based, and does four main operations per
turn:

• The playerTurn asks the player to input a direction to
move next.

• The astroidsTurn may randomly move an asteroid one
field.

• The render function renders the current world.

• and finally, the wormhole function sometimes moves an
asteroid from one place to a random other location.

The challenge is now that we would like to execute all four
operations in parallel: ie. render the world, while asking the
user for input, while updating the asteroids, while letting
the wormhole transport asteroids through hyperspace. If
an asteroid is both moved by the asteroidsTurn and the
wormhole, the wormhole should get priority.

Note that this example is not far fetched: in most games
one would like to render the world while doing physics simu-
lation (e.g. moving the asteroids), while at the same time an
opponent on the network may update state randomly (e.g.
our wormhole process). The difficulties in particular are:

• The render phase and the asteroidsTurn/playerTurn
function have a read-write conflict: one reads the position
of all asteroids, while the other may update the position
of the asteroids/player concurrently: we need to ensure
that render sees a consistent snapshot. A pessimistic
locking strategy (e.g. locks) does not help here since we
would need to lock all the asteroids preventing any con-
currency. Similarly, optimistic locking (e.g. STM) would
neither work since the render function would always be
rolled back due to conflicts, effectively serializing again.
Another problem is that render performs observable I/O
operations and rollback may not be possible.

• Similarly, the asteroidsTurn can have a write-write con-
flict with the wormhole if both happen to update the
same asteroid. Here we could use fine-grained locking on

each asteroid but it would be tricky to ensure that up-
dates from the wormhole always get priority.

Concurrent revisions can deal elegantly with the above con-
flicts: there is never a read-write conflict since every revi-
sions is isolated, and the write-write conflicts can be han-
dled through merge functions. In our game, we represent the
player and asteroids simply by versioned variables that hold
a position:

type Pos =(Int,Int)
type Player s =Versioned s Pos
type Asteroid s =Versioned s Pos

As we can see in Figure 1, the main game loop is imple-
mented as:

turn :: [Asteroid s] → Player s → Rev IO s ()
turn asteroids player

=do r1← fork (playerTurn player)
r2← fork (asteroidsTurn asteroids)
r3← fork (wormhole asteroids)
render asteroids player
join r1
join r2
join r3
checkWinner asteroids player

In particular, we fork a revision for every concurrent opera-
tion, and do the render task on the main revision (mainly be-
cause UI operations are usually tied to the main OS thread).
Note how we prioritize wormhole updates over updates in
the asteroidsTurn by joining the wormhole revision r3 last.
This works because we implemented the asteroid positions
as regular versioned variables where the writes of the joinee
win.

And this is it! In each of the concurrent operations,
playerTurn, asteroidsTurn, wormhole, and render, we never
have to consider any concurrent interactions (due to isola-
tion), and we can reason about each as if they are executed
sequentially.

5.2 Non-deterministic join

Since our game with the random asteroid movements is
rather hazardous, it would be nice to add a continuous save
game feature, where the game state is saved to disk. Of
course, such operation may take quite some time so we need
to run it concurrently. However, saving to disk may take so
much time that we may not want to even join on it within
a turn. What we need it is tryjoin operation that only joins
on a revision once its done. Its type signature is:

tryjoin :: RevisionTask s α→ Rev IO s (Maybe α)

The tryjoin function returns a Maybe type depending on
whether it succeeded in joining or not. The monadic param-
eter of the revision monad must be IO now since tryjoin is
non-deterministic and may depend on how the threads were
scheduled.

To implement continuous saving of the game we pass
in an extra revision handle saver0 that correspond to the
concurrent revision that saves the game. Whenever it is
done, we immediately fork a new save revision again:

turn asteroids player saver0
=do ... – fork/join as before

done ← tryjoin saver0
saver1 ← case done of

Nothing → return saver0



Just → fork (saveGame asteroids player)
checkWinner asteroids player saver1

The saveGame function simply saves the game state to a
temporary file:

import System.IO
import Control.Exception
...
saveGame :: [Asteroid s] → Player s → Rev IO s ()
saveGame asteroids player

=do ps ← mapM vread asteroids
p ← vread player
liftIO $ do ( ,h) ← openTempFile ”.” ”save”

mapM (hPutStrLn h) (map show (p:ps))
‘finally‘ hClose h

Just like before, the saveGame function can be reasoned
about without considering any concurrent interactions, and
it will always save games in a consistent state.

6. Implementation

We have implemented concurrent revisions as a Haskell li-
brary [14]. The implementation closely follows the algo-
rithm described in earlier work[3]. Even though we have
seen that concurrent revisions are deterministic, the inter-
nal algorithm relies heavily on destructive updates on mu-
table variables (MVar ’s and IORef’s) and threads (forkIO).
As such, we believe a more efficient implementation might
be possible by supporting versioned variables directly in the
runtime system. Since the basic algorithm is described in
detail already [3], we concentrate in this paper mostly on
the essential data structures and parts where the Haskell
implementation differs.

Basic versioned variables are implemented as maps from
version numbers to values. A versioned variable can also
optionally store a set of custom operations Ops:

import qualified Data.Map as M

data Versioned s a =Versioned (MVar (VersionMap a))
(Maybe (Ops a))

type Version =Int
type VersionMap a =M.Map Version (IORef a)

Clearly, the implementation of the version map is rather in-
efficient by storing the entire map inside one MVar . More se-
riously, it prevents true concurrent access to such variables.
A better implementation would be to store the version map
as a mutable array of values indexed by versions:

data Versioned s a
=Versioned (IOArray Int (Version,a)) ...

Since each revision will only access values of its version,
all revisions can now concurrently access this array without
any synchronization. There is one catch though: the size
of the version map can become as large as the maximal
number of concurrent writes to such versioned variables.
Since this is not statically known, we may need to expand
the array at runtime. Since this involves copying the array
to a new (larger) array, we would have to synchronize all
accesses again. The trick to circumvent this is to use nested
arrays: one outer array which is only read by all revisions
and which can be safely expanded, and inside it small fixed
length arrays that contain the versioned values:

data Versioned s a

=Versioned (IOArray Int FixedArray) ...
type FixedArray =IOArray Int (Version,a)

By choosing the size of the fixed length arrays to be 4, all
elements in the nested array can be efficiently accessed by
using modulo operations implemented using shifts. Unfor-
tunately, the current implementation of IOArray induces a
bit too much overhead in terms of space and time to make
the nested array implementation worthwhile, even though
it is more scalable. For the prototype library, we therefore
opted to use the initial simple MVar implementation. If the
versioned variables were implemented in the runtime sys-
tem, we could of course use the more scalable nested array
implementation.

In the implementation, the basic unit is not a revision,
but a segment. These are basically the line segments of
revision diagrams. What we call a revision is really a set of
segments along a downward path. A revision therefore stores
a reference to its root segment, and an updateable reference
to its current segment (in which context it executes):

data Revision s =Revision{ revRoot :: Segment s
, revCur :: IORef (Segment s)
}

Note how the current segment is stored in an IORef which
signifies that this reference is never accessed concurrently (or
we would have used an MVar instead). Segments are defined
as:

data Segment s
=Segment{ segParent :: Segment s

, segVersion :: Version
, segRefCount :: MVarInt
, segWritten :: IORef [VersionedAny s]
}

Segments have a parent and a unique version. The segRefCount
field holds the reference count which enables us to garbage
collect revisions and versions of variables that are no longer
needed. We use an MVar for the reference count since it can
be accessed concurrently. Also, a segment maintains a list
of versioned variables that were written in order to detect
conflicts at join time. In order to have a homogeneous list
of the versioned variables we need to use an existential type
to hide the value type:

data VersionedAny s =∀α.VersionedAny (Versioned s α)

We now have enough machinery to understand the imple-
mentation of the creation of versioned variables:

vcreate :: α→ Rev m s α
vcreate x

=unsafeLiftIO $
do segment ← currentSegment

ref ← newIORef x
let vmap =M.singleton (segVersion segment) ref
mvar ← newMVar vmap
let versioned =Versioned mvar Nothing
modifyIORef (segWritten segment)

(\ws → VersionedAny versioned : ws)
return versioned

The creation function first gets the current segment and
allocates a fresh version map with one entry indexed by the
version of the current segment. It then adds itself to the
write list of the current segment and returns. Two questions
remain: where does the current segment come from and what
about unsafeLiftIO?



The current segment is a thread-local variable. Every
thread that we create will have an associated revision, which
points to the current segment. To implement the thread local
revision references, we unfortunately needed to resort to the
use of unsafePeformIO in order to implement a global map
from thread id’s to revisions. Again, this may be improved if
revisions would be part of the Haskell runtime system. The
implementation of currentSegment now becomes:

revisions :: MVar (M.Map ThreadId (Revision s))
revisions =unsafePerformIO (newMVar M.empty)

currentRevision
=do map ← readMVar revisions

tid ← myThreadId
case M.lookup tid map of

Just revision → return revision
Nothing → error ”No current revision”

currentSegment
=do rev ← currentRevision

readIORef (revCur rev)

Of course, these functions should not be exposed directly to
the user. Just like the unsafeLiftIO function which lifts any
IO operation into a pure revision monad:

data Rev (m :: ∗→ ∗) s a =Rev (IO a)

unsafeLiftIO :: IO a → Rev m s a
unsafeLiftIO io =Rev io

liftIO :: IO a → Rev IO s a
liftIO io =Rev io

liftRev :: Rev m s a → Rev IO s a
liftRev (Rev io) =Rev io

As we can see, the revision monad is just a wrapper around
the IO monad. Since both s and m are phantom types [15],
we need to annotate the m parameter with its kind ∗ → ∗.
Executing the revision monad is now straightforward:

revisioned :: (∀s. Rev Pure s a) → a
revisioned action

=unsafePerformIO (revisionedIO (liftRev action))

revisionedIO :: (∀s. Rev IO s a) → IO a
revisionedIO (Rev io)

=do rev ← createRevision nullSegment
bindRevision rev – sets the thread local revision
io ‘finally‘ releaseRevision rev – .. and execute

It is somewhat unsatisfying that we need to resort again to
the use of unsafePerformIO in the revisioned function. The
reason is that even though we can prove that the exposed
functionality of concurrent revisions is safe and determinis-
tic, the internal implementation relies heavily on imperative
updates and thread synchronization. This is not entirely un-
expected though: for efficiency reasons, any pure functional
programming language is usually itself implemented using
imperative graph rewriting techniques.
The final data type to show is that of a revision handle:

data RevisionTask s α
=RevisionTask (MVar (Revision s, Exc α))

(Chan (Revision s)) ThreadId

data Exc α=Ok α | Exc SomeException

A RevisionTask contains a ThreadId of the thread that ex-
ecutes the revision (to implement kill) and an MVar that
holds both the revision and the final result of the computa-
tion, which is either the return value or an exception. The
channel field (Chan) is used to implement distributed client-
server revisions which we do not discuss in this paper. The
fork operation creates a fresh revision, a fresh empty MVar
and forks a new thread to execute the action. At the end
of the action, the fork uses putMVar to put the created re-
vision and final result into the MVar . The join operation
simply blocks on this MVar to wait till the revision is done:

join :: RevisionTask s a → Rev m s a
join (RevisionTask done )

=unsafeLiftIO $
do (joinee,exc) ← takeMVar done

putMVar done (error ”You can only join once”)
case exc of

Exc e → throw e – rethrow exeptions
Ok x → do merge joinee

return x

When the revisional computation is done and takeMVar
returns, the modifications stored in the joinee revision are
merged back in the current revision using merge. To handle
the erronous situation where one tries to join more than once
on a revision, we put back an error value into the MVar , such
that any subsequent join on the same revision handle throws
an exception.

7. Related work

Haskell and concurrency Haskell has a rich history of
integrating concurrency: in a pure language, one can in prin-
ciple execute any expression concurrently without chang-
ing the semantics. Parallel Haskell adds the par combinator
where the programmer can specify when there are good op-
portunities for parallel execution [26, 16, 17, 27] More recent
work on purely functional concurrency has concentrated on
nested data parallelism with a focus on efficient multi-core
execution [22, 6].

In contrast with purely functional parallelism, Concur-
rent Haskell supports ‘regular’ stateful concurrency with
concurrent threads in the IO monad where data is shared
through MVar ’s and asynchronous channels [21] More re-
cently, the work on software transactional memory [9, 20]
showed how transactional memory computations (in the
STM monad) could be safely combined with IO threads.

Transactions Just as we do with revisions, proponents
of transactions have long recognized that providing strong
guarantees such as serializability [19] or linearizability [11]
can be overly conservative for some applications, and have
proposed alternate guarantees such as multi-version concur-
rency control [18] or snapshot isolation (SI) [2, 7, 25]. In
fact, revisions can be understood as a natural generaliza-
tion of snapshot isolation, extended to handle resolution of
write-write conflicts following some policy (as discussed in
Section 4), and to support nesting. The relationship to snap-
shot isolation is discussed more formally in [5].

Isolation types Isolation types are similar to Cilk++ hy-
perobjects [8]: both use type declarations by the program-
mer to change the semantics of shared variables. Cilk++
hyperobjects may split, hold, and reduce values. Although
these primitives can (if properly used) achieve an effect sim-
ilar to revisions, they only provide determinacy guarantees



under certain restrictions. For instance, the following pro-
gram may finish with x equal to either 2 or 1:

reducer opadd<int> x =0;
cilk spawn { x++; }
if (x == 0) x++;
cilk sync

because reading the hyperobject x (versus incrementing)
violates one of the determinacy contraints. Also, Cilk++
tasks follow a more restricted concurrency model where
the parallelism can be described as series-parallel directed
acyclic graphs, or SP-dags [24].

Isolation types are also similar to the idea of transactional
boosting, coarse-grained transactions, and semantic commu-
tativity [10, 12, 13], which eliminate false conflicts by raising
the abstraction level. Isolation types go farther though: for
example, the type Versioned s α does not just avoid false
conflicts, but resolves true conflicts deterministically (in a
not necessarily serializable way).

8. Conclusion and Future work

We have shown how concurrent revisions and Haskell are a
great match, where the type system can guarantee that con-
current programs that use mutable variables can be turned
safely into pure values again (where possible). Moreover, the
seamless integration with IO operations makes the model
quite attractive to implement interactive and reactive pro-
grams that mutate shared state.

What concurrent revisions described in this paper can-
not do well is perform computations that rely on arbitra-
tion: like a producer-consumer program or the Santa Claus
problem [20]. We are currently working on extending the
revision model to support such applications in the form of
a distributed client-server model. An initial version can be
found as part of the library [14].
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