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Abstract

In this paper, we consider the problem of preserving privacy in the context of online learn-
ing. Online learning involves learning from data in real-time, due to which the learned
model as well as its predictions are continuously changing. This makes preserving privacy
of each data point significantly more challenging as its effect on the learned model can be
easily tracked by observing changes in the subsequent predictions. Furthermore, with more
and more online systems (e.g. search engines like Bing, Google etc.) trying to learn their
customers’ behavior by leveraging their access to sensitive customer data (through cookies
etc.), the problem of privacy preserving online learning has become critical.

We study the problem in the framework of online convex programming (OCP)—a pop-
ular online learning setting with several theoretical and practical implications—while using
differential privacy as the formal measure of privacy. For this problem, we provide a generic
framework that can be used to convert any given OCP algorithm into a private OCP algo-
rithm with provable privacy as well as regret guarantees (utility), provided that the given
OCP algorithm satisfies the following two criteria: 1) linearly decreasing sensitivity, i.e., the
effect of the new data points on the learned model decreases linearly, 2) sub-linear regret.
We then illustrate our approach by converting two popular OCP algorithms into corre-
sponding differentially private algorithms while guaranteeing Õ(

√
T ) regret for strongly

convex functions. Next, we consider the practically important class of online linear regres-
sion problems, for which we generalize the approach by Dwork et al. (2010a) to provide a
differentially private algorithm with just poly-log regret. Finally, we show that our online
learning framework can be used to provide differentially private algorithms for the offline
learning problem as well. For the offline learning problem, our approach guarantees better
error bounds and is more practical than the existing state-of-the-art methods (Chaudhuri
et al., 2011; Rubinstein et al., 2009).

1. Introduction

With the continuous increase in the amount of computational resources available, modern
websites and online systems can now, in real time, process large amounts of potentially
sensitive information gathered from their customers. Although in most cases, these websites
intend to just leverage real-time learning using their customers’ data, it might actually
compromise their customers’ privacy.
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For example, consider the following scenario in the context of sponsored search. Spon-
sored search advertisements (ads) are served with organic search results and form a major
source of revenue for search engines. To serve these ads effectively, search engines attempt
to learn the relevance of an ad for a user. For this purpose, search engines typically store
users’ profile information, e.g., gender of the user. Now, suppose a male user clicks an ad,
through which the search engine learns the rule “males like this ad”. This rule is directly
observable by the corresponding advertiser whose ad was clicked. To do this, the advertiser
makes two profiles, one that reports the gender as male and the other one as female. He
now compares the rank of his ad presented by the search engine to each of his profile and
observes that the ad is presented at the top of other ads for the male profile. Also, the
advertiser can obtain the IP address of the user, as the user clicked the ad. Thus, he can
make a direct association between the user and his gender, compromising the user’s pri-
vacy. Similar examples can be constructed for several other online learning domains such as,
online portfolio management (Kalai and Vempala, 2005), online linear prediction (Hazan
et al., 2007) etc.

In this paper, we address privacy concerns in online learning scenarios similar to the
examples mentioned above. Specifically, we provide a generic framework for privacy preserv-
ing online learning. We use differential privacy (Dwork et al., 2006b) as the formal notion
of privacy, and use online convex programming (OCP) (Zinkevich, 2003) as the formal on-
line learning model. Note that OCP is a popular online learning paradigm and includes
several online learning problems faced by real-life systems. Examples include online logistic
regression, online linear regression etc.

Differential privacy (DP) is a popular privacy notion with a sound cryptographic foun-
dation and has recently been used in the context of several learning problems (Chaudhuri
et al., 2011; Williams and McSherry, 2010; Rubinstein et al., 2009). At a high level, a
differentially private learning algorithm guarantees that its output does not change “too
much” because of perturbations in any individual training data point. Now, a trivial way
to ensure this is by providing a random/constant output that is completely independent
of the input. However, such an output does not have any “utility” or “goodness” such as
bounded generalization error.

Hence, a differentially private algorithm is measured with respect to two criteria: 1)
Privacy and 2) Utility. Most of the existing results in differentially private learning have
focused on the offline setting only, where all the training data is available beforehand.
Hence, both privacy and utility need to be argued only over one final output.

In contrast, in the online learning setting, data arrives online1 (e.g. user queries and
clicks) and the algorithm has to provide an output (e.g. relevant ads) at each step. Hence,
the number of outputs produced is the same as the size of the entire dataset. To guarantee
differential privacy, one has to analyze the privacy of the complete sequence of outputs
produced, thereby making privacy preservation a significantly harder problem. For utility,
we need to show that asymptotically the algorithm is at least as good as the optimal offline
solution, i.e., the algorithm has sub-linear regret.

In this paper, we study both privacy and utility aspects of privacy preserving online
learning in the online convex programming (OCP) model. The goal is to provide differ-

1. At each time step one data entry arrives.
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entially private OCP algorithms with sub-linear regret. To this end, we provide a generic
framework to convert any OCP algorithm into a differentially private algorithm with sub-
linear regret, provided that the algorithm satisfies two criteria: a) linearly decreasing sen-
sitivity (see Definition 3), b) sub-linear regret.

Next, we instantiate our generic framework with two popular OCP algorithms: Implicit
Gradient Descent (IGD ) by Crammer et al. (2006); Kulis and Bartlett (2010) and General-
ized Infinitesimal Gradient Ascent (GIGA ) by Zinkevich (2003). Our algorithms guarantee
differential privacy as well as Õ(

√
T ) regret for a fairly general class of strongly convex

functions with Lipschitz continuous gradients. In fact, we show that IGD can be used with
our framework for non-differentiable functions as well. We also show that if the cost func-
tions are quadratic (e.g. online linear regression), we can use another OCP algorithm called
Follow The Leader (FTL) along with a generalization of a technique by Dwork et al. (2010a)
to guarantee O(ln1.5 T ) regret while preserving privacy.

Finally, our generic framework can be used to obtain privacy preserving algorithms for a
large class of offline learning problems as well. In particular, we show that our private OCP
framework can be used to obtain generalization error bounds for various offline learning
problems using techniques of Kakade and Tewari (2008) (see Section 5). Our differentially
private offline learning framework provide better error bounds and is more practical than
the existing state-of-the-art methods (Chaudhuri et al., 2011; Rubinstein et al., 2009).

1.1. Our Contributions

Following are the main contributions of this paper:

1. We formalize the problem of differentially private OCP, and provide a generic frame-
work for the same with provable privacy and utility (regret) guarantees. (see Section
3).

2. We instantiate our framework with two popular OCP algorithms: Implicit Gradient
Descent (IGD) and Generalized Infinitesimal Gradient Ascent (GIGA). For both the
algorithms we provide privacy guarantees and Õ(

√
T ) regret. To guarantee privacy, we

need to show that the effect of any data entry on the output of any of the algorithms
(at time step t) decreases linearly in t. This stability bound is of independent interest
and has implications for connections between online learning and stability (Ross and
Bagnell, 2011; Poggio et al., 2011).

3. For the special case of privacy preserving online linear regression problem, we improve
the regret bound to O(ln1.5 T ) by exploiting techniques from Dwork et al. (2010a).

4. In Section 5 we show that our differentially private framework for OCP can be used to
solve a large class of offline learning problems as well, for which our method provides
better guarantees than the existing state-of-the-art results (Chaudhuri et al., 2011;
Rubinstein et al., 2009).

5. Finally, through empirical experiments on benchmark datasets, we demonstrate prac-
ticality of our algorithms for two popular learning problems: online linear regression
and online logistic regression (see Appendix G).
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1.2. Related Work

As more and more personal data is being digitized, privacy has become a critical issue. Over
the years, several ad-hoc privacy notions have been proposed, however, most of them stand
broken now. For example, de-anonymization of the Netflix challenge dataset by Narayanan
and Shmatikov (2008). In a seminal work, Dwork et al. (2006b) proposed differential pri-
vacy, a cryptography inspired privacy notion with solid theoretical foundation. This notion
is now accepted as the standard notion of privacy, and in this work we adhere to it for our
privacy guarantees.

Recently, several differentially private algorithms have been developed for learning prob-
lems (Blum et al., 2008; Chaudhuri et al., 2011; Williams and McSherry, 2010; Manas Pathak
and Raj, 2010; Rubinstein et al., 2009). Among these, the works by Chaudhuri et al. (2011);
Rubinstein et al. (2009); Williams and McSherry (2010) are the most related as they con-
sider a large class of offline learning problems that can be written as regularized empirical
risk minimization (ERM) problems with convex loss functions. In particular, Chaudhuri
et al. (2011); Rubinstein et al. (2009) proposed a differentially private method that ensures
privacy by either adding noise to the optima of the corresponding ERM or by perturbing
the ERM itself. In both these cases, the privacy guarantees depend on the promise that
the exact minimum to the underlying optimization problem is obtained, which is unlikely
for several practical problems. In contrast, Williams and McSherry (2010) proposed a noisy
gradient descent method to optimize ERM. Although their method maintains differential
privacy at each gradient descent step, it fails to provide any convergence guarantees. In-
terestingly, our online learning techniques can be applied to this offline learning problem
as well. In fact, our method provides better error bounds and is more practical than the
existing methods (see Section 5).

As mentioned earlier, most of the existing work in differentially private learning has
been in the offline setting. One notable exception is the work of Dwork et al. (2010a),
that considers the problem of preserving privacy in the experts setting. In particular, they
provide a differentially private algorithm for experts framework that has Õ(

√
T ) regret.

However, their results are restricted to the experts setting only, and it is not clear how their
techniques can be generalized to the general class of OCP problems.

In a related line of work, there have been a few results that use online learning techniques
to obtain differentially private algorithms (Hardt and Rothblum, 2010; Dwork et al., 2010b;
Gupta et al., 2011). In particular, Hardt and Rothblum (2010); Gupta et al. (2011) used
the experts framework to obtain a differentially private algorithm for answering adaptive
counting queries on a dataset. We stress that although these methods use online learning
techniques, they are designed to handle offline problems only where the dataset is fixed and
is known in advance.

2. Preliminaries

2.1. Online Convex Programming

Online convex programming (OCP ) is one of the most popular and powerful paradigms
in the online learning setting. OCP can be thought of as a game between a player and an
adversary. At each step t, the player selects a point xt ∈ Rd from a convex set C. Then,
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the adversary selects a convex cost function ft : Rd → R and the player has to pay a cost of
ft(xt). An OCP algorithm A maps a function sequence F = 〈f1, f2, . . . , fT 〉 to a sequence
of points X = 〈x2,x3, . . . ,xT+1〉 ∈ CT , i.e., A(F ) = X. Now, the goal of the player (or
the algorithm) is to minimize regret, i.e., the total cost incurred when compared to the
optimal offline solution x∗ selected in hindsight, i.e., when all the functions have already
been provided. Formally,

Definition 1 (Regret) Let A be an online convex programming algorithm that selects a
point xt ∈ C at the t − 1-th iteration. Let ft : Rd → R be a convex cost function served
at the t-th iteration. Then, the regret RA of A over T iterations is given by: RA(T ) =∑T

t=1 ft(xt)−minx∗∈C
∑T

t=1 ft(x
∗).

Several OCP algorithms exist in the literature that guarantee O(
√
T ) regret for bounded

Lipschitz functions ft and O(lnT ) regret for strongly convex functions ft (Kulis and Bartlett,
2010; Zinkevich, 2003; Kakade and Shalev-Shwartz, 2008).

2.2. Differential Privacy

We now formally define the notion of differential privacy in the context of our problem.

Definition 2 ((ε, δ)-differential privacy Dwork et al. (2006b,a)) Let F = 〈f1, f2, . . . , fT 〉
be a sequence of convex functions. Let A(F ) = X, where X = 〈x1,x2, . . . ,xT 〉 ∈ CT be
T outputs of the OCP algorithm A when applied to F . A randomized OCP algorithm A is
(ε, δ)-differentially private if for any two function sequences F and F ′ that differ in at most
one function entry, and for all S ⊂ CT the following holds:

Pr[A(F ) ∈ S] ≤ eε Pr[A(F ′) ∈ S] + δ

Intuitively, the above definition means that changing any ft ∈ F, t ≤ T to some other
function f ′t will not modify the output sequence X by a large amount. If we consider each
ft to be some information or data point associated with an individual, then the definition
above states that the presence or absence of that individual’s entry in the dataset will not
affect the output by too much. Hence, the output of algorithm A will not reveal any extra
information about the individual. Privacy parameters (ε, δ) decide the extent to which an
individual’s entry affects the output; lower values of ε and δ imply higher level of privacy.

2.3. Notation

F = 〈f1, f2, . . . , fT 〉 denotes the function sequence given to an OCP algorithm A and
A(F ) = X s.t. X = 〈x2,x3, . . . ,xT+1〉 ∈ CT represents output sequence when A is applied
to F . We denote the subsequence of functions F till the t-th step as Ft = 〈f1, . . . , ft〉.
C ⊆ Rd, denotes a convex set in d dimensions. Vectors are denoted by bold-face symbols
(e.g., x), matrices are represented by capital letters (e.g., M). xTy denotes the inner
product between x and y. ‖M‖2 denotes the spectral norm of matrix M and is the largest
eigenvalue of M .

Typically, α is the minimum strong convexity parameter of any ft ∈ F . Similarly, L
is the largest Lipschitz constant of any ft ∈ F and LG is the largest Lipschitz constant
of the gradient of any ft ∈ F . Recall that a function f : C → R is α-strongly convex, if

5



Jain Kothari Thakurta

∀ x,y ∈ C the following holds: f(γx + (1 − γ)y) ≤ γf(x) + (1 − γ)f(y) − αγ(1−γ)
2 ||x −

y||22, 0 ≤ γ ≤ 1. Also recall that a function f is L-Lipschitz, if ∀ x,y ∈ C the following
holds: |f(x) − f(y)| ≤ L||x − y||2. Function f is LG-Lipschitz continuous gradient if
|| 5 f(x)−5f(y)||2 ≤ LG||x− y||2, ∀x,y ∈ C.

At time-step t, non-private and private versions of any OCP algorithm output xt+1 and
x̂t+1, respectively. x∗ denotes the optimal offline solution, that is x∗ = argminx∈C

∑T
t=1 ft(x).

RA(T ) denotes the regret of an OCP algorithm A when applied for T steps.

3. Differentially Private Online Convex Programming

In this section we first present our differentially private framework for solving OCP prob-
lems, and provide privacy as well as regret guarantees for our framework. Then, in Ap-
pendix B, we instantiate our framework with the Implicit Gradient Descent (IGD) (Kulis
and Bartlett, 2010) algorithm and provide regret, privacy guarantees for the same. We
also instantiate our framework with the Generalized Infinitesimal Gradient Ascent (GIGA)
(Zinkevich, 2003) algorithm (see Appendix C).

Recall that a differentially private OCP algorithm should not produce significantly dif-
ferent sequences of outputs (X = 〈x2, · · · ,xT+1〉) for input function sequences F and F ′,
where F and F ′ differ in exactly one cost function. A trivial way to ensure it is by se-
lecting output sequence X independently of the input cost functions F . However, such an
“algorithm” can have O(T ) regret.

To discard such bad solutions, we require a differentially private OCP algorithm to have
both: a) Privacy: (ε, δ)-differential privacy, and b) Utility: sub-linear regret.

Our generic framework can transform any given OCP algorithm, A, into a differentially
private OCP algorithm that satisfies the above given requirements. However, we require
A to have sub-linear regret and low sensitivity, i.e., A should not be very sensitive to any
particular cost function in the input sequence. We now formalize this notion of sensitivity:

Definition 3 (L2-sensitivity (Dwork et al., 2006b; Chaudhuri et al., 2011)) Let F, F ′

be two function sequences differing in at most one entry, i.e., at most one function is dif-
ferent in the two sequences. Let xt+1 = A(F )t be the t-th output of A when supplied
F , and similarly, xt+1 = A(F ′)t is the t-th output of A for input sequence F ′. Then
sensitivity of the algorithm A : F → CT , at the t-th time-step is given by: S(A, t) =
supF,F ′ ||A(F )t −A(F ′)t||2.
Using this definition of sensitivity, we now state the assumptions that A should satisfy:

• L2-sensitivity: The L2-sensitivity of the algorithm A should decay linearly with time,
i.e.,

S(A, t) ≤ λA
t
, (1)

where λA > 0 is a constant depending only on A, L and α, i.e., the Lipschitz constant
and the strong convexity parameter of the functions in F .
• Regret bound RA(T ): Regret of A is assumed to be sub-linear in T , i.e.,

RA(T ) =

T∑
t=1

ft(xt)− min
x∗∈C

T∑
t=1

ft(x
∗) = o(T ). (2)
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Algorithm 1 Private OCP Method (POCP)

1: Input: OCP algorithm A, cost function sequence F = 〈f1, · · · , fT 〉 and the convex set
C

2: Parameter: privacy parameters (ε, δ)
3: Choose x1 and x̂1 randomly from C
4: for t = 1 to T − 1 do
5: Cost: Lt(x̂t) = ft(x̂t)
6: OCP Update: xt+1 ← A(〈f1, . . . , ft〉, 〈x1, . . . ,xt〉, C)
7: Noise Addition: x̃t+1 ← xt+1 + bt+1, bt+1 ∼ N (0d, β

2

t2
Id),

where β = λAT
0.5+c

√
2
ε

(
ln T

δ +
√
ε

T 0.5+c

)
and c =

ln 1
2ε

ln(2/δ)

2 lnT

8: Output x̂t+1 = argminx∈C
(
‖x− x̃t+1‖22

)
9: end for

A natural question to ask is whether there exists an OCP algorithm A that satisfies both
the conditions above. In Appendix B and Appendix C, we show that both IGD and GIGA
satisfy these conditions. In fact, recent results by Ross and Bagnell (2011); Poggio et al.
(2011) seem to indicate a close connection between sensitivity and regret for online learning
algorithms . We leave further investigation of the interplay between sensitivity and regret
as a topic for future research.

Now, given A that satisfies both (1) and (2), we transform it into a private algorithm
by perturbing xt+1 (output of A at t-th step) by a small amount of noise, whose magnitude
is fixed by the noise parameter β in Algorithm 1. Let x̃t+1 be the perturbed output which
might lie outside the convex set C. As OCP requires each output to lie in C, we project x̃t+1

back to C and output the projection x̂t+1. Note that our Private OCP (POCP) algorithm
also stores the “uncorrupted” iterate xt+1, which is used in the next step. See Algorithm 1
for a pseudo-code of our method.

Now, using the above two assumptions along with concentration bounds for Gaussian
noise, we obtain privacy and regret guarantees for our Private OCP algorithm. Using the
sensitivity assumption, it is easy to prove differential privacy for the output of any fixed
time step. However, we need to provide differential privacy jointly over all time steps, which
is the main technical novelty of our work. See Sections 3.1 and 3.2 for a detailed analysis
of privacy and regret guarantees, respectively.

3.1. Privacy Analysis for POCP

Under the assumption (1), changing one function in the cost function sequence F can lead
to a change of at most λA/t in the t-th output of A. Intuitively, adding a noise of the
same order should make the output of Algorithm 1 at the t-th step “almost independent”
of any fixed cost function and hence, differentially private. We make this idea precise in the
following lemma.

Lemma 1 Let A be an OCP algorithm that satisfies the sensitivity assumption (1) and let
λA be the sensitivity parameter. Fix the noise parameter in Algorithm 1 as
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β = λAT
0.5+c

√
2
ε

(
ln T

δ +
√
ε

T 0.5+c

)
for c > 0. Then, the output at the t-th step of the Algo-

rithm 1, x̂t+1, is (
√
ε

T 0.5+c ,
δ
T )-differentially private.

See appendix A.1 for a proof of the above lemma.

The above lemma shows that the output at each step of Algorithm 1 is (
√
ε

T 0.5+c ,
δ
T )-

differentially private. Hence, a simple composition argument guarantees (T 0.5−c√ε, δ)-
differential privacy for all the steps (Dwork and Lei, 2009). Thus, setting c = 0.5 makes
the outputs at every time step (ε, δ)-differentially private. However, this requires that a
noise of variance ∼ O(T/t) be added at each step. This means that the noise added to any
fixed output is much larger than the effect of incoming function ft and thus can lead to an
arbitrarily high regret.

To avoid this problem and obtain better regret bounds, we exploit the interdependence
between the iterates (and outputs) of our algorithm. For this purpose, we use a lemma by
Dwork et al. (2010b, Lemma III.2) that bounds the relative entropy of two random variables
in terms of the L∞ norm of the ratio of their probability densities and also a proof technique
developed by Hardt and Rothblum (2010); Hardt et al. (2010) for the problem of releasing
differentially private datasets.

Now we state the privacy guarantee for Algorithm 1 over all T iterations.

Theorem 1 (POCP Privacy) Let A be an OCP algorithm that satisfies the sensitivity
assumption (1) with sensitivity parameter λA. Then, the POCP algorithm (Algorithm 1)

with the noise parameter β = λAT
0.5+c

√
2
ε

(
ln T

δ +
√
ε

T 0.5+c

)
is (3ε, 2δ)-differentially private

for c =
(ln( 1

2ε
ln 2
δ )

2 lnT .

The proof of this theorem is included in Appendix A.2.

3.2. Utility (Regret) Analysis for POCP

In this section, we provide a generic regret bound analysis for our POCP algorithm (see Al-
gorithm 1). The regret bound of POCP depends on the regretRA(T ) of the non-private OCP
algorithm A. For typical OCP algorithms like IGD, GIGA , RA(T ) = O(log T ), assuming
each cost function ft is strongly convex.

Theorem 2 (POCP Regret) Let A be an OCP algorithm that satisfies sensitivity assump-
tion (1), and let λA be the corresponding sensitivity parameter. Also, let RA(T ) be the regret
of A over T -time steps, and L > 0 be the maximum Lipschitz constant of any function ft.
Then, the expected regret of our POCP algorithm (Algorithm 1) satisfies:

E

[
T∑
t=1

ft(x̂t)

]
−min

x∈C

T∑
t=1

ft(x) ≤ 2
√
dL(λA + ‖C‖2)

√
T

ln2 T
δ

ε
+RA(T ),

where x ∈ Rd and ‖C‖2 is the diameter of the convex set C.

The above theorem shows that in expectation, POCP(A) algorithm has an additional regret
of Õ(

√
dT ) compared to the regret of A. We present a detailed proof of this theorem in
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Section A.3. The main idea is to bound the total effect of noise on the regret via bounding
the effect of noise on the output of individual iterations. Using Chebyshev’s inequality, we
can also obtain a high probability bound on the regret (see Corollary 3 in Section A.4).

4. Logarithmic regret for Quadratic Cost Functions

In Appendix B, we describe a differentially private algorithm (PIGD) with Õ(
√
T ) regret

for any strongly convex Lipschitz continuous cost functions. In this section we show that
by restricting the input cost functions to be quadratic functions only, we can design a
differentially private algorithm that incurs only logarithmic regret.

For simplicity of exposition, we consider cost functions of the form:

ft(x) =
1

2
(yt − vTt x)2 +

α

2
‖x‖2, (3)

where α > 0. For such cost functions we show that there is an algorithm that incurs just
O(poly(log T )) regret while providing (ε, δ)-differential privacy.

Our Private Quadratic Follow the Leader (PQFTL) algorithm at a high level is a noisy
version of the Follow the Leader (FTL) algorithm. Now, for the specific case of quadratic
cost function (3) with C = Rd, FTL updates can be re-written as:

QFTL : xt+1 = (tαI + Vt)
−1(ut), (4)

where Vt = Vt−1 + vtv
T
t and ut = ut−1 + ytvt with V0 = 0 and u0 = 0.

Using elementary linear algebra and assuming |yt|, ‖vt‖2 ≤ R, we can show that ‖xt+1‖2 ≤
2R/α, ∀t ≤ T . Now, using Theorem 2 of Kakade and Shalev-Shwartz (2008) along with
our bound on ‖xt+1‖2, we obtain the following regret bound for the QFTL algorithm:

RQFTL(T ) ≤ R4(1 + 2R/α)2

α
log T. (5)

Furthermore, we can show that the QFTL algorithm (see Equation 4) also satisfies assump-
tion 1. Hence, similar to Appendix B, we can obtain a differentially private variant of QFTL
with Õ(

√
T ) regret. However, we show that using the special structure of QFTL updates,

we can improve the regret to O(poly(log T )).
The key observation is that each QFTL update is dependent on the function sequence

F through Vt and ut only. Hence, computing Vt and ut in a differentially private manner
would imply differential privacy for our QFTL updates as well. Furthermore, each Vt and ut
themselves are just sums of individual “atoms” (vτv

T
τ for Vt and yτvτ for ut). This special

structure of Vt and ut facilitates usage of a generalization of the “tree-based” technique
for computing privacy preserving partial sums proposed by Dwork et al. (2010a). Note
that the “tree-based” technique to compute sums (Algorithm 5 in Appendix D.2) adds
significantly lower amount of noise at each step than what is added by our POCP algorithm
(see Algorithm 1). Hence, it leads to a significantly better regret.

Algorithm 4 (in Appendix D.1) provides a pseudo-code of our PQFTL method. At
each step t, V̂t and ût are computed by perturbing Vt and ut (to preserve privacy) using
PrivateSum algorithm (see Algorithm 5 in Appendix D.2). Next, V̂t and ût are used in the
QFTL update (4) to obtain the next iterate x̂t+1.
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Theorem 3 (PQFTL Privacy) Let F be a sequence of quadratic functions, where ft(x; yt,vt) =
1
2(yt − vTt x)2 + α

2 ||x||
2
2. Then, PQFTL (Algorithm 4) is (ε, δ)-differentially private.

In Appendix D.2, we show how one can compute partial sums privately by only adding a
noise of variance poly − log(T ). The proof then follows by observing that the computation
of the output at time step t can be done by computing appropriate partial sums privately.
The complete proof is in Appendix D.1 of the appendix.

Theorem 4 (PQFTL Regret) Let F be a sequence of quadratic functions, where ft(x; yt,vt) =
1
2(yt − vTt x)2 + α

2 ||x||
2
2. Let R be the maximum L2 norm of any vt and |yt|. Then,

w.p. at least ≥ 1 − exp(−d/2), the regret bound of PQFTL (Algorithm 4) satisfies :

RPQFTL(T ) = Õ
(
R6 log 1

δ
εα3

√
d log1.5 T

)
.

The regret follows by using regret bound of QFTL algorithm and by accounting for noise at
each step t. See Appendix D.1 for a detailed proof.

5. Application to Offline Learning

In Section 3, we proposed a generic framework for differentially private OCP algorithms with
sub-linear regret bounds. Recently, Kakade and Tewari (2008) showed that OCP algorithms
with sub-linear regret bounds can be used to solve several offline learning problems as
well. In this section, we exploit this connection to provide a generic differentially private
framework for a large class of offline learning problems as well.

In related works, Chaudhuri et al. (2011); Rubinstein et al. (2009) also proposed meth-
ods to obtain differentially private algorithms for offline learning problems. However, as
discussed later in the section, our method is more practical and obtains better error bounds
for the same level of privacy. It also covers a wider range of problems than Chaudhuri et al.
(2011).

First, we describe the standard offline learning model that we use. Consider a domain
Z and an arbitrary distribution DZ over Z from which the training data is generated. Let
D = 〈z1, · · · , zT 〉 be the training dataset, where each zi is drawn i.i.d. from the distribution
DZ . Typically, zi is a tuple of a training point and its label. Also, consider a loss function
` : C × Z → R+, where C ⊆ Rd is a (potentially unbounded) convex set. Let `(·; ·) be a
L-Lipschitz (in the first parameter) convex function. Intuitively, the loss function quantifies
the goodness of a learned model x ∈ C w.r.t. the training data. Now, the goal is to solve
the following Risk Minimization problem:

min
x∈C

Ez∼DZ [`(x; z)]. (6)

Let x∗ be the optimal solution to (6), i.e., x∗ = arg minx∈C Ez∼DZ [`(x; z)]. Recently, Kakade
and Tewari (2008) provided a stochastic offline learning algorithm to obtain an additive
approximation to (6) via OCP. The algorithm of Kakade and Tewari (2008) is as follows:
execute any reasonable OCP algorithm A (like IGD or GIGA ) on the function sequence F ,
where ft = `(x; zt)+ α

2 ‖x‖
2. Note that each zt is sampled i.i.d. from DZ . Also, if the convex

set C required in OCP is an unbounded set, then it can be set to be an L2 ball of radius
‖x∗‖2, i.e, C = {x : x ∈ Rd, ‖x‖2 ≤ ‖x∗‖2}. In practice, ‖x∗‖ can be estimated using cross

10
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validation, which is analogous to tuning the regularization parameter in standard learning
problems like SVM.

Let x1, · · · ,xT be the sequence of outputs produced by A. Then, the output of the
stochastic offline learning algorithm is given by, x̃ = 1

T

∑T
t=1 xt. Kakade and Tewari (2008)

show that x̃ is a reasonable approximation to x∗ with provable approximation error (see
Theorem 12).

To produce differentially private output, we add noise of an appropriate variance to the
output x̃ and project it back to C. That is,

POL : x̂ = argminx∈C ‖x− x̃− b‖22, b ∼ N (0, β2Id), β = 2
√

2(L+α‖x∗‖2) lnT
Tεp

√
ln 1

δ + εp.

We refer to this algorithm as Private Offline Learning (POL) and provide a detailed pseudo-
code in Algorithm 6 (Appendix E). Next, we show that POL (Algorithm 6) is differentially
private.

Theorem 5 (POL Privacy) Private Offline Learning (POL) algorithm (see Algorithm 6)
is (εp, δ)-differentially private.

See appendix E.1 for a detailed proof. At a high level, the proof follows from the L2-
sensitivity analysis of the IGD algorithm.

Next, we provide a utility guarantee for POL, i.e., a bound on the approximation error
for the Risk Minimization problem (6). See appendix E.2 for a detailed proof. The main
tool in the proof is a bound on the approximation error for the stochastic offline learning
by Kakade and Tewari (2008).

Theorem 6 (POL Utility (Approximation Error in Eq. 6)) Let L be the Lipschitz
bound on the loss function ` and T be the total number of points in the training dataset
D = {z1, . . . ,zT }. Let (εp, δ) be the differential privacy parameters, d the dimensionality,
C > 0 a global constant. Then, with probability at least 1− γ,

Ez∼DZ [`(x̂; z)]−min
x∈C

Ez∼DZ [`(x; z)] ≤ εg,

when the number of points sampled (T ) satisfies,

T ≥ C max

(√
dL(L+εg/‖x∗‖2)

√
ln 1
γ

ln 1
δ

εgεp
,

(L+εg/‖x∗‖2)2‖x∗‖22 lnT ln lnT
γ

ε2g

)
.

Comparison to existing differentially private offline learning methods: We now
compare our POL algorithm for private (offline) Risk Minimization with the existing meth-
ods (Chaudhuri et al., 2011; Rubinstein et al., 2009):

• Better error bound: Our Theorem 6 improves the sample complexity bounds of
Chaudhuri et al. (2011); Rubinstein et al. (2009) by a factor of

√
d. We believe the

difference is primarily due to our use of Gaussian noise instead of Gamma noise added
by the existing methods.
• More practical: Both Chaudhuri et al. (2011); Rubinstein et al. (2009) need to

compute the exact optimal solution to the optimization problem that they consider
and it not clear if their privacy guarantees hold if one can obtain only an approximate
solution to their respective optimization problems. In contrast, our method uses an
explicit iterative method for solving (6) and provides privacy and utility guarantees
even if the algorithm stops early.

11
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Remark: Note that (Chaudhuri et al., 2011) does not allow the loss function ` to be
non-differentiable and the convex set C to be bounded. In comparison both (Rubinstein
et al., 2009) and our POL method support non-differentiable loss functions and bounded
convex sets. Also, note that our

√
d sample complexity bound does not contradict the

corresponding Ω(d) lower bound proved by Chaudhuri and Hsu (2011). Reason being,
we use (ε, δ)-differential privacy notion which is a less strict notion of privacy than the
ε-differential privacy notion used by Chaudhuri and Hsu (2011).

6. Discussion

6.1. Other Differentially Private Algorithms

Recall that in Appendix B, we described our Private IGD algorithm that achieves Õ(
√
T )

regret for any sequence of strongly convex, Lipschitz continuous functions. While, this
class of functions is reasonably broad, we can further drop the strong convexity condition
as well, albeit with higher regret. To this end, we perturb each ft and apply IGD over
f̃t = ft + α√

t
||x− x0||22, where x0 is randomly picked point from the convex set C. We can

then show that using this perturbation “trick”, we can obtain a regret of Õ(T 2/3).
We now briefly discuss another OCP algorithm, namely, Exponentially Weighted Online

Optimization algorithm (Hazan et al., 2007). This algorithm does not directly fit into our
POCP framework, and is not wide-spread in practice due to relatively inefficient updates (see
(Hazan et al., 2007) for more discussion). However, for completeness, we note that by using
techniques similar to our POCP framework and using exponential mechanism (see McSherry
and Talwar (2007)), one can analyze this algorithm as well to guarantee differential privacy
along with Õ(

√
T ) regret.

6.2. POCP algorithm when the number of iterations (T ) is not known

Algorithm 1 requires the number of iterations T to be known apriori, as the amount of noise
to be added at each step depends on T . However, in many practical situations T might not
be known in advance. We address this problem by using the standard doubling trick.

At a high level, the idea is the following: rather than adding enough noise to provide

(
√
ε

T 0.5 ,
δ
T )-differentially private for the output at each time step (as is done in Algorithm 1),

we provide iteration dependent guarantees. That is, at the t-th iteration, we add enough

noise to guarantee (
√

ε
2blog2 tc

, δ
2blog2 tc

)-differential privacy for the output at time step t.

Hence, we make the output in first iteration (
√
ε, δ)-private, and of the second and the third

iteration (
√

ε
2 ,

δ
2)-private, and so on.

Repeating the analysis of Algorithm 1 with this modification, we obtain (3ε log T, δ log2 T+
2/T 2ε)-differential privacy while incurring the same regret as Theorem 2 (see Appendix F).
Now, to get differential privacy guarantee with constant ε′, δ′, we need to set ε = ε′/ log T
and δ = δ′/ log T , which is still dependent on T . However, the dependence on T is signifi-
cantly weaker now, and an estimate of T within a factor of poly(T ) will weaken the privacy
by a constant only.
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Appendix A. Differentially Private Online Convex Programming

A.1. Proof of Lemma 1

Proof First, note that x̂t+1 is obtained by projecting x̃t+1 on C. Thus if x̃t+1 is (ε′, δ′)-
differentially private then x̂t+1 is also (ε′, δ′)-differentially private . Therefore, we prove the
lemma for x̃t+1.

Let F and F ′ be two input function sequences that differ in exactly one entry. Suppose
xt+1 and x′t+1 are the uncorrupted outputs of the OCP algorithm A (before adding noise)
on input sequences F and F ′, respectively. Similarly, let x̃t+1 = xt+1 + bt+1 and x̃′t+1 =
x′t+1 + bt+1 be the perturbed t-th step outputs of the algorithm A on sequences F and F ′

(see Algorithm 1, Step 7). Now by the definition of differential privacy (see Definition 2),
x̃t+1 is (ε1,

δ
T )-differential private, if for any measurable set Ω ⊆ Rd:

Pr[x̃t+1 ∈ Ω] ≤ eε1 Pr[x̃′t+1 ∈ Ω] + δ/T.

Recall that bt+1 ∼ N (0, β
2

t2
Id). We have (x̃t+1−xt+1)T∆xt+1 = bt+1

T∆xt+1 ∼ N (0, β
2

t2
‖∆xt+1‖22),

where ∆xt+1 = xt+1 − x′t+1.

Also, using the low sensitivity property (1) of the OCP algorithm A, ‖∆xt+1‖ ≤ λA
t .

Thus,

Pr

[∣∣(x̃t+1 − xt+1)T∆xt+1

∣∣ ≥ βλA
t2

z

]
= Pr

[∣∣bt+1
T∆xt+1

∣∣ ≥ βλA
t2

z

]
≤ Pr

[∣∣bt+1
T∆xt+1

∣∣ ≥ β

t
‖xt+1 − x′t+1‖2z

]
,

≤ e−
z2

2 ,

where z > 0, and the second inequality follows from Mill’s inequality. Setting R.H.S. ≤ δ
T ,

we have z ≥
√

2 ln T
δ .

Let G ⊆ Rd be a “good” set defined by:

b ∈ G iff
∣∣bT∆xt+1

∣∣ ≤ βλA
t2

√
2 ln

T

δ
. (7)

Note that,

Pr[bt+1 6∈ G] = Pr

[∣∣bt+1
T∆xt+1

∣∣ ≥ βλA
t2

√
2 ln

T

δ

]
≤ δ

T
. (8)

We now bound Pr[x̃t+1 ∈ Ω]:

Pr[x̃t+1 ∈ Ω] ≤ Pr[x̃t+1 ∈ Ω∧bt+1 ∈ G]+Pr[bt+1 6∈ G] ≤ Pr[x̃t+1 ∈ Ω∧bt+1 ∈ G]+
δ

T
. (9)

For the purpose of brevity, we define the following notation (which we will be using in the
later parts of the proof): for a given set S ⊆ Rd and a vector x ∈ Rd, the set {y : y+x ∈ S}
is denoted as S − x.
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Let us define Ψ = {x :
∣∣(x− xt+1)T∆xt+1

∣∣ ≤ βλA
t2

√
2 ln T

δ }. As bt+1 ∼ N (0, β
2

t2
Id),

Pr[x̃t+1 ∈ Ω ∧ bt+1 ∈ G] =

∫
b∈Ω−xt+1∩Ψ−xt+1

exp

(
− ||b||

2
2

2β2/t2

)
db

=

∫
x∈Ω∩Ψ

exp

(
−||x− xt+1||22

2β2/t2

)
dx (10)

Now, for x ∈ Ω ∩Ψ:

exp
(
− t2||x−xt+1||22

2β2

)
exp

(
− t2||x−x′t+1||22

2β2

) = exp

(
t2

2β2
∆xTt+1(2x− xt+1 − x′t+1)

)
,

= exp

(
t2

2β2

(
2∆xTt+1(x− xt+1)− ‖∆xt+1‖22

))
,

≤ exp

(
t2

2β2

(
2|∆xTt+1(x− xt+1)|+ ‖∆xt+1‖22

))
,

≤ exp

(
λA
β

√
2 ln

T

δ
+
λ2
A

2β2

)
,

≤ eε1 , (11)

where ε1 =
√
ε

T 0.5+c and β is as given in the Lemma statement. The second last inequality
follows from the definition of G and the sensitivity assumption (1).

Hence, using (9), (10), and (11), we get:

Pr[x̃t+1 ∈ Ω] ≤
∫

x∈Ω∩Ψ

eε1 exp

(
−
t2||x− x′t+1||22

2β2

)
dx +

δ

T
≤ eε1 Pr[x̃′t+1 ∈ Ω] +

δ

T
. (12)

This completes the proof.

We use the following result from Dwork et al. (2010b) in our proof of Theorem 1.

Lemma 2 (Dwork et al. (2010b)) Suppose that random variables Y and Z satisfy maxx
Pr(Y=x)
Pr(Z=x) ≤

ε and maxx
Pr(Z=x)
Pr(Y=x) ≤ ε. Then,

D(Y ||Z) = EZ
[
ln

Pr(Z = x)

Pr(Y = x)

]
≤ ε2,

where D(Y ||Z) is the KL-divergence between probability distribution of Y and Z.
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A.2. Proof of Theorem 1

Proof Following the notation in the proof of Lemma 1, let Gt+1 be the t-th step “good set”
defined as:

b ∈ Gt+1 iff
∣∣bT∆xt+1

∣∣ ≤ βλA
t2

√
2 ln

T

δ
, (13)

where ∆xt+1 = xt+1 − x′t+1 for 1 ≤ t ≤ T .
Now, using (8), for each time step t,

Pr[bt+1 6∈ Gt+1] ≤ δ

T
. (14)

By union bound, the probability that every output vector bt+1 ∈ Gt+1 for 1 ≤ t ≤ T , is at
least 1− T · δT = 1− δ. That is,

Pr[∃t s.t. bt+1 6∈ Gt+1] ≤ δ. (15)

For a random variable x and any point a ∈ Rd, let pdf[x = a] denote the probability
density function of the random variable x evaluated at the point a.
Now, define the following sequence of functions with ξ being some event in the event space,

Zt+1(at+1; ξ) = ln

(
pdf[x̃t+1 = at+1 | ξ]
pdf[x̃′t+1 = at+1 | ξ]

)
,

where at+1 ∈ Rd. Recall that x̃t+1 = xt+1 + bt+1 and x̃′t+1 = x′t+1 + bt+1. Hence, the pdfs
in the above equation are associated with the random choice of the noise vectors bt+1 which
is drawn from a multivariate Gaussian.

Using Lemma 1, we have that at each time step t, the output x̃t+1 of Algorithm 1 is

(
√
ε

T 0.5+c ,
δ
T )-differentially private. That is, for 1 ≤ t ≤ T ,

−
√
ε

T 0.5+c
≤ Zt+1(at+1; bt+1 ∈ Gt+1) = ln

(
pdf[x̃t+1 = at+1 | bt+1 ∈ Gt+1]

pdf[x̃′t+1 = at+1 | bt+1 ∈ Gt+1]

)
≤
√
ε

T 0.5+c
.

Using Lemma 2 along with the observation above, we obtain:

Ebt+1 [Zt+1(x̃t+1; bt+1 ∈ Gt+1)] ≤ 2ε

T 1+2c
.

Now, let L(x̃2, · · · , x̃T+1; b2 ∈ G2 · · · , bT+1 ∈ GT+1) =
∑T

t=1 Zt+1(x̃t+1; b2 ∈ G2 · · · , bT+1 ∈
GT+1). Since each bt+1 is sampled independently and the randomness in both x̃t+1 and
Zt+1(x̃t+1; b2 ∈ G2 · · · , bT+1 ∈ GT+1) is only due to bt+1, therefore: i) for 1 ≤ t ≤ T ,
Zt+1(x̃t+1; b2 ∈ G2 · · · , bT+1 ∈ GT+1) = Zt+1(x̃t+1; bt+1 ∈ Gt+1), and ii) each entry in the
sequence x̃t+1s for 1 ≤ t ≤ T and each entry in the sequence Zt+1(x̃t+1; bt+1 ∈ Gt+1)s for
1 ≤ t ≤ T are independent. Now, using independence of x̃t+1’s and the bound given above,

Eb2,··· ,bT+1
[L(x̃2, · · · , x̃T+1; b2 ∈ G2 · · · , bT+1 ∈ GT+1)] =

T∑
t=1

Ebt+1 [Zt+1(x̃t+1; bt+1 ∈ Gt+1)]

≤ 2Tε

T 1+2c
≤ 2ε

T 2c
≤ 2ε.
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Note also that for every 1 ≤ t ≤ T and at+1 ∈ Rd, |Zt+1(at+1; bt+1 ∈ Gt+1)| ≤
√
ε

T 0.5+c

(from Lemma 1). Thus, using independence of Zt+1(x̃t+1)s along with Azuma-Hoeffding
inequality,

Pr[L(x̃2, · · · , x̃T+1; b2 ∈ G2 · · · , bT+1 ∈ GT+1) ≥ 2ε+ ε] ≤ 2 exp

(
−2ε2

T × ε
T 1+2c

)
≤ 2 exp

(
−2εT 2c

)
.

(16)

Now, setting RHS ≤ δ, we get: δ ≥ 2 exp
(
−2εT 2c

)
. Hence, we select c =

(ln( 1
2ε

ln 2
δ

)

2 lnT .
Using (16) along with the selected value of c, we have, with probability at least 1 − δ

over the draws of at+1 from x̃t+1 ,

T∑
t=1

ln

(
pdf[x̃t+1 = at+1 | bt+1 ∈ Gt+1]

pdf[x̃′t+1 = at+1 | bt+1 ∈ Gt+1]

)
≤ 3ε.

That is, with probability at least 1− δ, over the draw of ∀a2, . . . ,aT+1 ∈ Rd,

ΠT
t=1 pdf(x̃t+1 = at+1 | bt+1 ∈ Gt+1) ≤ e3ε ΠT

t=1 pdf(x̃′t+1 = at+1 | bt+1 ∈ Gt+1).

Hence, given that bt+1 ∈ Gt+1 for 1 ≤ t ≤ T , with at least 1 − δ probability each x̃t+1

(1 ≤ t ≤ T ) is 3ε-differentially private.
Now, using (15), Pr[∃t s.t. bt+1 6∈ Gt+1] ≤ δ. Hence, with probability at least 1 − 2δ

over the choice of b2, · · · , bT+1, each x̃t+1 is 3ε-differentially private. Therefore, (3ε, 2δ)-
differential privacy now follows using a standard argument similar to (9).

A.3. Proof of Theorem 2

Proof Let x̂1, · · · , x̂T be the output of the POCP algorithm. By the Lipschitz continuity
of the cost functions ft we have,

T∑
t=1

ft(x̂t)−min
x∈C

T∑
t=1

ft(x) ≤
T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x) + L

T∑
t=1

||x̂t − xt||2,

≤ RA(T ) + L

T∑
t=1

||x̂t − xt||2. (17)

Since at any time t ≥ 1, x̂t is the projection of x̃t on the convex set C, we have

||xt+1 − x̂t+1||2 ≤ ||xt+1 − x̃t+1||2 = ||bt+1||2, ∀1 ≤ t ≤ T − 1,

where bt+1 is the noise vector added in the t-th iteration of the POCP algorithm. Therefore,

L
T∑
t=1

||xt − x̂t||2 ≤ L

(
‖C‖2 +

T−1∑
t=1

||bt+1||2

)
. (18)
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Now, bt+1 ∼ N (0d, β
2

t2
Id) where

β = λAT
0.5+c

√
2

ε

(
ln
T

δ
+

√
ε

T 0.5+c

)
.

Therefore, ||bt+1||2 follows Chi-distribution with parameters µ =
√

2β
t

Γ((d+1)/2)

Γ(d/2) and σ2 =
β2

t2
(d− µ2).

Using c =
ln ( 1

2ε
ln 2
δ

)

2 lnT ,

E[
T−1∑
t=1

||bt+1||2] ≤
√

2βΓ((d+ 1)/2)

Γ(d/2)

∫ T−1

1

1

t
dt,

≤ Γ((d+ 1)/2)

Γ(d/2)
λA
√
T lnT

√√√√√ 2

ε2
ln

2

δ

ln
T

δ
+

ε√
T
2 ln 2

δ

,
≤ 2
√
dλA
√
T

ln2 T
δ

ε
. (19)

The theorem now follows by combining (17), (18), (19).

A.4. High-probability Utility Guarantee for Algorithm POCP

Corollary 3 Let L > 0 be the maximum Lipschitz constant of any function ft in the
sequence F , RA(T ) , the regret of the non-private OCP algorithm A over T -time steps and
λA, the sensitivity parameter of A (see (1)). Then with probability at least 1− γ, the regret
of our Private OCP algorithm (Algorithm 1) satisfies:

T∑
t=1

ft(x̂t)−min
x∈C

T∑
t=1

ft(x) ≤ 2
√
dL(λA + ‖C‖2)

√
T

ln2 T
δ

ε
√
γ

+RA(T ),

where d is the dimensionality of the output space, ‖C‖2 is the diameter of C.

Appendix B. Implicit Gradient Descent Algorithm

In this section we consider the Implicit Gradient Descent (IGD) algorithm by Kulis and
Bartlett (2010) and present a differentially private version using our generic framework (see
Algorithm 1). At each step t, IGD selects the output xt+1 using:

IGD : xt+1 ← argmin
x∈C

1

2
||x− xt||22 + ηtft(x), (20)

where ηt = 1
αt , α > 0 is the minimum strong convexity parameter of any ft, t ≤ T . Now,

if each ft(x) is a Lipschitz continuous strongly convex function, then a simple modification
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Algorithm 2 Private Implicit Gradient Descent (PIGD)

1: Input: Cost function sequence F = 〈f1, · · · , fT 〉 and the convex set C
2: Parameter: privacy parameters (ε, δ), maximum Lipschitz constant L and minimum

strong convexity parameter α of any function in F
3: Choose x1 and x̂1 randomly from C
4: for t = 1 to T − 1 do
5: Cost: Lt(x̂t) = ft(x̂t)
6: Learning rate: ηt = 1

αt
7: IGD Update: xt+1 ← argminx∈C

(
1
2‖x− xt‖22 + ηtft(x)

)
8: Noise Addition: x̃t+1 ← xt+1 + bt+1, bt+1 ∼ N (0d, β

2

t2
Id), where β =

2LT 0.5+c

α

√
2
ε

(
ln T

δ +
√
ε

T 0.5+c

)
and c =

ln 1
2ε

ln(2/δ)

2 lnT

9: Output x̂t+1 = argminx∈C
(
‖x− x̃t+1‖22

)
10: end for

to the proof by Kulis and Bartlett (2010) shows O(log T ) regret for IGD, i.e. RIGD(T ) =
O(log T ).

Now, we instantiate our generic POCP framework using the IGD algorithm. See Algo-
rithm 2 for a pseudo-code of our Private IGD (PIGD) algorithm. Similar to POCP, our PIGD
algorithm also adds an appropriately calibrated noise at each step to obtain differentially
private outputs x̂t+1.

Now, to use generic privacy analysis of our POCP framework, we need to show that IGD
satisfies sensitivity bound of (1). To this end, in the following lemma we bound sensitivity
of IGD at each step. At a high level, our proof uses optimality of each output xt+1 along
with strong convexity of each ft.

Lemma 4 (IGD Sensitivity) L2-sensitivity (see Definition 3) of the IGD algorithm is 2L
αt

for the t-th iterate, where L is the maximum Lipschitz constant of any function fτ , 1 ≤ τ ≤ t.

Proof [Proof of Lemma 4] We prove the lemma using mathematical induction.
Base Case (t = 1): As x1 is chosen randomly, it’s value doesn’t depend on the underlying
dataset.
Induction Step (t = τ + 1): Consider the following function that is optimized at the
(τ + 1)-step of IGD:

f̃τ (x) =
1

2
‖x− xτ‖22 + ητfτ (x).

As fτ is α strongly convex, the strong convexity coefficient of the above given function is
τ+1
τ .

Now using strong convexity of f̃τ and the fact that at optima xτ+1, 〈5f̃τ (xτ+1),x −
xτ+1〉 ≥ 0,∀x ∈ C, we get:

f̃τ (x′τ+1) ≥ f̃τ (xτ+1) +
τ + 1

2τ
‖xτ+1 − x′τ+1‖22. (21)

Now, we consider two cases:
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• F −F ′ = {fτ}: Define f̃ ′τ (x) = 1
2‖x−xτ‖

2 +ητf
′
τ (x) and let x′τ+1 = argminx∈C f̃

′
τ (x).

Then, similar to (21), we get:

f̃ ′τ (xτ+1) ≥ f̃ ′τ (x′τ+1) +
τ + 1

2τ
‖xτ+1 − x′τ+1‖22. (22)

Adding (21) and (22), we get:

‖xτ+1−x′τ+1‖22 ≤
1

α(τ + 1)
|fτ (x′τ+1)+f ′τ (xτ+1)−fτ (xτ+1)−f ′τ (x′τ+1)| ≤ 2L

α(τ + 1)
‖xτ+1−x′τ+1‖2.

Lemma now follows using simplification.

• F − F ′ = {fi}, i < τ : Define f̃ ′τ (x) = 1
2‖x − x′τ‖2 + ητfτ (x) and let x′τ+1 =

argminx∈C f̃
′
τ (x). Then, similar to (21), we get:

f̃ ′τ (xτ+1) ≥ f̃ ′τ (x′τ+1) +
τ + 1

2τ
‖xτ+1 − x′τ+1‖22. (23)

Adding (21) and (23), we get:

‖xτ+1−x′τ+1‖22 ≤
τ

τ + 1
|(xτ+1−x′τ+1) ·(xτ −x′τ )| ≤ τ

τ + 1
‖xτ+1−x′τ+1‖2‖xτ −x′τ‖2.

The lemma now follows using the induction hypothesis.

Using the above lemma and Theorem 1, privacy guarantee for PIGD follows directly.

Theorem 7 (PIGD Privacy) PIGD (see Algorithm 2) is (3ε, 2δ)-differentially private.

Next, the utility (regret) analysis of our PIGD algorithm follows directly using Theorem 2

along with the regret bound of the IGD algorithm, RIGD(T ) = O((L
2

α + ||C||2) log T ).

Theorem 8 (PIGD Regret) Let L be the maximum Lipschitz constant and let α be the
minimum strong convexity parameter of any function ft in the function sequence F . Then
the expected regret of the private IGD algorithm over T steps is Õ(

√
dT ). Specifically,

E[

T∑
t=1

ft(x̂t)]−min
x∈C

T∑
t=1

ft(x)) ≤ C

(
(L2/α+ ‖C‖2)

√
d ln2 T

δ

ε

√
T

)
,

where C > 0 is a constant and d is the dimensionality of the output space.

In this section and in Appendix C, we provide transformation of two standard online learning
algorithms into corresponding privacy preserving algorithms with provable regret. In both
these examples, we show low-sensitivity of the corresponding learning algorithms and use our
analysis of POCP to obtain privacy and utility bounds. We can obtain similar low-sensitivity
bounds for several other OCP algorithms such as Follow The Leader (FTL), Follow the
Regularized Leader (FTRL) etc, and hence use those methods with our POCP framework
as well. Our low-sensitivity proofs should be of independent interest as well, as they point to
a connection between stability (sensitivity) and low-regret (online learnability)—an active
topic of research in the learning community (Ross and Bagnell, 2011; Poggio et al., 2011).
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Algorithm 3 Private GIGA (PGIGA)

1: Input: Cost function sequence F = 〈f1, · · · , fT 〉 and the convex set C
2: Parameter: Privacy parameters (ε, δ), Lipschitz continuity (L) and strong convexity

(α) bound on the function sequence F , tq = 2L2
G/α

2

3: Choose x1, . . . ,xtq−1 and x̂1, . . . , x̂tq−1 randomly from C, incurring a cost of∑tq−1
t=1 ft(x̂t)

4: for t = tq to T − 1 do
5: Cost: Lt(x̂t) = ft(x̂t)
6: Step Size: ηt = 2

αt
7: GIGA Update: xt+1 ← argminx∈C

(
‖xt − ηt 5 ft(xt)‖22

)
8: Noise Addition: x̃t+1 ← xt+1 + bt+1, bt+1 ∼ N (0d, β

2

t2
Id), where β =

2GT 0.5+c

α

√
2
ε

(
ln T

δ +
√
ε

T 0.5+c

)
where c =

ln 1
2ε

ln(2/δ)

2 lnT

9: Output x̂t+1 = argminx∈C
(
‖x− x̃t+1‖22

)
10: end for

Appendix C. Private GIGA Algorithm

In this section, we apply our general differential privacy framework to the Generalized
Infinitesimal Gradient Ascent (GIGA) algorithm (Zinkevich, 2003), which is one of the most
popular algorithms for OCP. GIGA is a simple extension of the classical projected gradient
method to the OCP problem. Specifically, the iterates xt+1 are obtained by a projection
onto the convex set C, of the output of the gradient descent step xt − ηt 5 ft(xt) where
ηt = 1/αt, and α is the minimum strong convexity parameter of any function ft in F .

For the rest of this section, we assume that each of the function ft in the input function
sequence F are differentiable, Lipschitz continuous gradient and strongly convex. Note that
this is a stricter requirement than our private IGD algorithm where we require only the
Lipschitz continuity of ft.

Proceeding similar to IGD, we obtain a privacy preserving version of the GIGA algorithm
using our generic POCP framework (See Algorithm 1). Algorithm 3 details the steps involved
in our Private GIGA (PGIGA) algorithm. Note that PGIGA has an additional step (Step 3)
compared to POCP (Algorithm 1). This step is required to prove the sensitivity bound in
Lemma 5 given below.

Furthermore, we provide the privacy and regret guarantees for our PGIGA algorithm
using Theorem 1 and Theorem 2. To this end, we first show that GIGA satisfies the sensitivity
assumption mentioned in (1).

Lemma 5 (GIGA Sensitivity) Let α > 0 be the minimum strong convexity parameter of
any function ft in the function sequence F . Also, let LG be the maximum Lipschitz continu-
ity parameter of the gradient of any function ft ∈ F and let G = maxτ ‖ 5 ft(x)‖2, ∀x ∈ C.
Then, L2-sensitivity (see Definition 3) of the GIGA algorithm is 2G

αt for the t-th iterate,
where 1 ≤ t ≤ T .
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Proof Let xt+1 and x̃′t+1 be the t-th iterates when GIGA is applied to F and F ′, respectively.
Using this notation, to prove the L2 sensitivity of GIGA, we need to show that:

‖xt+1 − x′t+1‖ ≤
2G

αt

We prove the above inequality using mathematical induction.
Base Case (1 ≤ t ≤ tq = 2L2

G/α
2 + 1): As x1, . . . ,xtq are selected randomly, their value

doesn’t depend on the underlying dataset. Hence, xt = x′t, ∀1 ≤ t ≤ tq.
Induction Step t = τ > 2L2

G/α
2 + 1: We consider two cases:

• F −F ′ = {fτ}: Since the difference between F and F ′ is only the τ -th function, hence
xτ = x′τ . As C is a convex set, projection onto C always decreases distance, hence:

‖xτ+1 − x′τ+1‖2 ≤ ‖(xτ − ητ 5 fτ (xτ ))− (xτ − ητ 5 f ′τ (xτ ))‖2,
= ητ‖ 5 fτ (xτ )−5f ′τ (xτ )‖2,

≤ 2G

ατ
.

Hence, lemma holds in this case.

• F − F ′ = {fi}, i < τ : Again using convexity of C, we get:

‖xτ+1 − x′τ+1‖22 ≤ ‖(xτ − ητ 5 fτ (xτ ))− (x′τ − ητ 5 fτ (x′τ ))‖22,
= ‖xτ − x′τ‖22 + η2

τ‖ 5 fτ (xτ )−5fτ (x′τ )‖22
− 2ητ (xτ − x′τ )T (5fτ (xτ )−5fτ (x′τ )),

≤ (1 + η2
τL

2
G)‖xτ − x′τ‖22 − 2ητ (xτ − x′τ )T (5fτ (xτ )−5fτ (x′τ )),

(24)

where the last equation follows using Lipschitz continuity of 5ft. Now, using strong
convexity:

(xτ − x′τ )T (5fτ (xτ )−5fτ (x′τ )) ≥ α‖xτ − x′τ‖22.

Combining the above observation and the induction hypothesis with (24):

‖xτ+1 − x′τ+1‖22 ≤
(
1 + L2

Gη
2
τ − 2αητ

)
· 4G2

(τ − 1)2
. (25)

Lemma now follows by setting ητ = 2
ατ and τ >

2L2
G

α2 .

Using the lemma above with the privacy analysis of POCP (Theorem 1), the privacy guar-
antee for PGIGAfollows immediately.

Theorem 9 (PGIGA Privacy) PGIGA (see Algorithm 3) is (3ε, 2δ)-differentially private.

Next, using the regret bound analysis for GIGA from Hazan et al. (2007) (Theorem 1)
along with Theorem 2, we get the following utility (regret bound) analysis for our PGIGA
algorithm. Here again, ignoring constants, the regret simplifies to Õ(

√
dT ).
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Algorithm 4 Private Follow the Leader for Quadratic Cost (PQFTL)

1: Input: cost function sequence F = 〈f1, · · · , fT 〉, where each ft(x; yt,vt) = (yt−vTt x)2+
α
2 ||x||

2
2

2: Parameter: privacy parameters (ε, δ), R = max(maxt ||vt||2,maxt |yt|)
3: Initialize x̂1 = 0d

4: Initialize empty binary trees BV and Bu, a data structure to compute V̂t and ût—
differentially private versions of Vt and ut

5: for t = 1 to T − 1 do
6: Cost: Lt(x̂t) = ft(x̂t) = (yt − vTt x̂t)

2 + α
2 ||x̂t||

2
2

7: (V̂t, B
V )← PrivateSum(vtv

T
t , B

V , t, R2, ε2 ,
δ
2 , T ) (see Algorithm 5)

8: (ût, B
u)← PrivateSum(ytvt, B

u, t, R, ε2 ,
δ
2 , T ) (see Algorithm 5)

9: QFTL Update: x̂t+1 ← (tαI + V̂t)
−1(ût)

10: Output x̂t+1

11: end for

Theorem 10 (PGIGA Regret) Let α > 0 be the minimum strong convexity parameter of
any function ft in the function sequence F . Also, let LG be the maximum Lipschitz continu-
ity parameter of the gradient of any function ft ∈ F and let G = maxτ ‖ 5 ft(x)‖2, ∀x ∈ C.
Then, the expected regret of PGIGA satisfies

E[RPGIGA(T )] ≤
4
√
d(G/α+ ‖C‖2)G ln2 T

δ

ε

√
T +

2G2

α
(1 + log T ) +

2L2
GG||C||2
α2

where ||C||2 is the diameter of the convex set C and d is the dimensionality of the output
space.

Proof Observe that for the first tq =
2L2

G
α2 iterations PGIGA outputs random samples from

C. The additional regret incurred during this time is bounded by a constant (w.r.t. T)
that appears as the last term in the regret bound given above. For iterations t ≥ tq, the
proof follows directly by using Theorem 2 and regret bound of GIGA. Note that we use a
slightly modified step-size ηt = 2/αt, instead of the standard ηt = 1/αt. This difference
in the step size increases the regret of GIGA as given by Hazan et al. (2007) by a factor of 2.

Appendix D. Logarithmic regret for Quadratic Cost Functions:
Appendix

D.1. Privacy and Utility Analysis of PQFTL for Quadratic Cost Functions

Proof [Proof of Theorem 3] Using Theorem 11 (stated in Section D.2), both V̂t and ût are
each ( ε2 ,

δ
2)-differentially private w.r.t. vt and yt, ∀t and hence w.r.t. the function sequence

F. Now, x̂t+1 depends on F only through [V̂t, ût]. Hence, the theorem follows using a stan-
dard composition argument (Dwork et al., 2006b; Dwork and Lei, 2009).
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Proof [Proof of Theorem 4] Using definition of regret,

RPQFTL =
T∑
t=1

ft(x̂t)− argmin
x∗

T∑
t=1

ft(x
∗) =

T∑
t=1

ft(xt)− argmin
x∗

T∑
t=1

ft(x
∗) +

T∑
t=1

(ft(x̂t)− ft(xt)),

≤ RQFTL(T ) +
T∑
t=1

(ft(x̂t)− ft(xt)),

≤ R4(1 + 2R/α)2

α
log T +

T∑
t=1

(ft(x̂t)− ft(xt)),

(26)

where last inequality follows using (5).
Now, as ft(x) is a (R+ α)-Lipschitz continuous gradient function,

ft(x̂t)− ft(xt) ≤ ((vTt xt − yt)vt + αxt)
T (x̂t − xt) +

R+ α

2
‖x̂t − xt‖2,

≤ R(2R2/α+R+ 2)‖x̂t − xt‖+
R+ α

2
‖x̂t − xt‖2, (27)

where last inequality follows using Cauchy-Schwarz inequality and the fact that ‖xt‖2 ≤
2R/α.

We now bound ||x̂t+1−xt+1||2. Let V̂t = Vt +At and ût = ut + βt where At and βt are
the noise additions introduced by the Private Sum algorithm (Algorithm 5).

Now, from the step 9 of PQFTL (Algorithm 4) we have,

(V̂t + tαI)x̂t+1 = ût ⇔ (
1

t
V̂t + αI)x̂t+1 =

1

t
ût. (28)

Similarly, using QFTL update (see (4)) we have,

(
1

t
Vt + αI)xt+1 =

1

t
ut. (29)

Using (28) and (29):

(
1

t
V̂t + αI)(x̂t+1 − xt+1) =

1

t
βt −

1

t
Atxt+1. (30)

Now, using V̂t = Vt +At and the triangle inequality we have,

||(1

t
V̂t + αI)(x̂t+1 − xt+1)||2 ≥ ||(

1

t
Vt + αI)(x̂t+1 − xt+1)||2 − ||

1

t
At(x̂t+1 − xt+1)||2 (31)

Furthermore,

||1
t
At(x̂t+1 − xt+1)||2 ≤

1

t
||At||2||x̂t+1 − xt+1||2 (32)

Thus by combining (30), (31), (32) and using the fact that the smallest eigenvalue of
(1
tVt + αI) is lower-bounded by α,

1

t
||βt||2 +

1

t
‖At‖2‖xt+1‖2 ≥ |α−

||At||2
t
||x̂t+1 − xt+1||2 (33)

25



Jain Kothari Thakurta

Now using Theorem 11 each entry of the matrix At is drawn from N (0, σ2 log T ) for

σ2 = R2

ε2
log2 T log log T

δ . Thus the spectral norm of At, ||At||2 is bounded by 3σ
√
d with

probability at least 1 − exp(−d/2). Similarly, ||βt||2 ≤ 3σ
√
d, with probability at least

1− exp(−d/2). Also, ||xt||2 ≤ 2R/α. Using the above observation with (33),

||x̂t+1 − xt+1||2 ≤
σ
√
d

t
· 3 + 6R/α

|α− 6σ
√
dR

αt |
. (34)

Using (26), (27), and (34), we get (with probability at least 1− exp(−d/2)):

RPQFTL(T ) ≤ R4(1 + 2R/α)2

α
log T

+ 3
√
dR(2R2/α+R+ 2)(1 + 2R/α)(1 + log T )

1

ε

√
log T log

√
log T

δ
. (35)

Hence w.h.p.,

RPQFTL(T ) = Õ

(
R6 log 1

δ

εα3

√
d log1.5 T

)
.

D.2. Computing Partial Sums Privately

In this section, we consider the problem of computing partial sums while preserving dif-
ferential privacy. Formally, let D = 〈w1,w2, · · · ,wT 〉 be a sequence of vectors, where at
each time step t, a vector wt ∈ Rd is provided. Now, the goal is to output partial sums
Wt =

∑t
τ=1 wτ at each time step t, without compromising the privacy of the data vectors

in D. Note that by treating a matrix as a long vector obtained by concatenation of its rows,
we can use the same approach to compute partial sums of matrices as well.

Now, notice that the L2-sensitivity of each partial sum is O(R) (R = maxt ‖wt‖2), as
changing one wτ can change any partial sum by an additive factor of 2R. Hence, a näıve

method is to add O(R

√
log 1

δ

ε ) noise at t-th to obtain (ε, δ)-privacy for the output at a fixed
step t. Using standard composition argument, the overall privacy of such a scheme over
T iterations would be (Tε, Tδ). Hence, to get a constant (ε′, δ′) privacy, we would need to

add O(RT

√
log T

δ′
ε′ ) noise. In contrast, our method, which is based on a generalization of the

technique in Dwork et al. (2010a), is able to provide the same level of privacy by adding

only O(R log T

√
log log T

δ′
ε′ ) noise. We first provide a high level description of the algorithm

and then provide a detailed privacy and utility analysis.
Following Dwork et al. (2010a), we first create a binary tree B where each leaf node

corresponds to an input vector in D. We denote a node at level i (root being at level 0) with
strings in {0, 1}i in the following way: For a given node in level i with label s ∈ {0, 1}i, the
left child of s is denoted with the label s ◦ 0 and the right child is denoted with s ◦ 1. Here
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(a) (b)

Figure 1: Binary Tree for T = 8. Each node in the tree has noise drawn according to
N (0, σ2Id) including the leaves. The label of any node is obtained by concatenat-
ing the labels of the edges on the unique path joining the root to the node. (a):
w1,w2, ..,w7 are the input vectors that have arrived till time step t = 7. Each
internal node is obtained by adding noise from N (0, σ2Id) to the sum of input
vectors in the sub-tree rooted at the node. To return the partial sum at t = 7,
return the sum of the nodes in thick red. The dotted nodes are unpopulated.
(b): figure depicts the change in the data structure after the arrival of w8. Now
the partial sum at t = 8 is obtained by using just one node denoted in thick red.

the operator ◦ denotes concatenation of strings. Also, the root is labeled with the empty
string .

Now, each node s in the tree B contains two values: Bs and B̂s, where Bs is obtained
by the summation of vectors in each of the leaves of the sub-tree rooted at s, i.e., Bs =∑

j:j=s◦r
r∈{0,1}k−i

wj . Also, B̂s = Bs + bs is a perturbation of Bs, bs ∼ N (0, σ2Id), and σ is as

given in Lemma 6.
A node in the tree is populated only when all the vectors that form the leaves of the

sub-tree rooted at the node have arrived. Hence, at time instant t we receive vector wt and
populate the nodes in the tree B for which all the leaves in the sub-tree rooted at them
have arrived. To populate a node labeled s, we compute Bs = Bs◦0 +Bs◦1, the sum of the
corresponding values at its two children in the tree and also B̂s = Bs+bs, bs ∼ N (0, σ2Id).

As we prove below in Lemma 6, for a i-th level node which is populated and has label
s ∈ {0, 1}i, B̂s contains an (ε, δ)-private sum of the 2k−i vectors that correspond to the
leaves of the sub-tree rooted at s. Now, to output a differentially private partial sum at
time step t, we add up the perturbed values at the highest possible nodes that can be
used to compute the sum. Note, that such a summation would have at most one node at
each level. See Figure 1 for an illustration. We provide a pseudo-code of our method in
Algorithm 5.

Theorem 11 states privacy as well as utility guarantees of our partial sums method
(Algorithm 5). We first provide a technical lemma which we later use in our proof of
Theorem 11.

Let B̂(D) denote the set of all perturbed node values B̂s,∀s obtained by applying
Algorithm 5 on dataset D. Also, D and D′ be two datasets that differ in at most one entry,
say wt.
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Algorithm 5 Private Sum(wt,B, t, R, ε, δ, T )

Require: Data vector wt, current binary tree B, current vector number t, R a bound on
||wt||2, privacy parameters ε and δ, total number of vectors T , dimensionality of vectors
d

1: if t = 1 then
2: Initialize the binary tree B over T leaves with all nodes
3: σ2 ← R2

ε2
log2 T log log T

δ
4: end if
5: st ← the string representation of t in binary
6: Bst ← wt //Populate the st-th entry of B
7: B̂st ← Bst + bst , where bst ∼ N (0, σ2Id)
8: Let St is the set of all ancestors s of st in the tree B, such that all the leaves in the

sub-tree rooted at s are already populated
9: for all s ∈ St do

10: Bs ← Bs◦0 + Bs◦1 // Bs is the value at node with label s (without noise)
11: B̂s ← Bs + bs, where bs ∼ N (0, σ2Id) // B̂s is the noisy value at node with

label s
12: end for
13: Find the minimum set of already populated nodes in B that can compute

∑t
τ=1 wτ .

Formally, starting from the left, for each bit position i in st such that st(i) = 1, form
strings sq = st(1)◦ ...◦st(i−1)◦0 of length i. Let s1, s2, ..., sQ be all such strings, where
Q ≤ log T . For example, if st = 110 then the strings obtained this way are: 0 and 10

14: Output: (Ŵt =
∑Q

q=1 B̂sq ,B)

Lemma 6 Let B̂s(D) = Bs(D) + bs, where bs ∼ N (0, σ2Id) for σ2 = R2

ε2
log2 T log log T

δ .
Then, for any t and any Θs ∈ Rd,

pdf[B̂s(D) = Θs] ≤ e
ε

log T pdf[B̂s(D
′) = Θs] +

δ

log T

where D and D′ are two datasets differing in exactly one entry.

Proof Let ∆ = Bs(D)−Bs(D
′). Note that ‖∆‖2 ≤ R. Now, consider the following ratio:

pdf[B̂s(D) = Θs]

pdf[B̂s(D′) = Θs]
=

exp
||Θs−Bs(D)||22

2σ2

exp
||Θs−Bs(D′)||22

2σ2

= exp
||∆||22 − 2∆T (Bs(D

′)−Θs)

2σ2
,

≤ exp
R2 + 2|∆T (Bs(D

′)−Θs)|
2σ2

. (36)

Now, ∆T (Bs(D
′)−Θs) follows N (0, ||∆||22σ2). For a random variable V ∼ N (0, 1), and for

all γ > 1, pdf[|V | > γ] ≤ e−γ2/2 ( Mill’s inequality ). Thus,

pdf[|∆T (Bs(D
′)−Θs)| ≥ Rσγ] ≤ pdf[|∆T (Bs(D

′)−Θs)| ≥ ||∆||2σγ] ≤ exp(
−γ2

2
)

Lemma follows by setting γ = 2
√

ln log T
δ in the equation above and combining it with (36).
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Next, we provide formal privacy and utility guarantees for Algorithm 5. Our proof is
inspired by a technique developed by Dwork et al. (2010a).

Theorem 11 (Algorithm 5: Privacy and Utility) Let D = 〈w1, · · · ,wT 〉 be a dataset
of vectors with wt ∈ Rd being provided online at each time step t. Let R = maxi≤T ||wi||2
and σ2 = R2

ε2
log2 T log log T

δ . Let Wt =
∑t

τ=1 wτ be the partial sum of the entries in the
dataset D till the t-th entry. Then, ∀t ∈ [T ], following are true for the output of Algorithm
5 with parameters (t, ε, δ, R, T ).

• Privacy: The output Ŵt is (ε, δ)-differentially private.

• Utility: The output Ŵt has the following distribution: Ŵt ∼ N (Wt, kσ
2Id), where

k ≤ dlog T e.

Proof Utility: Note that Line 14 of the Algorithm 5 adds at most dlog T e vectors B̂s

(corresponding to the chosen nodes of the binary tree B). Now each of the selected vectors
B̂s is generated by adding a noise bs ∼ N (0, σ2Id). Furthermore, each bs is generated
independent of other noise vectors. Hence, the total noise in the output partial sum Ŵt has
the following distribution: N (0, kσ2Id), where k ≤ dlog T e.

Privacy: First, we prove that B̂(D) is (ε, δ)-differentially private. As defined above, let
D and D′ be the two datasets (sequences of input vectors) that differ in exactly one entry.
Let S ⊂ R2T−1. Now,

Pr[B̂(D) ∈ S]

Pr[B̂(D′) ∈ S]
=

∫
Θ∈S pdf[B̂(D) = Θ]∫
Θ∈S pdf[B̂(D′) = Θ]

.

Note that noise (bs) at each node s is generated independently of all the other nodes. Hence,

pdf[B̂(D) = Θ]

pdf[B̂(D′) = Θ]
=

Πs pdf[B̂s(D) = Θs]

Πs pdf[B̂s(D′) = Θs]
.

Since D and D′ differ in exactly one entry, B(D) and B(D′) can differ in at most log T
nodes. Thus at most log T ratios in the above product can be different from one. Now,
by using Lemma 6 to bound each of these ratios and then using composability argument
Dwork et al. (2006b); Dwork and Lei (2009) over the log T nodes which have differing values
in B(D) and B(D′),

Pr[B̂(D) = Θ] ≤ eε Pr[B̂(D′) ∈ Θ] + δ,

i.e., B̂(D) is (ε, δ)-differentially private.
Now, each partial sum is just a deterministic function of B̂(D). Hence, (ε, δ)-differential

privacy of each partial sum follows directly by (ε, δ)-differential privacy of B̂(D).

Appendix E. Offline Learning
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Algorithm 6 Private Offline Learning (POL)

1: Input: Input dataset D = 〈z1, · · · , zT 〉 and the convex set C
2: Parameter: Privacy parameters (εp, δ), generalization error parameter εg, Lipschitz

bound L on the loss function `, bound on ‖x∗‖2
3: If C = Rd then set C = {x : x ∈ Rd, ‖x‖2 ≤ ‖x∗‖2}.
4: Choose x1 randomly from C
5: Set α← εg

‖x∗‖22
6: Initialize s = x1

7: for t = 1 to T − 1 do
8: Learning rate: ηt = 1

αt
9: IGD Update: xt+1 ← argminx∈C

(
1
2‖x− xt‖22 + ηt(`(x; zt) + α

2 ‖x‖
2
2)
)

10: Store sum: s← s + xt+1

11: end for
12: Average: x̃← s

T
13: Noise Addition: x̄ ← x̃ + b, where b ∼ N (0d, β2Id) and β =

2
√

2(L+α‖x∗‖2) lnT
Tεp

√
ln 1

δ + εp

14: Output x̂ = argminx∈C
(
‖x− x̄‖22

)
E.1. Proof of Theorem 5

Proof Recall that to prove differential privacy, one needs to show that changing one
training point from the dataset D doesn’t lead to significant change in the algorithm’s
output x̂ which is a perturbation of x̃ = 1

T

∑T
t=1 xt. Hence, we need to show that the

L2-sensitivity (see Definition 3) of x̃ is low.
Now let x′1, · · · ,x′T be the sequence of outputs produced by the IGD algorithm used in

Algorithm 6 when executed on a dataset D′ which differs in exactly one entry from D. To
estimate the sensitivity of x̃, we need to bound || 1T

∑T
t=1(xt − x′t)||2. Now, using triangle

inequality and Lemma 4, we get:

|| 1
T

T∑
t=1

(xt − x′t)||2 ≤
1

T

T∑
t=1

‖xt − x′t‖2 ≤
1

T

T∑
t=2

2L′

t− 1
≤ 2L′ lnT

T
, (37)

where L′ is the maximum Lipschitz continuity coefficient of `(x, zt) + α
2 ‖x‖

2
2, ∀t over the

set C. Using the fact that ‖C‖2 = ‖x∗‖2, we obtain L′ = L+ α‖x∗‖2.
The theorem now follows using L2-sensitivity of x̃ (see (37)) and an argument similar

to that of the proof for Lemma 1.

E.2. Proof of Theorem 6

Before proving the utility guarantee, we first rewrite the approximation error incurred by
x̃ = 1

T

∑T
t=1 xt, as derived by Kakade and Tewari (2008).
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Theorem 12 (Approximation Error in Risk Minimization (Eq. 6) Kakade and Tewari (2008))
Let RA(T ) be the regret for the online algorithm A. Then with probability at least 1− γ,

Ez∼DZ [`(x̃; z)]− Ez∼DZ [`(x∗; z)] ≤ α

2
‖x∗‖2 +

RA(T )

T
+

4

T

√
L′2RA(T ) ln(4 lnT

γ )

α

+
max{16L′2

α , 6} ln(4 lnT
γ )

T

where L′ = L+ α‖x∗‖2, L is the Lipschitz continuity bound on the loss function ` and α is
the strong convexity parameter of the function sequence F .

With this result in place, we now proceed to the proof for Theorem 6.
Proof To prove the result, we upper bound Ez∼DZ [`(x̂; z)]− Ez∼DZ [`(x∗; z)] as:

Ez∼DZ [`(x̂; z)]− Ez∼DZ [`(x∗; z)] = Ez∼DZ [`(x̂; z)]− Ez∼DZ [`(x̃; z)]

+ Ez∼DZ [`(x̃; z)]− Ez∼DZ [`(x∗; z)],

≤ L||x̂− x̃||2 + Ez∼DZ [`(x̃; z)− `(x∗; z)],
= L||b||2 + Ez∼DZ [`(x̃; z)− `(x∗; z)], (38)

where the second inequality follows using Lipschitz continuity of ` and the last equality
follows by the noise addition step (Step 13) of Algorithm 6.

From the tail bound on the norm of a Gaussian random vector, it follows that with
probability at least 1− γ

2 ,

||b||2 ≤ 3
√
dβ

√
ln

1

γ
≤ 12

√
dL′

lnT

Tεp

√
ln

1

γ
ln

1

δ
, (39)

where L′ = L+ εg/‖x∗‖2, L is the Lipschitz continuity parameter of `. Note that in Line 5
of Algorithm 6 we set the strong convexity parameter α =

εg
||x∗||22

.

Now, regret bound of IGD is given by:

RIGD(T ) = O(||x∗||2 +
L′2

α
lnT ), (40)

Thus, by combining (38), (39), (40), and Theorem 12, with probability at least 1− γ,

Ez∼DZ [`(x̂; z)]−min
x∈C

Ez∼DZ [`(x; z)] ≤ εg
2

+ C

√
dL(L+

εg
‖x∗‖2 ) lnT

√
ln 1

γ ln 1
δ

εpT

+ C
(L+

εg
‖x∗‖2 )2‖x∗‖22 lnT ln lnT

γ

εgT
,

where C > 0 is a global constant.
The result now follows by bounding the RHS above by εg.

31



Jain Kothari Thakurta

Algorithm 7 Private OCP Algorithm with weak dependence on T

1: Input: OCP algorithm A, cost function sequence F = 〈f1, · · · , fT 〉 and the convex set
C

2: Parameter: privacy parameters (ε, δ)
3: Choose x1 and x̂1 randomly from C
4: for t = 1 to T − 1 do
5: Cost: Lt(x̂t) = ft(x̂t)
6: OCP Update: xt+1 ← A(〈f1, . . . , ft〉, 〈x1, . . . ,xt〉, C)
7: Noise Addition: x̃t+1 ← xt+1 + bt+1, bt+1 ∼ N (0d, β

2

t2
Id), where β =

λA

√
2blog2 tc+1

ε

(
ln 2blog2 tc

δ +
√

ε
2blog2 tc

)
8: Output x̂t+1 = argminx∈C

(
‖x− x̃t+1‖22

)
9: end for

Appendix F. POCP with Weak Dependence on T

In this section, we propose our modified POCP method with weaker dependence on T . As
mentioned in Section 6.2, we use a doubling trick to reduce dependence on T . At each

step t, we add noise with variance β = λA

√
2blog2 tc+1

ε

(
ln 2blog2 tc

δ +
√

ε
2blog2 tc

)
. This noise is

enough to guarantee (
√

ε
2blog2 tc

, δ
2blog2 tc

)-differential privacy for each iterate xt+1. That is in

the first step, we guarantee (
√
ε, δ) differential privacy and in the next two steps, (

√
ε/2, δ/2)

differential privacy, and so on. Now, using arguments similar to Theorem 1, we can obtain
privacy guarantee for our modified OCP algorithm (see Algorithm 7) as well. We formalize
our privacy guarantee for Algorithm 7 in the theorem below.

Theorem 13 Algorithm 7 is (3ε log2 T, δ log2 T + 2
T 2ε )-differentially private.

Proof The proof follows the general outline of the proof of Theorem 1. However, the major

difference in this case is that the output in t-th iteration is guaranteed to be (
√

ε
2blog2 tc

, δ
2blog2 tc

)-

differentially private. Proceeding as in the proof of Theorem 1, define Gt+1 as:

b ∈ Gt+1 iff
∣∣bT∆xt+1

∣∣ ≤ βλA
t2

√
2 ln

2blog2 tc

δ
, (41)

where ∆xt+1 = xt+1−x′t+1 for 1 ≤ t ≤ T . Just as in the proof of Theorem 1, for each time
step 1 ≤ t ≤ T ,

Pr[bt+1 6∈ Gt+1] ≤ δ

2blog2 tc
. (42)

Now, by a union bound, the probability that the output vectors bt+1 ∈ Gt for every 1 ≤ t ≤ T
is at least 1 −

∑T
t=1

δ
2blog2 tc

= 1 − δ log2 T . Now, define the sequence of functions with ξ
being any event in the event space,

Zt+1(at+1; ξ) = ln

(
pdf[x̃t+1 = at+1 | ξ]
pdf[x̃′t+1 = at+1 | ξ]

)
,
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where at+1 ∈ Rd. Recall that x̃t+1 = xt+1 + bt+1 and x̃′t+1 = x′t+1 + bt+1. Hence, the pdfs
in the above equation are associated with the random choice of the noise vectors bt+1 which
is drawn from a multivariate Gaussian.

Using Lemma 1, we have that at each time step t, the output x̃t+1 of Algorithm 7 is

(
√
ε

T 0.5+c ,
δ
T )-differentially private. That is, for 1 ≤ t ≤ T ,

−
√

ε

2blog2 tc
≤ Zt+1(at+1; bt+1 ∈ Gt+1) = ln

(
pdf[x̃t+1 = at+1 | bt+1 ∈ Gt+1]

pdf[x̃′t+1 = at+1 | bt+1 ∈ Gt+1]

)
≤
√

ε

2blog2 tc
.

Let L(x̃2, · · · , x̃T+1; ξ) =
∑T

t=1 Zt+1(x̃t+1; b2 ∈ G2 · · · , bT+1 ∈ GT+1). Since each bt+1 is
sampled independently and the randomness in both x̃t+1 and Zt+1(x̃t+1; b2 ∈ G2 · · · , bT+1 ∈
GT+1) is only due to bt+1, therefore: i) for 1 ≤ t ≤ T , Zt+1(x̃t+1; b2 ∈ G2 · · · , bT+1 ∈
GT+1) = Zt+1(x̃t+1; bt+1 ∈ Gt+1), and ii)each entry in the sequence x̃t+1s for 1 ≤ t ≤ T
and each entry in the sequence Zt+1(x̃t+1; b2 ∈ G2 · · · , bT+1 ∈ GT+1)s for 1 ≤ t ≤ T are
independent. Now, using independence of x̃t+1’s and the bound given above,

Ex̃2,··· ,x̃T+1
[L(x̃2, · · · , x̃T+1; b2 ∈ G2 · · · , bT+1 ∈ GT+1)] =

T∑
t=1

Ebt+1 [Zt+1(x̃t+1; bt+1 ∈ Gt+1)]

≤
T∑
t=1

2ε

2blog2 tc
≤ 2ε log2 T.

Note also that for every 1 ≤ t ≤ T and at+1 ∈ Rd, |Zt+1(at+1; bt+1 ∈ Gt+1)| ≤
√

ε
2blog2 tc

.

By the Azuma-Hoeffding inequality,

Pr[L(x̃2, · · · , x̃T+1; b2 ∈ G2 · · · , bT+1 ∈ GT+1) ≥ 3ε log2 T ] ≤ 2 exp

(
−2ε2 log2

2 T

ε log2 T

)
≤ 2 exp(−2ε log2 T ).

Hence, with probability at least 1− 2T−2ε over the draws of at+1 ∈ Rd from x̃t+1, we have:

ΠT
t=1 pdf(x̃t+1 = at+1 | bt+1 ∈ Gt+1) ≤ e3εΠT

t=1 pdf(x̃′t+1 = at+1 | bt+1 ∈ Gt+1).

Now, Pr[∃t s.t. bt+1 /∈ Gt+1] ≤ δ log2 T . Thus, again using a union bound, we have the
required result.

Regret of the modified POCP algorithm: Note that, in the modified POCP algorithm,
the variance of the noise added to xt+1, at time-step t, is always less than the variance of the
corresponding noise added in the POCP algorithm. Here, the regret incurred by our modified
POCP algorithm (see Algorithm 7) is bounded by the regret incurred by the original POCP
algorithm.

Appendix G. Empirical Results

In this section we study the privacy and utility (regret) trade-offs for two of our private
OCP approaches under different practical settings. Specifically, we consider the practically
important problem of online linear regression and online logistic regression. For online
linear regression we apply our PQFTL approach (see Algorithm 4) and for online logistic
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regression we apply our PIGD method (see Algorithm 2). For both the problems, we compare
our method against the offline optimal and the non-private online version and show the
regret/accuracy trade-off with privacy parameters. We show that our methods learn a
meaningful hypothesis (a hyperplane for both the problems) while privacy of the data is
provably preserved due to our differential privacy guarantees.

G.1. Online Linear Regression (OLR)

Online linear regression (OLR) requires solving for xt at each step so that squared error in
the prediction is minimized. Specifically, we need to find xt in an online fashion such that∑

t(yt−gTt xt)2+α‖xt‖2 is minimized. OLR is a practically important learning problem and
have a variety of practical applications in domains such as finance (Kivinen and Warmuth,
1995).

Now, note that we can directly apply our PQFTL approach (see Section 4) to this problem
to obtain differentially private iterates xt with the regret guaranteed to be logarithmic.
Here, we apply our PQFTL algorithm for the OLR problem on a synthetic dataset as well
as a benchmark real-world dataset, namely “Year Prediction” (Frank and Asuncion, 2010).
For the synthetic dataset, we fix x∗, generate data points gt of dimensionality d = 10
by sampling a multivariate Gaussian distribution and obtain the target yt = gTt x

∗ + η,
where η is random Gaussian noise with standard variance 0.01. We generate T = 100, 000
such input points and targets. The Year Prediction dataset is 90-dimensional and contains
around 500, 000 data points. For both the datasets, we set α = 1 and at each step apply our
PQFTL algorithm. We measure the optimal offline solution using standard ridge regression
and also compute regret obtained by the non-private FTL algorithm.

Figure 2 (a) and (b) shows the average regret (i.e., regret normalized by the number of
entries T ) incurred by PQFTL for different privacy level ε on synthetic and Year Prediction
data. Note that the y-axis is on the log-scale. Clearly, our PQFTL algorithm obtains
low-regret even for reasonable high privacy levels (ε = 0.01). Furthermore, the regret gets
closer to the regret obtained by the non-private algorithm as privacy requirements are made
weaker.

G.2. Online Logistic Regression

Online logistic regression is a variant of the online linear regression where the cost func-
tion is logistic loss rather than squared error. Logistic regression is a popular method to
learn classifiers, and has been shown to be successful for many practical problems. In this
experiment, we apply our private IGDalgorithm to the online logistic regression problem.
To this end, we use the standard Forest cover-type dataset, a dataset with two classes,
54-dimensional feature vectors and 581, 012 data points. We select 10% data points for
testing purpose and run our Private IGD algorithm on the remaining data points. Figure 2
(c) shows classification accuracy (averaged over 10 runs) obtained by IGD and our PIGD
algorithm for different privacy levels. Clearly, our algorithm is able to learn a reasonable
classifier from the dataset in a private manner. Note that our regret bound for PIGD method
is O(

√
T ), hence, it would require more data points to reduce regret to very small values,

which is reflected by a drop in classification accuracy as ε decreases.
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Method Accuracy
Non-private IGD 68.1%

PIGD (ε = 20, δ = 0.01) 66.3%
PIGD (ε = 10, δ = 0.01) 62.7%
PIGD (ε = 1, δ = 0.01) 59.4%
PIGD (ε = 0.1, δ = 0.01) 58.3%

(a) (b) (c)

Figure 2: Privacy vs Regret. (a), (b): Average regret (normalized by the number of it-
erations) incurred by FTL and PQFTL with different levels of privacy ε on the
synthetic 10-dimensional data and Year Prediction Data. Note that the regret is
plotted on a log-scale. PQFTL obtained regret of the order of 1e − 2 even with
high privacy level of ε = 0.01. (c): Classification accuracy obtained by IGD and
PIGD algorithm on Forest-covertype dataset. PIGD learns a meaningful classifier
while providing privacy guarantees, especially for low privacy levels, i.e., high ε.
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