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Abstract

An m-variate polynomial f is said to be an affine projection of some n-variate polynomial g
if there exists an n×m matrix A and an n-dimensional vector b such that f(x) = g(Ax + b).
In other words, if f can be obtained by replacing each variable of g by an affine combination
of the variables occurring in f , then it is said to be an affine projection of g. Given f and g
can we determine whether f is an affine projection of g? Some well known problems (such as
VP versus VNP and matrix multiplication for example) are instances of this problem.

The intention of this paper is to understand the complexity of the corresponding computa-
tional problem: given polynomials f and g find A and b such that f = g(Ax + b), if such an
(A,b) exists. We first show that this is an NP-hard problem. We then focus our attention on
instances where g is a member of some fixed, well known family of polynomials so that the input
consists only of the polynomial f(x) having m variables and degree d. We consider the situation
where f(x) is given to us as a blackbox (i.e. for any point a ∈ Fm we can query the blackbox
and obtain f(a) in one step) and devise randomized algorithms with running time poly(mnd)
in the following special cases:

(1) when f = Permn(Ax + b) and A satisfies rank(A) = n2. Here Permn is the permanent
polynomial.

(2) when f = Detn(Ax + b) and A satisfies rank(A) = n2. Here Detn is the determinant
polynomial.

(3) when f = Pown,d(Ax + b) and A is a random n×m matrix with d = nΩ(1). Here Pown,d

is the power-symmetric polynomial of degree d.

(4) when f = SPSn,d(Ax + b) and A is a random (nd) × m matrix with n constant. Here
SPSn,d is the sum-of-products polynomials of degree d with n terms.
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1 Introduction

The topic of interest here is the notion of an affine projection of a polynomial. Intuitively, a
polynomial f (over a field F) is an affine projection of a polynomial g, 1 denoted f ≤aff g, if f is
obtained from g via an affine change of variables. More formally, an m-variate polynomial f is said
to be an affine projection of some n-variate polynomial g if there exist m-variate affine forms (i.e.
degree one polynomials) `1, `2, . . . , `n such that

f(x) = g(`1, `2, . . . , `n),

written compactly as f(x) = g(A · x + b) where A is an n × m matrix b is an n-dimensional
vector. The intuitive geometric interpretation of this notion is the following. Assume m ≤ n. The
polynomial g gives a function from the affine space Fn to F in the natural way: a 7→ g(a). Then
f ≤aff g if and only if there exists an m-dimensional affine subspace U of Fn such that g restricted
to the subspace U equals f upto an appropriate choice of coordinates for U . In this paper, we
study the computational complexity of finding an affine projection given the polynomials f and g
(if it exists). Let us state this formally.

Name: PolyProj
Input: Polynomials f(x1, x2, . . . , xm) and g(x1, x2, . . . , xn) over the
field F.
Output: An n × m matrix A and a vector b ∈ Fn such that
f(x) = g(Ax + b), if such an A and b exist. Else output ‘No such
projection exists’.

1.1 Motivation.

The motivation for this study is that some well-known open problems/conjectures (and also some
not so well-known conjectures) in arithmetic complexity are instances of this problem (cf. [MS01]).
To see why this is so, we first introduce the reader to some popular families of polynomials and
then mention how PolyProj encompasses an apparently diverse collection of problems.

(1). Symn,d: the elementary symmetric polynomials: Symn,d =
∑

S⊆[n],|S|=d
∏
i∈S xi

(2). Pown,d: the power symmetric polynomials: Pown,d =
∑

i∈[n] x
d
i

(3). SPSn,d: the sum of products polynomial: SPSn,d =
∑n

i=1

∏d
j=1 xij

(4). Detn: the determinant polynomial: Detn =
∑

π∈Sn
sign(π)

∏n
i=1 xiπ(i)

(5). Permn: the permanent polynomial: Permn =
∑

π∈Sn

∏n
i=1 xiπ(i)

(6). TrMatn: the trace of matrix multiplication: TrMatn(x,y, z) :=
∑

i,j,k∈[n] xij · yjk · zki

(7). IMMd,n: iterated matrix multiplication: the (1, 1)-th entry of the product of d matrices of size
n×n each. i.e. the (1, 1)-th entry of (X1 ·X2 · . . . ·Xd), where for i ∈ [d], Xi = ((xijk))j,k∈[n] ∈
F[x]n×n.

1Mulmuley and Sohoni [MS01] use the term ‘f is in the orbit-closure of g’ to denote that f ≤aff g. Seeking a
broader appeal, we adopt the terminology from [Shp02] instead.
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In talking about these families of polynomials, when the parameters n and d are clear from context
we will drop these - so for example we will often refer to Detn simply as Det. 2 For concreteness,
for the rest of this paper we fix the underlying field to be C, the field of complex numbers. 3

Let us now see how some open problems and/or interesting results in arithmetic complexity can
equivalently be stated in terms of some polynomial being a projection of some other polynomial.
We begin with two well known instances of PolyProj :

(1) The VP versus VNP problem (also called the determinant versus permanent problem). It is
conjectured that

Permm �aff Detn for any n = 2(logm)O(1)
.

We refer the reader to the text by Burgisser ( [Bur00], chapter 2) or the survey by Agrawal
[Agr06] for the background and significance of this problem. We remark here that a lower
bound of mω(1) for n will rule out polynomial-size arithmetic formulas for the permanent while
a lower bound of 2(logm)ω(1)

will rule out polynomial size arithmetic circuits (of polynomially
bounded degree).

(2) The arithmetic complexity of matrix multiplication (cf. [Str69,BI11]). It is conjectured that

TrMatn ≤aff SPSm,3 for some m = Õ(n2).

For example Strassen’s 1969 discovery [Str69] that the product of two 2 × 2 matrices can be
computed with 7 multplications can be restated as TrMat2 is a projection of SPS7,3 in the
following manner:

TrMat2 = ((x11 + x22) · (y11 + y22) · (z11 + z22)) + ((x21 + x22) · y11 · (z21 − z22))
+ (x11 · (y12 − y22) · (z12 + z22)) + (x22 · (y21 − y11) · (z11 + z21))
+ ((x11 + x12) · y22 · (−z11 + z12)) + ((x21 − x11) · (y11 + y12) · z22)
+ ((x12 − x22) · (y21 + y22) · z11)

Some of the lesser known conjectures/problems include:

(3) Lower bounds for depth-three arithmetic formulas (cf. the survey [SY10]): in our terminology
the problem is to find an explicit low-degree polynomial f such that f �aff SPSn,d for any (n ·
d) = mO(1). A closely related problem that will be relevant for us is the reconstruction problem
for depth-three arithmetic circuits [Shp07, KS09] which in our terminology is the following:
given a polynomial f and integers n, d find A,b such that

f(x) = SPSn,d(A · x + b).

(4) Waring problem for polynomials (cf. the book by Landsberg [Lan12]): for an m-variate poly-
nomial f of degree d, what is the smallest n such that f ≤aff Pown,d? For more on the
Waring problem for polynomials see the works of Ellison [Ell69], Ehrenborg and Rota [ER93],
Kleppe [Kle99] and the references therein. The number n is also sometimes called the rank
of the symmetric tensor f (any m-variate polynomial f can be viewed as a symmetric tensor
of order m). Thus this problem is sometimes referred to as the problem of determining the
symmetric rank of symmetric tensors [BGI09,CGLM08].

2n here is used to index the n-th member of the family of polynomials. In general does not equal the number of
variables. For example Detn has n2 variables and is of degree n.

3The discussion in this paper will carry over with some minor changes as long as the characteristic of the field F
is large enough.
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(5) Lower bounds for affine projections of symmetric polynomials [Shp02]: find an explicit m-
variate polynomial f of degree mO(1) such that

f �aff Symn,d whenever (n · d) = mO(1)

(6) Lower bounds for Algebraic Branching Programs (ABPs): a polynomial f can be computed
by an ABP of width w and size s if and only if it can be expressed as an affine projection
of IMMs,w. In this way, problems pertaining to ABP-complexity of a polynomial naturally
correspond to projections of IMMs,w.

(7) A conjecture of Scott Aaronson [Aar08]. Random m-variate affine projections of Detn are
pseudorandom polynomials in the sense that they are indistinguishable (via poly

((
m+n
n

))
-time

algorithms) from truly random m-variate polynomials of degree n.

With these open problems/conjectures and the related upper bounds/algorithms forming the back-
drop, one is naturally compelled to ask the following question – given polynomials f and g, can we
determine if f is an affine projection of g? In this paper we make an attempt to understand this
question by examining it under the lens of computational complexity.
At this point we should specify the representation used to encode the input polynomials. The affine
projection problem is interesting whatever be the representation used. Here we will typically deal
with an input polynomial f given as a blackbox - i.e. we have access to an oracle “holding” the
polynomial f so that for any point a ∈ Fm, we can query this oracle and obtain the value of f(a)
in one step 4.

1.2 Our results

Hardness of PolyProj

While developing an approach to the determinant versus permanent problem, Mulmuley and Sohoni
( [MS01], pg. 4) make the remark

“... the orbit closure problem 5 may well be intractacle if f and g were arbitrary.”

Our first result confirms this implicit conjecture . Specifically, we show that PolyProj is NP-hard
in general.

Solving PolyProj for specific families of polynomials.

We then focus our attention to PolyProj instances where g is a member of one of the families
of polynomials listed above and investigate whether it is possible to efficiently solve PolyProj
in such situations. As we have already seen, many of the families of polynomials listed above
effectively capture an appropriate subclass of arithmetic circuits. Devising a PolyProj -algorithm
for such a family G = {gn} is then the same as learning, or reconstructing, the corresponding class
of arithmetic circuits. This motivates us to solve PolyProj instances when g belongs to one of
the families listed above.

4For the hardness result we will use the sparse representation for polynomials wherein a polynomial f with t
nonzero monomials is given as a list of t elements containing the monomials and their coefficients.

5i.e. the PolyProj problem
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Affine equivalence.

Recall that we are given polynomials f and g and we want to find A, b such that f = g(A · x + b),
if such an A,b exists. The first set of algorithms presented here concern the restriction where A is
invertible, i.e. when f is affinely equivalent to g 6. There is a natural geometric interpretation of
the notion of affine equivalence. Recall that the n-variate polynomial g represents a function from
the affine space Fn to F in the natural way: a 7→ g(a). The polynomial f is then affinely equivalent
to g if and only if f equals g upto a choice of coordinates.

Let us motivate our study of projections under this restriction with an example - quadratic
polynomials. For simplicity let us consider the case where f and g are homogeneous quadratic
polynomials. 7 It is a classic result that every homogeneous quadratic polynomial is equivalent
(under invertible linear transformations) to Powr,2 for some integer r ≥ 0. So let f be equivalent to
Powrf ,2 and g be equivalent to Powrg ,2. It turns out that f is an affine projection of g if and only if
rf ≤ rg. This observation is effective and can be generalized suitably to inhomogeneous quadratic
polynomial so that we have –

Fact 1. PolyProj can be solved in polynomial-time for quadratic polynomials.

This example suggests that in order to solve PolyProj a first step might be to deter-
mine/characterize all the polynomials which are equivalent to a given polynomial g. Unfortunately,
this is a quite difficult problem in general - it was shown by Agrawal and Saxena [AS06] that
determining whether two polynomials are equivalent under invertible linear transformations is at
least as difficult as Graph Isomorphism. The first set of results presented here builds on previous
work of the present author [Kay11] and shows that for g belonging to any of the families of polyno-
mials listed above, one can efficiently determine whether a given polynomial is affinely equivalent
to g. This is somewhat surprising especially as there is even a cryptosystem [Pat96] based on the
presumed average-case hardness of polynomial equivalence 8. The main cases presented here are
the cases of the permanent and the determinant. Specifically we show:

Theorem 2. There exists a randomized algorithm that given integers n, d,m and blackbox access
to an m-variate polynomial f of degree d determines whether there exists a matrix A ∈ Fn2×m of
rank n2 and a vector b ∈ Fn2

such that

f(x) = Permn(A · x + b).

Moreover the running time of the algorithm is (mnd)O(1).

Remark 3. (1) The theorem as stated here apparently tackles a problem more general than affine
equivalence; however as we will see in section 5.1, it easily reduces to it.

(2) Note that for m = n2 (d = n without loss of generality ), our running time of poly(n) is much
smaller than n!, the number of monomials in the permanent.

(3) This theorem may at first sight seem surprising given that we do not know how to compute
the permanent efficiently. Indeed this is one of the difficulties that is overcome (among other
things) in certain steps of our algorithm. Note that we do have blackbox access to f though.

6In the Mulmuley-Sohoni terminology - to determine if f is in the orbit of g (under the action of the general affine
group)

7Similar remarks apply when f and g are inhomogeneous quadratic polynomials – one just needs to consider a
few additional cases in that situation.

8Actually we do not present the algorithm for equivalence to TrMatn here. This will be done in a forthcoming
note.
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A similar result holds for the determinant as well.

Theorem 4. There exists a randomized algorithm that given integers n, d,m and blackbox access
to an m-variate polynomial f of degree d determines whether there exists a matrix A ∈ Fn2×m of
rank n2 and a vector b ∈ Fn2

such that

f(x) = Detn(A · x + b)

Moreover the running time of the algorithm is (mnd)O(1).

A very rough overview of the main ingredients used in the algorithms of theorems 2 and 4 above is
as follows. We use the structure of the lie algebra of the group of symmetries of a given polynomial
f to determine most of the “continuous part” of the affine map from Permn (respectively Detn) to
f . We then use the second partial derivatives of f to determine the “discrete part” of this map
while the residual “continuous part” is determined using some well-chosen substitutions. We refer
the reader to section 2.1 for an overview and to sections 6.1 and 6.2 for the full details. In particular
these two theorems answer a couple of questions posed in [Kay11].

Random Projections.

We then turn our attention to general affine projections, i.e. PolyProj instances where the
rank of the matrix A is typically much less than the number of variables in g. As we have already
noted, algorithmically solving PolyProj in such a situation corresponds to learning/reconstructing
classes of arithmetic circuit. Before we present our results here, let us give some background and
motivation for learning/reconstructing in the arithmetic setting.

From a broad perspective, reconstructing polynomials from arithmetic complexity classes is,
in some sense, analogous to learning concept classes of Boolean functions using membership and
equivalence queries. (see Chapter 5 of survey by Shpilka and Yehudayoff [SY10] for justifying ar-
guments for the analogy to the Boolean world and, more generally, for previous work in this area.)
While research on the theory of learnability in the Boolean world has evolved into a mature disci-
pline, thanks to fundamental notions such as PAC learning due to Valiant, research on learnability
in the arithmetic world has been gaining momentum only in recent years.

A recurring theme in Boolean and arithmetic domains is that techniques used to prove lower
bounds for a model of computation are often helpful in designing learning algorithms for that model.
At a very high level, a lower bound proof identifies mathematical properties of a model of compu-
tation that capture efficient computation in that model. Thus functions efficiently computable in
that model should possess the same or similar properties and these should also be useful in learning
such functions. This thesis has been borne out in the Boolean world by several examples, e.g.,
Fourier approximability of AC0 circuits is useful in both lower bounds and learning algorithms. A
similar trend is seen in the arithmetic world. Our next set of results are guided by, and provide
supporting evidence to, this thesis. We look at PolyProj instances corresponding to arithmetic
circuit classes for which “good” lower bounds are already known. In such situations, the algorithms
that we present here find the solution for almost all problem instances. This line of work is then,
in some sense, analogous to learning boolean concept classes under distributional assumptions. We
now make the ‘the almost all’ precise. Consider a family of polynomials G = {gn : n ≥ 0}. Let
S ⊆ F be a set. Our algorithm gets as input an integer m and the polynomial f = gn(A · x + b),
where the entries of A ∈ Fn×m and b ∈ Fn are from S ⊆ F and its job is to find A and b. We will say
that the algorithm works for almost all instances if it computes a correct solution with probability
1−o|S|(1) for a random choice of (A,b) ∈ (Sn×m × Sn). In other words, the algorithm is successful
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with probability 1 when the entries of A and b are chosen independently at random from a large
enough subset of the field. Besides the learning-theoretic motivation of this line of work, another
motivation comes from the conjecture by Scott Aaronson concerning random projections of the
determinant mentioned in section 1.1. 9 Solving worst-case instances of a given problem is the gold
standard of algorithm design. On the other hand, circuit reconstruction problems are generally
very hard. By changing the goal from solving all instances to almost all instances helps us avoid
several degenerate cases which might have otherwise have bogged us down severely. It allows the
algorithm and its analysis to be stated simply and cleanly and brings out well the underlying theme
of this line of work - namely that the mathematical ideas underlying lower bound proofs for a given
restricted class of arithmetic circuits can usually be used to design efficient learning/reconstruction
algorithms for that circuit class.

We refer the reader to Shpilka and Wigderson for lower bounds on projections of SPSn,d, to
Shpilka [Shp02] for lower bounds on projections of Symn,d and to the survey by Chen, Kayal and
Wigderson for lower bounds on projections of Pown,d. 10 Here we show how the mathematical ideas
underlying these lower bound proofs lead to polynomial-time algorithms for almost all instances of
the problem at hand. Specifically we show:

Theorem 5. There exists a randomized algorithm A whose input consists of integers n,m, d and
blackbox access to an m-variate polynomial f of degree d. It does the following computation:

(1) If d > 2n and f = Pown,d(`1, `2, . . . , `n) then the algorithm always computes the `i’s in
poly(mnd) time.

(2) If d ≤ 2n and f is of the form
f = Pown,d(`1, . . . , `n)

then with probability at least
(

1− 2dn
|S|

)
, the algorithm correctly computes the `i’s (over the

random choice of `i’s with coefficients from a set S). Furthermore, the running time of the
algorithm in this case is (d · n)O(t), where t is the smallest integer satisfying(

t+ d/2− 1
d/2

)
≥ n.

In particular, if d ≥ nε for some constant ε > 0 then the algorithm has running time (n·d)O(ε−1).

Remark 6. 1. The algorithm above is interesting only when d is relatively large. When d is
small, say when d = 3 then the algorithm is no better than a brute force algorithm. Michael
Forbes has noted that in this case, the problem is closely related to tensor rank (of order
three tensors). See proposition 75 for the precise statement. It was shown by Hastad [H̊as90]
that computing the rank of order three tensors is NP-complete. 11

9To the best of our knowledge there is no complexity-theoretic evidence for Aaronson’s conjecture. Specifically we
do not know any (widely believed) complexity-theoretic hypothesis whose truth would imply Aaronson’s conjecture;
however if such evidence were to be found then its implication would be somewhat stunnning - it would give the first
known ”natural proof”-like barrier (in the sense of Razborov and Rudich [RR94]) for proving arithmetic circuit lower
bounds.

10Many arithmetic circuit lower bounds have some common flavour and are perhaps more easily described in the
framework of affine projections. In appendix A, we give a quick summary for some of these lower bound proofs from
our viewpoint.

11Our understanding of tensor rank is quite poor - unlike symmetric tensors, we do not know the rank of even
generic order three tensors. The best known lower bound for an n× n× n tensor is 3n due to Alexeev, Forbes and
Tsimmerman [AFT11].
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2. When d = nΩ(1) the algorithm has running time poly(nd). Note that in this case the number
of monomials in such a f is typically exponential in (nd) so that the running time of our
algorithm is much less than the number of (nonzero) monomials in f .

Theorem 7. There exists a randomized algorithm A whose input consists of integers n,m, d and
blackbox access to an m-variate polynomial f of degree d with d,m > n2 + n. If f is of the form

f =
∑
i∈[n]

∏
j∈[d]

`ij

and if every subset of the `ij’s of size (n2 +n) is linearly independent then the algorithm A correctly
computes the `ij’s . Furthermore, the running time of the algorithm is poly(m · dn2

).

Remark 8. 1. The algorithm above is interesting only when n is very small say n bounded.
When f is set-multilinear, the quantity n equals (upto a contant factor) the tensor rank of
f , a quantity which is known to be NP-hard to compute (cf. [H̊as90], [Raz10] or [BI11])

2. If the `ij ’s are chosen at random with coefficients from a large enough set S then with high
probability (see fact 77 for a more precise statement), every subset of (n2 + n) `ij ’s will
be linearly independent. Thus this algorithm in particular solves PolyProj for random
projections of SPSn,d with n bounded.

3. When n is bounded the algorithm has running time poly(md). Note that in this case the
number of monomials in such an f is

(
m+d
d

)
so that when m and d are comparable then the

running time of our algorithm is typically much less than the number of (nonzero) monomials
in f .

4. Closely related is the work of Shpilka [Shp07] and Karnin and Shpilka [KS09] who give

algorithms of running time m · |F|(log d)n3

for affine projections of SPSn,d over finite fields.
Note that their algorithm works so long as the `ij ’s satisfy a relatively mild condition while
we impose the much more stringent condition of O(n2)-wise independence. While this is a
significant disadvantage of our algorithm, the benefit we obtain is the significant improvement
in the running time and the relative simplicity of the algorithm and its analysis.

In a similar vein:

Theorem 9. There exists a randomized algorithm A whose input consists of integers n,m, t and
blackbox access to an m-variate polynomial f of degree d = (n− t) with m > t2 + t. If f is of the
form

f = Symn,d(`1, `2, . . . , `n)

and if every subset of the `i’s of size (t2 + t) is linearly independent then the algorithm A correctly
computes the `i’s . Furthermore, the running time of the algorithm is poly(m · nt2). In particular,
if t is bounded then the algorithm has running time (m · n)O(1).

Let us give a quick overview of the technical ingredients involved in theorems 5, 7 and 9. One
common ingredient of these theorems is the “Project and Lift” technique which is already present
in many results pertaining to learning/reconstruction in the arithmetic setting, for the example in
the works of Kaltofen [Kal89] and of Shpilka [Shp07]. Let us give an overview of this technique as
applicable to our situation.
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The Project and Lift Technique. Let U = Fm and V = Fn be affine spaces of dimensions m
and n repectively. Recall that in the PolyProj problem, given polynomial fucntions f : U 7→ F
and g :7→ F, we want to find an affine map π : U 7→ V such that f(a) = g(π(a)) for all a ∈ U . How
do we find the affine map π? Note that any affine map from U to V is completely determined by the
image of any set of (m+1) affinely independent points of U . We pick an affine subspace W ⊂ Fm of
dimension t (for algorithmic efficiency t usually needs to be a constant) and points a1,a2, . . . ,am−t
such that these points together with W span the full space U . Let Wi := Span(W,ai). The idea is
that if for each i ∈ [m−t] if we could somehow find the induced submap, π|Wi

12 then we can recover
the entire map π. How do we find π|Wi? The idea of course is to express the polynomial function
f |Wi

13 as an affine projection of g, i.e. to find a map σi : Wi 7→ U such that f(a) = g(σi(a)) for all
a ∈ Wi. Thus one can potentially obtain π|Wi (and thereby solve the m-dimensional problem) by
solving the affine projection problem for f |Wi , which is “merely” a constant dimensional problem
(for t constant). At this point an important and delicate issue crops up - that there might exist
another “solution” to the problem of expressing f |Wi as an affine projection of g. Specifically, it
might happen that σi is different from π|Wi (note that π|Wi is always a solution to the subproblem).
This approach then inherently requires us to understand the uniqueness of solutions of PolyProj
and this understanding is an important component of theorems 5 and 7.
Uniqueness of solutions of PolyProj . Let us motivate and make precise the notion of
uniqueness we have in mind. For an n-variate polynomial g, let

Gg := {B ∈ F(n×n)∗ : g(Bx) = g(x)}

be the group of symmetries of g 14. (It turns out that for all the families of polynomials listed in
section 1.1, their groups of symmetries are well understood and completely characterized). Observe
that if f(x) = g(A · x + b) then for any B ∈ Gg we also have f(x) = g(B · A · x + B · b). Let us
ask the following question - are these all the ways in which f can be expressed as a projection of
g? Let us introduce some terminology to capture this.

Definition 10. We will say that f(x) = g(Ax + b), is a projection of g in an essentially unique
way 15 if whenever f(x) = g(A′x + b′), is any other projection from g to f then it holds that there
exists a B ∈ Gg such that A′ = B ·A, and b′ = B · b.

As part of the proof of theorems 5, 7 and 9, we show that random projections of Pown,d, SPSn,d
and Symn,d are essentially unique. The essence of the “Project and Lift” technique is the following.
Assume that Gg is generated by diagonal and permutation matrices, that f ≤aff g and the restriction
of f to a random t-dimensional subspace W ⊂ Fm is a projection of g in an essentially unique
manner, then it suffices to express f |W as an affine projection of g.

Solving the problem when m is constant. In this manner, using the “Project and Lift
technique” we would have reduced m to some constant t and need to find an appropriate n × t
matrix A and an n-dimensional vector b. Note that a naive approach which treats the entries of
A and b as unknowns and solves the appropriate system of polynomial equations corresponding to
f = g(A ·x+b) would still require 2O(n) time. So how do we find the solution in poly(n) time? The
key contribution of the present work is to show how the mathematical properties involved in the
lower bound proof for projections of Pown,d and SPSn,d can be used to solve the problem efficiently,
i.e. in time polynomial in the number of variables of g.

12π|Wi : Wi 7→ V is simply the map a 7→ π(a), ∀a ∈Wi
13f |Wi : Wi 7→ F is simply the polynomial function given by a 7→ f(a), ∀a ∈Wi
14When g is regular which will be the case here, every symmetry of g in the general affine group is in fact a member

of the general linear group
15See the remarks at the beginning of section 5.2.1 for some examples and discussion of this notion.
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1.3 Discussion

Impact on the motivating problems. We now discuss the impact of theorems 2, 4, 5, 7
and 9 to the motivating problems mentioned at the very beginning. While theorems 2 and 4
are perhaps surprising and may perhaps even be useful some day, presently they do not have
any significant impact on the determinant versus permanent problem or on the conjecture by
Scott Aaronson. This is because the polynomial function obtained by restricting Detn to a proper
subspace completely loses the lie-algebraic structure. 16 In particular the Ω(n2) lower bound of
Mignon and Ressayre [MR04, CCL08] remains the best known lower bound for the determinant
versus permanent problem. Theorem 7 also does not lead to any improvement in the best known
lower bounds for depth three circuits (over fields of characteristic zero). It does however improve
our understanding of the reconstruction problem for depth-three circuits - it shows that the running
time can be significantly improved, at least in the average-case or distributional sense rather than
in the worst case sense. The most significant impact is on the Waring problem for polynomials.
Very roughly (i.e. with some significant caveats), theorem 5 shows that the polynomial Waring
problem admits an efficient algortihmic solution.

We remark here that finding the smallest depth-three arithmetic circuit for computing TrMatn
for say n = 24 can (via Strassen’s approach) lead to more practical matrix multiplication algorithms
and potentially even to improvements in the asymptotic complexity of matrix multiplication. Is
it possible then to use the ideas from exponential lower bounds for depth three circuits over finite
fields [GK98, GR98] or from some recent lower bound results such as [BI11] to find the smallest
depth three circuit for say TrMat24 over say the field F3? This tantalizing possibility we leave as a
direction for future investigation.

Update. Very recently Gupta, Kayal and Lokam [GKL] have used theorem 7 to solve worst-case
reconstruction problem for depth-4 multilinear circuits of top fanin two. In a separate work, the
authors have also found theorem 4 useful towards a certain version of the reconstruction problem for
algebraic branching programs (ABPs). 17 We cannot resist mentioning the gist of this application
here. As we noted earlier, ABPs of width w and size s correspond to the multiplication of s matrices
X1, X2, . . . , Xs ∈ (F[x])w×w. The entries of each Xi are affine forms. Given just the product

X = X1 ·X2 · . . . ·Xs,

can we reconstruct the Xi’s? Roughly, the idea is that if we take determinants, we get

Det(X) = Det(X1) · Det(X2) · . . . · Det(Xs)

and so factoring Det(X) and applying theorem 4, we already get the Xi’s (upto ordering and upto
the symmetry group GDet)(!) With a little more work, one can get the Xi’s themselves and that
too in the correct order.

2 Overview of Algorithms

2.1 Overview of algorithms for Polynomial Equivalence

In section 5.1 we show that affine equivalence (and also a slightly more general variant that we call
a full rank) reduces to equivalence of polynomials under invertible linear transformations. We now

16The GCT program can be viewed as an attempt to make progress by salvaging some of this structure.
17An efficient worst-case reconstruction of non-commutative ABPs was shown by Arvind, Mukhopadhyay and

Srinivasan [AMS10].
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undertake the task of devising algorithms for polynomial equivalence in some special cases. We
first define a notion that will be useful towards this end.

Definition 11. Let f, g ∈ F[x1, x2, . . . , xn] be n-variate polynomials. Let G ≤ GL(n,F) be a
subgroup of the general linear group. We will say that f is G-equivalent to g if there exists an
A ∈ G such that

f(x) = g(A · x).

We now define three subgroups of GL(n,F) that will be particularly useful. The first one is group
of invertible diagonal matrices which we call SC(n,F) (simply SC in short). We refer to this
subgroup as the group of scaling matrices. Another important subgroup of GL(n,F) is the group
of permutation matrices which we denote by PM(n,F) (simply PM in short). Finally we denote by
PS(n,F) the subgroup of GL(n,F) generated by PM and SC.
Overview of equivalence algorithms. Suppose we are given as input an n2-variate polynomial
f which is equivalent to the permanent (respectively the determinant) under the action of GL(n2,F)
group and we want to determine this equivalence. We will solve this problem in three steps.

Step (1): Reduction to PS-equivalence. In this step we will exploit the fact that the permanent
(resp. the determinant) has a nontrivial lie algebra associated to it (see section 3.3 for
the relevant definitions). By analyzing the lie algebra of f we shall compute a linear
transformation A1 ∈ GL(n2,F) such that the polynomial

f1(x) := f(A1x)

is PS-equivalent to the permanent (resp. the determinant).

Step (2): Reduction to SC-equivalence. Given f1(x) as above we exploit the second-order par-
tial derivatives of the permanent (resp. the determinant) to computation a permutation
matrix A2 such that

f2(x) := f1(A2x)

is SC-equivalent to the permanent (resp. the determinant).

Step (3): Solving SC-equivalence. In this step, we perform some simple substitutions to deter-
mine λ11, λ12, . . . , λnn such that

f2(λ11x11, λ12x12, . . . , λnnxnn)

equals the permanent (resp. the determinant) polynomial. Let

f3(x) := f2(λ11x11, λ12x12, . . . , λnnxnn)

Step (4): Verification. In the last step we verify that the polynomial f3(x) obtained above does
indeed equal the permanent (resp. the determinant) polynomial. In the case of the
determinant this step is accomplished easily using the DeMillo-Lipton-Schwarz-Zippel
identity testing algorithm. In the case of the permanent a randomized algorithm was
obtained by Impagliazzo and Kabanets by exploiting the downward self-reducibility of
the permanent [KI04,AvM10].
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The main novelty of this work lies in Step 1, wherein lie algebras are used to attack polynomial
equivalence. We refer the reader to the preliminaries section 3 for the definition of lie algebras and
related terminology used in the rest of this subsection. The use of lie algebras would not come as a
surprise to experts working on the Geometric Complexity Theory (GCT) approach to the permanent
versus determinant problem. Indeed the GCT approach seeks to exploit the fact that the symmetries
of the determinant and permanent form lie groups and as a consequence come equipped with the
corresponding lie algebras. The GCT approach then seeks to use the representation theory of
these lie groups and lie algebras to attack the determinant versus permanent problem. The result
presented here may be viewed as using some very basic information from these lie algebras to
algorithmically solve a much simpler (but nevertheless interesting) problem.

Let us give more details of the first step. The starting point is the observation (Lemma 22)
that a basis for the lie algebra of any polynomial n-variate polynomial f , given as a blackbox, can
be computed in poly(n) randomized time. Now whenever two polynomials f and g are equivalent
their lie algebras are conjugates of each other. The group of symmetries of the permanent (resp.
the determinant) and its corresponding lie algebra is well known. As a result our problem reduces
to finding the conjugacy map sending one lie algebra to another. This appears to be a difficult
problem in general ... the conjugacy problem for two nilpotent lie algebras may in general well
be at least as difficult as graph isomorphism. In our case however, we know the lie algebra of the
permanent and it is fixed. Even with the fixed lie algebra of the permanent on one side, we do
not know how to solve the conjugacy problem. Fortunately, there is a way out. It turns out that
the lie algebra of the Permn is commutative and can be diagonalized. So having computed the lie
algebra of f , we diagonalize it. This is a natural thing to do - diagonalization is after all a natural
canonizing operaton on a set of matrices. It also turns out that most matrices in the lie algebra
of the permanent have distinct eigenvalues. Observe that if a diagonal matrix A has all distinct
eigenvalues and B = X ·A ·X−1 is also a diagonal matrix then the eigenvectors of B are obtained
from the eigenvectors of A by permutation and scaling. This observation implies that our original
GL(n2)-equivalence problem is now reduced to PS(n2)-equivalence. The case of the determinant
is more involved. This is becaus the lie algebra of the determinant is not commutative. In fact it
is (almost) isomorphic to the direct product sln × sln, where sln is the algebra of traceless n × n
matrices. In particular, the lie algebra of Detn cannot be diagonalized. We have to go to Cartan
subalgebras. For sln one of its Cartan subalgebras is the algebra of traceless diagonal matrices. It
turns out that for any given lie algebra, we can compute one of its Cartan subalgebra efficiently.
Furthermore, any two Cartan subalgebras of sln are conjugate. These two observations can then
be put together to reduce the original GL(n2)-equivalence problem for the determinant to PS(n2)-
equivalence to the determinant. This completes our brief overview of the equivalence algorithms.
We refer the reader to sections 6.1 and 6.2 for further details.

2.2 Overview of Projection algorithms.

We now give a quick overview of our methods to solve PolyProj instances when g belongs to one
of these three families of polynomials: Pown,d,SPSn,d and Symn,d. Cautionary note: while Pown,d
and Symn,d are actually n-variate polynomials, SPSn,d is actually an N = (nd)-variate polynomial.
We are given an m-variate f and a g where g is a member of one of the families above and we
want to find the affine projection sending f to g. As we indicated in section 1, the ‘Project and
Lift’ technique, together with uniqueness of solutions, can be used to effectively ensure that m is a
constant, say 10. So now how do we find the affine map?

11



Sum of powers, Pown,d: Suppose that

f =
∑
i∈[n]

`di ,

where the `i’s are linear forms. The following is the main idea in the corresponding lower bound
proof (cf. the survey by Chen, Kayal, Wigderson [CKW11]). Let k = d/2. The dimension of the
space of the k-th order partial derivatives of f is small - at most n. in particular this means that the
dimension of the k-th order partial derivatives of (f−`di ) is even smaller - at most (n−1). We use this
observation as follows: we formulate a system S of polynomial equations whose solutions correspond
to affine forms ` such that the dimension of partial derivatives of (f − `d) is smaller than that of
f . The `i’s are all solutions to this system of equations S. This system S has m = 10 unknowns
- each one corresponding to the coefficients of a variable in `. It is well known that a system of
polynomial equations in a constant number of variables can be solved efficiently in randomized
polynomial time. The main difficulty at this point is that S may have many more solutions besides
the `i’s. Indeed the number of solutions can even be infinite. One of the chief technical ingredients
is to show that when the `i’s are random affine forms, then with high probability (over the choice
of the `i’s) these are the only solutions to S.
Sum of products, SPSn,d: The lower bound proofs for SPSn,d however use a different property.
Suppose that

f =
∑
i∈[n]

∏
j∈[d]

`ij ,

where the `ij ’s are linear forms. Observe that f vanishes modulo the ideal generated by
`1j1 , `2j2 , . . . , `njn for every choice of j1, j2, . . . , jn ∈ [d]. Geometrically, each linear form corre-
sponds to a hyperplane in m dimensions and f vanishes identically on the subspace H which is
obtained as the intersection of these hyperplanes. Note that H has codimension n. Again, its
easy to write a system S of polynomial equations whose solutions correspond to such subspaces H.
This system S has mn unknowns which is a constant when n is a constant. (Note that SPSn,d has
N = n ·d variables). As before, the main difficulty is that S may have many more solutions besides
the H’s obtained in the above manner. As before, one of the chief technical ingredients is to show
that when the `i’s are random linear forms, then with high probability (over the choice of the `i’s)
the system S has only dn solutions - one corresponding to each H obtained in the above manner.
This then allows us to get back the `ij ’s. Similar remarks apply to Symn,d. This completes our
overview of the basic idea and techniques used to prove theorems 2, 4, 5, 7 and 9

3 Preliminaries

3.1 Notation and terminology

[n] denotes the set {1, 2, . . . , n} while [m..n] denotes {m,m+ 1, . . . , n}.
Homogeneous polynomial. Recall that a polynomial f(x1, . . . , xn) is said to be homogeneous of
degree d if every monomial with a nonzero coefficient is of degree d. Now, any polynomial f ∈ F[x]
of degree d can be uniquely written as

f = f [d] + f [d−1] + . . .+ f [0],

where each f [i] is homogeneous of degree i. We call f [i] the homogeneous component of degree i of
f .
Linear Dependence among polynomials: A very useful notion will be the notion of linear
dependencies among polynomials. We now define this notion.
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Definition 12. Let f(x) def= (f1(x), f2(x), . . . , fm(x)) ∈ (F[x])m be an m-tuple of polynomials over
a field F. The set of F-linear dependencies in f , denoted f⊥, is the set of all vectors v ∈ Fm whose
inner product with f is the zero polynomial, i.e.,

f⊥ def=
{

(a1, . . . , am) ∈ Fm : a1f1(x) + . . .+ amfm(x) = 0
}

If f⊥ contains a nonzero vector, then the fi’s are said to be F-linearly dependent.

Note that the set f⊥ is a linear subspace of Fm. A polynomial f(x1, . . . , xn) ∈ F[x1, . . . , xn] is said
to be regular if its n first order partial derivatives namely

∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

are F-linearly independent.
Matrices: 1n shall denote the n×n identity matrix. MT shall denote the transpose of the matrix
M . GL(n,F) (abbreviated simply as GL(n) when the field F is clear from context) denotes the
general linear group of order n over F (i.e. the group of invertible n × n matrices over the field
F). Similarly, SL(n,F) (abbreviated SL(n) ) denotes the special linear group, i.e. the group of
unimodular n× n matrices (i.e. matrices with determinant 1) over the field F.

3.2 Algorithmic preliminaries

Throughout the rest of this article we will assume that an input polynomial is given to us as a ‘black
box’ – we have access to an oracle “holding” the polynomial f(x) so that for any point a ∈ Fn, we
can obtain f(a) in a single step by querying this oracle. This representation of an input polynomial
is in some sense the weakest representation for which one can hope to have efficient algorithms and
it subsumes all other representations such as arithmetic circuits. We now recall a few preliminary
algorithmic tasks that can be accomplished on a polynomial given as a black box.

3.2.1 Linear dependencies among polynomials

In many of our applications, we will want to efficiently compute a basis of f⊥ for a given tuple f =
(f1(x), . . . , fm(x)) of polynomials. Let us capture this as a computational problem.

Definition 13. The problem of computing linear dependencies between polynomials, denoted
PolyDep , is defined to be the following computational problem: given as input m polynomials
f1(x), . . . , fm(x) respectively, output a basis for the subspace f⊥ = (f1(x), . . . , fm(x))⊥ ⊆ Fm.

PolyDep admits an efficient randomized algorithm (see for example [Kay11] for a proof). This
randomized algorithm will form a basic building block of our algorithms

Lemma 14. Let f = (f1(x), f2(x), . . . , fm(x)) be an m-tuple of n-variate polynomials. Let

P := {ai : i ∈ [m]} ⊂ Fn

be a set of m points in Fn. Consider the m×m matrix

M := (fj(ai))i,j∈[m] .

With high probability over a random choice of P, the nullspace of M consists precisely of all the
vectors (α1, α2, . . . , αm) ∈ Fm such that ∑

i∈[m]

αifi(x) = 0.
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We get the algorithmic consequence as a corollary.

Corollary 15. Given a vector of m polynomials f = (f1(x), f2(x), . . . , fm(x)), we can compute a
basis for the space f⊥ in randomized polynomial time.

3.2.2 Eliminating redundant variables

Definition 16. Let f(x) ∈ F[x] be a polynomial. We will say that f(x) is independent of a variable
xi if no monomial of f(x) contains xi. We will say that the number of essential variables in f(x) is
t if we can make an invertible linear A ∈ F(n×n)∗ transformation on the variables such that f(A ·x)
depends on only t variables x1, . . . , xt. The remaining (n− t) variables xt+1, . . . , xn are said to be
redundant variables. We will say that f(x) is regular if it has no redundant variables.

We have:

Lemma 17. Given a polynomial f(x) ∈ F[x] with m essential variables, we can compute in ran-
domized polynomial time an invertible linear transformation A ∈ F(n×n)∗ such that f(A ·x) depends
on the first m variables only.

3.2.3 Obtaining the derivatives

Proposition 18. Let
f(x) ∈ F[x]

be an n-variate polynomial of degree d. Given black box access to f , in time poly(dn), we obtain
black box access to any derivative ∂f

∂xi
of f .

See section 7.2 for a proof.

3.2.4 Obtaining the homogeneous components

The following observation says that given black box access to a polynomial, we can obtain black
box access to all its homogeneous components in randomized polynomial time.

Proposition 19. Let
f(x) = f [d](x) + f [d−1](x) + . . .+ f [0](x)

be a polynomial of degree d. Given blackbox access to f(x) and a point a ∈ Fn, we can compute
f [i](a) for each i ∈ [0..d] in polynomial time.

See section 7.2 for a proof.

3.2.5 Interpolating on a constant dimensional affine subspace

The following well-known proposition is used extensively in dealing with low-degree multivariate
polynomials.

Proposition 20. Given blackbox access to a polynomial f defined on a vector space V , one can
express the restriction of f to any constant-dimensional subspace U ⊆ V as a sum of coefficients
in polynomial-time.
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3.3 Stabilizers and Lie Algebras

We now discuss some basic concepts that will be required later. We give an overview of the basic
notions about lie algebras and fix the relevant notation. Let f(x) ∈ F[x] be a polynomial. The group
of symmetries of f denoted Gf is the set of all invertible n×n matrices A such that f(Ax) = f(x).
18 When the polynomial f is clear from context we denote Gf simply by G .
It turns out that for any polynomial f , its group of symmetries Gf is a closed subgroup of F(n×n)∗,
in other words it is a matrix lie group (cf. [Kir08], theorem 3.26). We refer the interested reader
to the texts by [Kir08,Hal07] for more information about lie groups and proper formal definitions.
It means that we can view the group Gf as a manifold in the space Fn×n. The corresponding lie
algebra, denoted gf is the subspace of Fn×n tangent to Gf at the point 1n (the identity matrix). For
most polynomials f , Gf is trivial, i.e. Gf consists of only the identity matrix. For some polynomials
Gf is nontrivial but the lie algebra gf is trivial (i.e. it consists only of the zero matrix). Such a Gf
is said to be a discrete group. For example, the polynomials Pown,d and Symn,d have a nontrivial
discrete symmetry group. 19 In this paper we will be concerned with polynomials f for which
Gf is continuous, i.e. polynomials f for which gf is nontrivial. In particular, the symmetries
of the permanent (determinant) form a continous group. We will exploit the rich structure of
the associated lie algebras to determine the equivalence of a given polynomial to the permanent
(determinant). We shall be using the following equivalent definition of gf .

Definition 21. Let f(x1, . . . , xn) ∈ F[x1, . . . xn] be an n-variate polynomial. Let ε be a formal
variable with ε2 = 0. Then gf is defined to be the set of all matrices A ∈ Fn×n such that

f((1n + εA)x) = f(x). (1)

The reader is referred to [Hal07], definition 2.15 for a more proper definition of the lie algebra and
then to [Hal07], theorem 2.27 for equivalence of the two definitions. We begin our algorithmic quest
by noting that (a basis for) the lie algebra of any given polynomial can be computed efficiently.

Lemma 22. Given an n-variate polynomial f(x) ∈ F[x] (as a blackbox), a basis for the lie algebra
of its group of symmetries can be computed in randomized polynomial time.

See section 7.3 for a proof. In sections 6.1 and 6.2 we will see an explcit set of basis elements for the
lie algebras of the permanent and determinant respectively. For now, let us return to the general
description. Now suppose that g(x) = f(B · x), for some invertible matrix B. Then the lie algebra
of g is a conjugate of the lie algebra of f via the matrix B (Proposition 58). That is,

gg = {B−1AB : A ∈ gf} (2)

It is easy to see that the converse however is not true in general. That is, it can happen that
(2) holds for some matrix B but f(Bx) does not equal g(x). We will see that understanding
the structure of gf for a given f will nevertheless help us in determining the equivalence of f to
the permanent and/or the determinant. Let us now recall the following important fact about lie
algebras.

Fact 23. Let A,B ∈ g. Then [A,B] := (AB −BA) ∈ g.
18The group of symmetries of a polynomial is also referred to in the literature as the stabilizer, the group of

automorphisms, the group of isomorphisms or as the isotropy subgroup of f .
19For these polynomials, a randomized polynomial time algorithm for testing equivalence was presented in [Kay11].
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Lie Algebraic Concepts. Let us now fix the notation for some basic concepts from the theory of
lie algebras. Let g ⊆ Fm×m be a lie algebra. The centralizer of an element A ∈ g, denoted Cent(A)
is the set of all elements X ∈ g such that

[A,X] = 0.

Fact 24. For every A ∈ g, Cent(A) is a subspace of g and can be computed efficiently, i.e. in
poly(m)-time.

We say that the lie algebra g is the direct sum of two subalgebras g1 and g2, denoted

g = g1 ⊕ g2,

if g is direct sum of g1 and g2 as a vector space and moreover that

[A,B] = 0 ∀A ∈ g1, B ∈ g2.

g is said to be nilpotent if the lower central series namely

g > [g, g] > [[g, g], g] > ...

becomes zero eventually. The normalizer of a subalgebra h of g is the set of all X ∈ g such that
[X, h] ⊆ h A Cartan subalgebra of g is a nilpotent subalgebra equal to its own normalizer.
Properties of SL(n,F) and sln. The lie algebra of the special linear group SL(n,F) we denote
by sln. It consists of all n× n matrices with trace zero. We shall need the following fact about the
Cartan subalgebras of sln.

Fact 25. The subalgebra h consisting of traceless diagonal matrices is a Cartan subalgebra of sln.
Every other Cartan subalgebra of sln is a conjugate (via an element of SLn) of this Cartan subalgebra
h.

4 NP-hardness of PolyProj

In this section we show that the PolyProj problem is NP-hard under polynomial-time Turing
reductions. We give the reduction from the Graph 3-colorability problem. We shall use the
following slightly modified definition of the Graph 3-colorability problem.

Definition 26. Let G = (V,E) be a graph. Let n1, n2, n3,m12,m13,m23 ≥ 0 be nonnegative
integers. We will say that G is (n1, n2, n3,m12,m13,m23)-3-colorable if there is an assignment of a
unique color ci ∈ {1, 2, 3} to each vertex i ∈ V satisfying the following conditions.

(i) n1 + n2 + n3 = |V | and m12 +m13 +m23 = |E|

(ii) No two vertices of the same color are adjacent. i.e. if {i, j} ∈ E then ci 6= cj.

(iii) For each i ∈ [3], there are ni vertices of color i. That is, for each i ∈ [3], we have
|{j : cj = i}| = ni

(iv) For each 1 ≤ i < j ≤ 3 there are mij edges whose two endpoints have colors i and j. That is,
for 1 ≤ i < j ≤ 3 |{{k, `} ∈ E : ck = i and c` = j}| = mij

The corresponding computational problem is the following.
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Name: Graph 3-colorability
Input: A graph G = (V,E) and integers n1, n2, n3,m12,m13,m23 ≥
0.
Output: Accept if and only if G is (n1, n2, n3,m12,m13,m23)-3-
colorable.

This version of Graph 3-colorability is easily seen to be equivalent (under polynomial-time
Turing reductions) to the usual definition as in [Kar72]. In particular this is an NP-hard problem.
We now give the reduction from PolyProj to Graph 3-colorability . Let the graph G have
n = |V | vertices. Consider the two polynomials

g :=
∑
{i,j}∈E

xixj and

f := m12 · x1 · x2 +m13 · x1 · x3 +m23 · x2 · x3

Suppose the graph has a three coloring satisfying the appropriate constraints and where the i-th
vertex gets the color ci ∈ [3]. Then the natural map xi 7→ xci gives an affine projection from g to
f . Now if we could somehow ensure that any projection map from g to f sent every xi (i ∈ [n]) to
some xj (j ∈ [3]), then such a map would give a 3-coloring of G as well. We will add some extra
higher degree terms to these polynomials in order to ensure that any affine projection from g to f
has the desired form.

Theorem 27. Let G = (V,E) be a graph. Let

g :=

∑
i∈[n]

xn
2+4n+4
i

+

∑
k∈[n]

∑
i∈[n]

x
k(n+3)
i

+

 ∑
{i,j}∈E

xixj


and

f :=

∑
i∈[3]

nix
n2+4n+4
i

+

∑
k∈[n]

∑
i∈[3]

nix
k(n+3)
i

+

 ∑
1≤i<j≤3

mijxixj


Then the graph G is (n1, n2, n3,m12,m13,m23) − 3-colorable if and only if the polynomial f is an
affine projection of g.

One direction is easy to see. If G is (n1, n2, n3,m12,m13,m23)-3-colorable then f is an affine
projection of g via the natural map xi 7→ xci where ci is the color of vertex i. The converse is the
interesting direction. In section 7.1 we prove the that any projection from g to f corresponds to a
3-coloring of the graph G by showing that such a projection has the desired form.

5 Preliminary Observations

5.1 Full rank projections versus polynomial equivalence

In this section consider a special case of the polynomial projection problem which we refer to as
the ‘full rank projection problem’. It is defined as follows.

Name: FullRankProj
Input: Polynomials f(x1, x2, . . . , xm) and g(x1, x2, . . . , xn) over the
field F.
Output: An n × m matrix A of rank n and a vector b ∈ Fn such
that f(x) = g(Ax + b), if such an A and b exist. Else output ‘No
such projection exists’.
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A further special case of FullRankProj which has been studied much more extensively is the
polynomial equivalence problem defined below.

Name: PolyEquiv
Input: Polynomials f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) over the
field F.
Output: An invertible n × n matrix A such that f(x) = g(Ax), if
such an A exists. Else output ‘No such equivalence exists’.

We will first show that if the polynomial g satisfies some (relatively mild) conditions, then the
full rank projection problem for g reduces to the equivalence problem for g. Specifically,

Theorem 28. Let g(x1, . . . , xn) be a polynomial. Suppose that

1. g is homogeneous of degree d ≥ 3.

2. g is a regular polynomial. Moreover, we have access to a set

{ai ∈ Fn : i ∈ [n]}

such that

(a) The matrix

M :=
(
∂g

∂xi
(aj)

)
n×n

is of full rank.

(b) The entries of the matrix M are known to us. In other words, we have access to

∂g

∂xi
(aj) for each i, j ∈ [n].

Then determining whether a given m-variate polynomial f is a full rank projection of g is equiv-
alent (under randomized polynomial-time Turing reductions) to determining whether a given f is
equivalent to g.

In proving this reduction, it will help us conceptually to introduce one more special case of
FullRankProj .

Name: Translation
Input: Polynomials f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) over the
field F.
Output: A vector a = (a1, a2, . . . , an) ∈ Fn such that

f(x1, x2, . . . , xn) = g(x1 + a1, x2 + a2, . . . , xn + an),

(f(x) = g(x + a) in short) if such a vector a exists. Else output ‘No
such translation exists’.

An affine map x 7→ A · x + b with rank(A) = n has roughly has three ‘components’:

(i) An invertible linear transformation

(ii) A translation
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(iii) The introduction of ‘redundant variables’

The proof of theorem 28 then goes as follows: the redundant variables are eliminated by lemma
17, and the translation is obtained by applying the algorithm of lemma 15 to the first-order par-
tial derivatives of g. In ths way the full rank projection problem boils down to the polynomial
equivalence problem. The details of the proof of theorem 28 is in section 7.3.
Most of the families of polynomials listed in section 1 are easily seen to satisfy the assumptions
of the above theorem so that for these families of polynomials, the full rank projection problem
reduces to the polynomial equivalence problem. We first give the proof for the determinant.

Corollary 29. The full rank projection problem for the determinant reduces to the equivalence
problem for the determinant.

Proof. By definition the determinant Detn is homogeneous of degree n. Every first order derivative
of the determinant is (upto a sign) the determinant of an (n− 1)× (n− 1) sized minor. The set of
monomials occuring in the minors of these (n− 1)× (n− 1) determinants are disjoint so that the
first order derivatives are F-linearly independent. Hence Detn is a regular polynomial. Finally, by
lemma 14, a random set of n2 points in Fn×n satisfies property 2(a). Finally, we can evaluate the
subdeterminants at these n2 points in polynomial time and satisfy property 2(b) as well so that all
the conditions of theorem 28 are fulfilled.

In section 6.2 we will present a randomized polynomial time algorithm for determinantal equiv-
alence. In a manner similar to above, the full rank projection problem for the power symmetric
polynomials and the sum of products polynomial reduces to the corresponding equivalence prob-
lem. For the elementary symmetric polynomial Symn,d the F-linear independence of its first order
derivatives follows from the nonsingularity of an appropriate matrix [KN97](pp. 22-23). For each
of Pow,SPS and Sym, a randomized polynomial time algorithm for determining equivalence is given
in [Kay11]. We thus have:

Corollary 30. There is a randomized algorithm with running time poly(mnd) to determine whether
a given m-variate polynomial is a full rank projection of Symn,d.

Corollary 31. There is a randomized algorithm with running time poly(mnd) to determine whether
a given m-variate polynomial is a full rank projection of Pown,d.

Corollary 32. There is a randomized algorithm with running time poly(mnd) to determine whether
a given m-variate polynomial is a full rank projection of SPSn,d.

The case of the permanent is a little more involved because we do not know how to compute the
permanent efficiently at a randomly chosen point. Fortunately, we can overcome this hurdle. Note
that it is easy to compute the permanent of a diagonal matrix - the value of the permanent is simply
the product of the entries along the diagonal. Moreover, we can also compute the permanent of
a matrix which is obtained from a diagonal matrix by permuting the rows or columns in some
arbitary way. It turns out that such matrices yiels a set of points satisfying the requirement 2(b)
of theorem 28.

Proposition 33. Let λ1, λ2, . . . , λn be some n distinct nonzero elements of F. For 1 ≤ i, j ≤ n let
the matrix Pij ∈ Fn×n be defined as

(Pij)k`
def=

{
λki if `− k = j − 1
0 otherwise
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Then the matrix M ∈ Fn2×n2
,

M(i,j),(k,`) =
∂Perm

∂xk`
(Pij)

has rank n2.

The matrix M in the proposition above is essentially a block-diagonal matrix with the blocks being
Vandermonde matrices so that it has full rank. The details are in section 7.3. As discussed above
this proposition implies that the full rank projection problem for the permanent reduces to the
permanent equivalence problem.

Corollary 34. The full rank projection problem for the permanent reduces to the equivalence prob-
lem for the permanent.

In section 6.1 we will present a randomized polynomial time algorithm for permanental equivalence.
In order to do this we shall follow the overall strategy given in section 2.1 reducing GL-equivalence
to PS-equivalence to SC-equivalence and then finally solving this last problem by making some
well-chosen substitutions. Let us record a fact about the group PS.

Fact 35. The group PS is a semidirect product of SC and PM with SC being the normal subgroup.
In particular every element A ∈ PS can uniquely be written as

A = B · C for some B ∈ SC and C ∈ PM.

5.2 Overview of Projection algorithms.

Consider the PolyProj problem: given an m-variate polynomial f and an n-variate polynomial g
we want to find affine forms `1, `2, . . . , `n (if they exist) such that

f = g(`1, `2, . . . , `n). (3)

Let
`i =

∑
j∈[m]

aijxi + ai0

We can think of the aij ’s as unknowns and use equation (3) to write down a set polynomial
equations in the aij which we can then solve to obtain the aij ’s. If d = max(deg(f),deg(g)), this
will give a poly(dn(m+1))-time algorithm to find the aij ’s. But this of course is much more than
polynomial time. If we could somehow obtain a system of polynomial equations in a constant
number of unknowns, we would be in business. The first idea which has been used quite often in
the literature is to effectively ensure that m is a constant by considering a random affine projection
of f onto a constant-dimensional space. We will describe this in more detail shortly, but for now
assume that m is a constant. But this means that we still have O(n) unknowns so solving a
system of polynomial equations is still not feasible. The second step will involve using one of the
affinely invariant properties from section A.0.1 to write down a system of polynomial equations in
constantly many variables and use the solution of this system to recover the `i’s. We now give some
more details.

Step (1): Projection to t dimensions. Pick a random invertible matrix A ∈ Fn×n. Let f̂(x) :=
f(A · x). Pick a suitable integer t ≥ 1 (t is typically a constant). For k ∈ [t..n], let

πk(f̂)(y1, . . . , yt) := f̂(πk(x1), πk(x2), . . . , πn(xn))
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where πk : F[x1, x2, . . . , xn] 7→ F[y1, . . . , yt] is a homomorphism defined in the following
way:

πk(xi) =


yi if i ∈ [t− 1]
yt if i = k

0 otherwise

Let fk(y) := πk(f̂). Use the algorithm of proposition 20 to obtain a representation of fk
as a list of

(
t+d
d

)
coefficients.

Step (2): Solving the t-dimensional problem. For each k ∈ [t..[n]], find `
[k]
1 , . . . , `

[k]
n such that

πk(f̂)(y1, y2, . . . , yt) = g(`[k]
1 , . . . , `[k]

n ).

This will typically be done by using a suitable affinely invariant property to formulate a
system of equations in constantly many variables whose solutions correspond to the `[k]

i ’s.

Step (3): ‘Lifting’ the `[k]
i ’s to the `i’s. In this step, one typically shows that the `[k]

i ’s are unique
(say maybe upto scalar multiples and reindexing). Once this is established it is relatively
easy to compute the `i’s given the `[k]

i ’s.

Step (4): Verification. In this step one uses the DeMillo-Lipton-Schwarz-Zippel lemma to test
that the `i’s computed above are a valid solution. That is one verifies the identity

f(x) = g(`1, . . . , `n).

The first and fourth steps of this algorithmic strategy are easy. The third step above can be
accomplished by a lemma implicit in the works of Kaltofen [Kal89], Shpilka [Shp07] and Karnin
and Shpilka [KS09].

Lemma 36. Let Gg be the group of symmetries of g. If Gg is a subgroup of PS(n,F) (see section
2.1 for the definition of the subgroup PS(n,F)) and each πk(f̂) is a projection of g in an essentially
unique way (in the sense of definition 10) then given the `[k]

i ’s as above one can recover the `i’s in
poly(n) time.

Our contribution here is to show that in certain cases, random projections satisfy the prerequisites
of this lemma and that the computations involved in the second step of the overall algorithm given
above can also be done efficiently. We will now make a few remarks on the role of uniqueness in
these algorithms.

5.2.1 Uniqueness of random Projections

Recall the notion of uniqueness of solutions from definition 10. It turns out that projections of
polynomials are usually not unique except for some rare cases. For example, consider g = SPS1,d =
x1 · x2 · . . . · xd. Then an affine projection of g is of the form

f = `1 · `2 · . . . · `d.

If f can be expressed as a projection of g in some other way say

f = `′1 · `′2 · . . . · `′d
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then by unique factorization of polynomials we have that there exists a permutation π ∈ Sd and
scalars λ1, . . . λd ∈ F with

∏
i∈[d] λi = 1 such that

`′i = λi`π(i).

This means that any affine projection of SPS1,d is in an essentially unique manner. We now make
some remarks about the algorithm of section 5.2 and the role of affinely invariant properties therein.
To make the ensuing discussion concrete let us assume that g is a member of the power-symmetric
family of polynomials, i.e. g = Pown,d. Recall that lemma 36 allowed us to accomplish step three
in polynomial time assuming uniqueness. For Pown,d, the group of symmetries is generated by
the permutation matrices and diagonal matrices whose diagonal entries are the d-th roots of unity.
Thus if projections of Pown,d were essentially unique then it would have meant that whenever∑

i∈[n]

`di =
∑
i∈[n]

pdi

then there exists a permutation π ∈ Sn and integers e1, e2, . . . , en such that

∀i ∈ [n] pi = ωei · `π(i),

where ω is a primitive d-th root of unity. Unfortunately however this is not true in general and
it is easy to find counterexamples. A more valiant work might have characterized algebraically all
the situations where uniqueness holds and used that characterization to solve the PolyProj for
projections of Pow. Here we do not give such a characterization but take a somewhat cowardly
alternative – we show that when the `i’s are random affine forms then uniqueness holds. Specifically
we show,

Theorem 37. Let S ⊆ F be a finite set. If we pick a set of n affine forms `1, . . . , `n with each
coefficient being chosen independently and uniformly at random from S then with probability at
least (

1− 2dn
|S|

)
,

the expression
f = `d1 + `d2 + . . .+ `dn

is unique in the sense that if f can also be written as

f = pd1 + pd2 + . . .+ pdn

then there exists a permutation π ∈ Sn and integers e1, e2, . . . , en such that

pi = ωei`π(i).

Here ω ∈ F is a primitive d-th root of unity and n is any integer satisfying

n <

(
m+ d/2− 1

d/2

)
.

This theorem combined with an algorithmic solution to Step (2) will give us the required polynomial-
time algorithm. Similar comments apply to projections of SPSn,d.
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6 Algorithms for the special cases

6.1 The case of the Permanent polynomial

In this section we flesh out the details of the steps outlined in section 2.1 for the problem of deciding
whether a given polynomial is equivalent to the permanent. Our goal is to prove theorem 2. As we
have already noted in section 2.1, step 4 (verification) of the algorithm outline can be accomplished
in randomized polynomial time using the downward self-reducibility of the permanent as given by
Impagliazzo and Kabanets [KI04]. We now describe how to accomplish the first three steps of the
algorithm outline of section 2.1. Towards this end, let us recall the characterization of GPerm proved
by Marcus and May [MM62] 20.

Theorem 38. If T ∈ GPermn and if n > 2 then there exist permutation matrices P and Q and
diagonal matrices D and L such that Perm(D) = Perm(L) = 1 and either T · X = DPXQL or
T (X) = DP (XT )QL.

While the proof techniques of [MM62,Bot67] do not give an algorithm for the polynomial equivalence
problem, nevertheless this theorem yields a great deal of insight into the lie algebra of the permanent
and guides the design of our algorithm. Recall that the lie algebra corresponds to the tangent space
of the manifold GPerm at the identity. Thus the dimension of the lie algebra gPerm is the dimension of
the manifold GPerm, which intuitively is the number of “continuous degrees of freedom” in GPerm. As
far the continuous part is concerned the permutation matrices dont matter so that the dimension
is essentially determined by the diagonal matrices D and L. These satisfy Perm(D) = Perm(L) = 1
so that we have (2n− 2) degrees of freedom. Thus we have

Proposition 39. The lie algebra of the permanent, gPerm has a basis of size (2n− 2) consisting of
the following matrices:

• (n− 1) matrices R2, R3, . . . , Rn where for each k ∈ [2..n],

(Rk)(i1,j1),(i2,j2) :=


1 if (i1, j1) = (i2, j2) and i1 = i2 = 1
−1 if (i1, j1) = (i2, j2) and i1 = i2 = k

0 otherwise

Intuitively each Rk corresponds to multiplying the first row by some scalar λ and multiplying
the k-th row by λ−1.

• (n− 1) matrices C2, C3, . . . , Cn where for each k ∈ [2..n],

(Ck)(i1,j1),(i2,j2) :=


1 if (i1, j1) = (i2, j2) and j1 = j2 = 1
−1 if (i1, j1) = (i2, j2) and j1 = j2 = k

0 otherwise

Intuitively each Ck corresponds to multiplying the first column by some scalar λ and multi-
plying the k-th column by λ−1.

It is readily verified that the set of (2n− 2) matrices described in the statement above are linearly
independent and indeed are in gPerm. The argument sketched above (which can be made more
formal and precise) saying that dimension of gPerm is (2n − 2) means that the matrices described
above for a basis of gPerm as well. 21 Note that all the basis elements described above are diagonal
matrices. This will help us accomplish step (1) of the outline described in section 2.1.

20a simpler proof is given by Peter Botta [Bot67]
21 A more direct proof of proposition 39 can be had by following the proof of lemma 22, claim 59 in particular,

and doing the relevant computations.
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6.1.1 Step 1: Reduction to PS-equivalence

This is the most important step in determining whether a given polynomial is equivalent to the
permanent. Here is the description of the algorithm of this step.

Input: Blackbox access to an n2-variate polynomial f .
Output: A matrix D ∈ GL(n2,F) having the property that if f(x) is GL(n2,F)-
equivalent to Permn then f(D · x) is PS-equivalent to Permn.
Algorithm:

Step (i) Using the algorithm of lemma 22 compute a basis A1, A2, . . . Ak ∈ GL(n2,F)
for gf . If the dimension k of this lie algebra is different from (2n − 2) then
output ‘f is not equivalent to Perm’.

Step (ii) Compute a matrix D which simultaneously diagonalizes A1, A2, . . . , A2n−2.
Specifically compute a matrix D such that

D−1AiD

is a diagonal matrix for each i ∈ [2n − 2]. If no such D exists then output ‘f
is not equivalent to Perm’ else output D.

The second step of this algorithm, viz. simultaneous diagonalization of a set of (commuting)
matrices is a standard linear algebra computation and can easily be accomplished in poly(n) time.
For example, in this case one can pick a random matrix A ∈ gf and diagonalize it, i.e. find D
such that D−1 · A · D is diagonal. Overall therefore the time complexity is clearly poly(n). The
correctness of the algorithm above is encapsulated in the following proposition whose proof is in
section 7.4.

Proposition 40. If f(x) is GL(n2,F)-equivalent to Perm then f(D · x) is PS-equivalent to Perm.

6.1.2 Step 2: Reduction to SC-equivalence

In this step, our problem is the following: given a polynomial f(x) which is PS-equivalent to the
permanent, we want to find a permutation matrix P ∈ Fn2×n2

such that f(Px) is SC-equivalent to
the permanent. In other words f is of the form

f(x) = Permn(λ11xπ(1,1), λ12xπ(1,2), . . . , λnnxπ(n,n))

for some unknown permutation π : [n]× [n] 7→ [n]× [n] and some unknown nonzro scalars λij . We
will now use the following fact about second order partial derivatives of the permanent.

∂2Perm

∂xij · ∂xk`

{
= 0 if i = k or j = `

6= 0 otherwise
(4)

In other words the second order derivative of Perm with respect to variables xij and xk` is zero if
and only if (i, j) and (k, `) agree on at least one coordinate. It immediately implies that

∂2f

∂xij · ∂xk`
(5)

is zero precisely when π−1(i, j) and π−1(k, `) agree on at least one coordinate. This observation
can be used to rearrange the n2 variables of f into an n× n matrix.
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Proposition 41. Let

δij,k` =

{
0 if ∂2f

∂xij ·∂xk`
= 0

1 otherwise
(6)

Then given the set {δij,k` : i, j, k, ` ∈ [n]} we can determine (in O(n4) time) a permutation
σ : ([n]× [n]) 7→ ([n]× [n]) such that the polynomial

f2(x) := f(xσ(1,1), xσ(1,2), . . . , xσ(n,n))

is SC-equivalent to the permanent.

6.1.3 Step 3: Solving SC-equivalence

In this step, our problem is the following: given a polynomial f(x) ∈ F[x11, . . . , xnn] find
λ11, λ12, . . . , λnn such that

f(x) = Permn(λ11x11, λ12x12, . . . , λnnxnn). (7)

The idea is that the λij ’s can be obtained by evaluating f on certain well-chosen points (matrices).
Consider f(1n) (recall that 1 is the n× n identity matrix). From (7) we have

f(1n) = λ11 · λ22 · . . . · λnn.

Thus evaluating f at 1n gives us the product of the λii’s. More generally, evaluating f at a
permutation matrix will give us the product of some subset of λij ’s. We will now see that evaluating
f on a small, well-chosen set of permutation matrices helps us recover all the λij ’s.

Proposition 42. There exists an explicit set S of O(n2) permutation matrices in Fn×n such that
knowing f(a) for each a ∈ S allows us to determine the λij’s in O(n2) time.

6.2 The case of the Determinant polynomial

In this section we consider the problem of deciding whether a given polynomial is equivalent to the
determinant. Our goal is to prove theorem 4. We follow the steps outlined in section 2.1 for this
problem. As one might expect, steps two to four are very similar for the permanent as well as the
determinant and we avoid repetition by omitting the details. We now focus only on the first step.
Towards this end, let us recall the characterization of GDetn .

Theorem 43. If T ∈ GDetn then there exist matrices P and Q in SL(n,F) such that either T (X) =
PXQ or T (X) = P (XT )Q.

An accessible proof can be found in Marcus and Moyls [MM59]. This theorem was first proved
by Frobenius [Fro97] and was subsequently rediscovered, sometimes with easier proofs by Kantor
[Kan97], Schur [Sch25], Morita [Mor44], Dieudonné [Die48], Marcus and Purves [MP59], Marcus
and May [MM62]. The techniques of these results do not appear to be directly applicable for our
algorithmic purposes 22. Nevertheless it lays bare the structure of GDet, and therefore also of gDet,
and in doing so it guides the design of the algorithm.

Corollary 44. The group of symmetries of the determinant polynomial, GDet is isomorphic to a
semidproduct of S2 with SL(n,F) × SL(n,F). The corresponding lie algebra gDet is isomorphic to
sln ⊕ sln.

22the notion of rank and the characterization of rank-one matrices are very “basis-dependent”
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6.2.1 Reduction to PS-equivalence

Here is the description of the algorithm of this step.

Input: Blackbox access to an n2-variate polynomial f .
Output: A matrix D ∈ GL(n2,F) having the property that if f(x) is GL(n2,F)-
equivalent to Detn then f(D · x) is PS-equivalent to Detn.
Algorithm:

Step (i) Using the algorithm of lemma 22 compute a basis A1, A2, . . . Ak ∈ GL(n2,F)
for gf . If the dimension k of this lie algebra is different from (2n2 − 2) then
output ‘f is not equivalent to Det’.

Step (ii) Pick a random element B ∈ gf . Compute a basis for Cent(B) (by solving a
system of homogeneous linear equations, see fact 24). Let

X1, X2, . . . , Xk

be a basis of Cent(B). If k is different from (2n − 2) then output ‘f is not
equivalent to Det’.

Step (iii) Compute a matrix D which simultaneously diagonalizes X1, X2, . . . , X2n−2.
Specifically compute a matrix D such that

D−1XiD

is a diagnoal matrix for each i ∈ [2n − 2]. If no such D exists then output ‘f
is not equivalent to Perm’ else output D.

All the steps of the algorithm above involve straightforward linear algebra and can easily be ac-
complished in poly(n) time. The correctness of the algorithm above is encapsulated in the following
proposition.

Proposition 45. Assume that f(x) is GL(n2,F)-equivalent to Det. Then with high probability over
the random choice of the matrix B in step (ii), f(D · x) is PS-equivalent to Det.

The proof of this proposition is in section 7.5.

6.3 The case of the Power Symmetric polynomial

In this section we look at instances of PolyProj where the input polynomial f(x) is an affine
projection of Pown,d, i.e.

f(x) = Pown,d(`1, `2, . . . , `n),

where the `i’s are m-variate affine forms. Our task is to recover the `i’s given blackbox access to
f . We follow the algorithm outline given in section A to design the algorithm of theorem 5.

Proof of theorem 5

We follow the outline given in section A but handle the two cases (d > 2n and d ≤ 2n) separately.
Case I: d > 2n In this case we pick t = 1 so that our problem essentially becomes the following:
given a univariate polynomial f(x) find the smallest integer n such that

f(x) = (a1x+ b1)d + . . . (anx+ bn)d

26



This problem can then be solved using the work of Kleppe [Kle99]. Specifically we show.

Proposition 46. There is a randomized polynomial time-algorithm to determine the smallest n
such that a given univariate polynomial f of degree d can be expressed as a sum of n d-th powers of
affine forms. Moreover, if d > 2n then such an expression for f , if it exists, is essentially unique.

The proof of this proposition is given in section 7.6.
Case II: d ≤ 2n
We follow the algorithm outline given in section A and choose t = 2

log n
log d . For concreteness let us

give the give the exposition assuming d = nΩ(1) whence the t becomes a constant. To prove the
theorem above we just need to prove the uniqueness of random projections of Pown,d and show
to accomplish the second step of the overall algorithm of section A in polynomial time. Thus our
problem effectively is the same as the problem that we started out with but the number of variables
m has reduced to a constant. Also note that if

f =
∑
i∈[n]

`di

then we can homogenize this expression and assume without loss of generality that f is homogeneous
of degree d and the `i’s are linear forms (rather than affine forms). The uniqueness is captured in
the following proposition whose proof is given in section 7.6.

Proposition 47. With probability at least (
1− 2dn

|S|

)
over the random choice of the `i’s, the expression

f = `d1 + `d2 + . . .+ `dn

is unique in the sense that if we also have

f = pd1 + pd2 + . . .+ pdn

then exists a permutation π ∈ Sn and integers e1, e2, . . . , en such that

pi = ωei`π(i).

Here ω ∈ F is a primitive d-th root of unity and n is any integer satisfying

n <

(
m+ d/2
d/2

)
.

We now show how this constant-dimensional version of our problem can be solved by solving an
appropriate system of polynomial equations.
Solving the small dimensional problem. The algorithm is as follows.

Input: Blackbox access to a m-variate polynomial f of degree d and an integer n ≥ 1.
Output: If f is a projection of Pown,d then a set of n linear forms `1, . . . , `n such that

f = Pown,d(`1, `2, . . . , `n)

Algorithm:

Step (i) By solving an appropriate set of polynomial equations find the set L of all
m-variate linear forms ` such that dim(∂d/2(f − `d)) ≤ (n− 1).

Step (ii) Let `1, `2, . . . , `t be all the distinct (upto scalar multiples) members of L. If
t = n then output L else output ‘Fail.’
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Correctness of the algorithm and the running time. The correctness of this algorithm (with
high probability over the random choice of the `i’s) is captured in the following proposition whose
proof is given in section 7.6.

Proposition 48. With probability at least (
1− 2dn

|S|

)
over the random choice of the `i’s, any linear form p with the property that

dim(∂k+1(f − pd)) ≤ (n− 1) (8)

is of the form ω · `i for some i ∈ [n]. Here ω ∈ F is a d-th root of unity and k ∈ [d] is any integer
such that

n < min
((

m+ d− k − 2
d− k − 1

)
,

(
m+ k

k + 1

))
For the running time, note that we are solving a system of polynomial equations of degree at most
dn in m variables. This can be done in randomized time (dn)m which is (dn)O(1) for our choice of
parameters.

2

6.4 The case of the Sum of Products polynomial

In this section we look at instances of PolyProj where the input polynomial f(x) is an affine
projection of SPSn,d, i.e.

f(x) =
∑
i∈[n]

∏
j∈[d]

`ij

where the `ij ’s are m-variate affine forms. Our task is to recover the `ij ’s given blackbox access to
f . We follow the algorithm outline given in section 5.2 to design the algorithm of theorem 7.

Proof of theorem 7

We follow the algorithm outline given in section A and choose t = n2 + n + 1. To prove theorem
7 above we need to prove the uniqueness of projections of SPSn,d and show how to accomplish the
second step of the overall algorithm of section A in polynomial time. Thus our problem effectively
is the same as the problem that we started out with but the number of variables m has reduced to
n2 + n+ 1. Also note that if

f =
∑
i∈[n]

∏
j∈[d]

`ij

then we can homogenize this expression and assume without loss of generality that f is homogeneous
of degree d and the `ij ’s are linear forms (rather than affine forms). The uniqueness is captured in
the following proposition whose proof is given in section 7.7.

Proposition 49. Let n, d,m be inetegrs with d,m > n2 + n. If every subset of n2 + n of the `ij’s
is linearly independent then the expression

f =
∑
i∈[n]

∏
j∈[d]

`ij
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is unique in the sense that if we also have

f =
∑
i∈[n]

∏
j∈[d]

pij

then there exists a permutation π : ([n]× [d]) 7→ (n× [d]) such that:

(i) pij is a scalar multiple of `π(i,j)

(ii) π(i1, j1) and π(i2, j2) agree on their first coordinates if and only if i1 = i2.

We now show how this constant-dimensional version of our problem can be solved by solving an
appropriate system of polynomial equations.
Solving the small dimensional problem.
Terminology. We will be looking at subspaces of Fm. We will say that a subspace H of codimen-
sion t is defined by some t linear forms p1, . . . , pt if the pi’s are F-linearly independent and H is the
set of common zeroes of p1, p2, . . . , pt. i.e. if

H = {a ∈ Fm : p1(a) = . . . = pt(a) = 0}.

For a polynomial f we will say that f vanishes on H, denoted

f ≡ 0 (mod H) iff f(a) = 0 ∀a ∈ H.

A subspace of codimension 1 will be called a hyperplane (note that a hyperplane corresponds to a
linear form by which it is defined). We will say that a set of linear forms is t-wise independent if
every subset of size t (and smaller) is linearly idependent. We are now ready to formally state the
algorithm.
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Input: Integers n,m and t (with d,m > n2 + n) and blackbox access to a homogeneous
m-variate polynomial f of degree d.
Output: If f is a projection of SPSn,d then a set of nd linear forms over m variables
{`ij : i ∈ [n], j ∈ [d]} such that

f =
∑
i∈[n]

∏
j∈[d]

`ij

Algorithm:

Step (i) By solving an appropriate set of polynomial equations find the set S of all
subspaces H ⊂ Fm of codimension n such that

f ≡ 0 (mod H).

If |S| 6= dn then output ‘Fail.’

Step (ii) Compute the set L of all linear forms ` such that there exists a pair of subspaces
H1, H2 ∈ S satisfying:

(a) codim(Span(H1, H2)) = 1

(b) Span(H1, H2) is defined by the linear form `.

If |L| 6= (dn) then output ‘Fail.’

Step (iii) Form a graph G whose vertices correspond to the nd linear forms in L and
where the nodes corresponding to two linear forms `, p ∈ L are adjacent if and
only if there does not exist any subspace H in S properly contained in the
subspace defined by p(x) = `(x) = 0. Find the connected components of G. If
the number of connected components of G is different from n or if the number
of nodes in any connected of G is different from d then output ‘Fail.’

Step (iv) For each i ∈ [n] let Ti(x) be the product of the linear forms corresponding
to the nodes in the i-th connected component of G. Using the algorithm of
lemma 14 find scalars α1, . . . , αn such that

f = α1 · T1 + . . .+ αn · Tn.

Output the linear forms in each Ti (appropriately scaled).

Correctness of the algorithm and the running time. For the running time, note that in the
first step we are solving a system of polynomial equations of degree at most d in n3 variables. This
can be done in time (d)n

3
. The rest of the steps take only poly(dn) time.

The correctness of this algorithm is captured in the following proposition whose proof is given
in section 7.6.

Proposition 50. If the `ij’s are (n2 +n)-wise independent then the computations done in the above
algorithm satisfy the following properties:

1. |S| = dn. Moreover for every subspace H in S there exist j1, j2, . . . , jn ∈ [d] such that H is
defined by `1j1 , . . . , `njn.

2. The set L computed in step (ii) consists of scalar multiples of the `ij’s.
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3. In the graph G each node corresponds to a unique `ij. Moreover the nodes corresponding to
`i1j1 and `i2j2 are adjacent if and only if i1 equals i2.

2

6.5 The case of the Elementary Symmetric polynomial

In this section we look at instances of PolyProj where the input polynomial f(x) is an affine
projection of Symn,d, i.e.

f(x) =
∑

S⊆[n],|S|=d

∏
j∈S

`j

where the `j ’s are m-variate affine forms. Our task is to recover the `j ’s given blackbox access to
f . Observe that for any subset L of size (t+ 1) = (n− d+ 1) of {`1, `2, . . . , `n}, f vanishes modulo
the ideal generated by the linear forms in L - i.e. f vanishes on the intersection of the subspaces
corresponding to the affine forms in L. Because of this, the proof of uniqueness and the proof of
correctness are very similar to the case of the sum-of-products polynomial, SPSn,d. We omit the
details, stating only the algorithm here.
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Input: Integers n,m and t (with d = n − t and m > t2 + t) and blackbox access to a
homogeneous m-variate polynomial f of degree d.
Output: If f is a projection of Symn,d then a set of n linear forms over m variables
{`i : i ∈ [n] such that

f = Symn,d(`1, `2, . . . , `n)

Algorithm:

Step (i) By solving an appropriate set of polynomial equations find the set U of all
subspaces H ⊂ Fm of codimension (t+ 1) such that

f ≡ 0 (mod H).

If |U | 6=
(
n
t+1

)
then output ‘Fail.’

Step (ii) Compute the set L of all linear forms ` such that there exists a pair of subspaces
H1, H2 ∈ U satisfying:

(a) codim(Span(H1, H2)) = 1

(b) Span(H1, H2) is defined by the linear form `.

If |L| 6= n then output ‘Fail.’

Step (iii) Let L = {`1, `2, . . . , `n}. For each S ⊂ [n] with |S| = d, let TS(x) be the
polynomial

∏
i∈S `i . Using the algorithm of lemma 14, express f as

f =
∑

S⊆[n],|S|=d

αS · TS .

Using the αS ’s, compute β1, β2, . . . , βn such that

f =
∑

S⊆[n],|S|=d

∏
i∈S

(βi · `i) .

Output (β1 · `1, . . . , βn · `n).

7 Proofs of technical claims

7.1 Proofs of technical claims from section 4

In this section we prove theorem 27 from section 4. It has already been noted that if the graph is
3-colorable then f is an affine rojection of g. Our aim is to prove the converse. Henceforth, we will
assume that f is an affine projection of g via a map that sends xi to `i(x1, x2, x3) + ai, where `i is
a linear form. In other words

f(x1, x2, x3) = g(`1 + a1, `2 + a2, . . . , `n + an) (9)
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where g :=

∑
i∈[n]

xn
2+4n+4
i

+

∑
k∈[n]

∑
i∈[n]

x
k(n+3)
i

+

 ∑
{i,j}∈E

xixj


and f :=

∑
i∈[3]

nix
n2+4n+4
i

+

∑
k∈[n]

∑
i∈[3]

nix
k(n+3)
i

+

 ∑
1≤i<j≤3

mijxixj


We prove the correctness of the reduction (theorem 27) through a sequence of propositions. Our
first proposition is an easy consequence of the nonzeroness of the Vandermonde determinant.

Proposition 51. Let d ≥ 0 be an integer. If
n∑
i=1

βiα
k
i = 0 for k ∈ [d..d+ (n− 1)] (10)

then
n∑
i=1

βiα
k
i = 0

for all k ≥ 1. Moreover, if the αi’s are all nonzero then
∑
βi is zero as well.

Proof. The proof goes via induction on n and uses the properties of the Vandermonde matrix.
Equation (10) implies that the vector (β1, β2, . . . , βn) is in the nullspace of a Vandermonde matrix
M whose determinant is  n∏

i=1

αdi ·
∏
i<j

(αi − αj)

 .

If (β1, β2, . . . , βn) is the zero vector then
n∑
i=1

βiα
k
i = 0 ∀k ≥ 0.

Otherwise either some αi = 0 or some αi = αj . In both these cases, the conclusion follows by
induction.

Corollary 52. Let d > n be an integer. Let β1, . . . , βn be elements of F each of which is nonzero.
If

n∑
i=1

αd−ki βki = 0 ∀k ∈ [n] (11)

then
n∑
i=1

αd−ki βki = 0 ∀k ∈ [0..d− 1]

Proof. Rewriting equation (11) as
n∑
i=1

γd−ki βdi = 0 ∀k ∈ [n]

where γi := αi
βi

and applying proposition 51 above, we get that

n∑
i=1

γd−ki βdi = 0 ∀k ≥ 0.

The conclusion follows.
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Corollary 53. Let `1, `2, . . . , `n be linear forms. Let a1, a2, . . . , an ∈ F be field elements each of
which is nonzero. Let d > n be an integer. If∑

i∈[n]

`d−ki aki = 0 ∀k ∈ [n]

then ∑
i∈[n]

`d−ki aki = 0 ∀k ∈ [0..d− 1].

In particular, ∑
i∈[n]

`di = 0.

The proof of this corollary follows if we think of the `i’s and the ai’s as elements of the appropriate
rational function field and apply corollary 52. We will now need the following proposition dating
back to the time of Newton relating the power symmetric polynomials to the elementary symmetric
polynomials.

Proposition 54.

Symn,k :=
1
k

(
Symn,k−1Pown,1 − Symn,k−2Pown,2 + . . .+ (−1)k−1Pown,k

)
See for example [Mea] for a proof. It yields the following insight into the common solution of a
particular system of equations involving the power symmetric polynomials.

Lemma 55. Let α1, α2, . . . , αn be field elements. Suppose that for some integer m ∈ [0..n] we have∑
i∈[n]

αki = m ∀k ∈ [n]

then there exists a subset S ⊆ [n] of size m such that

αi =

{
1 if i ∈ S
0 otherwise

In particular, if ∑
i∈[n]

αki = 0 ∀k ∈ [n]

then αi = 0 ∀i ∈ [n].

Proof. We first derive a nice expression for Symn,k(α1, α2, . . . , αn).

Claim 56.

Symn,k(α1, α2, . . . , αn) =
(
m

k

)
.

Proof of Claim 56: The proof is by induction on k. For the base case of k = 1 we have

Symn,1(α1, . . . , αn) =
∑
i∈[n]

αi

= m

=
(
m

1

)
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Let us now look at the general case. By Proposition 54 we get

Symn,k+1(α1, . . . , αn) =
1

k + 1

(
Symn,kPown,1 − Symn,k−1Pown,2 + . . .+ (−1)kPown,k+1

)
=

1
k + 1

(
m

(
m

k

)
−m

(
m

k − 1

)
+ . . .+ (−1)km

)

=
m

k + 1

(−1)k
k∑
j=0

(−1)j
(
m

j

)
=

m

k + 1

(
m− 1
k

)
=

(
m

k + 1

)
This proves the claim. 2

Now consider the univariate polynomial

(t+ α1) · (t+ α2) · . . . · (t+ αn) =
∑

j∈[0..n]

Symn,j(α1, . . . , αn)tn−j

=
∑

j∈[0..n]

(
m

j

)
tn−j

= (t+ 1)m · tn−m

The statement of the lemma then follows by using unique factorization of (univariate) polynomials.

We are now ready to give thr proof of theorem 27.
Proof of theorem 27 : Our first aim is to show that the ai’s are all zero. Towards this end, our
first step is to show that for each i ∈ [n], either ai is zero or `i is zero. Let S ⊆ [n] consist of those
indices i ∈ [n] such that ai is zero.

Claim 57. For each i ∈ S, `i = 0.

Proof of claim 57 : For k ∈ [(n2 + 3n+ 1)..(n2 + 4n)], comparing the homogenous parts of degree
k on the l.h.s and r.h.s of equation (9) we get that(

n2 + 4n+ 4
k

)(∑
i∈S

`ki a
n2+4n+4−k
i

)
= 0.

Since for each i ∈ S, ai is nonzero, we can apply corollary 53 and obtain∑
i∈S

`ki a
n2+4n+4−k
i = 0 ∀k ∈ [1..(n2 + 4n+ 4)]. (12)

In particular, ∑
i∈S

`n
2+4n+4
i = 0 (13)
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Now for k ∈ [(n2 + 2n)..(n2 + 3n− 1)] comparing the coefficient of homogeneous parts of degree k
on l.h.s and r.h.s of equation (9) we get that(

n2 + 4n+ 4
k

)(∑
i∈S

`ki a
n2+4n+4−k
i

)
+
(
n2 + 3n

k

)(∑
i∈S

`ki a
n2+3n−k
i

)
= 0

which using (12) in turn means that∑
i∈S

`ki a
n2+3n−k
i = 0 ∀k ∈ [(n2 + 2n)..(n2 + 3n− 1)]

Applying corollary 53 again, we get∑
i∈S

`ki a
n2+3n−k
i = 0 ∀k ∈ [1..(n2 + 3n)] (14)

In particular, we get ∑
i∈S

`n
2+3n
i = 0 (15)

Continuing in this way we get that k ∈ [n]∑
i∈S

`
k(n+3)
i = 0 (16)

By lemma 55 we get that `i = 0 for each i ∈ S. This proves the claim. 2

In the rest of the proof, we will be comparing coefficients of monomials of degree at least one on
the two sides of equation (9). This claim above means that we can pretty much forget all the affine
forms for which ai is nonzero because the corresponding `i is zero and hence such affine forms
contribute only to the constant term of r.h.s of equation (9) and not to any higher degree term.
Let S̄ be the complement of S, i.e. S̄ = [n] \ S. Now let `i = αix1 + βix2 + γix3. Comparing the
coefficient of xk(n+3)

1 on the two sides of equation (9) we get∑
i∈S̄

α
k(n+3)
i = n1 ∀k ∈ [n].

By lemma 55 there must exist a subset T1 of S̄ of size n1 such that

αn+3
i =

{
1 if i ∈ T1

0 if i ∈ S̄ \ T1

(17)

Comparing the coefficient of xn
2+4n+4

1 on the two sides of equation (9) we get∑
i∈S̄

α
(n+1)(n+3)+1
i = n1

which means that ∑
i∈S̄

αi = n1 (as αn+3
i = α

(n+3)(n+1)
i = 1).
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Combined with (17) we get that in fact

αi =

{
1 if i ∈ T1

0 if i ∈ S̄ \ T1

(18)

In a similar we get that there exists a subsets T2 and T3 of S̄ of sizes n2 and n3 respectively such
that

βi =

{
1 if i ∈ T2

0 if i ∈ S̄ \ T2

(19)

and

γi =

{
1 if i ∈ T3

0 if i ∈ S̄ \ T3

(20)

Let us compare the coefficient of xn
2+4n+3

1 x2 on the two sides of equation (9). We get

0 =
∑
i∈S̄

αn
2+4n+3
i βi

=
∑

i∈T1∩T2

αn
2+4n+3
i βi

=
∑

i∈T1∩T2

αiβi

= |T1 ∩ T2|

Thus the sets T1 and T2 are disjoint. Applying the same argument for other pairs we get that T1, T2

and T3 are pairwise disjoint subsets of S̄ ⊆ [n]. The union of T1, T2, T3 has size n1 + n2 + n3 = n
so that S̄ = [n] and S is the empty set. This also means that each `i equals either x1 or x2 or x3

(depending on which Tj i belongs to). Let `i = xci for ci ∈ [3]. Finally comparing the coefficients
of the quadratic terms on the two sides of equation (9) we get that the map

φ : [n] 7→ [3], i 7→ ci

is a (n1, n2, n3,m12,m13,m23) − 3-coloring of the graph G. This completes the proof of the NP-
hardness of PolyProj . 2

7.2 Proofs of technical claims from section 3

Proof of Proposition 18. Without loss of generality we can assume i = 1. Let a = (a1, . . . , an) ∈ Fn
be the point at which we want the value of ∂f

∂x1
. Consider

f̂(x1) := f(x1 + a1, a2, . . . , an).

Then f̂(x1) can be computed via interpolation. Finally

∂f

∂x1
(a) =

∂f̂

∂x1
(0, 0, . . . , 0)
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Proof of Proposition 19. Let a = (a1, a2, . . . , an) and for λ ∈ F let

λ · a = (λ · a1, λ · a2, . . . , λ · an).

Then we have
f(λ · a) = λd · f [d](a) + λd−1 · f [d−1](a) + . . .+ λ0 · f [0](a)

so that by plugging in (d+ 1) different values for λ in the above equation, using the oracle for f(x)
to obtain each f(λ · a) and solving the resulting system of linear equations we obtain f [i](a) in
polynomial time. (The matrix corresponding to this system of linear equations is a Vandermonde
matrix so that it always has an inverse.)

Proposition 58. If f(x) = g(A · x) then

gf = A−1 · gg ·A

Proof. Suppose B ∈ gg, i.e.
f(x) = f((1 + ε ·B) · x).

Then
g(A · x) = g(A · (1 + ε ·B) · x)

so that

g(x) = g(A · (1 + ε ·B) ·A−1 · x)
= g((1 + ε · (A ·B ·A−1)) · x)

Thus gf ⊂ A−1 · gg ·A. Similarly gg ⊂ A · gg ·A−1. Thus

gf = A−1 · gg ·A

We now give the proof of lemma 22 showing that the lie algebra of a polynomial given as a blackbox
can be computed efficiently.

Proof of lemma 22. We will obtain the generators of gf by solving a system of homogeneous linear
equations. Recall that a matrix A ∈ gf if and only if

f((1n + εA)x) = f(x). (21)

Let the (i, j)-th entry of A be aij . A simple computation yields

Claim 59.

f((1 + εA)x)− f(x) = ε ·

 ∑
i,j∈[n]

aijxj
∂f

∂xi

 (22)

Proof of claim 59. By linearity of derivatives, it suffices to verify (22) for the case when f is a
monomial, in which case this is routine.

Thus the computation of a basis of gf boils down to computing a basis for the F-linear dependencies
among the set of polynomials

{xj
∂f

∂xi
: i, j ∈ [n]}.

By proposition 18, given blackbox access to f , we can obtain blackbox access to its derivatives
and therefore also to xj ∂f∂xi

in random polynomial time. We can subsequently compute the F-linear
dependencies among these polynomials by the algorithm of lemma 14.
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7.3 Proofs of technical claims from section 5.1

The following is the multivariate analog of Taylor expansion.

Fact 60. Let g(x1, . . . , xn) ∈ F[x1, . . . , xn] be a polynomial. Then

g(x1 + a1, . . . , xn + an) = g(x) +
1
1!

∑
i∈[n]

ai
∂g

∂xi
+

1
2!

∑
i,j∈[n]

aiaj
∂2g

∂xi · ∂xj
+ . . . ,

where the ‘. . .’ consists of terms with higher order derivatives of g.

Proposition 61. If g(x) is a regular homogeneous n-variate polynomial of degree d and if

g(A · x + b) = g(x)

then b = 0 and A ∈ Gg. In other words, if g is regular and homogeneous then its symmetries under
the affine group is the same as its symmetries under the general linear group.

Proof. Comparing the homogeneous parts of degree d on the two sides of

g(A · x + b) = g(x) (23)

we see that g(A ·x) = g(x) so that A ∈ Gg. Applying the transformation A−1 ∈ Gg to the variables
in equation (23) we get that

g(x +A−1 · b) = g(A−1 · x)

so that
g(x) = g(x + c),

where c = (c1, c2, . . . , cn) = A−1 · b. Applying Taylor expansion (fact 60) and comparing the
homogeneous parts of degree (d− 1) on the two sides we get∑

i∈[n]

ci
∂g

∂xi
= 0.

By regularity of g, the first order partial derivatives are F-linearly independent and therefore ci = 0
for each i ∈ [n]. Thus b = A · c is also zero.

Proof of Theorem 28. The interesting direction is the reduction of FullRankProj to PolyEquiv
. So let us assume that we have an oracle that given an n-vraiate polynomial h determines an
invertible matrix A such that h(x) = g(A · x), if such an A exists. Now we are given an m-variate
polynomial f and suppose there exists A, b such that

f(x) = g(Ax + b). (24)

If m is larger than n then f contains redundant variables and these can be eliminated by the
algorithm of lemma 17. So we can assume m = n. Using the algorithm of proposition 19, we verify
that f has degree d and obtain blackbox access to f [d], the degree d homogeneous component of f .
Since g is homogeneous of degree d, comparing the homogeneous parts of degree d on the two sides
of equation 24 we have

f [d](x) = g(A · x).
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Using the oracle for g-equivalence, we find a matrix C such that

f [d](x) = g(C · x).

Then A · C−1 ∈ Gg and
f(C−1 · x) = g(x + C ·A−1 · b).

So if we denote by h(x) the polynomial f(C−1 · x), then our problem boils down to expressing h
as a translation of g. So suppose h(x) = g(x + c). By Taylor expansion (Fact 60) we have

g(x + c) = g(x) +
n∑
i=1

ci
∂g

∂xi
+ lower degree terms

so that

h[d−1](x) =
n∑
j=1

cj
∂g

∂xj
(x).

If we now plug in x = ai for each i ∈ [n] then we obtain a system of linear equations with the cj ’s
as unknowns which we can solve in polynomial time to obtain the cj ’s.

Proof of Proposition 33. Let L =
∏
i∈[n] λi. Then we have

Perm(Pij) = Lk

and that (
∂Perm

∂xk`

)
(Pij) =

{
Lk · λ−ki if `− k = j − 1
0 otherwise

Recall that the matrix M is defined as

M(i,j),(k,`) =
∂Perm

∂xk`
(Pij)

Thus M is a block diagonal matrix with n blocks B1, B2, . . . , Bn where the t-th block (t ∈ [n])
Bt has n rows with indices of the form (i, t) (i ∈ [n]) and n columns with indices of the form
(k, k + t − 1) (k ∈ [n]). To show that M is invertible it suffices to show that each block Bt is
invertible. Now the entry of Bt at the i-th row and k-th column is

Lkλ−ki

so that
Det(Bt) = L

(n−1)(n+2)
2 ·

∏
i<k

(λ−1
i − λ

−1
k )

Thus each Bt is invertible.

7.4 Proofs of technical claims from section 6.1

Proof of proposition 40. By assumption f is GL(n2,F)-equivalent to Perm so let

f(x) = Permn(A · x) for some A ∈ GL(n2,F).

By proposition 58, we have
gf = A−1gPerm ·A.
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So if D−1 · gf ·D consists of diagonal matrices only then

D−1 ·A−1 · gPerm ·A ·D

also consists only of diagonal matrices. We first show that gPerm contains a matrix B all of whose
eigenvalues are distinct.

Claim 62. For n ≥ 3, gPerm contains matrices all of whose eigenvalue are distinct.

Proof of claim 62. It suffices to show that a random linear combination of the basis elements of
gPerm gives a diagonal matrix with all diagonal entries distinct. Proposition 39 gives an explicit
basis of gPerm. Let us take a take a formal linear combination of these basis elements, i.e. let us
consider the matrix

T := α2R2 + α3R3 + . . .+ αnRn + β2C2 + β3C3 + . . .+ βnCn.

Since the Ri’s aand the Cj ’s are diagonal matrices, therefore T is also a diagonal matrix. Moreover

Tij,ij =



∑
k∈[2..n](αk + βk) if i = j = 1

(
∑

k∈[2..n] αk)− βj if i = 1, and j ≥ 2
(
∑

k∈[2..n] βk)− αi if i ≥ 2, and j = 1
−αi − βj otherwise

The entries on the diagonal are all distinct when viewed as formal polynomials in the αi’s and the
βj ’s. By the DeMillo-Lipton-Schwarz-Zippel lemma, the diagonal entries of T will be distinct with
high probability if the αi’s and the βj ’s are chosen independently at random from a large enough
subset of F. This proves the claim.

Fix such a matrix B ∈ gPerm all of whose eigenvalues are distinct. Since (D−1 · A−1) diagonalizes
gPerm we have that C := D−1 ·A−1 diagonalizes B. We now claim that C ∈ PS(n2,F).

Claim 63.
C ∈ PS(n2,F).

Proof of claim 63. Since the matrix CBC−1 is a diagonal matrix, the columns of C must be the
eigenvectors of B. Since B itself is diagonal and has distinct eigenvalues, the eigenvectors of B
are precisely the elementary unit vectors e1, e2, . . . , en2 and scalar multiples thereof. In turn this
means that the columns of C are scalar multiples of some permutation of e1, e2, . . . , en2 . This in
turn means that C ∈ PS(n2,F).

Since PS is a subgroup of GL(n2,F) C−1 also belongs to PS. Finally we have

f(D · x) = Perm(A ·D · x)
= Perm(C−1 · x)

and hence f(D · x) is PS(n2,F)-equivalent to Permn, as required.
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Proof of proposition 41. Recall that by assumption the given f is of the form

f(x) = Permn(λ11xπ(1,1), λ12xπ(1,2), . . . , λnnxπ(n,n))

We will use the observation in equation 5 to compute one such π as follows. Since the permanent
is invariant under permuting the rows and columns, we can assume without loss of generality that
π(1, 1) = (1, 1). We find a set of size (2n− 2) say A ⊂ ([n]× [n] \ {(1, 1)}) such that

∂2f

∂x11 · ∂xij
= 0

for each (i, j) ∈ A (if no such set A exists then f is not PS-equivalent to Perm). We then partition
A into two sets R and C of size (n− 1) each such that

∂2f

∂xij · ∂xk`


= 0 if (i, j) ∈ R and (k, `) ∈ R
= 0 if (i, j) ∈ C and (k, `) ∈ C
6= 0 if (i, j) ∈ R and (k, `) ∈ C

(25)

(if no such partition is found then f is not PS-equivalent to the permanent). Clearly, such a
partition of A can be found efficiently using the property above. Let

R = {(i1, j1), (i2, j2), . . . , (in−1, jn−1)}.

Define
π−1(i1, j1) = (2, 1), π−1(i2, j2) = (3, 1), . . . π−1(in−1, jn−1) = (n, 1).

Similarly let
C = {(k1, `1), (k2, `2), . . . , (kn−1, `n−1)}.

Define
π−1(k1, `1) = (1, 2), π−1(k2, `2) = (1, 3), . . . π−1(kn−1, `n−1) = (1, n).

Finally for (i, j) ∈ ([n] × [n]) \ ({(1, 1)} ∪ R ∪ C) there must exist a unique pair (ir, jr) ∈ R and
(ks, `s) ∈ C such that

∂2f

∂xij · ∂xirjr
=

∂2f

∂xij · ∂xks`s

= 0

(if not then f is not PS-equaivalent to permanent). Define π−1(i, j) = (r, s). In this way we
have obtained the permutation π. Let σ : ([n] × [n]) 7→ ([n] × [n]) be the inverse of π. Then the
polynomial

f2(x) := f(xσ(1,1), xσ(1,2), . . . , xσ(n,n))

is SC-equivalent to the permanent.

The following proposition shows how to do the appropriate scaling and thereby recover the equiv-
alence between f2 above and the permanent.

Proof of proposition 42. We first note that the stabilizer/automorphism group of the Permanent
polynomial itself has a nontrivial intersection with SC(n2,F) (theorem 38). This allows us to deduce
that we can assume without loss of generality that some (2n− 2) λij ’s are 1. More specifcally, we
can assume without loss of generality that

λ11 = λ12 = . . . = λ1n = λ21 = λ31 = . . . = λ(n−1)1 = 1.
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We will compute the rest of the λij ’s. Now by substituting some variables to zero and some others
to one in equation (7) we get

f


x11 x12 0 . . . 0
x21 x22 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 = Perm


x11 x12 0 . . . 0
x21 λ22x22 0 . . . 0
0 0 λ33 . . . 0
...

...
...

. . .
...

0 0 0 . . . λnn

 .

In particular,

f(a) = λ22λ33 · . . . · λnn, where a :=


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


while

f(b) = λ33 · . . . · λnn where b :=


0 1 0 . . . 0
1 0 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


so that

λ22 =
f(a)
f(b)

.

In a similar way the other λij ’s can be obtained for i ∈ [n − 1] and j ∈ [n]. Now λnn can also be
obtained as

λnn =
f(b)∏

i∈[3..(n−1)] λii
.

Finally all the other λnj ’s can be obtained similarly. In this way we have determined whether a
given polynomial f is SC-equivalent to the permanent polynomial by evaulating f at O(n2) points
with the overall arithmetic operations also being O(n2).

7.5 Proofs of technical claims from section 6.2

Proposition 64. With high probability, a random element B ∈ gDet has the property that all its
eigenvalues are distinct.

Proof. It suffices to show that there exists an X ∈ gDet all of whose eigenvalues are distinct. The
conclusion would then follow by an application of the DeMillo-Lipton-Schwarz-Zippel lemma. Note
that the elements of gPerm are also elements of gDet so that such an element exists by claim 62.

Proposition 65. With high probability over the random choice of the element B ∈ gDet there exists
an S ∈ GDet such that

S−1 · Cent(B) · S

consists of diagonal matrices.
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Proof. gDet is isomorphic to sln ⊕ sln (by corollary 44) so that we can deduce structural properties
of gDet by proving that sln ⊕ sln has these properties. Now a random traceless matrix has distinct
eigenvalues (with high probability) so that a random element of sln is is a “locally regular element”
of sln (cf. Graaf [dG97] for the definition of a locally regular element). Thus with high probability
a random element B ∈ gDet is also a locally regular element of gDet. This means that Cent(B) is a
Cartan subalgebra of gDet (by Proposition 3.13 in [dG97]). All Cartan subalgebras are conjugate
(via automorphisms of the lie algebra). In our case, the lie algebra is isomorphic to the direct
product sln ⊕ sln. The Cartan subalgebras of sln are well understood and it is known (cf. [Kir08])
that the Cartan subalgebras of sln are in fact all conjugate under SL(n,F) (fact 25). Now gDet has
a ‘canonical’ Cartan subalgebra consisting of diagonal matrices (corresponding to scaling of rows
and columns). Thus there exists an S ∈ GDet such that

S−1 · Cent(B) · S

consists of diagonal matrices.

Proof of Proposition 45. Suppose that

f(x) = Detn(A · x) for some A ∈ GL(n2,F).

By proposition 58 we have
gf = A−1gDetA.

Thus picking a random B ∈ gf is the same as picking a random C ∈ gDet and then computing
B := A−1 · C ·A. Since D diagonalizes Cent(B) ⊂ gf , we have that

D−1 ·A−1Cent(C) ·A ·D

is a set of diagonal matrices. Now by Proposition 65 there exists an S ∈ G(Det) such that

S−1 · Cent(C) · S

is a set of diagonal matrices. Proceeding as in the case of the permanent and using claim 63 we get
that

S−1 · (AD) = Z

for some matrix Z ∈ PS(n2,F). Therefore AD = S · Z. No we have

f(D · x) = Det(A ·D · x)
= Det(S · Z · x)
= Det(S · (Z · x))
= Det(Z · x) (since S ∈ GDet)

Thus f(D · x) is PS-equivalent to Detn.

7.6 Proofs of technical claims from section 6.3

Terminology: the ring of differential operators. We denote by ∂i the map from F[x] to itself
given by f(x) 7→ ∂f

∂xi
. Notice that each ∂i is an F-linear map from F[x] to itself. We will denote

the linear combinations and compositions of these basic linear operators in the natural way. Thus
∂i∂j is a shorthand for the map that sends f(x) to (∂i(∂jf))(x), while ∂i + ∂j is a shorthand for
the map that sends f(x) to (∂if + ∂jf)(x). Continuing in this way, one can look at all polynomial
expressions in ∂1, . . . , ∂n. They form a commutative ring which we denote by F[∂1, . . . , ∂n]. We call
it the ring of differential operators.
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7.6.1 Representing a univariate polynomial as a sum of like powers of affine forms.

In this subsection we will give a proof of proposition 46. Consider a univariate polynomial f(x) ∈
F[x] of degree d as in the statement of proposition 46. Consider the smallest n such that f can be
written as the sum of n d-th powers of affine forms, i.e.

f = (a1x+ b1)d + (a2x+ b2)d + . . .+ (anx+ bn)d.

Let g(x1, x2) = xd2f(x1
x2

) be the homogenization of f so that

g = (a1x1 + b1x2)d + (a2x1 + b2x2)d + . . .+ (anx1 + bnx2)d.

Johannes Kleppe [Kle99] related this to the vanishing of n-th order derivatives of g in the following
manner. Note that we can assume without loss of generality that (aix+ bi)’s are pairwise coprime.
Consider the differential operator

D = (b1∂1 − a1∂2) · (b2∂1 − a2∂2) · . . . · (bn∂1 − an∂2)

Note that D is square-free and that D ◦ g = 0. It turns out that the converse is also true.

Lemma 66. ( [Kle99], theorem 1.2) Let

D =
∏
i∈[n]

(∂1 − αi∂2)

be a square-free differential operator (i.e. the αi’s are all distinct) of order n such that D(∂1, ∂2) ◦
g(x1, x2) = 0. Then g(x1, x2) can be written as an F-linear combination of (α1x1 + x2)d, (α2x1 +
x2)d, . . . , (αnx1 + x2)d. That is, there exist constants β1, β2, . . . , βn such that

g(x1, x2) =
∑
i∈[n]

βi(αix1 + x2)d.

Lemma 67. ( [Kle99], lemma 1.1) Let D1, D2, . . . , Dt ∈ F[∂1, ∂2] be homogeneous differential
operaors of order n. Then the linear space of differential operators generated by the Di’s contains
a squarefree operator if and only if a random linear combination of the Di’s gives a square-free
operator.

Proof. An operator D(∂1, ∂2) ∈ F[∂1, ∂2] is squarefree if and only if a certain polynomial expression
in the coefficients of the (∂i1 · ∂

j
2)’s is nonzero. The conclusion follows by an application of the

DeMillo-Lipton-Schwarz-Zippel lemma.

Proof of Proposition 46. The uniqueness part of the theorem statement follows from a simple ap-
plication of the invertibility of a Vandermonde matrix. The algorithm itself follows from lemmas
66 and 67 in the following way. Compute a basis of all differential operators of degree n which
make g vanish and take a random linear combination of these operators to determine whether there
exists a squarefree operator D in this linear space. Factoring such a squarefree operator D gives
us α1, α2, . . . , αn such that

g(x1, x2) =
∑
i∈[n]

βi(αix1 + x2)d

for some β1, . . . , βn ∈ F. Finally the βi’s can be computed by solving an appropriate system of
linear equations. The running time is clearly poly(n · d).
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7.6.2 Sum of like powers of random linear forms.

In the rest of this subsection we consider the following scenario. Let S ⊆ F be a “very large” finite
set. Let m, d, n be positive integers. We pick a collection of n linear forms

`1, `2, . . . , `n, where `i =
∑
j∈[m]

aijxj

with aij being chosen independently and uniformly at random from S ⊆ F. Here we will analyze
linear combinations of d-th powers of such forms. In particular, we will be interested in properties
of the polynomial

f =
∑
i∈[n]

`di .

We begin by recalling a lemma from Ellison [Ell69].

Lemma 68. Let m, d be positive integers. For any n ≤
(
m+d−1

d

)
, there exists a collection of n

linear forms p1, p2, . . . , pn such that the polynomials pd1, p
d
2, . . . , p

d
n are F-linearly independent.

We now recall one well-known proposition regarding projections of a set of pairwise coprime linear
forms (cf. [Kal89] for a proof).

Proposition 69. Let
`1(x), `2(x), . . . , `n(x) ∈ F[x1, . . . , xm]

be a collection of linear forms which is pairwise coprime, i.e. no `i is a scalar multiple of an
`j (j 6= i). Let A ∈ F(m×m)∗ be a random invertible linear transformation. For i ∈ [n], let
ˆ̀
i := `i(A ·x). Then with high probability (over the random choice of A), the set of bivariate linear

forms {ˆ̀i(x1, x2, 0, . . . , 0)} is pairwise coprime.

Proposition 70. If n <
(
m+d−1

d

)
then the collection of polynomials

{`di : i ∈ [n]}

is F-linearly independent with probability at least(
1− dn

|S|

)
.

Proof. Let the coefficient of xj in `i be aij . Consider the n ×
(
m+d−1

d

)
matrix M whose (i, j)-th

entry is the coefficient of the j-th monomial in `di . This is a polynomial of degree d in the aij ’s.
Then the `di ’s are F-linearly independent if and only if the rank of this matrix is n. By lemma 68,
there exists a set of aij ’s such that M has rank n. The conclusion follows by an application of the
DeMillo-Lipton-Schwarz-Zippel lemma.

Corollary 71. For any set of n nonzero field elements α1, α2, . . . , αn the collection of polynomials

{αi`di : i ∈ [n]}

is F-linearly independent with probability at least(
1− dn

|S|

)
.

(Note that the αi’s can be chosen in an arbitrary way, possibly depending on the choice of the aij’s.)
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Proof. The proof is basically the same as the proof of proposition 70. The matrix M ′ in this case
is the same as matrix M we got in the proof of proposition 70 but where the i-th row has been
scaled by a factor of αi. Thus

rank(M ′) = rank(M)

which inturn equals n with probability at least(
1− dn

|S|

)
.

Proposition 72. Dimension of k-th order partial derivatives. Let f =
∑

i∈[n] `
d
i . Consider

the set ∂k(f) of k-th order partial derivatives of f . If k is such that

n < min
((

m+ d− k − 1
d− k

)
,

(
m+ k − 1

k

))
then

dim(∂k(f)) = n

with probability at least (
1− dn

|S|

)
.

Proof. Let e = (e1, e2, . . . , em) ∈ Zm≥0 with

|e| := e1 + e2 + . . .+ em = k.

Consider the following k-th order partial derivative of f :

(∂e11 · ∂
e2
2 · . . . · ∂

em
m ) ◦ f

We have
(∂e11 · ∂

e2
2 · . . . · ∂

em
m ) ◦ f =

∑
i∈[n]

ae
i · `d−ki .

By proposition 70 the polynomials `d−ki are F-linearly independent with probability at least(
1− (d−k)n

|S|

)
so that it suffices to show that the set of vectors

{(aej

1 , . . . ,a
ej
n ) ∈ Fn : |ej | = k} ⊆ Fm

has dimension n with high probability. By lemma 14, the corresponding r × n matrix

M :=


ae1

1 ae1
2 . . . ae1

n

ae2
1 ae2

2 . . . ae2
n

...
...

. . .
...

aer
1 aer

2 . . . aer
n


has rank n with probability at least (1− kn

|S|) (here r =
(
m+k−1

k

)
is the number of possible monomials

of degree k in m variables). Overall therefore the set of k-th order partial derivatives ∂k(f) has
dimension n with probability at least(

1− kn+ (d− k)n
|S|

)
=
(

1− dn

|S|

)
.
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Corollary 73. Let α1, α2, . . . , αn ∈ F be any set of n nonzero field elements. Let f =
∑

i∈[n] αi`
d
i .

Consider the set ∂k(f) of k-th order partial derivatives of f . If k is such that

n < min
((

m+ d− k − 1
d− k

)
,

(
m+ k − 1

k

))
then

dim(∂k(f)) = n

with probability at least (
1− dn

|S|

)
.

Proof. We follow the proof of Proposition 72 above replacing the matrix M with another matrix
M ′ whose columns are scaled by the αi’s so that

rank(M) = rank(M ′).

The rest of the proof is identical.

We are now ready to give the proof of Proposition 48.

Proof of Proposition 48. Let p(x) = b1 · x1 + b2 · x2 + . . .+ bm · xm. Let g := f − pd.

Claim 74. p is a scalar multiple of some `i.

Proof of claim. The proof is by reducio ad absurdum. Suppose if possible that p is not a scalar
multiple of any `i. Then by making a suitable change of variables if neccessary, we can assume
without loss of generality that p(x1, x2, 0, . . . , 0) is not a scalar multiple of `i(x1, x2, 0, . . . , 0) for
every i ∈ [n] (using proposition 69). In other words we can assume without loss of generality that

(b2 · ai1 − b1 · ai2) 6= 0 ∀i ∈ [n].

Consider the polynomial

h := b2(∂1 ◦ g)− b1(∂2 ◦ g)

= b2 ·
∂g

∂x1
− b1 ·

∂g

∂x2

=

∑
i∈[n]

b2ai1`
d−1
i + b2b1m

d−1

−
∑
i∈[n]

b1ai2`
d−1
i + b1b2m

d−1


=

∑
i∈[n]

(b2ai1 − b1ai2)`d−1
i

By corollary 73,
dim(∂k(h)) = n

(with high probability). On the other hand, the k-th order derivatives of h are linear combinations
of the (k + 1)-th order derivatives of g so that from the assumption that

dim(∂k+1(f − pd)) ≤ (n− 1)

we have
dim(∂k(h)) ≤ (n− 1).

This is a contradiction. Therefore p must be scalar multiple of some `i.
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So suppose that p = β · `1 (by reindexing the `i’s if necessary). Then

g = (1− βd)`d1 +
∑

i∈[2..n]

`di .

By corollary 73 the (k + 1)-th order derivatives of g will have rank n unless 1 − βd = 0. From
equation (8) it now follows that β is a d-th root of unity.

We are now ready to prove Proposition 47.

Proof of theorem 47. Let us choose k = d
2 − 1. We have

f − pd1 =
∑

i∈[2..n]

pdi

so that
dim(∂k(f − pd1)) ≤ (n− 1).

Thus by proposition 48, p1 = ωe1`π(1) for integer π(i) ∈ [n]. In a similar way we get that for each
i ∈ [n], pi = ωei`π(i) for integer π(i) ∈ [n]. It remains to show that π is a permutation. Suppose
not, then there exists i, j ∈ [n] with i 6= j such that π(i) = π(j). this implies that pi is a scalar
multiple of pj . In turn, this means that f can be written as the sum of (n−1) d-th powers of linear
forms (going to the algebraic closure of F if necessary). This would mean that

dim(∂k(f)) ≤ (n− 1),

but this contradicts corollary 73. Thus π must be permutation.

Relationship of Symmetric rank with tensor rank. Let f(x,y, z) ∈ F[x,y, z] be a homo-
geneous set-multilinear polynomial over the 3 sets x,y and z (of m variables each). Thus f is of
degree 3 and every monomial in f is of the form xiyjzk for some i, j, k ∈ [m]. The tensor rank of f
is the smallest integer r such that

f =
∑
i∈[r]

`i1(x) · `i2(y) · `i3(z), (26)

where the `ij ’s as usual denote linear forms over the relevant set of variables. The symmetric rank
of f is the smallest integer n such that f is a linear projection of Pown,3.

Proposition 75. Let f(x,y, z) ∈ F[x,y, z] be a set-multilinear polynomial with tensor rank r and
symmetric rank n. Then:

(1) n ≤ 4r.

(2) r ≤ n.

Proof. The second inequality is immediate from the definition of tensor rank and symmetric rank.
The first inequality follows from the identity

xyz =
1
24
(
(x+ y + z)3 − (x+ y − z)3 − (x− y + z)3 + (x− y − z)3

)
as it allows us to write each summand in equation (26) as a sum of 4 cubes.
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7.7 Proofs of technical claims from section 6.4

Fact 76. Let H be a subspace defined by the linear forms p1, p2, . . . , pt. A polynomial f ≡
0 (mod H) if and only if there exist polynomials f1, f2, . . . , ft such that

f =
∑
i∈[t]

pifi.

In the rest of this subsection we will be looking at the polynomial

f =
∑
i∈[n]

∏
j∈[d]

`ij ,

where the `ij ’s are n2 + n-wise independent. For convenience we denote
∏
j∈[d] `ij by Ti. We will

be looking at the situation where m ≥ (n2 + n + 1). We first record a simple consequence of the
DeMillo-Lipton-Schwarz-Zippel lemma which says that if the `ij ’s are chosen randomly then with
high probability they are (n2 + n)-wise independent.

Fact 77. If the coefficient of every `ij is chosen uniformly and independently at random from a set
S ⊆ F then with probability at least (

1−
(

dn

n2 + n

)
n2 + n

|S|

)
,

the `ij’s are (n2 + n)-wise independent.

We will follow the notation used in the algorithm in section 6.4. Recall that S was the set of
subspaces of codimension n with the property that for every H ∈ S we have f ≡ 0 (mod H).

Proposition 78. For any subspace H ∈ S there exists a unique set {j1, j2, . . . , jn} ∈ [d]n such that

H = {a ∈ Fm : `1j1(a) = `2j2(a) = . . . = `njn) = 0}.

Proof. Let the subspace H be defined by the n linear forms h1, h2, . . . , hn.

Claim 79. For each i ∈ [n] we have ∏
j∈[d]

`ij ≡ 0 (mod H)

Proof of claim 79: The proof is by contradiction. We will obtain the contradiction by showing that
there exists a set of (n + 1) linearly independent vectors in Span(h1, h2, . . . , hn). Assume without
loss of generality that T1, T2, . . . , Tr are nonzero modulo H. Consider a tuple j = (j1, j2, . . . , jr−1) ∈
[d]r−1. Then for every such tuple j there must exist a jr ∈ [d] such that

b1`1j1 + b2`2j2 + . . .+ br`rjr = 0 (mod H)

for some b1, b2, . . . , br ∈ F not all zero. Let p1 :=
∑

i∈[r] bi · `iji . These `iji ’s are n-wise independent
so that p1 is a nonzero vector in Span(h1, h2, . . . , hn). Continuing in this way and choosing (n+ 1)
different tuples in [d]r−1 we get a set of (n+ 1) nonzero vectors p1, . . . pn+1 in Span(h1, h2, . . . , hn).
Moreover we can ensure that p1, . . . , pn+1 are linearly independent in the following manner. Each
pk is a linear combination of some r ≤ n `ij ’s. We can choose our tuples j such that the `ij ’s which
span distinct pk’s are mutually disjoint. We need at most (n2 +n) such `ij ’s. By assumption these
are linearly independent so that the pk’s are linearly independent.
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From the claim above we have ∏
j∈[d]

`1j ≡ 0 (mod h1, h2, . . . , hn).

Since the hi’s are linear forms the ring F[x]/(h1, h2, . . . , hn) is an integral domain so it must happen
that there exists some j ∈ [d] such that

`1j ≡ 0 (mod h1, h2, . . . , hn).

By reindexing the `1j ’s if necessary we can assume without loss of generality that that j = 1. In a
similar manner we obtain `i1 ≡ 0 (mod h1, h2, . . . , hn) for each i ∈ [n] (by reindexing the `ij ’s if
necessary). But `11, `21, . . . , `n1 are linearly independent. This means that the hyperplane H can
equivalently be defined as the set of common zeroes of `11, `21, . . . , `n1. Finally the uniqueness also
follows from the (n+ 1)-wise independence of the `ij ’s.

Corollary 80. The map I from [d]n to S given by

I(j1, j2, . . . , jn) = subspace defined by `1j1 , `2j2 , . . . , `njn

is a bijection.

Proof. By linear independence of `1j1 , `2j2 , . . . , `njn , the subspace H defined by these linear forms
is of codimension n. Also Ti =

∏
j∈[d] `ij vanishes modulo `iji so that

f =
∑
i∈[n]

Ti ≡ 0 (mod H).

Thus I(j1, j2, . . . , jn) is in S. If (k1, . . . , kn) ∈ [d]n is another n-tuple of indices then the subspace
defined by {`1j1 , . . . , `njn} is distinct from the subspace defined by {`1k1 , . . . , `nkn} because of linear
independence of these forms. Thus I is a one-one map. Finally by the proposition above, every
subspace in S is in the image of I so that I is a bijection.

Proposition 81. If H1 and H2 are in S and if codim(Span(H1, H2)) = 1 then there exists an `ij
such that Span(H1, H2) is the same as the hyperplane defined by `ij. Moreover every `ij can be
obtained in this manner.

Proof. By proposition 78 above and by reindexing the `ij ’s if necessary we can assume without loss
of generality that

H1 ≡ `11 = `21 = . . . = `n1 = 0.

Let
H2 ≡ `1j1 = `2j2 = . . . = `njn = 0.

We then have
codim(Span(H1, H2)) = 2n− rank(`11, . . . , `n1, `1j1 , . . . , `njn).

From the 2n-wise linear independence of the `ij ’s we have

rank(`11, . . . , `n1, `1j1 , . . . , `njn) = 2n− |{i : ji = 1}| .

Thus we have
|{i : ji = 1}| = 1
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so that Span(H1, H2) is the same as the hyperplane defined by such an `i1. For the converse consider
a linear form `ij , say `11. Let H1 be he hyperplane defined by

`11 = `21 = . . . = `n1 = 0.

Let H2 be the hyperplane defined by

`11 = `22 = `32 . . . = `n2 = 0.

Then we have
f ≡ 0(mod H1) and f ≡ 0(mod H2).

Moreover from the assumption that these linear forms are linearly independent we get that

codim(Span(H1, H2)) = 1.

Thus every `ij is obtained as the linear form defining a hyperplane spanned by some pair H1, H2 ∈
S.

We are now ready to give the proofs of propositions 49 and 50.

Proof of Proposition 50. 1. From corollary 80 it follows that the size of S is dn and it consists only
of subspaces defined by some set `1j1 , . . . , `njn of linear forms.

2. By Proposition 81, we get that some scalar multiple of each `ij is an element of L and that all
elements of L arise in this way. Moreover by pairwise linear independence of the `ij ’s, L has
exactly dn distinct elements.

3. Consider the two nodes in the graph G corresponding to a `i1j1 and `i2j2 . We have the following
two cases.

I: i1 6= i2. Without loss of generality we can assume

i1 = 1, i2 = 2, j1 = j2 = 1.

Then the subspace H in S defined by `11, `21, . . . , `n1 has the property that it is properly
contained in the space defined by `11 = `21 = 0. Thus the nodes corresponding to `11 and
`21 are not adjacent.

II: i1 = i2. Without loss of generality we may assume

i1 = i2 = 1, j1 = 1, j2 = 2.

By corollary 80 every subspace H in S is defined by a set of linear forms `1j1 , `2j2 , . . . , `njn .
By linear independence of

`11, `12, `2j2 , . . . , `njn ,

we get that the subspace H cannot be contained in the subspace defined by `11 and `12.
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Proof of Proposition 49. Suppose that

f =
∑
i∈[n]

∏
j∈[d]

`ij =
∑
i∈[n]

∏
j∈[d]

pij . (27)

For i ∈ [0..(n− 1)], define

Si := {Span(H1, H2) : H1, H2 ∈ S and codim(Span(H1, H2)) = (n− i)}

Then S0 equals S and Sn−1 is the set of subspaces defined by linear forms in L. Proceeding as
above and using the n2-wise linear independence of the `ij ’s we get that Si has the following three
propoerties:

1. Every subspace J ∈ Si is defined by some (n− i) linear forms `k1j1 , `k2j2 , . . . , `kn−ijn−i
where

k1, k2, . . . , kn−i are all distinct.

2. There are exactly
(
n
n−i
)
dn−i distinct subspaces in Si.

3. Every subspace J ∈ Si contains exactly
(
i
j

)
· dj subspaces in Si−j .

Now by counting the number of subspaces in Si−j contained in a given subspacein Si one sees
by induction that the pij ’s must be 2n-wise (linearly) independent. For example if p11 and p21

were linearly dependent then f would vanish identically on the codimension (n − 1) subspace H
defined by p11, p21, . . . , pn1 (this would yield a contradiction as H would then contain infinitely
many distinct subspaces of codimension n on which f vanishes). Similarly if p11 and p12 were
linearly dependent then the codimension (n−1) subspace H in S1 defined by p21, p31, . . . , pn1 woud
contain at most (d − 1) distinct subspaces in S0. Once the 2n-wise independence of the pij ’s is
established then one sees that every subspace in Sn−1 is defined by a unique pij . Every subspace
in Sn−1 is also defined by some `ij from which we deduce that there exists a permutation

π : ([n]× [d]) 7→ ([n]× [d])

pij is a scalar multiple of `π(i,j). Finally for any pair of linear forms `i1j1 , `i2j2 , the subspace of
codimension 2 defined by them is in Sn−2 if and only if i1 is distinct from i2. From this we deduce
that the permutation has the second property as well, i.e. π(i1, j1) and π(i2, j2) agree on their first
coordinate if and only if i1 = i2.
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A A quick survey of lower bound proofs

The aim of this appendix is to put together a quick summary of some of the relevant arithmetic
circuit lower bounds and present them in a thematic way. We will focus on lower bound proofs for
affine projections over algebraically closed fields. Most (all?) such lower bound proofs have been
through the discovery of what we call an affinely invariant property. Let us make precise the notion
we have in mind.

Definition 82. An affinely invariant property of polynomials is a map Π : F[x] 7→ R such that for
any two polynomials f and g in F[x], if

f ≤aff g then Π(f) ≤ Π(g).

In particular if f is affinely equivalent to g then Π(f) = Π(g).

One example is the degree of a polynomial. Another example is the number of essential variables
in a polynomial (see definition 16). Yet another example of an affinely invariant property is as
follows.

Ir(f) := deg(f)− number of irreducible factors of f.

Such a property Π can potentially be used to that f �aff g in the natural way: if Π(f) > Π(g) than
this constitutes a proof that f �aff g. We now list some more examples of known affinely invariant
properties which have found applications to lower bound proofs.

A.0.1 Affinely Invariant Properties and lower bounds.

(I) Dimension of k-th order Partial Derivatives: denoted dim(∂k(f)), it is the number
of F-linearly independent polynomials in ∂k(f), where ∂k(f) ⊆ F[x] is the set of k-th order
partial derivatives of f . First discovered/used by Nisan and Wigderson [NW97], it has the
following applications.

(1) (cf. the survey by Wigderson [Wig02]):

Detn �aff SPSt,d unless (t2d) ≥
(

2n
n

)
(2) (cf. the survey by Chen, Kayal, Wigderson [CKW11])

SPS1,n �aff Powt,d unless (t · d) ≥ 2n

(II) Minimal codimension of a vanishing subspace: denoted by Va(f), it is defined as

Va(f) := max{codim(H) : H is a vanishing subspace of f̄},

where f̄ : PFm 7→ F is the homogenization of f 23 and a subspace H of PFm is said to be a
vanishing subspace if f̄(a) = 0 for every a ∈ H. It has the following applications.

(1) (Shpilka and Wigderson [SW01]):

Symn,n
2
�aff SPSt,d unless t ≥ n (for any d)

23Homogenization of f corresponds to looking at the projective closure of f . We refer the reader to the text by
Cox, Little and O’Shea [CLO07] (Chapter 8) for more on projective closures of varieties.
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(2) (Folklore ?)24:
Detn �aff SPSt,d unless t ≥ n (for any d)

(III) Rank of the Hessian at a zero: denoted Hz(f), it is defined as

Hz(f) := min{rank(Hf (a)) : a ∈ Fn satisfies f(a) = 0}

where Hf (x) ∈ (F[x])n×n is the Hessian of f defined as follows:

Hf (x) def=


∂2f

∂x1·∂x1
. . . ∂2f

∂x1·∂xn

...
. . .

...
∂2f

∂xn·∂x1
. . . ∂2f

∂xn·∂xn

 .
It has the following application.

(1) (Mignon and Ressayre [MR04]):

Permn �aff Detm unless m ≥ n2

2

24The computation of the value of Va(Detn) was shown to the author by Srikanth Srinivasan
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