
R. Safavi-Naini and M. Yung (Eds.): DRMTICS 2005, LNCS 3919, pp. 341 – 355, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A DRM System Supporting What You See Is
What You Pay

Bin B. Zhu1, Yang Yang2, and Tierui Chen3

1 Microsoft Research Asia, Beijing 100080, China
binzhu@microsoft.com

2 Dept. of Elec. Eng. & Info Sci., Univ. of Sci. & Technol. of China,
Hefei, Anhui 230027, China
wdscxsj@ustc.edu

3 Inst. of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China
chentierui@software.ict.ac.cn

Abstract. We present a Digital Rights Management (DRM) system that supports
what you see is what you pay. In our system, multimedia is compressed with a
scalable codec and encrypted preserving the scalable granularity and multi-
access capability. This paper focuses on the DRM modules enabling efficient
key generation and management. We employ a light license server which stores
only the master keys of content publishers, which are used to regenerate
decryption keys for clients during license acquisition. All the remaining
information needed in key generation is efficiently packaged in a DRM header of
protected content. The DRM header is sent to a license server during license
acquisition to allow the license server to generate a single key for a requested
access, which is sent to the client in a license along with the acquired rights. The
key is used by the client to generate all the remaining keys of subordinate
accesses.

1 Introduction

With advances of digital technologies, more and more multimedia contents are
released in or converted to digital formats. Wide access to high speed Internet makes
distribution of digital multimedia efficient and easy. At the same time, the same
technologies and Internet create rampant piracy of digital multimedia, which causes
dramatic financial damage to the content owners and prevents content owners from
releasing more contents in digital formats through the Internet as an efficient and
cheap distribution channel. There is a great demand for technologies to protect digital
contents from illegal access, copy, or sharing. Digital Rights Management (DRM) is a
system to address such a need. A DRM system provides persistent management of all
rights ranging from description, identification, trading, and protection to monitoring and
tracking for digital contents from creation to consumption [1][2]. Such a system consists
of many core technologies and essential parts such as rights expression language to
describe rights to be managed, encryption and key generation and management to
protect the content from unauthorized access and usage, and tamper-proof trusted
DRM modules on the client side to ensure and manage the rights exactly as acquired.

342 B.B. Zhu, Y. Yang, and T. Chen

We have seen in recent years an increasing interest in DRM from both academia
and the industry. Standardization of DRM systems has also been actively pursued.
The Moving Picture Experts Group (MPEG) has adopted recently a DRM framework,
eXtensions to the Intellectual Property Management and Protection (IPMP-X), for
both MPEG-2 and 4 [3][4]. The Open Mobile Alliance (OMA) has also adopted a
DRM system recently for mobile environments [5]. There are also several proprietary
DRM systems available on the market. Typical commercial DRM systems include the
Windows Media Rights Manager (WMRM) from Microsoft [6], Commerce and
Rights|System from InterTrust [7], Electronic Media Management System (EMMS)
from IBM [8], Helix DRM from RealNetworks [9], and the EBooks from Adobe [10].
A typical DRM system encrypts multimedia content which is distributed to consumers
via distribution channels such as superdistribution. Superdistribution is a powerful
distribution mechanism that treats ease of replication of digital content as an asset
rather than a liability. Superdistribution actively encourages free distribution of digital
content via any distribution mechanism imaginable to reach the maximum number of
potential consumers. A DRM system enforces acquired rights of multimedia content
through the trusted DRM modules on the client side and a license which contains the
decryption key along with specifications of the rights a user has acquired. A license is
usually individualized, typically encrypted with a key that is bound to the hardware of
a user’s player, so the license cannot be illegally shared with others. Control of
content consumption rather than distribution is much more efficient in protecting
digital assets in the digital world since modern networks, storage, and compression
technologies have made it trivial to transfer digital content from one device or person
to another.

The same multimedia content can be consumed with devices of a variation of
characteristics and capacities such as mobile devices or PC. To enable different
devices to play the same content, the traditional DRM approach is to compress and
encrypt a single multimedia content into multiple copies, with each copy targeted at a
specific application scenario such as a PC with high resolution display and computing
power and storage, a 3G cellular phone with a small display and limited computing
power and storage, etc. These multiple copies are all stored in a server to make them
available for each individual user to select a copy that best fits his or her need.
Another approach is to apply a transcoder at some node of the multimedia delivery
path to generate a lower resolution or quality bitstream to fit in the targeted network
condition or device capability. Decryption and re-encryption are typically used in
performing such transcoding. A more elegant solution is to encode multimedia
contents with a fine granularity scalability (FGS) codec. A scalable codec encodes a
signal into a single codestream which is partitioned and organized according to certain
scalable parameters or importance. Based on scalabilities offered by a codestream,
each individual user can extract from the same codestream the best representation that
fits his or her application. An FGS scalable codec offers near continuously optimal
tradeoff between quality and rates over a large range. Unlike traditional approaches, a
single scalable codestream is stored and used for all different applications, with
possible simple adaptation manipulations such as truncations on the codestream. This
capability of one-compression-to–meet–the–needs–of–all–applications is very desira-
ble in many multimedia applications. Many scalable codecs have been proposed. Some
have already been adopted by standard bodies. MPEG has adopted a scalable video

 A DRM System Supporting What You See Is What You Pay 343

coding format called Fine Granularity Scalability (FGS) into its MPEG-4 standard
[11]. The Joint Photographic Experts Group (JPEG) has adopted a wavelet-based
scalable image coding format called JPEG 2000 [12] and motion JPEG 2000 [13].
Many schemes have been proposed in recent years to encrypt scalable codestreams
such that fine granularity scalability is preserved in the encrypted codestream to enable
direct truncations without decryption. Most of those schemes are described in the
review paper [14].

One of the unique features offered by an FGS codec is multiple access types in a
single scalable codestream. For example, a PC can show a high-fidelity full resolution
video from a scalable video codestream, while a mobile phone can show a low quality
video at a reduced resolution from the same codestream. Different accesses should be
charged differently. It is natural to require a PC user to pay more for a high-fidelity
full resolution video than a mobile phone user. A DRM system for FGS codestreams
should preserve the property of multiple access types in a single DRM-protected
codestream to enable the business model that charges different accesses differently.
This means that a scalable codestream should be encrypted with multiple keys.
Generation and management of multiple keys for different accesses of a scalable
codestream are a challenge in the design of a DRM system.

We have been building a research prototype of a DRM system on top of the
Microsoft Windows DRM system [15] to support scalable codestreams, esp. scalable
encryption to enable direct truncations of encrypted codestreams and multiple
accesses to support what you see is what you pay, as well as content and license
roaming among devices of different characteristics in a digital home (eHome). An
example application is to view multimedia at reduced quality and resolution, either
free or at a small cost. If the content is good and a better version is desired, then the
user can acquire a new license, and download the enhanced portion (i.e., the
difference) of the encrypted content if needed. A typical case for content roaming is
that a full version is downloaded to a PC, and then truncated to appropriate
representations to fit other eHome devices. Appropriate licenses are also roamed to
those devices. In this paper, we concentrate on the part of our DRM system related to
the management of multiple keys to support multiple accesses with a single protected
scalable codestream. The major contribution of this paper is that we propose and
implement a DRM system to support a new business model of what you see if what
you pay. In addition, we present an efficient key generation and management scheme
to facilitate a light license server used in our DRM system. A license server does not
need to remember the decryption keys for individual protected contents. Instead, only
the publisher-specific master key is remembered by the license server, which is then
used to generate content decryption keys. In typical DRM applications, the number of
publishers is much less than the number of protected contents, therefore our license
server is much cheaper to run and simpler to maintain. The system has a very small
overhead on the file size. This design is very desirable in many DRM applications
since license server is a single point of failure in a DRM system. To play a protected
content, a player has to acquire a license from a license server if the license has not
been acquired previously or has expired. Reliability and availability of the license
server is essential in a DRM system. A light and simple license server enables
deployment of many cheap yet secure servers to provide license granting servers for a
DRM system, therefore increases reliability, scalability, and availability of the license

344 B.B. Zhu, Y. Yang, and T. Chen

granting service. In addition, some of the low quality levels in a codestream can be
unencrypted in our DRM system to enable free preview and content-based search
with a single DRM-protected codestream.

This paper is organized as follows: In Section 2 the background of Microsoft’s
WMRM, JPEG 2000 and motion JPEG 2000 are briefly described. They are the basis
in describing our DRM system. In Section 3 the detail of our DRM system is
described. Experimental results are reported in Section 4 and the paper concludes with
Section 5.

2 Background

2.1 Microsoft’s Windows Media Rights Manager

Microsoft has developed a Windows based DRM system called Windows Media
Rights Manager (WMRM). A developer can download the WMRM and format SDKs
to build his or her own DRM applications. Fig. 1 shows the work flow of Microsoft’s
WMRM. The basic WMRM process is described as follows. More details can be
found in [15].

Fig. 1. Microsoft’s windows media rights manager flow (from [15])

i. Packaging. The rights manager encrypts the digital media and then packages the
content into a digital media file. The decryption key is stored in an encrypted
license which is distributed separately from the media file. Other information
such as a link to the license is added to the media file to facilitate license
acquisition.

ii. Distribution. The packaged file is distributed to users through some distribution
channels such as downloading, streaming, and CD/DVD. Superdistribution is a
convenient distribution mechanism. There is no restriction on distribution of the
packaged content.

iii. Establishing a license server. The content provider (referred to as the publisher
in the following) chooses a license clearing house that stores the specific rights

 A DRM System Supporting What You See Is What You Pay 345

or rules of the license and runs a license server which is used to authenticate the
consumer's request for a license. Licenses and protected media files are
distributed and stored separately to make it easier to manage the entire system.

iv. License acquisition. To play the protected content, a consumer first acquires a
license which contains the decryption key and the rights the consumer has with
the content. This process can be done in a transparent way to the consumer or
with minimal involvement of the consumer (such as when payment or
information is required).

v. Playing the content. A player that supports the DRM system is needed to play
the protected content. The DRM system ensures that the content is consumed
according to the rights or rules included inside the license. Licenses can have
different rights, such as start times and dates, duration, and counted operations.
Licenses, however, are typically not transferable. Each consumer has to
acquire his or her own license to play the protected content.

Microsoft’s WMRM is a complex and complete DRM system with a lot of
advanced features such as revocation, license backup and restoration, obfuscation and
other tamper-resistant mechanisms. By building our research DRM system on top of
Microsoft’s WMRM, we are able to leverage the existing modules and building
blocks in WMRM and focus on the key DRM modules under studies. We believe that
this approach is the easiest way to build a real and working DRM system for research
purpose.

2.2 JPEG 2000/Motion JPEG 2000 and Scalable Encryption

For convenience, we use motion JPEG 2000 as the scalable codec to demonstrate our
DRM system in this paper. Our DRM system is also applicable to other scalable
codecs. JPEG 2000 [12] is the newest image coding standard based on the wavelet
transform. In JPEG 2000, an image can be partitioned into smaller rectangular regions
called tiles. Each tile is encoded independently. Data in a tile is divided into one or
more components in a color space. A wavelet transform is applied to each tile-
component to decompose it into different resolution levels. The lowest frequency
subband is referred to as the resolution level 0 subband, which is also resolution 0.
The image at resolution r (r>0) consists of the data of the image at resolution (r-1) and
the subbands at resolution level r. Each subband is partitioned into smaller non-
overlapping rectangular blocks called code-blocks. Each code-block is independently
entropy-encoded. Bitstreams from code-blocks are distributed across one or more
layers in the codestream. Each layer represents a quality increment. A layer consists
of a number of consecutive bit-plane coding passes from each code-block in the tile,
including all subbands of all components for that tile. JPEG 2000 also provides an
intermediate space-frequency structure known as the precinct. A precinct is a
collection of spatially contiguous code-blocks from all subbands at a particular
resolution level. The fundamental building block in a JPEG 2000 codestream is called
the packet, which is simply a continuous segment in the compressed codestream that
consists of a number of bit-plane coding passes from each code-block in a precinct.
Each packet is uniquely identified by the five scalable parameters: tile, component,
resolution level, layer, and precinct. In motion JPEG 2000, each frame is

346 B.B. Zhu, Y. Yang, and T. Chen

independently encoded as an image with JPEG 2000. Details on JPEG 2000 and
motion JPEG 2000 can be found in [12][13].

Many scalable encryption schemes have been proposed for JPEG 2000 [16-20].
They can be used as a building block in our DRM system to encrypt motion JPEG
2000 codestreams. Multiple access control for a scalable codestream is equivalent to
the access control of a partially ordered hierarchic set (poset). An efficient key
scheme for a poset was proposed in [21], which is the basis of the key scheme of
multiple accesses in our DRM system. Fig. 2 shows the key generation scheme in [21]
that a parent node such as 1n derives the key of its child node 2n by using the parent’s

key 1k , the unique label 2l of the node 2n , and the value 2,1v of the edge linking the

parent node 1n to the child node 2n :),(212,12 lkHvk += , where)(⋅H is a

cryptographic hash function.

Fig. 2. Key scheme proposed in [21] which is the basis for the multiple access control of our
DRM system. The arithmetic is modulo ρ which is a proper number.

3 Our Multi-access DRM System

In our DRM system, content is packed by the content owner or a publisher. The
license terms of the content is then sent to a license server in a secure channel. Each
publisher uses a publisher-specific master key in generating encryption keys to
encrypt all the contents packed by the publisher. This master key has to be shared
with the license server to enable the latter to generate decryption keys for clients.
Symmetric encryption is used to encrypt the content so that the same key is used for
both encryption and decryption. When a player plays a protected content, the DRM
header packed with the content is extracted and the local license store and possibly
the local secure storage of play statistics such as the number of times the content has
been played are searched for a valid license of the content. If the search returns
positive, the access key in the local license store is extracted along with the access
node which is the subroot of all the accessible types and levels. The keys of all the
lower access levels that the user has the right to access are derived and used by the

 A DRM System Supporting What You See Is What You Pay 347

client DRM module to decrypt the corresponding data of the protected content. The
decrypted data is then decoded and rendered to show to the user. The associated DRM
parameters in a secure local storage such as the count of playing times are adjusted
accordingly. If no valid license can be found from the local license store, the user is
prompted to select a proper access type(s) and level(s) with possible payment,
depending on the setting of the content owner. The information is sent to the license
server along with the key generation information included in a DRM header packed
with the protected content. The license server generates the key for the specific access
type(s) and level(s) and returns to the client in a license which also contains the
acquired rights by the user. The client receives the license and stores it in the local
license store. The aforementioned process when a valid license is found in the local
license store is repeated to play the protected content. The detail of the processes is
described in the subsequent sections.

3.1 Content Packaging

A publisher must first generate a pair of public and private keys called content
publisher public key PubPK , and private key ivPK Pr, and a publisher-specific master

key MPK , before performing any content packaging. The publisher has also to obtain

a certificate pubPC , for the public key PubPK , from a certificate authority. The

certificate will be used by a client to verify the publisher’s public key in a DRM
protected codestream. Armed with the above keys and the certificate, the publisher is
ready to pack contents into DRM-protected codestreams.

To pack an individual piece of content, the publisher first generates a unique ID
denoted as KeyID for the content. This KeyID is used to identify the license associated
with the protected content in a local license store as well as to generate encryption
keys. Since content is encrypted with a symmetric encryption primitive in our DRM
system, decryption and encryption keys are the same. As we mentioned previously,
multiple access control of a scalable codestream such as motion JPEG 2000 is
equivalent to the access control of a poset with a single root node. The key of the root
node is generated with the following equation in our DRM system:

),(
,

KeyIDMACk
MPKroot = (1)

where)(⋅MAC is a Message Authentication Code (MAC) which can be implemented

with a secure keyed hash function. This equation means that the root key rootk of the

multiple access control is a MAC of the KeyID with the master key as the key in
generating the MAC.

To generate other encryption keys, the Hasse diagram representing the multiple

access poset is first generated. Each node in except the root node rootnn ≡0 is

assigned a random key ik . Those keys are used to encrypt the corresponding data for

each frame. To avoid repetitively applying the same encryption parameters to encrypt
different frames, each frame is inserted with a random initialization vector frameIV

which is used together with the above keys in encrypting the data for the

348 B.B. Zhu, Y. Yang, and T. Chen

corresponding frame. A proper scalable encryption scheme is used in the encryption
process. For motion JPEG 2000, any scheme described in [17-19] can be used.

To enable a node to derive all the keys of its descendants, the key scheme proposed

in [21] for a poset is used in our DRM system. Each node in in the Hasse diagram is

assigned a unique label il . Since an encrypted scalable codestream may be truncated

to fit a certain application scenario, care has to be taken in generating the node labels.
We want to ensure that the nodes generated by a truncated codestream match the
original nodes without any truncation. This implies that the node labels should be
invariant to truncations. In other words, truncation-invariant parameters that uniquely
identify each node should be used in generating the node labels. For JPEG 2000 and
motion JPEG 2000, canvas coordinates are such parameters and are used in our DRM
system to generate truncation invariant node labels { il }. The labels generated in this

way are unique and therefore valid. A major advantage in generating the labels { il }

in such a way is that the labels are not stored in a DRM-protected codestream. They
can be regenerated once the Hasse diagram is generated. The file size overhead is
therefore reduced. The value jiv , for each edge jie , in the Hasse diagram that links a

parent node in to its child node jn is then calculated as:

),(, jijji lkHkv −= . (2)

A publisher packages the following information into a DRM-protected
codestream:

• KeyID: This allows the proper license to be looked up in a local license store
and requested from a license server. It is also used by a license server to
generate the root key of the codestream. KeyID also contains information to
identify the publisher.

• License Server URL: This allows a client to request a license from a proper
license server.

• Information of access types and levels: This contains the information for
the supported multiple access types and number of access levels for each type
of the protected codestream packaged by the publisher.

• Key generation information: This contains the edge values of the Hasse
diagram ordered in a certain order, and the information on how the edges are
ordered and how the nodes are labeled. The information will be used to
generate decryption keys by both the license server and the client.

• Other DRM information: This contains additional information about the
DRM protection of the codestream such as DRM version, encryption scheme,
etc.

• Publisher’s signature: Everything above is signed with the publisher’s
private key ivPK Pr, .

• Publisher’s public key PubPK , and certificate pubPC , : This part allows a

client to check whether the DRM header has been tampered or not before
requesting a license. This is important in preventing hackers from modifying

 A DRM System Supporting What You See Is What You Pay 349

DRM header to point to a malicious server that a client machine might get
viruses or other attacks when requesting license from the server.

3.2 Content Playing

Fig. 3 shows the sequence of steps a player executes in playing a codestream. In the
first step, a player opens the codestream and checks whether the codestream is DRM-
protected or not. If a DRM header is found, the DRM subsystem on the client side is
called, and the DRM header is sent to the subsystem along with the requested action
such as playing. When first launched, the DRM subsystem performs sanity checks to
ensure that the subsystem is functioning well and there is no tampering to the system.
It then extracts the publisher’s public key and corresponding certificate from the
DRM header and checks whether the DRM header has been tampered or not. If the
checking is passed, KeyID is extracted from the DRM header and used to search the
local license store to find any matching licenses. Our DRM system allows multiple
licenses on a client side for the same protected content. Each license is assigned a
priority level. All found matching licenses are ordered and checked for validity and to
find out if there is any valid license that matches the requested action. Any invalid
licenses are removed from the license store. If multiple valid and matching licenses
are found, the default action is that the one that matches the client’s characteristics
and has the highest priority is used. For example, if the client is a powerful PC, the
license containing the key of the highest access priority in the Hasse diagram, e.g., in
case of motion JPEG 2000 the one with the highest resolution and best quality is used
by default. A user can also set the DRM system to prompt the user to select from the
set of licenses. If no valid license can be found from the license store, the user is
asked to select the access type(s) and level(s) of which the decryption key is
requested. An alternative approach is to select the access type(s) and level(s)
automatically that best fits the client’s hardware without user’s input. A user can set
up the DRM system to behave in either mode. A user may be requested to pay in this
process, depending on the setting of the publisher. Once a license is acquired from a
license server, the license is inserted into the local license store, and is used to address
the current requested action. The detail of license acquisition is described in the next
subsection.

In the next step, the DRM system extracts the information on access types and
levels from the DRM header to generate the corresponding Hasse diagram of the
multiple access control supported by the encrypted scalable codestream. The key
generation information is also extracted from the DRM header to regenerate the
unique label for each node and to assign the value for each edge in the Hasse diagram.
The decryption key and the information of the corresponding node of the key are
extracted from the license. The keys of all the descendants of the node are then
derived in the following way: if node in is a parent of node jn , and the edge linking

the two nodes has a value jiv , , then the key jk of node jn can be derived from the

key ik of the parent node in and the label jl of the child node jk :

),(, jijij lkHvk += . (3)

350 B.B. Zhu, Y. Yang, and T. Chen

Fig. 3. Content playing flowchart

Eq. (3) is applied repetitively until the keys of all the descendants have been derived.
Once the decryption keys that the user has rights to access are available, they are used
to decrypt the encrypted data for each frame, together with the frame initialization
vector frameIV . Decrypted data is then decompressed and rendered for the user to

view the content. At the last stage for DRM-protected content, the DRM parameters
in the local secure storage such as playing counts are updated if needed to reflect the
accomplished action requested by the user.

3.3 License and License Acquisition

License has to be acquired before the DRM-protected content can be played. Each
license is individualized that only the targeted client can use it. This is achieved by
generating a pair of public key PubCK , and private key ivCK Pr, for the client with a

DRM key generation module at the DRM system installation phase. The private
key ivCK Pr, is tied with the hardware’s unique IDs of the client’s machine while the

public key PubCK , is signed by a trusted certificate authority. The certificate pubCC , of

the client’s public key ivCK Pr, is stored at a local store, which will be used in

communication with a license server during license acquisition time.
To acquire a license, the client DRM subsystem first extracts the license server’s

URL from the DRM header, and uses the client’s public and private keys to
authenticate with the license server through a public key based challenge and
response protocol. In our DRM system, the license server also has a pair of public and
private keys, with the public key signed by a certificate authority. After the mutual
authentication, the client’s DRM subsystem sends to the license server securely the
KeyID, the information of access types and levels, the key generation information
extracted from the DRM header along with the requested access type(s) and level(s)

 A DRM System Supporting What You See Is What You Pay 351

selected by the user or automatically by the DRM subsystem that best fits the
characteristics of the client’s hardware, depending on the setting of the DRM
subsystem by the user. The license server identifies the publisher from the received
KeyID (recall that KeyID contains the unique identifier of the publisher), and extracts
the publisher’s master key MPK , . The received information of access types and levels

as well as the key generation information are used by the license server to regenerate

the Hasse diagram and node labels { il }, and assign the edge values jiv , . The root

key rootk of the Hasse diagram is generated with Eq. (1), which is used in turn to

generate the key nodereqk . of the node corresponding to the requested type(s) and

level(s). The node is in fact the subroot of all the accessible types and levels the
requesting user is entitled to access. This key is then packed into a license and sent to
the requesting client. We note that in our DRM system, only a single key is sent in a
license to a client. The remaining keys associated with the types and levels that are
accessible to the client are generated by the client’s DRM module based on the
received node key nodereqk . and the information obtained from the DRM header of the

protected content. Fig. 4 shows the process that a license server generates the key of
the requested node.

Fig. 4. Key generation by the license server

The rights a client requested and the info about the node of the key generated by a
license server are also packed into the license to a client. A license is written in XML
for flexibility and extensibility. Fig. 5 shows an example of a license. In the license,
the node key nodereqk . is encrypted with the client’s public key so that only the client

with the corresponding private key can recover the node key. A client’s private key is
only available to the client DRM subsystem. This effectively prevents a client from
sharing the content decryption keys with other clients. The data part of the license is
signed by the license server and the chain of certificates is also provided in the license
so that a client’s DRM subsystem can check whether the license has been tampered or
not. When a received license passes the checking, it is inserted into the local license
store for future usage.

352 B.B. Zhu, Y. Yang, and T. Chen

4 Experimental Results

Without loss of generality, we have implemented our DRM system for motion JPEG 2000
to test functionalities of the system and to conduct feasibility studies. Motion JPEG 2000
provides nice scalabilities ideal to test our DRM system. We should emphasize here that
our DRM system is equally applicable to other scalable codecs and formats.

<?xml version="1.0" ?>
 <LICENSE version="1.0.0.0">
 <LICENSCONTENT>
 <DATA>
 <KID>...</KID>
 <ISSUEDATA>...</ISSUEDATA>
 <PRIORITY>...</PRIORITY>

 <ONSTORE>
 <ACTION>
 secstate.playcount = 5;
 </ACTION>
 </ONSTORE>

 <ONACTION type=”Play”>
 <CONDITION>
 secstate.playcount > 0
 </CONDITION>
 <ACTION>
 secstate.playcount --

</ACTION>
 </ONACTION>

 <KEYDATA>
 <KEYALGORITHM type="SCALABLEDRM" />
 <PUBKEY type="client">...</PUBKEY> Client’s public

key.

 <VALUE>...</VALUE> The node key nodereqk .,

encrypted by the
client’s public key.

<NODEINFO>...</NODEINFO> The node info associated
with the node key.

 </KEYDATA>
 </DATA>

 <SIGNATURE>
 <HASHALGORITHM type="SHA" />
 <SIGNALGORITHM type="SCALABLEDRM" /> Signature signed by

the license server.

 <VALUE>...</VALUE>
 </SIGNATURE>

 <CERTIFICATECHAIN type="SCALABLEDRM">
 <CERTIFICATE>...</CERTIFICATE> The certificates for

the license server.
 </CERTIFICATECHAIN>
 <CONTENTPUBKEY>...</CONTENTPUBKEY>

 </LICENSCONTENT>
</LICENSE>

Fig. 5. Example of a license to a client

 A DRM System Supporting What You See Is What You Pay 353

As we mentioned previously, our DRM system was built on top of Microsoft’s
WMRM. We maximized reuse of the DRM modules offered by the SDKs of
Microsoft’s WMRM so that we could focus on the core parts we wanted to develop in
our DRM system. In our experiments, Kakadu [22] was used as the frame encoder
and JasPer 23was used as the frame decoder. A set of standard CIF sequences of first
100 frames were used in our experiments. Each frame was of the size 352 by 288
pixels. Each frame of the experimental sequences was encoded with 5 layers, 3
resolutions, 2 tiles, and 2 precincts. Layers were determined in such a way that each
layer shows visible improvement in perceptual quality over the next lower layer. The
nominal frame rate was set to 30 frames per second.

Table 1 shows the experimental results of the file size overheads and PSNR values
for different layers for four MPEG standard CIF sequences. It can be seen that the file
size overheads due to the DRM header for key generation is small, around 0.209% to
0.294%. Since the DRM header does not change with increasing number of frames,
we would expect that the actual overhead for a typical length of video should be
negligible. The sequence “foreman” at different accesses of resolutions and layers are
shown in Fig. 6.

Table 1. Experimental results of file size overheads and PSNR values (in dB) for different
layers. Each sequence consists of 100 frames.

Sequence
(cif)

Bitrate
(kbps)

Overhead
(%)

PSNR
Layer 5

PSNR
Layer 4

PSNR
Layer 3

PSNR
Layer 2

PSNR
Layer 1

crew 6436.16 0.260 42.110 38.328 31.219 28.175 23.901
foreman 7000.18 0.239 42.082 38.222 30.937 27.867 21.695

irene 5682.90 0.294 42.197 39.033 31.604 27.846 23.114
soccer 7975.84 0.209 42.124 37.359 30.081 27.145 22.592

Fig. 6. The sequence “foreman” at resolutions 1, 2, and 3 and layers 1 (top left), 2 (top right), 3
(bottom left), and 4 (bottom right)

5 Conclusion

We have described a DRM system that provides what you see is what you pay, where
multimedia content is encoded and encrypted to enable multiple access types and

354 B.B. Zhu, Y. Yang, and T. Chen

multiple access levels for each type with a single DRM-protected codestream. Different
users can share the same protected content or download the codestream truncated to best
fit the device. Different keys are acquired for different accesses. We presented in detail
the parts of the DRM system that enables a light license server which stores only the
publisher’s master key. Such a system allows a wide deployment of cheap yet secure
servers for license granting services, and therefore improves license service’s reliability
and availability, and the system’s performance since license service is a single point of
failure in a DRM system.

References

1. Iannella, R.: Digital Rights Management (DRM) Architectures. D-Lib Magazine, 7(6)
(June 2001)

2. Eskicioglu, A.M., Town, J., Delp, E.J.: Security of Digital Entertainment Content from
Creation to Consumption. Signal Processing: Image Communication, Special Issue on
Image Security. 18(4) (2003) 237 – 262

3. ISO/IEC JTC1/SC29/WG11 13818-11:2003(E). Information Technology – Generic
Coding of Moving Pictures and Associated Audio Information – Part 11: IPMP on MPEG-
2 Systems (2003)

4. ISO/IEC JTC1/SC29/WG11 14496-13:2004(E). Information Technology – Coding of
Audio-Visual Object – Part 13: Intellectual Property Management and Protection (IPMP)
Extensions (2004)

5. Open Mobile Alliance. OMA DRM Specification Draft Version 2.0.
http://www.openmobilealliance.org (March 2004)

6. Microsoft Windows Media Digital Rights Management. Available at
http://www.microsoft.com/windows/windowsmedia/drm/default.aspx

7. Intertrust. Available at http://www.intertrust.com/main/overview/drm.html
8. IBM: Electronic Media Management System. Available at

http://www-306.ibm.com/software/data/emms/
9. RealNetworks: Helix DRM. Available at http://www.realnetworks.com/products/drm/

index.html
10. Adobe EBooks. Available at http://www.adobe.com/epaper/ebooks
11. Li, W.: Overview of Fine Granularity Scalability in MPEG-4 Video Standard. IEEE Trans.

on Circuits and Systems for Video Technology. 11(3) (2001) 301 – 317
12. ISO/IEC: Information Technology – JPEG 2000 Image Coding System, Part 1: Core

Coding System. ISO/IEC 15444-1:2000 (ISO/IEC JTC/SC 29/WG 1 N1646R) (March
2000)

13. ISO/IEC: Information Technology – JPEG 2000 Image Coding System, Part 3: Motion
JPEG 2000. ISO/IEC 15444-3:2002

14. Zhu, B.B., Swanson, M.D. Li, S.: Encryption and Authentication for Scalable Multimedia:
Current State of the Art and Challenges. Proc. of SPIE Internet Multimedia Management
Systems V, Vol. 5601, Philadelphia PA (Oct. 2004) 157-170

15. Microsoft: Architecture of Windows Media Rights Manager. Available at
http://www.microsoft.com/windows/windowsmedia/howto/articles/drmarchitecture.aspx.

16. Wee, S.J. Apostolopoulos, J.G.: Secure Scalable Streaming and Secure Transcoding with
JPEG-2000. IEEE Int. Image Processing, 1 (Sept. 2003) I-205-208

17. Wu, H., Ma, D.: Efficient and Secure Encryption Schemes for JPEG2000. IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, 2004 (ICASSP '04). 5 (May 2004) V869 — 872

 A DRM System Supporting What You See Is What You Pay 355

18. Wu, Y., Deng, R. H.: Compliant Encryption of JPEG2000 Codestreams. IEEE. Int. Conf.
on Image Processing 2004 (ICIP’04), Singapore (Oct. 2004) 3447-3450

19. Zhu, B.B., Yang, Y., Li, S.: JPEG 2000 Encryption Enabling Fine Granularity Scalability
without Decryption. IEEE Int. Symp. Circuits and Systems 2005. (May 2005) 6304 – 6307

20. Zhu, B.B., Feng, M., Li, S.: A Framework of Scalable Layered Access Control for
Multimedia. IEEE Int. Symp. Circuits and Systems 2005. (May 2005) 2703-2706

21. Zhong, S.: A Practical Key Management Scheme for Access Control in a User Hierarchy.
Computer & Security. 21(8) (2002) 750-759

22. Kakadu. Available from http://www.kakadusoftware.com/welcome.html
23. JasPer. Available from http://www.ece.uvic.ca/~mdadams/jasper/

	Introduction
	Background
	Microsoft’s Windows Media Rights Manager
	JPEG 2000/Motion JPEG 2000 and Scalable Encryption

	Our Multi-access DRM System
	Content Packaging
	Content Playing
	License and License Acquisition

	Experimental Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

