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ABSTRACT  
An efficient syntax-compliant encryption scheme for JPEG 

2000 and motion JPEG 2000 is proposed in this paper. 
Compressed visual data is completely encrypted yet the full 
scalability of the unencrypted codestream is completely 
preserved to allow near RD-optimal truncations and other 
manipulations securely without decryption. Compared with other 
reported schemes, our scheme shows advantages on syntax 
compliance, compression overhead, scalable granularity, and 
error resilience. In addition to preserving the original scalability, 
a JPEG 2000 codestream encrypted with our scheme has the 
same error resilience capability as the unencrypted codestream. 
The encrypted codestream is still syntax-compliant so that an 
encryption-unaware decoder can still decode the encrypted 
codestream, although the decoded visual data is completely 
garbled and meaningless. Our scheme has virtually no adverse 
impact on the compression efficiency.  

1. INTRODUCTION  
JPEG 2000 (J2K) [1] is a latest still image coding standard 

which provides high compression efficiency, lossy to lossless 
coding, and flexible scalability. A J2K codestream is organized 
in a hierarchical structure with packets as the fundamental 
building blocks. A J2K codestream provides Fine Granularity 
Scalability (FGS): it can be truncated to the preset layers (i.e. 
qualities), resolutions, components, tiles, etc., or to coding passes 
inside a packet to fit a large variety of application scenarios. FGS 
of a J2K codestream allows near Rate-Distortion (RD)-optimal 
bitrate reduction for a large range of rates. Motion JPEG 2000 
which encodes each video frame independently is also defined 
[2].  

Image protection is an important issue in many applications, 
and therefore is addressed by the JPEG 2000 specifications part 8, 
commonly known as JPSEC. JPSEC provides a framework that 
different protection technologies can be applied to. A recent 
paper [3] provides a brief review of JPSEC. This paper focuses 
on encryption for JPSEC.  

A particular requirement for encryption of scalable 
codestreams is that an encrypted codestream should preserve as 
fine as possible granularity scalability so that it can be truncated 
directly by a potentially untrustworthy party without decryption. 
Otherwise the system security may be sacrificed. Encryption 
technologies to meet this requirement have been reviewed 
recently in [4]. Among them, some are specifically designed for 
JPEG 2000 encryption. Grosbois et al. [5] proposed two 
encryption schemes to allow accesses to resolutions and layers, 
respectively, without decryption, but the two types of accesses 
cannot be supported with a single encrypted codestream. Another 
drawback is that a seed used in encrypting a code-block is 

inserted after the termination marker of the code-block, and may 
be lost during transmissions or scheme-unaware truncations, 
resulting in an undecryptable code-block. Wee et al. [6] proposed 
a Secure Scalable Streaming (SSS) scheme which groups J2K 
packets into SSS packets. Data except header fields in each SSS 
packet is independently encrypted with a block cipher in Cipher 
Block Chaining (CBC) mode. The Initialization Vector (IV) used 
in encryption of each SSS packet is inserted into an unencrypted 
header of the SSS packet. Scalable granularity is reduced to a 
progressive SSS packet level. To reduce encryption overhead due 
to IVs, the number of SSS packets is not high, resulting in very 
coarse granularity scalability in an SSS encrypted codestream. 
We have proposed a code-block based encryption scheme [7] 
which preserves original FGS with small, about 1%, overhead on 
the compression efficiency.  

A desirable feature for JPEG 2000 encryption is that an 
encrypted J2K codestream is J2K syntax-compliant that 
encrypted data does not emulate any delimiters to avoid 
erroneous parsing or synchronization, esp. under error-prone 
transmissions. All the above schemes do not meet this 
requirement. Wu and Ma [8] proposed a packet-level syntax-
compliant encryption scheme which encrypts each byte by 
adding a pseudo-random byte modulo 0xFF. Wu and Deng [9] 
proposed to encrypt each Codeblock Contribution to a Packet 
(CCP) with a modular addition or a block cipher repetitively 
until the ciphertext is syntax-compliant. It is unclear how these 
two schemes deal with seeds or IVs, and therefore there is no 
way to estimate their overheads on the compression efficiency.   

In this paper, we propose a scheme based on our previous 
scheme [7]. The scheme encrypts each codeword segment or 
each intersection of a codeword segment with a CCP 
independently with a syntax-compliant encryption primitive after 
J2K compression. The IV for each independent encryption is 
generated from a global IV and the unique index to the data to be 
encrypted. There is no need to store each IV.  This scheme shows 
four major improvements over our previous scheme reported in 
[7]: 1) The encrypted codestream is now J2K syntax-compliant. 
2) The overhead on the compression efficiency is virtually 
removed. 3) Tile-based cropping can be applied directly without 
decryption. 4) The scalable granularity after encryption is finer -- 
as fine as the unencrypted codestream. Our scheme also shows 
advantages on syntax compliance, compression overhead, 
scalable granularity, and error resilience over other reported 
schemes.  

The rest part of this paper is organized as follows. JPEG 
2000 is briefly introduced in the next section to provide a basis to 
describe our proposed scheme, which is described in detail in 
Section 3, along with comparison with other proposed J2K 
encryption schemes. Experimental results are presented in 
Section 4. We conclude our paper in Section 5.  
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2. JPEG 2000 AND JPSEC  
In J2K, an image can be partitioned into smaller rectangular 

regions called tiles. Each tile is encoded independently. Data in a 
tile are divided into one or more components in a color space. A 
wavelet transform is applied to each tile-component to 
decompose the image data into different resolution levels. The 
lowest frequency subband is referred to as the resolution level 0 
subband, which is also resolution 0. The image at resolution r 
(r>0) consists of the data of the image at resolution (r-1) and the 
subbands at resolution level r. Wavelet coefficients are quantized 
by a scalar quantization to reduce precision of the coefficients 
except in the case of lossless compression. Each subband is 
partitioned into smaller non-overlapping rectangular blocks 
called code-blocks. Each code-block is independently entropy-
encoded from the most significant bit-plane to the least 
significant bit-plane to generate an embedded bitstream. Each 
bit-plane is encoded within three sub-bitplane passes. In each 
coding pass, the bit-plane data and the contextual information are 
sent to an adaptive arithmetic encoder for encoding. By default, 
arithmetic coding is terminated at the end of the last bit-plane 
encoding, and a code-block’s embedded bitstream forms a single 
Arithmetic Codeword Segment (ACS). J2K also allows 
termination at the end of each sub-bitplane coding pass that the 
bitstream from each coding pass forms an ACS.  Context 
probabilities can also be re-initialized at the end of each coding 
pass to enable independent decoding of the bitstream from each 
coding pass. The optional arithmetic coding bypass puts raw bits 
into bitstream for certain coding passes. In this case, the 
boundary between arithmetic coding passes and raw passes must 
be terminated. Both ACS and raw codeword segment are referred 
to as Codeword Segment (CS) in this paper.  

A code-block’s bitstream is distributed across one or more 
layers in the codestream. Each layer represents a quality 
increment. A layer consists of a number of consecutive bit-plane 
coding passes from each code-block in the tile, including all 
subbands of all components for that tile. J2K also provides an 
intermediate space-frequency structure known as a precinct. A 
precinct is a collection of spatially contiguous code-blocks from 
all subbands at a particular resolution level. The fundamental 
building block in a J2K codestream is called a packet, which is 
simply a continuous segment in the compressed codestream that 
consists of a number of bit-plane coding passes from each code-
block in a precinct. Data length of each CCP is indicated in the 
packer header. In the case of multiple codeword segments, the 
length of each CS in a CCP is indicated in the packer header. 
Each ACS or CCP does not allow byte-aligned value between 
0xFF90 and 0xFFFF for any two consecutive bytes or ending 
with a byte of value 0xFF. A raw codeword segment when 
arithmetic coding bypass is enabled does not allow any byte-
aligned nine consecutive bits of 1 or ending with a byte of value 
0xFF. J2K uses the unattainable range of two consecutive bytes 
to represent unique markers to facilitate organization and parsing 
of the bitstream and to improve error resilience. Each packet can 
be uniquely identified by the five parameters: tile, component, 
resolution level, layer, and precinct. Each code-block can be 
uniquely identified by the following parameters: tile, component, 
resolution level, precinct, subband, and the coordinates of the 
upper left point of the code-block on the reference grid. Packets 
for a tile can be ordered with different hierarchical ordering in a 
J2K codestream by varying the ordering of parameters in nested 

“for loops”, where each “for loop” is for one of the parameters 
uniquely specifying a packet. Details on J2K can be found in 
[1][10], and motion JPEG 2000 in [2]. 

JPSEC introduce two new marker segments. One is SEC in 
the main header which is used to carry overall information about 
the security tools and parameters applied to the image. The other 
is INSEC placed in the bitstream to provide information of 
localized security tools and parameters. Details on JPSEC are 
found in [11]. 

3. SYNTAX-COMPLIANT ENCRYPTION FOR 
JPEG 2000 AND MOTION JPEG 2000 

Instead of encrypting each code-block independently as 
used in our previous scheme [7], this scheme encrypts each 
codeword segment independently after J2K compression. This 
change has the advantage that the boundary of encryption 
coincides with that of arithmetic coding, and the original 
scalability and error resilience are fully preserved after 
encryption. The syntax-compliant encryption primitives [12][13] 
we proposed recently are used in the scheme to ensure syntax 
compliance. The IV for each independent encryption is generated 
from a global IV and the unique index to the data to be 
encrypted. There is no need to store each IV. Therefore a major 
overhead is removed. Each code-block is partitioned into CCPs 
in such a way that the remaining CCPs can still be decrypted 
correctly whatever CCP the bitstream terminates at. An 
alternative scheme is to encrypt each intersection of a CCP with 
a codeword segment independently, with the advantage that each 
CCP can be encrypted in situ, a desirable feature if encryption is 
applied after compression. The codeword encryption scheme will 
be referred to as the normal scheme while the intersection 
encryption scheme is referred to as the alternative scheme. 
Details are described in the rest of this section.  

3.1. Encryption and Decryption Primitives  
While all the syntax-compliant encryption methods [12][13] 

we recently proposed can be applied, we choose the Ciphertext 
Switching Encryption (CSE) for stream cipher based encryption 
and Locally Iterative Encryption (LIE) for block based 
encryption in this paper. In CSE, illegal substrings are switched 
back to the plaintext substrings. CSE is applied to our encryption 
without any change. In LIE, plaintext is divided into blocks and 
each block is encrypted iteratively until the block’s output is 
compliant. Boundaries of blocks are taken care of by LIE so that 
each block can be decrypted correctly. When LIE is used, a 
block cipher in Cipher Block Chaining (CBC) mode is used to 
encrypt full blocks, and the same block cipher in Cipher 
Feedback (CFB) mode is used to encrypt the last partial block, if 
applicable, with the register initialized with the ciphertext of last 
full block or IV if there is no full block. In this way, LIE with a 
block cipher can be applied to encrypting plaintext of any length 
into ciphertext of exactly the same length. Interested readers are 
referred to [12] for the detail of CSE and [13] for LIE. 

3.2. IV Generation 
A distinct IV is used for each independent encryption. The 

index to the code-block and the first coding pass of the 
encryption segment is used to generate this IV. A code-block can 
be uniquely identified by tile, component, resolution level, 
precinct, subband, and the coordinates of the upper left point of 



the code-block on the reference grid, as we mentioned in Section 
2. The coordinates of the upper right point on the reference grid 
are used to identify each tile and precinct in generating an IV. 
Due to invariance of these coordinates under cropping such as 
from aspect ratio of 16:9 to 4:3, an encrypted J2K codestream 
can be cropped by dropping some tiles and the resulting 
codestream is still fully decryptable.   

A global IV is inserted in the SEC at the main header for an 
encrypted J2K codestream. For motion J2K, an independent 
random frame IV is inserted in each frame. This global IV, the 
unique code-block identifier, and the index to the first coding 
pass of the encryption segment are concatenated and 
cryptographically hashed, with possible truncation if necessary, 
to generate a unique IV to encrypt the current encryption 
segment.  

In typical applications, the code-block identifier and the 
coding pass index can be represented together by a single word 
of length equal to IV. In this case, each individual IV can be 
generated simply by XORing the global IV with the word, and 
no hash operation is needed.  

3.3. Syntax-Compliant JPEG 2000 Encryption 
With the IV and encryption primitives, each segment after 

compression can be encrypted with the syntax-compliant 
primitives that the ciphertext is still syntax-compliant. On the 
player side, an encrypted J2K codestream is first decrypted and 
then decoded. The encryption process is straightforward if the 
alternative scheme is used, or if the normal scheme is used when 
each coding pass is terminated. In both cases, there is no 
compression overhead (SEC in JPSEC is not considered as 
overhead). 

For the default case that the whole code-block is a single 
codeword segment, and if the normal scheme is applied, the 
ciphertext of an encrypted codeword segment may need to be 
partitioned into CCPs. Each CCP must be terminated at a right 
position that decryption can be executed correctly when the 
bitstream is truncated at the CCP, and the CCP cannot end with a 
byte of value 0xFF in either ciphertext or plaintext. This means 
that the original CCP partition points obtained without 
encryption may have to be modified after encryption is applied. 
For example, when LIE is used in CBC mode, a CCP has to 
terminate at a block boundary of the block cipher used in LIE. 
When CSE is used, a switched portion cannot be split into two 
consecutive CCPs. For CSE, if the last byte of the ciphertext is 
not 0xFF when the original partition (i.e., the partition obtained 
when encryption is not applied) is used (note that in this case the 
last byte of plaintext cannot be 0xFF either), then there is no 
change to the CCP boundary when encryption is applied, thus no 
compression overhead. Otherwise the boundary is moved to a 
following byte which is not of value 0xFF in either plaintext or 
ciphertext, resulting in compression overhead.  

In CSE, switched consecutive bytes are typically two bytes 
long. This means that when moving is needed, CCP boundary is 
typically moved to the next byte, resulting in one byte overhead 
for the CCP. Since the chance that an encrypted CCP ends with a 
byte of value 0xFF is about 1 in 256, the overhead for CSE is 
very small, almost negligible. Due to this advantage, CSE is 
recommended when the normal scheme is used with the default 
arithmetic coding mode. For other cases both CSE and LIE can 
be equally applied without any overhead. 

3.4. Scalability and Error Resilience 
In addition to the aforementioned advantage of compression 

overhead, the scheme also has advantages on scalability and 
error resilience over other schemes. In our scheme, the data in a 
J2K codestream is fully encrypted, yet the full scalability of the 
unencrypted codestream is preserved. This flexibility is very 
desirable when a single codestream is used for a wide range of 
applications, esp. when some applications may not be known at 
encryption time.  Wu and Ma’s scheme [8] encrypts packet data 
in each packet. The scalable granularity is raised to packet-level 
after encryption. Except for trailing truncation, it is impossible to 
truncate to an arbitrarily selected CCP after encryption. Wu and 
Deng’ scheme [9] encrypts each CCP, and the scalable 
granularity is raised to CCP-level. This is enough for many 
applications. It is not doable if an application wants to truncate at 
selected coding passes after encryption when each coding pass is 
terminated. Our scheme allows such fine truncations after 
encryption. Compared to other syntax-noncompliant encryption 
schemes such as our previous scheme reported in [7], this 
scheme generates encrypted, syntax-compliant codestream. An 
encryption-unaware decoder such as a decoder of an old version 
is still able to decode the encrypted codestream, although the 
decoded visual data is completely garbled and meaningless. Such 
a decoder may not be able to decode an encrypted codestream 
generated by a syntax-noncompliant encryption scheme.  

 An image or frame may be cropped. A widely used 
cropping in video is to convert the aspect ratio from 16:9 to 4:3. 
J2K enables such cropping without touching the compressed data 
by dropping tiles and adjusting some coordinates and parameters. 
A J2K codestream encrypted with our scheme enables such 
cropping too, thanks to the IV generation mechanism which 
generates invariant IV for each encryption segment under the 
cropping. Other schemes may also be able to do so if IVs are 
inserted in the bitstream, resulting in a high compression 
overhead. Our scheme does not have the overhead. 

Errors may occur during transmission over networks. J2K 
offers several error resilience tools. When an error occurs, the 
current (i.e., where the error occurs) and subsequent coding 
passes in the same codeword segment may not be decompressed 
correctly and therefore dropped. Our scheme preserves this 
property too. When an error occurs in the ciphertext, the current 
and subsequent data in the codeword may not be decrypted 
correctly and therefore dropped. In other words, a J2K 
codestream encrypted with our scheme has exactly the same 
error resilience capability as the unencrypted codestream under 
all different J2K coding modes. Wu and Ma’s scheme [8] may 
propagate errors to CCPs of other code-blocks. Wu and Deng’ 
scheme [9] may propagate errors to preceding coding passes in 
the same CCP due to their global-level iterative encryption. 

4. EXPERIMENTAL RESULTS  
The proposed scheme has been implemented base on the 

publicly available J2K implementation JasPer [14]. 
Cryptographic primitives are based on Crypto++ [15]. SEAL 
[16] and AES [17] are used as the stream and block cipher 
primitives in CSE and LIE, respectively. Due to the length 
limitation, we report here only a couple of experiments. More 
results will be reported later in a full paper.   

 



   
 

 
Figure 1: Cropping from aspect ratio 16:9 (1280 by 720 

pixels) to 4:3 (792 by 594 pixels). 

Figure 1 shows an encrypted J2K image cropped from 
aspect ratio of 16:9 to 4:3 directly without decryption. The 
coordinates used in this experiment are the same as the example 
shown in Section B.3 in [1].  

Figure 2 shows encryption and decryption speeds for CSE 
(top), Wu and Ma’s (left bottom two), and Wu and Deng’s (left 
middle two) for typical CCP sizes. Note that CSE uses the same 
procedure for both encryption and decryption. There is only a 
single curve for CSE. It is clear that CSE is faster than the other 
two schemes. Lower speeds at short plaintext are due to the time 
spent on setting IV in SEAL. Setting IV in SEAL takes 
substantial portion of the overall time when plaintext is short. 

 

 
Figure 2: Encryption/decryption speeds for different syntax-

compliant encryption schemes (see the main text for 
explanation).   

5. CONCLUSION  
We have proposed an improved encryption scheme from our 

early version for JPEG 2000 and motion JPEG 2000. The scheme 
produces JPEG 2000 syntax-compliant output. It offers several 
advantages over the old version and other schemes proposed in 
the literature. The scheme has virtually no overhead. Although 
the visual data is fully encrypted after compression, the original 
scalability and error resilience capability are fully preserved after 
encryption. Therefore an encrypted codestream can be truncated 

near RD-optimally or manipulated without decryption. The end-
to-end system security has been boosted.  
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