
A DRM System Protecting Consumer Privacy
Min FENG

Microsoft Research Asia
Beijing, P. R. China

Email: minfeng@microsoft.com

Bin ZHU
Microsoft Research Asia

Beijing, P. R. China
Email: binzhu@microsoft.com

Abstract— Digital Rights Management (DRM) is widely used
to protect intellectual property for content owners but consumer
privacy is sacrificed. A user’s playing statistics can be collected by
the client DRM module and the license server. In this paper, we
propose a DRM system in which the license server can generate
the content decryption key for a user to play an encrypted content
object without gaining any information to link to the specific
content object encrypted by the content encryption key. This is
achieved by applying a (partially) blind signature primitive in the
license acquisition protocol and by adopting a key scheme that
a content encryption key depends on the information retrieved
from the content object and a secret that only the license server
knows. By requesting that the client DRM module does not send
any information about a user’s playing statistics and all the
messages the client DRM module sends out are in plain text
for easy checking by a user if the client DRM module abides
by this rule, consumer privacy is fully protected in our DRM
system.

I. INTRODUCTION

Digital content has been increasingly used in our daily
life due to its high quality and efficiency in storage and
distribution. Protection against piracy is needed. Digital Rights
Management (DRM) is technologies that provide persistent
rights management for digital contents [1]. In addition to
DRM technologies offered by the standards organizations
such as MPEG [2], [3], the Digital Media Project (DMP)
[4], and the Open Mobile Alliance (OMA) [5], there also
exist several proprietary DRM systems on the market. A
typical commercial DRM system is the Windows Media Rights
Manager (WMRM) from Microsoft [6]. In a typical DRM
system, content is encrypted and packaged into a content
object to distribute. A rights object, also called a license, is
needed to play the protected content. A license contains the
decryption key as well as a specification of rights a user has
acquired. Licenses are usually distributed and stored separately
from the corresponding contents to make it easier to manage
the entire system. A license is acquired from a license server.
It is usually locked to a user or a user’s computer to prevent
illegal sharing with other people or computers. A DRM system
enforces the acquired rights through trusted DRM modules on
the client side.

The technologies employed by a DRM system to enforce
intellectual property protection implicate sacrifice of consumer
privacy: the DRM client module knows what a user plays, and
the license server knows what contents a user has acquired
licenses for. The latter case, which is the focus of this paper,
can be explained as follows. In a DRM system such as

Microsoft’s WMRM, a license and the decryption key are
associated with a protected content through a key ID. A key
ID is used instead of a content ID since it enables a content
to be packaged into different content objects by encrypting
it with different encryption keys. When a user acquires a
license from a license server, the key ID is retrieved from
the protected content and sent to the license server which
generates or retrieves the corresponding content decryption
key and sends to the user in a license. More precisely, the
decryption key in the license is encrypted by the public key
bound to the user’s device so that only the targeted device
can play the protected content. By searching a database or
protected content objects, it is not difficult to find the content
associated with the key ID. As a result, the submitted key
ID enables a license server to link a user with the contents
associated with the licenses acquired from the license server.
This is an intrusion to consumer privacy. We need to strike a
balance between protection of intellectual property for content
owners and protection of privacy for consumers. A question
arises naturally: is it possible to let a license server send
a user the correct decryption key without knowing the key
ID (or content ID)? This seems to be a hard problem for a
DRM system in which, for the sake of security, no encryption
key is shared by different content objects, i.e, each content
object is encrypted with a different encryption key. Without
knowing the key ID, a license server does not know which
decryption key a consumer wants for the content. We are going
to address this problem in this paper. We present a DRM
system based on (partially) blind signatures that enables a
license server to generate decryption keys and deliver to users
without knowing the corresponding key IDs or the contents
that users play. Therefore consumer privacy is protected during
license acquisition. If we request that the client DRM module
in our DRM system does not disclose any information about
a user’s playing statistics and all the messages that the client
DRM module sends out must be in plain text for easy checking
by a user if the client DRM module abides by this request,
then consumer privacy is fully protected by our DRM system.

The remaining of this paper is organized as follows. In Sec-
tion II blind and partially blind signatures are introduced. Our
proposed scheme is described in Section III. Two examples
of our proposed scheme are presented in Sections IV and
V, respectively. One uses RSA and the other uses bilinear
pairings. Discussions of the proposed scheme and its variations
for more application scenarios are presented in Section VI. The

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

1-4244-1457-1/08/$25.00 © IEEE
1075

paper concludes in Section VII.

II. BLIND AND PARTIALLY BLIND SIGNATURES

Blind signatures were first proposed by Chaum [7]. A blind
signature plays an important role in cryptographic protocols
such as e-cash and e-voting which require user anonymity.
In an e-cash system, neither the merchant nor the bank can
identify the owner of e-cash. In an e-voting system, nobody
except the voter himself/herself knows the owner of a vote. In
a blind signature scheme, a requester usually uses a random
number to blind the message to be signed, and then submits
to the signer to sign. Since the blinded message that the signer
signs cannot be differentiated from an arbitrary message, the
signer does not know the actual message he/she has signed.
The requester, knowing the random number on the other hand,
can unblind the received signature to obtain a valid signature
for the original message.

Unlike blind signatures in which the signer knows nothing
about the message he/she signs, partially blind signatures,
introduced by Abe and Fujisaki [8], allow the signer to ex-
plicitly include some agreed information in the blind signature.
This partial knowledge of the message sent to the signer to
sign enables a requester to send a specific nominal e-cash
value as the explicit information together with the blinded
information to a bank to sign. When the agreed information is
empty, a partially blind signature can be regarded as a normal
blind signature. Security of blind signatures was formalized
in [9], [10], while security of partially blind signatures was
formalized in [11]. Many blind signature schemes can be
found in [9], [12], [14]–[19], [22] and partially blind signature
schemes in [8], [11], [19]–[21].

In this paper, we classify (partially) blind signatures into
two types: stable (partially) blind signatures and unstable (par-
tially) blind signatures. In a stable (partially) blind signature,
there is only one valid signature generated for each original
message. No random value is included in the final signature.
In an unstable (partially) blind signature, the final signature
still includes a random number. As a result, many signatures
can be generated for an original message when an unstable
(partially) blind signature scheme is applied.

In our solution, a stable (partially) blind signature protocol
is used to generate a signature for a content’s key ID, which is
used as the content encryption key. During license acquisition,
the key ID is first blinded by the client DRM module. After
the license server signs the blinded key ID, the client DRM
module unblinds the received blind signature to obtain the
signature of the key ID, i.e. the content encryption key in our
solution. A symmetric encryption scheme is used to encrypt
the content in our content packaging stage. Since the content
has already been encrypted when a user plays a protected
content, the (partially) blind signature used in our scheme
must be stable. Otherwise a decryption key different from
the encryption key used in the content packaging stage is
generated, and fails to decrypt the protected content.

III. OUR SOLUTION

For the applications that our DRM system is applied to, we
assume for the time being that all the contents are classified
into different groups according to their prices and the contents
in the same group are charged with the same price. Other
applications scenarios will be discussed in Section VI. Suppose
that the content object that a consumer C wants to acquire a
license for is in a group g. C pays for certain rights for a
content in the group g with a payment server and obtains
a payment token from the payment server. C then submits
the payment token together with a blinded version of the key
ID extracted from the content object to the license server S.
S returns a license containing the acquired rights and the
content decryption key encrypted with C’s public key. When
the content object is played, C’s DRM module checks against
the acquired rights to see if the user has the rights to play, and
then decrypts the encrypted content encryption key with C’s
private key to obtain the decryption key to decrypt the content.
In this process, the payment server and the license server have
only the knowledge that the consumer has acquired a license
with certain rights for a content object in a group g, but cannot
find out which content object in the group that the consumer
has obtained a license for, although the license server has
generated the decryption key for that content object, and sent
to C in the license. If group g contains enough number of
contents, consumer privacy is well protected.

Before describing the detail of our solution, we define the
following symbols:

C A consumer.
S The license server.

KID Key ID, a unique identifier to a content
encryption key.

m A message to be signed.
g Group ID the content belongs to.

PTg Payment token as a proof of payment
for a content object in group g.

r A random number.
Bg(r,m) Blinded message of m by r with

group ID g as the agreement.
Sg(.) A stable (partially) blind signature algorithm.

B−1
g (r,Sg(.)) Unblinded signature signed by Sg(.) with r.
Sgn(m) Signature of message m.
Sgng(m) Resulting signature of message m with a

parameter g.
EC Public key encryption with C’s public key.
DC Public key decryption with C’s private key.
k Content encryption key corresponding to KID.

In this paper, we don’t differentiate a consumer and the device
a consumer uses to play content. As a result, C also means
the device a consumer uses to play. The public and private
keys used in EC and DC can be locked to either a device that
plays contents or a person, depending on an application’s
needs.

In our DRM system, symmetric encryption is used to
encrypt a content object during content packaging. Therefore
the encryption and decryption keys are the same. A content

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

1076

object’s encryption key is identified by its key ID KID.
The encryption key k is related to KID with following
equation: k = Sgng(KID), where g is the ID of the group
that the content belongs to. As described later, the signature
Sgng(KID) generated from a stable (partially) blind signature
is a deterministic mapping from KID and g. The result does
not depend on the random number used to blind KID during
the license acquisition. This implies that the exactly same key
can be regenerated once KID and g are given. This property
is used by the license server to generate the decryption key
without the knowledge of KID in our solution.

Both KID and g that are inserted into an unencrypted
header of a content object. They are extracted from an content
object and sent to the license server to obtain the decryption
key in license acquisition. KID is also used to find the
acquired license(s) associated with a content object. All the
acquired licenses are stored locally in a license store. The
license acquisition protocol is as follows.

Protocol 1: License Acquisition Protocol
1) C → S: g,mb = Bg(r,KID), PTg .
2) S → C: verifies PTg , if passes, Rights, EC(sb),

Sgn(Rights||EC(sb)), where sb = Sg(mb).
3) C: verifies Rights, EC(sb) against the signature

Sgn(Rights||EC(sb)), and stores them together with r
in the local license storage, identifiable by KID, if the
verification passes.

In this protocol, a consumer C sends the content object’s
group ID g, the blinded KID with a random number r, mb =
Bg(r,KID), and a payment token PTg , a proof of payment for
a content object in group g, to the license server S in Step 1.
In Step 2, S verifies the payment. If the verification fails, it
refuses to issue a license to C. Otherwise S signs mb with
a stable (partially) blind signature algorithm: sb = Sg(mb),
and then encrypts it with C’s public key: EC(sb). The result
is sent back to C together with the acquired rights Rights,
and the signature Sgn(Rights||EC(sb)). When C receives
the license from the license server S, it verifies the integrity
and authenticity of the received license by checking Rights
and EC(sb) against the signature Sgn(Rights||EC(sb)). If
the verification passes, C stores the license together with the
random number r in the local license store. The license and
the corresponding r can be retrieved from the license store
with KID.

In this scheme, sb is encrypted by C’s public key so that
only C can decrypt and retrieve sb even if the license and the
random number r are shared with other people or devices
by the consumer. Once sB and r are known, the content
encryption key k can be calculated, as described in the next
paragraph. C’s private key is protected by the client DRM
module so that it cannot be shared with others.

When a protected content object is played, the player ex-
tracts KID from the object and searches the local license store
for associated licenses. If there is no valid license matching the
requested action, the client DRM module acquires a license

by using the license acquisition protocol 1 and stores in the
license store. Once the relevant license is found, authenticity of
the license is verified by checking against the license server’s
signature Sgn(Rights||EC(sb)). If the authenticity is verified
and the acquired rights agree with the action, the client DRM
module uses its private key to decrypt EC(sb) to extract sb,
and then uses the random number r to unblind sb to get
Sgng(KID) = B−1

g (r, sb). Since Sg(.) is a stable (partially)
blind signature algorithm, the resulting signature Sg(m) is
the encryption key k = Sgng(KID) used to encrypt the
content object during content packaging. This key is then
used to decrypt the protected content object since the content
decryption key is the same as the content encryption key.

As we can see from the license acquisition protocol 1, the
license server receives only the information of the group g that
the content belongs to. The payment token PTg does not carry
any more information. KID is blinded with a random number
r, and the result mb = Bg(r,KID) received by the license
server appears as an arbitrary message. After it generates
the requested decryption key and sends the license to the
consumer, the license server knows only the content’s group
but cannot identify which content in that group. As a result,
consumer privacy is protected if the group has enough number
of different contents.

In our DRM system, the content encryption key k =
Sgng(KID) depends on the key ID KID, the group ID g, and
the secret in the (partially) blind signature algorithm that only
the license server knows. Both KID and g are inserted into a
content object in the content packaging stage, and extracted by
the client module and sent to the license server during license
acquisition. In this way, the license server can regenerate the
content encryption key for a user without needing a database
to store encryption keys for all the released protected content
objects. Therefore the license server in our DRM solution is a
light server which requires only limited computing resources.

In our DRM system, a content encryption key used to
encrypt content in the content packaging stage has to be
acquired from the license server since the key depends on a
secret known only to the license server. To package a content,
the content packaging server generates an unique key ID KID

for the content and finds the group ID g the content belongs to.
KID and g are sent to the license server to generate a content
encryption key which is then sent back to the packaging server.
The key is used to encrypt the content. Unlike the license
acquisition process in which KID is blinded before sending
to the license server, KID in this stage is sent to the license
server in its original form. Even if the packaging server and
the license server collude, i.e., it is known which content
corresponds to a key ID, the license server still cannot gain any
information about the content corresponding to the license it
issues to a consumer since the key ID submitted to the license
server is blinded, i.e., no difference from a random sequence
of bits.

With the scheme described above, the client DRM module
can still collect a consumer’s playing statistics. To fill that gap,
we require that the client DRM module in our DRM system

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

1077

does not send out any information about a consumer’s playing
statistics, and all messages the client DRM module sends out
must be in plain text1 for easy checking by a user if the client
DRM module abides by this rule, then consumer privacy is
fully protected.

Two practical blind signature schemes, one based on RSA
and the other based on pairing, can be used in our general
solution described in this section. Details of the resulting two
solutions are described in the next two sections, respectively.

IV. RSA-BASED SOLUTION

We can use a partial blind signature based on Chaum’s
RSA blind signature [7] as the blind signature primitive in
our solution described in Section III. Security of Chaum’s
algorithm is based on the One-More-RSA-Inversion problem,
as analyzed in [22]. In this solution, S generates an integer
n = pq, where p and q are two large prime numbers, and
releases n as a public key. Let ϕ(n) = (p− 1)(q − 1). Group
ID g belongs to a set of prime numbers co-prime with ϕ(n).
The license acquisition protocol 1 becomes:

Protocol 2: RSA-Based License Acquisition Protocol
1) C: generates a random number r, where 1 < r < n−1,

and computes R = rg mod n.
2) C → S: g, mb = KID · R mod n, PTg.
3) S: checks validity of g and PTg, and computes g−1

mod ϕ(n) and sb = mb
g−1

mod n if checking passes.
4) S → C: Rights, EC(sb), and Sgn(Rights||EC(sb))
5) Same as Step 3 in Procotol 1.

When it calculates the content decryption key, the client
DRM module uses its private key to decrypt EC(sb) to obtain
sb = mb

g−1
mod n. It then uses the random number r to

calculate the content decryption key k = mb
g−1

/r = Kg−1

ID

mod n. The result is what we expected: the resulting content
decryption key k depends on only KID and g. It does not
depend on the random number r used to blind KID during
license acquisition.

In this solution, the public key encryption EC /DC can be
and any public key encryption primitive and the signature
algorithm Sgn(.) can be and any signature primitive.

V. PAIRING-BASED SOLUTION

Bilinear pairings are used widely in constructing crypto-
graphic primitives. A brief summary is given here. Let G1

and G2 be two cyclic groups with the same order q. Let
e : G1 × G1 → G2 be a bilinear pairing with the following
properties.

1) Bilinearity: e(aP, bQ) = e(P,Q)ab for all P,Q ∈
G1, a, b ∈ Zq.

2) Non-degeneracy: There exist P,Q ∈ G1 such that
e(P,Q) �= 1.

1Encryption at a later stage such as SSL applied at the transport layer is
allowed since it does not affect a user’s capability to check the messages sent
out by the machine’s client DRM module in his/her machine.

3) Computability: There is an efficient algorithm to com-
pute e(P,Q).

Security of bilinear pairings-based cryptographic primitives is
built on some well-known hard problems of pairing. These
hard problems include the Discrete Logarithm Problem (DLP)
and the Computational Diffie-Hellman Problem (CDHP) and
its variations. An example of CDHP variations is the Inverse
Computational Diffie-Hellman Problem (inv-CDHP) which is
to compute a−1P for given P and aP , where a ∈ Z∗

q .
The pairing-based partially blind signature algorithm

proposed in [20] can be used as the blind signature primitive
in our solution. Security of this partially blind signature
algorithm is based on inv-CDHP: breaking this algorithm is
equivalent to breaking inv-CDHP [20]. In this solution, S
picks up a random number x ∈ Z∗

q , and computes Ppub = xP .
The public key is Ppub. The secret key is x. H0(·) is a hash
function mapping values into G1, and H(·) is a hash function
mapping values into Zq. The license acquisition protocol
becomes:

Protocol 3: Pairing-Based License Acquisition Protocol

1) C: generates a random number r ∈ Z∗
q , and computes

mb = H0(KID||g) + r(H(g)P + Ppub).
2) C → S: g, mb, and PTg .
3) S: checks whether PTg is valid, and computes sb =

(H(g) + x)−1mb if checking passes.
4) S → C: Rights, EC(sb), and Sgn(Rights||EC(sb)).
5) Same as Step 3 in Protocol 1.

In calculating the content decryption key before playing, the
client DRM module uses its private key to decrypt EC(sb) to
get sb = (H(g)+x)−1mb. The content encryption key is then

k = sb − rP

=
mb

H(g) + x
− rP

=
H0(KID||g) + r(H(g)P + Ppub)

H(g) + x
− rP

=
H0(KID||g)
H(g) + x

+
r(H(g)P + xP)

H(g) + x
− rP

=
H0(KID||g)
H(g) + x

+ rP − rP

=
H0(KID||g)
H(g) + x

As we expected, the resulting key k depends on only KID

and g. It does not depend on the random number r used in
blinding KID during license acquisition. This is exactly what
we want: the license server regenerates the encryption key that
a consumer requests and sends to the consumer without any
knowledge of the corresponding content object.

Like the RSA-based solution, we can use any public key
encryption primitive and signature primitive as EC /DC and
Sgn(.), respectively, in this solution.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

1078

VI. DISCUSSION

A content encryption key in our solution depends on the
following three parameters: key ID KID, group ID g, and
the license server’s secret key. Both KID and g are publicly
known. The only secret value is the license server’s secret
key that only the license server knows. If the secret key is
compromised, all the encryption keys are compromised. There-
fore the license server’s secret key must be tightly guarded to
prevent any compromise. To alleviate this problem, we can
proactively update the license server’s secret key periodically
so that a secret key is used only for certain period of time.
When a content is encrypted in a content packaging stage, the
license server’s secret key currently valid is used to generate
the content encryption key. A version number indicating which
secret key is used in generating the content encryption key is
packaged into a content object. It is retrieved and sent to the
license server together with KID and g by the client DRM
module during license acquisition to regenerate the content
encryption key. In this scheme, the license server needs to
store all the secret keys it has used.

In the solutions described in Sections III-V, a group ID g
is used to indicate which group a content object belongs to.
Its purpose is to allow the license server to know that the
consumer has paid for a content object in a group so that a
license for a content object in that group can be issued to
the consumer without disclosing the actual content object. We
want to prevent the license server from knowing the content
object associated with the license it issues by linking to the
price the consumer pays. The proposed solutions are still
applicable if there is another method to allow the license server
to make a decision if a license should be issued to a consumer
without providing any information to link to the content object
associated with the license. In this case, g may be set to
be empty in our solutions, i.e., a blind signature primitive
is used in our solutions rather than a partially blind signa-
ture primitive. For example, if an application uses monthly
subscription and all the contents available for each month are
encrypted with the content encryption keys generated from the
license server’s secret key valid for that month to avoid expired
members from accessing current contents, our solutions are
applicable if g is set to be empty. In acquiring a license from
the license server, a consumer needs to show the evidence of
valid subscription for the current month. As a special case, if
no payment is needed in acquiring a license, our solutions are
applicable by setting g to be empty.

VII. CONCLUSION

In this paper, we have proposed a DRM system which
protects consumer privacy during license acquisition. The
license server generates the content decryption key that a
consumer requests for a content object and sends to the
consumer in a license without knowing the content encrypted
by the encryption key. This is achieved by using a stable
(partially) blind signature primitive in our license acquisition
protocol and by adopting a key scheme that a content object’s
encryption key depends on its key ID and group ID as well as

the secret of a blind signature primitive that only the license
server knows. If we add a request in our DRM system that
a client DRM module does not send any information about a
consumer’s playing statistics and all messages a client DRM
module sends out must be in plain text, then consumer privacy
is fully protected.

The license server in our DRM system is a light server
which does not require any database to store the encryption
keys for protected content objects. An encryption key can be
regenerated from the information sent by a consumer as well
as the secret that the license server knows.

REFERENCES

[1] W. Zeng, H. Yu, and C.-Y. Lin, eds, Multimedia Security Technolo-
gies for Digital Rights Management, Elsevier, 2006.

[2] ISO/IEC JTC1/SC29/WG11 14496-13:2004(E), Information Tech-
nology C Coding of Audio-Visual Object C Part 13: Intellectual
Property Management and Protection (IPMP) Extensions, 2004.

[3] MPEG, MPEG-21 Part 5 – Rights Expression Language, MPEG-21
Part 6 – Rights Data Dictionary, http://www.chiariglione.org/mpeg/.

[4] Digital Media Project, http://www.dmpf.org/.
[5] Open Mobile Alliance, OMA DRM Specification Draft Version 2.0,

March 2004. http://www.openmobilealliance.org.
[6] Microsoft, Microsoft Windows Media Digital Rights Management,

http://www.microsoft.com/windows/windowsmedia/drm/default.aspx.
[7] D. Chaum, Blind Signatures for Untraceable Payments, Advances

in Cryptology - Crypto 82, Plenum, NY, pp.199-203, 1983.
[8] M. Abe and E. Fujisaki, How to date blind signatures, Advances in

Cryptology - Asiacrypt 1996, LNCS 1163, pp. 244-251, Springer-
Verlag, 2002.

[9] A. Juels, M. Luby and R. Ostrovsky, Security of Blind Signature,
Crypto’97, LNCS 1294, pp. 150-164, Springer-Verlag, 1997.

[10] D. Pointcheval and J. Stern, Provalable Secure Blind Signature
Schemes, Asiacrypt’96, LNCS, Springer-Verlag, 1996.

[11] M. Abe and T. Okamoto, Provable Secure Partially Blind Signatures,
Crypto’00, LNCS 1880, pp. 271-286, Springer-Verlag, 2000.

[12] M. Abe, A Secure Three-Move Blind Signature Scheme for Polyno-
mially Many Signatures, Rutocrypt’01, LNCS 2045, pp. 136-151,
Springer-Verlag, 2001.

[13] M. Bellare, C. Namprempre, D. Pointcheval and M. Semanko, The
Power of RSA Inversion Oracles and the Security of Chaum’s RSA-
based blind signature scheme, Financial Cryptography’01, LNCS,
Springer-Verlag, 2001.

[14] J. Camenisch, M. Koprowski and B. Warinschi, Efficient Blind
Signatures without Random Oracles, SCN’04, LNCS, Springer-
Verlag, 2004.

[15] A. Kiayias and H. Zhou, Two-Round Concurrent Blind Signa-
tures without Random Oracles, IACR Cryptology ePrint Archive,
2005/435, 2005.

[16] D. Pointcheval, Strengthened Security for Blind Singature Euro-
crypt’98, LNCS, pp. 391-405, Springer-Verlag, 1998.

[17] D. Pointcheval and J. Stern, New Blind Signatures Equivalent to
Factorization, ACM CCS, pp. 92-99, ACM Press 1997.

[18] D. Pointcheval and J. Stern, Security Auguments for Digital Signa-
tures and Blind Signatures, Journal of Cryptology, 13, 3, pp. 361-
396, Springer-Verlag, 2000.

[19] T. Okamoto, Efficient Blind and Partially Blind Signatures without
Random Oracle, IACR Cryptology ePrint Archive, 2006/102, 2006.

[20] F. Zhang, R. Safavi-Naini and W. Susilo, Efficient Verifiably En-
crypted Signature and Partially Blind Signature from Bilinear Pair-
ing, Indocrypt’03, LNCS, Springer-Verlag, 2003.

[21] C.I. Fan and C.L. Lei, Low-Computation Partially Blind Signa-
tures for Electronic Cash, IEICE transactions on Fundamentals of
Electronics, Communications and Computer Sciences, E81-A(5), pp.
818-824, 1998.

[22] M. Bellare, C. Namprempre, D. Pointcheval and M. Semanko, The
One-More-RSA-Inversion Problems and the Security of Chaum’s
Blind Signature Scheme, Journal of Cryptology, 16, 3, pp. 185-215,
Springer-Verlag, 2003.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

1079

