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Abstract. Comb method is an efficient method to calculate point multi-
plication in elliptic curve cryptography, but vulnerable to power-analysis
attacks. Various algorithms have been proposed recently to make the
comb method secure to power-analysis attacks. In this paper, we present
an efficient comb method and its Simple Power Analysis (SPA)-resistant
counterpart. We first present a novel comb recoding algorithm which
converts an integer to a sequence of signed, MSB-set comb bit-columns.
Using this recoding algorithm, the signed MSB-set comb method and a
modified, SPA-resistant version are then presented. Measures and pre-
cautions to make the proposed SPA-resistant comb method resist all
power-analysis attacks are also discussed, along with performance com-
parison with other comb methods. We conclude that our comb methods
are among the most efficient comb methods in terms of number of pre-
computed points and computational complexity.

1 Introduction

Elliptic curve cryptography (ECC) has gained increasing popularity in public
key cryptography due to its shorter key sizes for the same level of security as
compared to other public key cryptosystems. A key operation in ECC is point
multiplication. Many efficient point multiplication methods have been developed
[1]. One of them is the comb method [2]. The main idea is to use a binary matrix
with rows and columns to represent a scalar and process the matrix columnwise.
Unfortunately, the method is vulnerable to side-channel attacks which were first
introduced by Kocher et al. [3,4] and extended to ECC [5]. Side-channel attacks
measure observable parameters such as timings or power consumptions during
cryptographic operations to deduce the whole or partial secret information of a
cryptosystem. Power analysis includes both Simple Power Analysis (SPA) and
Differential Power Analysis (DPA) [4]. A particular target of side-channel attacks
for ECC is the scalar in point multiplication which computes a product kP
where P is point on an elliptic curve E(F ) over a finite field F and k is a secret
multiplier which is a positive integer. Higher order and refined DPA attacks are
also proposed [6,7,8]. With power analysis, partial information or the exact value
of the secret k can be deduced when the original comb method [2] or the scalar
multiplication methods described in [1] are used.
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Many countermeasures have been proposed to protect against side-channel
attacks on ECC. Two major strategies have been proposed to protect against
SPA attacks. The first strategy is to make the addition and doubling opera-
tions indistinguishable. A unified formula for computing both addition and dou-
bling has been proposed in [9] for Jacobi-type and in [10] for Hesse-type elliptic
curves. The second strategy is to remove dependency in the intermediate steps
of the scalar multiplication on specific value of the secret multiplier k. Coron,
et al. [5,11,12,13,14] proposed schemes using addition chains to always execute
point addition and doubling for each bit. Möller, et al. [15, 16] modified win-
dow methods by making addition chains with fixed pattern of nonzero digits.
Hedabou et al. proposed SPA-resistant comb methods [17, 18, 19]. Chevallier-
Mames et al. [20] proposed a scheme which divides point doubling and point
addition into side-channel atomic blocks so that point multiplication appears as
a succession of side-channel atomic blocks that are indistinguishable by SPA.
An SPA-resistant method is not necessarily resistant to DPA attacks. Many
countermeasures have been proposed to convert an SPA-resistant method into
a DPA-resistant method. Coron [5] proposed to use random projective coordi-
nates. Joye and Tymen [21] proposed to use a random isomorphism such as a
random elliptic curve isomorphism and a random field isomorphism.

In this paper, we propose a new comb recoding algorithm to convert each bit-
column in the comb scalar matrix to a signed, Most Significant Bit (MSB)-set,
nonzero bit-column. All nonzero bits in an arbitrary bit-column have the same
sign. Using the recoding algorithm, we present a novel comb method which com-
putes point multiplication more efficiently with less precomputed points than
the original comb method [2]. The proposed comb method is then modified to
be SPA-resistant by exploiting the fact that point addition and point subtrac-
tion are virtually of the same computational complexity in ECC and cannot be
distinguished by SPA. We also describe measures to convert our SPA-resistant
comb method to thwart all known side-channel attacks. Our comb methods are
among the most efficient comb methods in terms of number of precomputed
points and computational complexity.

This paper is organized as follows. In the next section, we introduce prelimi-
naries for ECC and the original comb method. In Section 3, side-channel attacks
and prior countermeasures are presented. Our novel comb recoding algorithm
and comb point multiplication methods are described in Section 4. Security anal-
ysis and performance comparison with other comb methods are also provided in
this section. We conclude this paper in Section 5.

2 Preliminaries
2.1 Elliptic Curves Equations

An elliptic curve over a field F can be expressed by its Weierstrass form:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 ai ∈ F.

The set E(F ) of points (x, y) ∈ F 2 satisfying the above equation plus the “point
at infinity” O forms an abelian group with the point at infinity O as the zero,
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and point addition as the group’s binary operation. Given two points P1 and P2
in E(F ), a third point P3 = P1 + P2 ∈ E(F ) as the addition of P1 and P2 can
be calculated with the chord-tangent process [1]. A special point addition that a
point adds itself is called doubling. The cost of point doubling is usually different
from that of point addition. Point addition and doubling need to compute costly
field inversions. By using the Jacobian projective coordinates which represent
a point P = (x, y) as P = (X,Y,Z), where x = X/Z2 and y = Y/Z3, and
the infinity point O as (θ2, θ3, 0), θ ∈ F ∗, field inversions can be avoided at
the expense of more field multiplications. A field multiplication is usually much
faster than a field inversion, resulting in faster elliptic curve point addition and
doubling.

The group E(F ) generated by an elliptic curve over some finite field F meets
the public key cryptography requirements that the discrete logarithm problem
is very difficult to solve. Therefore ECC has been used in many standards and
applications. Elliptic curves used in cryptography are elliptic curves defined
over fields F2m or fields Fp where m is a large number and p is a big prime.
Over these two types of fields, the Weierstrass form reduces to the short Weier-
strass form, and point addition and doubling are also simplified. For details
of elliptic curve equations and point operations, interested readers are referred
to [1].

Algorithm 1. Fixed-base Comb Method [2] (d = � n
w �)

Input: A point P , an integer k =
∑n−1

i=0 bi2i with bi ∈ {0, 1}, and a window
width w � 2.

Output: Q = kP .
Precomputation Stage:
1. Compute [bw−1, · · · , b1, b0]P for all (bw−1, · · · , b1, b0) ∈ {0, 1}w.
2. Write k = Kw−1|| · · · ||K1||K0, where each Kj is a bit-string of length d.

Padding with 0 on the left if necessary. Let Kj
i denote the ith bit of Kj. Define

Ki ≡ [Kw−1
i , · · · ,K1

i ,K0
i ].

3. Q = O.
Evaluation Stage:
4. For i = d − 1 to 0 by −1 do:
5. Q = 2Q,
6. Q = Q + KiP .
7. Return Q.

2.2 Scalar Multiplication

Adding a point P to itself k times is called scalar multiplication or point mul-
tiplication, and is denoted as Q = kP , where k is a positive integer. Many
efficient methods have been proposed for scalar multiplication. Interested read-
ers are referred to [1] for details. One of the proposed efficient point multi-
plication methods is the comb method proposed by Lim and Lee [2] in 1994.
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Let k =
∑n−1

i=0 bi2i with bi ∈ {0, 1}. For an integer w � 2, set d = � n
w �. We

define [bw−1, bw−2, · · · , b1, b0] � bw−12(w−1)d + bw−22(w−2)d + · · · + b12d + b0,
where (bw−1, bw−2, · · · , b1, b0) ∈ {0, 1}w. The comb method uses a binary matrix
of w rows and d columns to represent an integer k, and processes the matrix
columnwise.

This comb method stores 2w − 1 points in the precomputation stage. In
storage estimation in this paper, the input point P is always included. Let
us estimate the time cost of the comb method. In the precomputation stage,
[bw−1, · · · , b1, b0]P needs to be calculated for (bw−1, · · · , b1, b0) ∈ {0, 1}w. To
achieve this, 2dP, 22dP, · · · , 2(w−1)dP are first calculated, which costs (w − 1)d
doubling operations. Then every possible combination of l (l > 1) nonzero bits
in [bw−1, · · · , b1, b0]P is calculated by adding one point from P ’s point multi-
plication of l − 1 bits combinations and a point from P ’s point multiplication
of a single bit. Therefore it costs 2w − w − 1 point additions in the precom-
putation stage. In conclusion, the total cost in the precomputation stage is
{(w − 1)d}D + {(2w − w − 1)}A.

To estimate the time cost in the evaluation stage, we assume the most sig-
nificant column of {Ki} is not zero, i.e., Kd−1 �= 0. Then the number of dou-
bling operations in the evaluation stage is (d − 1). If Ki = 0, then the point
addition in Step 6 is not needed. If we assume k is uniformly distributed,
the probability that Ki �= 0 is 2w−1

2w , and the average number of point addi-
tions is 2w−1

2w (d − 1). Therefore the average time cost in the evaluation stage
is approximately {(d − 1)}D + {2w−1

2w (d − 1)}A. The total time cost of the
comb method is {(w − 1)d + (d − 1)}D + {(2w − w − 1) + 2w−1

2w (d − 1)}A =
{wd − 1}D + {(2w − w − 1) + 2w−1

2w (d − 1)}A.

3 Side-Channel Attacks and Countermeasures

3.1 Side-Channel Attacks

Two types of power analysis have been introduced by P. Kocher [3, 4]. One is
the Simple Power Analysis (SPA). The other is the Differential Power Analysis
(DPA).

Simple Power Analysis. SPA analyzes a single trace of power consumption in
a crypto-device during scalar multiplication. A branch instruction condition can
be identified from the recorded power consumption data. This represents conti-
nuity of elliptic curve doubling operation. For the comb method Alg. 1, SPA can
detect if Ki is zero or not, which means leak of secret information.

Differential Power Analysis. DPA records many power traces of scalar mul-
tiplications, and uses correlation among the records and error correction tech-
nique [4] to deduce some or all digits of the secret k. DPA is more complex
yet powerful than SPA. An SPA-resistant scalar multiplication method is not
necessarily resistant to DPA attacks, but many countermeasures can be used
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to transform an SPA-resistant method to a DPA-resistant method. A common
practice is to make execution, and thus power consumption, different for iden-
tical inputs. Randomization is usually employed to achieve this effect. All these
randomizing approaches are feasible: randomizing input point in projective co-
ordinates, randomizing exponential parameter representation, randomizing el-
liptic curve equation, and randomizing field representation. This paper focuses
on SPA-resistant scalar multiplication. All these randomizing approaches can be
applied to transform our SPA-resistant methods to be resistant to DPA attacks.

3.2 Prior SPA-Resistant Comb Methods

Many countermeasures to SPA attacks have been proposed. A particular ap-
proach is to make execution of scalar multiplication independent of any specific
value of the multiplier k. All the proposed SPA-resistant comb methods as well
as the one to be proposed in this paper are of this approach. Those SPA-resistant
comb methods are described next.

HPB’s Comb Methods. Hedabou, Pinel and Bénéteau (HPB) [17, 18] pro-
posed two comb methods recently to protect against SPA. The main idea is to
extend Ki in the comb method Alg. 1 to a signed representation (K′

i, si), where
each K

′
i is nonzero.

Their first method [17] uses this following procedure to generate such a signed
representation (K′

i, si) for an odd integer k represented by Ki, 0 � i < d, in the
comb method. Let s0 = 1 and construct the rest by setting{

(K′
i, si) = (Ki−1, si−1)

(K′
i−1, si−1) = (Ki−1,−si−1)

if Ki = 0, and (K′
i, si) = (Ki, si) otherwise.

The second method [18] translates an odd scalar k into a representation∑n
i=0 b′i2

i with b′i ∈ {1,−1} by exploiting the facts 1 ≡ 11̄1̄ · · · 1̄, where 1̄ is
defined as −1, and applies the original comb method to the new representation
of the old scalar k. A bit-column Ki generated in this method can be represented
by [bw−1, · · · , b1, b0], where bj ∈ {1,−1}, 0 � j < w.

HPB’s comb methods apply these signed representations to the original comb
method to calculate (k + 1)P for even k and (k + 2)P for odd k. 2P is then
calculated. P or 2P is subtracted from the result produced by the original comb
method to obtain the desired point kP . HPB’s first method will be referred to as
the signed Non-Zero (sNZ) comb method, and the second method as the signed
All-Bit-Set (sABS) comb method in this paper.

sNZ has the same time and space cost as the original comb method in the
precomputation stage, i.e., storage of 2w − 1 points and time cost of {(w −
1)d}D+{(2w −w−1)}A. Because elliptic curve point substraction has the same
complexity as point addition, the second method stores only 2w−1 precomputed
points [bw−1, bw−2, · · · , b2, b1, 1]P since the scalar is odd, where bi ∈ {1,−1}.
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The number of precomputed points in sABS is about half of that in sNZ. The
time cost of sABS in the precomputation stage was estimated as {(w − 1)d}D +
{(2w −w)}A for w = 2, 3, 4, 5 in HPB’s paper [18]. This means that sABS needs
one more point addition than sNZ in the precomputation stage.

The evaluation stage for both HPB’s comb methods costs d−1 point additions
and d−1 doublings. The last stage after the original comb method costs one dou-
bling and one subtraction. Therefore the total cost of sNZ is (w−1)d+(d−1)+1 =
wd doubling operations and (2w − w − 1) + (d − 1) + 1 = 2w − w + d − 1 adding
operations. sABS costs {wd}D + {(2w − w + d)}A. Compared with the orig-
inal comb method Alg. 1, sABS stores about half of precomputed points as
that in the original comb method, but the time cost in the precomputation
stage is a little higher due to the fact that all bits in sABS are set to either 1
or −1.

FZXL’s Comb Methods. Feng, Zhu, Xu, and Li (FZXL) [19] proposed another
comb method referred to as the signed LSB-Set (sLSBS) comb method in this
paper and its variations which are more efficient than the original comb method.
In sLSBS, every odd scalar k is transformed into a representation of bit-columns
{Ki} with the following properties: for each bit-column [bw−1, · · · , b1, b0], the least
significant bit b0 is either 1 or −1, and the rest bits bi is either 0 or has the same
sign as b0, 0 < i < w. In other words, Ki = ±[cw−1, · · · , c2, c1, 1], where ci = 0
or 1 for 0 < i < w. By adding dummy operations, sLSBS is easily modified to be
SPA-resistant. Both versions store 2w−1 precomputed points with the time cost
in the precomputation stage as {(w − 1)d}D + {(2w−1 − 1)}A. sLSBS requires
(d−1)D+(d− 1

2 )A in the evaluation stage and the total cost is (wd−1)D+(2w−1+
d− 3

2 )A. The corresponding values for the SPA-resistant version are dD+dA and
wdD + (2w−1 + d − 1)A [19], respectively.

The value d used in sLSBS or its SPA-resistant counterpart is equal to �n+1
w �

instead of � n
w � used by other comb methods, which results in d one larger than

that used in other comb methods when n, the number of bits of k, is divisible
by w. FZXL proposed several methods to deal with this issue while maintaining
computational efficiency. Details can be found in [19]. In this paper, we compare
our proposed comb methods with only sLSBS and its SPA-resistant counterpart.

4 Signed MSB-Set Comb Method

4.1 Recoding Algorithm

Like the aforementioned comb methods, our approach is also to represent a scalar
k with a set of signed nonzero bit-columns {K

′
i ≡ [K ′w−1

i , · · · ,K ′1
i ,K ′0

i ] �= 0}.
The major difference is that every K

′
i generated by our novel recoding method

is a signed MSB-set integer. More specifically, our recoding scheme generates
K ′w−1

i ∈ {1, 1̄} and K ′j
i ∈ {0,K ′w−1

i }, 0 � j < w − 1 for each bit-column K
′
i.

As shown later in this paper, a major advantage of our recoding method over
the original fixed-base comb recoding method is that the precomputation stage
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needs to calculate and store only half of the points. The detail of our recoding
algorithm is described next for a window width w � 2.

The recoding algorithm first partitions a binary representation of a scalar k
into w binary strings Kj of d bits long for each, 0 � j < w, with 0 possibly
padded on the left. Then it converts in Steps 3 to 5 each bit of the highest
d bits to either 1 or 1̄ in by exploiting the fact that 1 ≡ 11̄1̄ · · · 1̄. In other
words, each bit K ′w−1

r , 0 � r < d, in K ′w−1 is either 1 or 1̄. The rest of the
recoding algorithm processes each bit from the least significant bit towards the
{(w−1)d−1}th bit. If the current ith bit bi is 1 and has a sign different from that
of the most significant bit b′(i mod d)+(w−1)d in the same bit-column K

′
i mod d,

the current bit is set to 1̄ and the next higher corresponding bit is added by 1
to keep the value of k unchanged. This process generates wd bits {b′i} and a δ
to represent an n-bit integer k. Due to length limitation, the following theorems
are given without proof.

Theorem 1. Given a scalar k, Alg. 2 outputs a δ ∈ {0,±1}, a sequence of bits
{b′i}, and bit-columns {K

′
r ≡ [K ′w−1

r , · · · ,K ′1
r ,K ′0

r ]} such that k = δ · 2(w−1)d +∑wd−1
i=0 b′i2

i and for each K
′
r, K ′w−1

r ∈ {1,−1} and K ′j
r ∈ {0,K ′w−1

r }, where
0 � j < w − 1 and 0 � r < d, and K ′j

r ≡ b′jd+r.

Theorem 2. δ has a probability of 1
2 to be zero when k is an integer in [0, 2n)

with uniform distribution.

Algorithm 2. Signed MSB-Set Comb Recoding Algorithm (d = � n
w �).

Input: An n-bit integer k > 0 and a window width w � 2.
Output: k = δ · 2(w−1)d +

∑wd−1
i=0 b′i2

i ≡ δ · 2(w−1)d + K ′w−1|| · · · ||K ′1||K ′0,
where each K ′j is a binary string of d bits long and δ ∈ {0,±1}. Let K ′j

r denote
the rth bit of K ′j, i.e., K ′j

r ≡ b′jd+r. Define bit-column K
′
r ≡ [K ′w−1

r , · · · ,K ′1
r ,K ′0

r ].
The output satisfies K ′w−1

r ∈ {1,−1} and K ′j
r ∈ {0,K ′w−1

r } for 0 � j < w − 1 and
0 � r < d.
1. Padding with 0 on the left if necessary to form a wd-bit representation

k =
∑wd−1

i=0 bi2i with bi ∈ {0, 1}.
2. Set b′(w−1)d = 1, δ = b(w−1)d − 1 and e =

∑(w−1)d−1
i=0 bi2i.

3. For i = (w − 1)d + 1 to wd − 1 by 1 do:
4. if bi = 1 then set b′i = 1,
5. if bi = 0 then set b′i = 1 and b′i−1 = 1̄.
6. For i = 0 to (w − 1)d − 1 by 1 do
7. if e is odd and b′(i mod d)+(w−1)d = 1̄, then set b′i = 1̄ and e = � e

2�
8. else set b′i = e mod 2, and e = � e

2�
9. δ = δ + e

4.2 Signed MSB-Set Comb Methods

By applying the recoding method in Sect. 4.1, we have the comb method Alg. 3.
If the most significant bit of K

′
i is 1̄, we have K

′
i = −|K′

i|. In this case, Step 6 in
Alg. 3 actually executes Q = Q − |K′

i|P .
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Algorithm 3. Signed MSB-Set Comb Method (d = � n
w �).

Input: A point P , an integer k > 0, and a window width w � 2.
Output: Q = kP .
Precomputation Stage:
1. Compute [1, bw−2, · · · , b1, b0]P for all (bw−2, · · · , b1, b0) ∈ {0, 1}w−1.

(Note that [1, 0, · · · , 0, 0] = 2(w−1)d.)
2. Apply Alg. 2 to k to compute the corresponding bit-columns K

′
0, K

′
1, · · · , K′

d−1
and δ.

3. Q = O.
Evaluation Stage:
4. For i = d − 1 to 0 by −1 do:
5. Q = 2Q,
6. Q = Q + K

′
iP .

7. Return Q = Q + δ · 2(w−1)dP (i.e., return Q = Q + δ · [1, 0, · · · , 0, 0]P ).

Alg. 3 is not an SPA-resistant comb method. SPA is able to detect if δ is zero or
not in Step 7 of Alg. 3. Since Ki �= 0 for all i, the operations in the for loop of
Alg. 3 are a sequence of alternative point doubling (D) and point addition (A),
DADA · · · DADA. By inserting potential dummy operations after the for loop,
we can easily convert the above SPA-nonresistant method to an SPA-resistant
method, as described in the following algorithm.

Algorithm 4. SPA-Resistant Signed MSB-Set Comb Method (d = � n
w �).

Input: A point P , an integer k > 0, and a window width w � 2.
Output: Q = kP .
Precomputation Stage:
1. Compute [1, bw−2, · · · , b1, b0]P for all (bw−2, · · · , b1, b0) ∈ {0, 1}w−1.
2. Apply Alg. 2 to k to compute the corresponding bit-columns K

′
0, K

′
1, · · · , K′

d−1
and δ.

3. Q0 = O.
Evaluation Stage:
4. For i = d − 1 to 0 by −1 do:
5. Q0 = 2Q0,
6. Q0 = Q0 + K

′
iP .

7. Set Q1 = Q0 − (−1)b(w−1)d · [1, 0, · · · , 0, 0]P .
8. Return Q|δ|.

In Steps 7–8 of Alg. 4, we have exploited the fact that δ = b(w−1)d − 1 + e(w−1)d
from Alg. 2, where b(w−1)d and e(w−1)d are in {0, 1}. This fact implies that
b(w−1)d must be 0 if δ is −1, and b(w−1)d must be 1 if δ is 1.

4.3 Security Against Power Analysis

Security of our proposed SPA-resistant point multiplication method Alg. 4 is
discussed in this section. We first consider its security against SPA, and then
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describe how to convert the method to resist DPA, second-order DPA, and other
side channel attacks.

Like other SPA-resistant methods [17, 15, 16], Alg. 4 exploits the fact that
point subtraction is virtually the same as point addition for power analysis.
It performs one point addition (or point subtraction) and one doubling in each
iteration of the loop in calculating point multiplication. There is always one point
addition (or point subtraction) in Step 7. This means that the same sequence is
executed no matter what value a scalar k is. Therefore SPA cannot extract any
information about the secret k by examining the power consumption in execution
of Alg. 4’s point multiplication. In other words, our SPA-resistant comb method
Alg. 4 is really SPA-resistant.

An SPA-resistant method is not necessarily resistant to DPA attacks, as shown
by other SPA-resistant point multiplication methods [17,15,16]. This is also true
for our SPA-resistant method Alg. 4. Typical measures such as randomization
projective coordinates or random isomorphic curves can be used to convert Alg. 4
into a DPA-resistant method.

The aforementioned randomization measures may not be enough to resist the
second-order DPA attack proposed by Okeya and Sakurai [6]. This second order
attack exploits the correlation between power consumption and hamming weight
of the loaded data to determine which K

′
i is loaded. To thwart this second-order

DPA attack, we can use the same scheme proposed in [17] to protect HPB’s
methods – to randomize all precomputed points after getting the point in the
table so that there is no fixed hamming weight.

Goubin [7] recently proposed a refined DPA attack on many randomization
schemes. This attack employs special points with one of coordinates being zero.
To deal with Goubin’s DPA attack, a simple approach is to choose elliptic curves

E : y2 = x3 + ax + b

defined over Fp (p > 3) with b not being a quadratic residue modulo p, and to
reject any point (x, 0) as an input point in applications of our proposed SPA-
resistant method. If the cardinality #E(Fp) is a big prime number, points (x, 0)
cannot be eligible input points since they are not on elliptic curves. Another
more powerful attack, the Zero-value Point Attack proposed in [8] also requires
certain prerequisite conditions for the elliptic curve to be used, although the
conditions are weaker than Goubin’s attack [7]. Careful selection of the elliptic
curve can get rid of these security threats.

4.4 Efficiency

Both of our comb methods Algs. 3–4 require storage of 2w−1 points. In the
precomputation stage of our comb methods, 2dP, 22dP, · · · , 2(w−1)dP are first
calculated. This costs (w − 1)d point doublings. Then all possible combinations
[1, bw−2, · · · , b1, b0]P with (bw−2, · · · , b1, b0) ∈ {0, 1}w−1 are calculated in the
same way as the precomputation stage for Alg. 1, which costs 2w−1 − 1 point
additions. The total cost of our comb methods in the precomputation stage is
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Table 1. Comparison of space and average time costs for the SPA-nonresistant comb
methods

Original Comb sLSBS Comb Alg. 3
d � n

w
� �n+1

w
� � n

w
�

Storage 2w − 1 2w−1 2w−1

Pre- (w − 1)dD (w − 1)dD (w − 1)dD
Stage (2w − w − 1)A (2w−1 − 1)A (2w−1 − 1)A
Eva- (d − 1)D (d − 1)D (d − 1)D
Stage 2w−1

2w (d − 1)A (d − 1
2 )A (d − 1

2 )A
Total (wd − 1)D (wd − 1)D (wd − 1)D
Cost (2w − w − 1 + 2w−1

2w (d − 1))A (2w−1 + d − 3
2 )A (2w−1 + d − 3

2 )A

therefore {(w − 1)d}D + {2w−1 − 1}A. The time costs of our comb methods in
the evaluation stage vary a little due to the post-processing after the for loop.
Assume that the scalar k is uniformly distributed, then the average cost in the
evaluation stage is (d − 1)D + (d − 1

2 )A for Alg. 3 and (d − 1)D + dA for Alg. 4.
We would like to first compare our comb method Alg. 3 with the other fixed-

base comb methods without considering SPA-resistance. Table 1 lists the space
and time costs for the original comb method Alg. 1, sLSBS [19], and Alg. 3.
Compared with the original comb method Alg. 1, our comb method Alg. 3 stores
2w−1 points, which is about half of 2w − 1, the number of points stored by the
original comb method. In addition, Alg. 3 saves 2w−1 − w point additions in
the precomputation stage. The evaluation stage has a similar time cost for both
methods, as shown in Table 1. If we want to maintain about the same storage
space for pre-computed points, our method Alg. 3 can choose the value of w
as w = w1 + 1, one larger than the value w = w1 used in the original comb
method, resulting in a similar storage space (2w1 v.s. 2w1 − 1) as the original
comb method Alg. 1 yet with much faster computation in both precomputation
and evaluation stages, thanks to smaller d used in our methods. Compared with
sLSBS, d changes from �n+1

w � in sLSBS to � n
w � in Alg. 3. When n is not divisible

by w, both methods have the same value of d, resulting in the same time cost.
In the case that n is divisible by w, Alg. 3 uses a d which is one smaller than
that used in sLSBS, resulting in smaller time costs in both precomputation and
evaluation stages. To deal with the problem, FZXL proposed several different
schemes to ensure execution efficiency. Our proposed comb methods handle the
issue in a nice and uniform manner.

Let us now compare our SPA-resistant comb method Alg. 4 with other SPA-
resistant comb methods. Table 2 lists the space and time costs for the two
HPB methods, sLSBS’s SPA-resistant counterpart, and our SPA-resistant comb
method Alg. 4. All the comb methods except sNZ store 2w−1 pre-computed
points, while sNZ stores 2w − 1 pre-computed points which is about twice the
number of stored points in other comb methods. Our Alg. 4 executes one less
point doubling in the evaluation stage than the other three SPA-resistant comb
methods, and requires much less point additions in the precomputation stage
than both of HPB’s methods. Alg. 4 shows the same advantage over sLSBS’s
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Table 2. Comparison of space and average time costs for SPA-resistant comb methods

sNZ Comb sABS Comb sLSBSa Comb Alg. 4
d � n

w
� � n

w
� �n+1

w
� � n

w
�

Storage 2w − 1 2w−1 2w−1 2w−1

Pre- (w − 1)dD (w − 1)dD (w − 1)dD (w − 1)dD
Stage (2w − w − 1)A (2w − w)A (2w−1 − 1)A (2w−1 − 1)A
Eva- dD dD dD (d − 1)D
Stage dA dA dA dA

Total wdD wdD wdD (wd − 1)D
Cost (2w − w + d − 1)A (2w − w + d)A (2w−1 + d − 1)A (2w−1 + d − 1)A

aSPA-resistant version

SPA-resistant counterpart as Alg. 3 over sLSBS, due to smaller d used in Alg. 4
when n is divisible by w. Table 2 shows that our Alg. 4 is the most efficient
SPA-resistant comb method.

5 Conclusion

In this paper, we proposed a novel comb recoding algorithm to convert an integer
to a representation with a set of signed MSB-set nonzero comb bit-columns.
Using this recoding algorithm, we presented a signed MSB-set comb method
and an SPA-resistant comb method to calculate point multiplication for ECC.
Security of the proposed SPA-resistant comb method and comparison of the
proposed comb methods with other comb methods were also discussed in the
paper. Our comb methods are among the most efficient comb methods in terms
of the number of precomputed points and computational complexity. Combined
with randomization techniques and certain precautions in selecting elliptic curves
and parameters, our proposed SPA-resistant comb methods can thwart all side-
channel attacks.
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