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Abstract. We present a Fourier-analytic approach to list-decoding Reed-Muller codes over arbi-
trary finite fields. We use this to show that quadratic forms over any field are locally list-decodeable
up to their minimum distance. The analogous statement for linear polynomials was proved in the
celebrated works of Goldreich-Levin [GL89] and Goldreich-Rubinfeld-Sudan [GRS00]. Previously,
tight bounds for quadratic polynomials were known only for q = 2 and 3 [GKZ08]; the best bound
known for other fields was the Johnson radius.

Departing from previous work on Reed-Muller decoding which relies on some form of self- cor-
rector [GRS00, AS03, STV01, GKZ08], our work applies ideas from Fourier analysis of Boolean
functions to low-degree polynomials over finite fields, in conjunction with results about the weight-
distribution. We believe that the techniques used here could find other applications, we present
some applications to testing and learning.



1. Introduction

Traditional algorithms to decode error-correcting codes require that the received word is within
less than half the minimum distance of a codeword, so that the codeword can be uniquely recovered.
In the 1950s, Elias [Eli57] and Wozencraft [Woz58] introduced the notion of list-decoding in order
to decode beyond this barrier. Rather than returning a single codeword, a list-decoding algorithm
outputs all codewords within a specified radius of a received word. It took over thirty years before
Goldreich and Levin [GL89] and Sudan [Sud97] gave efficient list-decoding algorithms for Hadamard
codes and Reed-Solomon codes, respectively. Since these breakthroughs, there has been much
progress in devising list-decoders for various codes [Gur04, Gur06, Sud00]. Indeed, list-decoding
algorithms are the only tools that we have for solving the nearest codeword problem beyond half
the minimum distance in the adversarial error model.

Algorithms for list-decoding error-correcting codes have proved tremendously useful in computer
science (see [Gur04, Chapter 12]), with applications ranging from hardness amplification for weakly
hard functions [STV01, Tre03], constructions of hard-core predicates from any one-way function
[GL89, AGS03], constructions of extractors and pseudorandom generators [TSZS01, SU05] and the
average-case hardness of the permanent [Lip89]. Despite the considerable progress in this area, for
several natural and well-studied families of codes including Reed-Solomon and Reed-Muller codes,
the list-decoding radius, or the largest error radius up to which the list-decoding problem is tractable
is as yet unknown. This problem for Reed-Muller codes is the focus of our paper.

Reed-Muller codes (RM codes for short) were discovered by Muller in 1954. The message space
of the code RMq(n, d) consists of all degree d polynomials in n variables over Fq, the codewords are
the evaluations of these polynomials at all points in Fnq . Let δq(d) denote the normalized minimum
distance of RMq(n, d). If d = a(q − 1) + b where 0 6 b 6 q − 1, then

(1) δq(d) =
1

qa

(
1− b

q

)
.

The case when d < q is the famous Schwartz-Zippel lemma.

Reed-Muller codes are one of the most well-studied families of error-correcting codes in coding
theory [MS77, Ass92]. They are ubiquitous in computer science, indeed several of the aforemen-
tioned applications of list-decoding [Lip89, GL89, STV01, TSZS01, SU05] use Reed-Muller codes.
A closely related problem is that of low-degree testing, where we are given a function and asked to
test if it is close to a codeword in the Reed-Muller code. This is a problem that has been studied
extensively in computer science [BLR93a, AS03, AKK+05, JPRZ04, KR04, Sam07], and plays in a
key role in the (original) proof of the celebrated PCP theorem [ALM+98, AS98].

For most applications above, the model of interest is the local-decoding model where we are
given an oracle for the received word R : Fnq → Fq that can be queried at chosen points. The goal
is to devise an algorithm whose running time is polynomial in the size of the message (rather than
the codeword). The message being a degree d polynomial (d will be constant) in n variables over
Fq, our goal is to run in time poly(n). So we are interested in the settings where the list-size is a
constant, or at worst poly(n). Our running times are typically polynomial in q.

1.1. Previous Work. For (a family of) codes C ⊂ [q]n, let `(C, η) denote the maximum list-size
at radius η (radius η ∈ [0, 1] denotes normalized Hamming distance). LDR(C) is the largest η for
which `(C, η − ε) can be bounded by a function of ε (independent of n) for every ε > 0.

The study of list-decoding algorithms for Reed-Muller codes was initiated by the seminal work
of Goldreich and Levin on list-decoding Hadamard codes over F2 or equivalently RM2(n, 1) codes
[GL89]. They showed that LDR(RM2(n, 1)) = 1/2. Goldreich, Rubinfeld and Sudan generalized
this to Hadamard codes over Fq, showing that LDR(RMq(n, 1)) = 1− 1/q [GRS00]. An important
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development was the discovery of powerful algorithms for list-decoding univariate polynomials over
Fq, due to Sudan [Sud97] and Guruswami and Sudan [GS99]. Sudan, Trevisan and Vadhan used

these algorithms to devise a list-decoder that works up to radius 1−
√

2d/q for [STV01], improving
on work by Arora and Sudan [AS03] and Goldreich et al. [GRS00] (see also[PW04]).

All of the aforementioned decoding algorithms reach a coding theoretic bound known as the
Johnson bound [Joh62, Joh63]. The Johnson bound guarantees that for any code of minimum

distance δ over Fq, LDR(C) > Jq(δ) = (1− 1/q)(1−
√

1− qδ/(q − 1)). Since the Johnson bound is
oblivious to the structure of the code apart from its minimum distance, one does not expect it to
be tight for every code, yet examples of codes decodeable beyond the Johnson bound are relatively
few and recent (see the discussion in[DGKS08, GKZ08]). A tantalizing open problem in this area
is whether the Johnson bound is tight for Reed-Solomon codes, this is precisely the radius achieved
by the Guruswami-Sudan algorithm [GS99].

Recently, Gopalan, Klivans and Zuckerman (GKZ) considered the problem of list-decoding Reed-
Muller codes over F2 [GKZ08]. They showed that LDR(RM2(n, d)) = 2−d which for d > 2 is much
better than the Johnson bound. The GKZ algorithm is a generalization of the Goldreich-Levin
algorithm: we assume that we have the correct value of the polynomial given as advice on a small
random subspace A. This advice allows us to self-correct the values at randomly chosen shifts of A,
using a unique decoding algorithm. As pointed out in GKZ, this relies crucially on the coincidence
that the ratio of minimum distance to unique decoding radius equals the field size (which is 2),
and does not seem to generalize to larger fields (see Appendix 2.2). They propose the following
conjecture:

Conjecture 1. [GKZ08] For any constants q, d, LDR(RMq(n, d)) = δq(d).

It is easy to show that LDR(RMq(n, d)) 6 δq(d), the crux of the conjecture is the matching
lower bound. GKZ show that once we bound `(RMq(n, d), η), (a suitable modification of) the
[STV01] algorithm can be used to recover the list of polynomials within radius η. Thus the
the algorithmic problem reduces to the combinatorial problem of bounding th list-size. GKZ
showed that LDR(RMq(n, d)) > 1

2δq(d − 1); by Equation 3 this establishes the conjecture when-
ever d ≡ 0 mod q − 1. This bound beats the Johnson bound for d sufficiently large. However
when d = 2, Conjecture 1 states that agreement exceeding 2/q guarantees a small list, the Johnson
bound guarantees a small list for agreement Ω(1/

√
q) whereas the GKZ bound requires agreement

exceeding 1/2. Indeed, we believe that the hard(est) case of Conjecture 1 is when d is small, this
precisely is where the gap between δq(d) and known bounds is largest.

2. Our Results

Previous work on local decoding of RM codes [GRS00, AS03, STV01, GKZ08] relies on the notion
of a self-corrector. Starting the correct values at some points as advice, the algorithm self-corrects
the values of the polynomial along some low-dimensional subspace. This relies on the locality of the
property of being a low-degree polynomial. Our work departs entirely from this paradigm. We seek
to explain the good list-decoding properties of RM codes by using the rich structure in the weight
distribution of these codes. While the RM code has low-weight codewords, a random codeword is
very likely to have weight which is close to 1− 1

q (this is in fact true of any linear code). But in RM

codes, the low-weight codewords are far from random in a very strong sense: they have very special
structure. Results of this form date back to the classical sum-of-squares result for quadratic forms
(due to Jacobi and Sylvester) [LN97], and the work of Kasami and Tokura for the F2 case [KT70].
More recently, there has been great progress made in structure versus randomness dichotomies for
low-degree polynomials [GT09, KL08, KL10, HS10].
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Our approach is to reduce the problem of RM decoding to list-decoding low-weight codewords us-
ing the Deletion Lemma from [GKZ08, GGR09]. We then use the structure of low-weight codewords
to bound the list size. We note that the work of [GKZ08, KL10] also uses the weight-distribution
to bound the list-size for RM codes over F2. However, these papers only require a bound on the
number of low-weight codewords, whereas we make crucial use of the structure of these codewords.
The structural property that we use is that of being low-dimensional. A k-dimensional function is
one that can be expressed as a k-junta (a function of at most k variables) under a suitable change
of basis for F. The choice of low-dimensional codewords is natural for a couple of reasons: firstly,
the examples we know for exhibiting large lists at radius δq(d) are all low-dimensional [GKZ08,
Theorem 12]. Secondly, there are classical results showing that in the cases d = 2 and q = 2
respectively, all low-weight codewords in RM codes are low-dimensional [LN97, KT70].

Definition 1. The dimension of F : Fnq → Fq denoted dim(F ) is the smallest k for which there
exist linear functions α1, . . . , αk : Fnq → Fq such that F can be expressed as a function of α1, . . . , αk.

Let RMk
q (n, d) be the sub-code of RMq(n, d) consisting of all polynomials of dimension at most

k (where k is constant).

Theorem 2.1. For all q, k and d it holds that LDR(RMk
q (n, d)) = δq(d).

We prove this bound by designing a new Fourier-based algorithm for list-decoding low-dimensional
polynomials. This algorithm and its analysis are the principal contributions of this work.

In the case of quadratic forms, our notion of dimension coincides with the classical notion of
the rank of a quadratic form. It is well known that as the rank of a quadratic form increases, the
distribution of its values approaches the uniform distribution over Fq [LN97]. We use this to prove:

Theorem 2.2. For all q, it holds that LDR(RMq(n, 2)) = δq(2). Further, for any q and ε > 0, we
have `(RMq(n, 2), δq(2)− ε) = poly(q, ε−1).

This gives a tight bound on the list-decoding radius of quadratic forms, resolving what is a
special, but important case of the GKZ conjecture, given the rich history of quadratic forms in
mathematics and coding theory [LN97, MS77]. In fact their conjecture was only for constant q,
whereas our bound is reasonable even for q = poly(n). Using the local list-decoder from GKZ, we get
an algorithm to recover all quadratic polynomials that have agreement 2

q +ε in time poly(n, q, ε−1).

This improves on both the Johnson bound, which requires agreement 1√
q and the GKZ bound

which requires 1
2 . Concretely, for q = 256, Theorem 2.2 guarantees constant list-size for agreement

exceeding 1
128 , whereas Johnson and GKZ require agreement more than 1

16 and 1
2 respectively.

In the case of F2, classical results of Kasami and Tokura [KT70] imply that deletion of low-
dimensional codewords doubles the distance of RM codes . This allows us to give an alternate
proof of the GKZ result that LDR(RM2(n, d)) = 2−d.

In the setting where d and q are arbitrary, we propose a conjecture quantifying how the deletion
of low-dimensional codewords improves the distance of RM codes (see Conjecture 2 and Theorem
6.2 in Section 6). If the conjecture holds true, then with Theorem 2.1, we get an improvement on
the best known current bounds for all d and q, which however falls short of the GKZ conjecture for
d > 3. Nevertheless, Theorem 2.1 shows that low-dimensional polynomials are not an obstacle to
the GKZ conjecture. Since the tight examples of configurations with large list-size at radius δq(d)
stem from low-dimensional polynomials [GKZ08], this might be considered evidence in its favor.

2.1. Our Techniques. All previous work on Reed-Muller decoding [GRS00, AS03, STV01, GKZ08]
relies on the notion of a self-corrector. Starting the correct values at some point(s) as advice, the
algorithm self-corrects the values of the polynomial along some low-dimensional subspace. Our
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work departs entirely from the self-correction paradigm and draws on ideas from Fourier analysis
of Boolean functions; notably (a generalization of) the notion of influence of a variable. Fourier
analytic methods are extensively used in learning, typically for concept classes such as halfspaces
[KOS02, KKMS05] or decision trees [KM93] whose Fourier spectra show good concentration. Reed-
Muller decoding is equivalent to (agnostically) learning low-degree polynomials over Fq. It is not at
all clear that Fourier analysis ought to be useful even for d = 2, since quadratic forms over F2 are
the canonical examples of bent functions whose Fourier spectrum is maximally anti-concentrated
[MS77]. However, the deletion lemma allows us to focus on low-degree polynomials which are ad-
ditionally low-dimensional (dimension at most 6 for quadratic forms). The Fourier spectrum of a
k-dimensional polynomial P is supported on a k-dimensional subspace which we denote by Spec(P ).
Our key insight is that within Spec(P ), the Fourier mass is anti-concentrated, which makes it pos-
sible to identify this subspace via Hadamard decoding, even after the adversary has corrupted the
codeword. We outline the main steps in our proof below:

1) Finding Spec(P ): Fix q = 2 for simplicity. The Fourier mass of a k-dimensional polynomial
P lies entirely on a k-dimensional subspace Spec(P ). It is easy to recover P if we know Spec(P ), by
enumerating over all degree d polynomials in k variables and replacing the variables by linear forms
(recall that k is constant). Our goal is to show for any received word F where ∆(F, P ) 6 δq(d), the
large Fourier coefficients of F contain a basis for Spec(P ). Equivalently, the large Fourier coefficients
α of F that lie in Spec(P ) should not all fall in a low-dimensional subspace B ⊂ Spec(P ) satisfying
an additional equation b · α = 0. One can try and prove this using the Fourier expression for `2
distance, but this approach fails. This suggests that one needs to use the discreteness of F .

2) The Influence of a Direction: Given a function F , the Fourier mass that lies in the
set Sb = {α : b · α 6= 0} captures the influence of direction b, which is defined as Prx∈Fn

2
[F (x) 6=

F (x + b)]. This generalizes the notion of the influence of a variable [KKL88]. Influences in low-
degree polynomials P show a dichotomy: they are 0 over a subspace Spec(P )⊥, and large for all
other b. We use this to show that if ∆(F, P ) 6 δq(d), and if b is influential in P , then it has
noticeable influence on F . Hence, a noticeable fraction of the Fourier mass of F lies in the set Sb.
But it falls short of the claim we really wish to prove, which is that there is noticeable Fourier mass
lying in Spec(P ) ∩ Sb, since F (unlike P ) need not be low-dimensional.

3) Folding the Received word: The crucial step of our analysis is to go from F to a
randomized function F, which is F folded over the subspace Spec(P ). While we defer the formal
definition of folding, the following example is illustrative: if P depends only on X1, . . . , Xk, then
so does F; for each setting of x1, . . . , xk, F(x1, . . . , xk) equals F (x1, . . . , xn) where xk+1, . . . , xn are
set randomly. From the viewpoint of P , F is a received word where the noise added at each point
is randomized. The crucial observation is that the noise rate stays the same, so ∆(F, P ) 6 δq(d),
hence every influential direction b of P still has influence on F. But since F is obtained by folding
F over Spec(P ), the Fourier spectrum of F if just the spectrum of F projected on to Spec(P ). Thus
we conclude that F (and hence F ) has noticeable Fourier mass lying in Spec(P ) ∩ Sb. Note that
folding is just introduced for the sake of analysis, it plays no role in the algorithm.

4) Fourier analysis over Fq: Implementing the above scheme over Fq is fairly challenging,
since it is unclear what the Fourier expansion of F : Fnq → Fq should mean. Our main technical
innovation is to associate q − 1 Fourier polynomials with every such F , this allows us to exactly
arithmetize Hamming distance over Fq and handle randomized functions which is crucial for us..

We believe the Fourier analytic techniques here will find other applications. We use them prove
an equivalence between learning parity with worst-case noise and weaker noise models over Fq,
generalizing a result of [FGKP06] for F2. Working with many Fourier polynomials as opposed to a
single one is crucial for this result. We also present an analysis of linearity testing over any finite
field.
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2.2. Comparison to Dimension Reduction in GKZ. It is interesting to contrast our approach
to that of [GKZ08]. While GKZ the bound also involves a dimension reduction step, the term refers
to restricting the received word to a random low-dimensional subspace, which is very different from
what we do. The GKZ algorithm is based on a self-corrector that works correctly given the right
advice. The self-correction argument already shows that the list-size at radius 2−d − ε is quasi-
polynomial in ε−1. The deletion lemma is used only to improve the bounds to polynomial in ε−1.
As remarked earlier though, this self-corrector does not seem to generalize well to larger fields.

Our approach is in fact inspired by the list-decoding algorithms of [GGR09] for tensor products
and interleaved codes, which reduce bounding the list-size to the low-rank case (here codewords are
matrices and rank refers to the rank of these matrices). Bounding the list-size for low-dimensional
codewords is considerably harder in our setting.

Organization: We present Fourier-analytic preliminaries in Section 3, and proofs for this section
in Appendix A. The decoding algorithm for low-dimensional polynomials and its analysis are in
Section 4, with the proof of Theorem 2.2. We present reductions to the low-dimensional case for
d = 2 and q = 2 in Section 5, and a discussion of the case d > 3 in Section 6. We present
applications to the Noisy Parity problem and Linearity Testing in Section 7.

3. Low-Dimensional Functions, Folding and Influences

Th proofs for this section are somwhat technical, and are presented in Appendix A. We suggest
that the reader focus on the definitions and skip these proofs on first reading.

Fourier analysis. Let p = char(q) and let q = ph. Let ω be a primitive pth root of unity. Given a

random variable Z taking values in Fq, we define the quantities zc = EZ [ωTr(cZ)], which we call the
(un-normalized) Fourier coefficients of Z. For two such random variables Y,Z, let SD(Y, Z) denote
their statistical distance. The following relation to the Fourier transform is folklore:

Fact 3.1. For two random variables Y,Z taking values in Fq, we have

SD(Y, Z) 6
1

2

∑
c∈F?

q

|yc − zc|2
 1

2

.

Let Tr(x) =
∑h−1

i=0 x
pi denote the trace map from Fq to Fp. The set of all linear functions Fq → Fp

is given by {Tr(cx)}c∈Fq . The character group F̂q
n

of Fnq of all homomorphisms χ : Fnq → C comprises

all functions of the form χα(x) = ωTr(α(x)) where α : Fnq → Fq is a linear function. It is easy to
show that the functions χα form an orthonormal basis for all functions f : Fnq → C under the

inner-product 〈f, g〉 = Ex∈Fn
q
f(x)g(x). Thus every such f has a Fourier expansion given by

f(x) =
∑
α∈F̂q

n

f̂(α)χα(x).

We also have ‖f‖2 = 〈f, f〉 =
∑

α |f̂(α)|2. Given a polynomial F : Fnq → Fq, we associate it with
q − 1 Fourier polynomials mapping Fnq → C, one for every c ∈ F?q , given by

f c(x) := ωTr(cP (x)) =
∑
α∈F̂q

n

f̂ c(α)χα(x).

The reason for using q−1 polynomials is that we can exactly arithmetize agreement and Hamming
distance; this is crucial in our applications.
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Fact 3.2. Given functions F,G that map Fnq → Fq,

Ag(F,G) =
1

q
(1 +

∑
c∈F?

q

〈f c, gc〉) =
1

q
(1 +

∑
c∈F?

q

∑
α

f̂ cαĝ
c
α)(2)

∆(F,G) =
1

2q

∑
c∈F?

q

‖f c − gc‖22 =
1

2q

∑
c∈F?

q

∑
α∈F̂q

n

|f̂ cα − ĝcα|2(3)

Randomized Functions. We consider randomized functions F : Fnq → Fq, where each F(x) is a
random variable taking values in Fq. We define the Fourier polynomials associated with F:

Definition 2. Given a randomized function F : Fnq → Fq, for each c ∈ F?q, we define the polynomial

f c : Fnq → C by f c(x) = EF[ωTr(cF(x))].

Note that f c is a (deterministic) function from Fnq → C and the values {f c(x)}c∈F?
q

give us the

Fourier transform of F(x). Given two randomized functions F,G : Fnq → Fq, we define

d(F,G) = Ex∈Fn
q
[SD(F(x),G(x))], Ag(F,G) = 1− d(F,G).

generalizing the definitions for deterministic functions.

Fact 3.3. Given randomized function F,G that map Fnq → Fq, we have

d(F,G) 6
1

2

∑
c∈F?

q

Ex[|f c(x)− gc(x)|2]

 1
2

=
1

2

∑
c∈F?

q

∑
α∈F̂q

n

|f̂ c(α)− ĝc(α)|2
 1

2

.(4)

Low-Dimensional Functions. Low dimensional deterministic functions are defined in Definition 1.
We generalize the definition to randomized functions:

Definition 3. A randomized function F : Fnq → Fq is k dimensional if there exist k linear forms
α1, . . . , αk : Fnq → Fq such that knowing α1(x), . . . , αk(x) fixes the distribution of F(x).

Hence F is a (randomized) function of α1, . . . , αk, generalizing Definition 1. Facts 3.4 and 3.5
below are proved in [GKS07, GOS+09] for deterministic functions.

Fact 3.4. For each c ∈ F?q, let Supp(f c) ⊆ F̂q
n

denote the set of non-zero Fourier coefficients of
f c(x). Let Spec(F) = Span(∪c∈F?

q
Supp(f c)). Then dim(F) = dim(Spec(F)).

Alternatively, low-dimensional functions can be defined via invariant spaces.

Definition 4. Given h ∈ Fnq , if F : Fnq → Fq satisfies SD(F(x+λh),F(x) = 0 for all x ∈ Fnq , λ ∈ Fq
we say that F is h-invariant. We define Inv(F) = {h : F is h-invariant}.

Inv(F) is clearly a subspace of Fnq , and is in fact dual to Spec(F).

Fact 3.5. We have Spec(F) = Inv(F)⊥. Hence dim(F) = codim(Inv(F)).

Folding. Folding over subspaces was introduced in [FGKP06] (in the F2 case). Folding maps high-
dimensional functions to lower-dimensional randomized functions.

Definition 5. Let H be a subspace of Fnq and let F : Fnq → Fq. Define the randomized function
F(x) = F (x+ h) where h ∈ H is chosen randomly. We call F the folding of F over H.

Given an oracle for F , we can simulate an oracle for F: on query x, choose a random point x+h
in the coset x+H and return F (x+ h). Thus F is invariant on H. In fact, its Fourier spectrum is
obtained by projecting the spectrum of F onto H⊥.

6



Lemma 3.6. [FGKP06] Let F be the folding of F over H. For any c ∈ F?q, we have f̂ c(α) = f̂ c(α)

if α ∈ H⊥ and f̂ c(α) = 0 otherwise.

The Influence of a Direction. We define the influence of a direction, which is a generalization of the
notion of influence of a variable. Given a vector b ∈ Fnq \ {0n}, we partition Fnq into lines along the
direction b, which are the equivalence classes for the relation x ∼ y if x− y = λb for some λ ∈ Fq.
This partition is nothing but Fnq /{b}, and it is isomorphic to Fn−1

q .

Definition 6. (Influence of a direction) Given b ∈ Fnq , and a function F : Fnq → Fq we define

Infb(F ) = Pr
x∈Fn

q ,λ∈Fq

[F (x) 6= F (x+ λb)].

One can relate Infb(F ) to the Fourier mass lying outside the subspace of F̂q
n

given by b · α = 0:

Fact 3.7. Given b ∈ Fnq , we have

(5) Infb(F ) =
1

q

∑
c∈F?

q

∑
α:b·α 6=0

|f̂ c(α)|2.

We extend the notion of influences to randomized functions generalizing the above notion. To
compute the influence of b for a deterministic function, we pick sample two points on a line in the
direction b and compute their Hamming distance. For randomized function, we sample two such
points and compute their statistical distance.

Definition 7. Given a randomized function F : Fnq → Fq and b ∈ Fnq , we define Infb(F) as

Infb(F) = Ex∈Fn
q ,λ∈Fq [SD(F(x),F(x+ λb)].

One can again bound the influence in terms of the Fourier mass that lies outside the subspace
b · α = 0 (though the bound is no longer exact, owing to the application of Cauchy-Schwartz).

Lemma 3.8. Given b ∈ Fnq , we have

Infb(F) 6
1√
2

∑
c∈F?

q

∑
α: b·α 6=0

| ˆf c(α)|2
 1

2

.

4. List-Decoding Low-Dimensional Polynomials

In this section, we prove Theorem 2.1. Assume that we have an efficient procedure Had for
finding large Fourier coefficients over Fnq . Given oracle access to f : Fnq → C and a parameter µ,

Had(f, µ) returns all α ∈ F̂q
n

so that |f̂(α)|2 > µ. The list-size is bounded by ‖f‖22/µ. Theorem
2.1 is proved by arguing that the polynomial P will be in the list of polynomials that is returned
by the following algorithm.
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Algorithm 1. List-Decoding low-dimensional polynomials
Input: d, k, ε, oracle for F : Fnq → Fq.
Output: All P : Fnq → Fq s.t. deg(P ) 6 d,dim(P ) 6 k and ∆(P, F ) 6 δq(d)(1− ε).

1. Set µ = ε4δq(d)2/(64qk+1).
2. Run Had(f c, µ) for all c ∈ F?q.
3. Let L be the list of all linear functions α returned.

4. Pick α1, . . . , αk from L.
5. Return all P (α1, . . . , αk) s.t. deg(P ) 6 d and ∆(P, F ) 6 δq(d)(1− ε).

In the last step, we enumerate over all polynomials P in k variables of degree d, after replacing
the variables by α1, . . . , αk.

4.1. Correctness of the Algorithm. Fix a polynomial P with deg(P ) 6 d, dim(P ) 6 k and
∆(F, P ) = η 6 δq(d)(1−ε). Our goal is to prove that the list L contains a basis for Spec(P ), which
implies that P one of the polynomials returned by our algorithm. For the analysis, we work with
the randomized function F obtained by folding F over Inv(P ). Folding over Inv(P ) projects the
Fourier spectrum of F on to Spec(P ), which is a small subspace with only qk vectors in it. Our
main lemma states that all directions that were influential in P continue to have some influence
even in F.

Lemma 4.1. (Main) For the function F defined above and any b 6∈ Inv(P ),

Infb(F) >
ε2

4
δq(d).

Proof. Consider the vector space V = Fnq /Inv(P ) ∼ Fkq . We can view P as a function P : V → Fq.
Similarly, we can view F as a randomized function F : V → Fq, obtained by adding random noise
of rate η to P . Formally, for each y ∈ V , define the noise rate

η(y) = Pr
F

[F(y) 6= P (y)] = Pr
x∈y+Inv(P )

[F (x) 6= P (y)]

and note that

Ey∈V η(y) = Pr
y∈V,x∈y+Inv(P )

[F (x) 6= P (y)] = Pr
x∈Fn

q

[F (x) 6= P (x)] = η.

Our goal is to show that any b 6∈ Inv(P ) has non-negligible influence on F. Recall that for a
randomized function F : Fnq → Fq and b ∈ Fnq , we defined Infb(F) as

Infb(F) = Ex∈Fn
q ,λ∈Fq [SD(F(x),F(x+ λb))].

Since F is invariant on Inv(P ), this is equivalent to

Infb(F) = Ey∈V,λ∈Fq [SD(F(y),F(y + λb))].(6)

Consider V/{b}, the partition of V into lines along b. We can rewrite Equation 6 as

Infb(F) = EL∈V/{b}
x,y∈L

[SD(F(x),F(y))].(7)

Let us fix a basis containing the vector b for V : call it {a1, . . . , ak−1, b}. Every vector y ∈ V can

be written in this basis as y =
∑k−1

i=1 aiyi + byk. The polynomial P can we written as P (y1, . . . , yk)
8



of degree d. Assume that yk occurs with degree d2 6 q − 1 (this might depend on the choice of
basis). So we can write

P (y1, . . . , yk) = Q(y1, . . . , yk−1)yd2k +
∑
e<d2

Qe(y1, . . . , yk−1)yek.

for some Q such that deg(Q) = d1 6 d − d2. Fixing values for (y1, . . . , yk−1) specifies a line in
V/{b}, while fixing yk specifies a point on that line. Thus we can rewrite

Infb(F) = E
y1,...,yk−1,yk,y

′
k

[SD(F(y1, . . . , yk−1, yk),F(y1, . . . , yk−1, y
′
k)].(8)

We say that a line ` = (y1, . . . , yk−1) ∈ V/{b} is good if Q(y1, . . . , yk−1) 6= 0. Since deg(Q) 6 d1,
Pr`[` is good] > δq(d1). Conditioning on the event that ` is good, P |` is a univariate polynomial of
degree d2. Hence, it takes on any particular value in Fq no more than d2 times. In contrast, if ` is
bad, then P |` is constant.

Define the noise rate η(`) for a line as η(`) = Ey∈`[η(y)]. We have E`∈V/{b}[η(`)] = η. We say
that a good line is quiet if the noise rate along the line is low:

η(`) 6

(
1− d2

q

)(
1− ε

2

)
.

We claim that at least ε/2 fraction of good lines are quiet; else we have

E`[η(`)] > δq(d1)
(

1− ε

2

)(
1− d2

q

)(
1− ε

2

)
> δq(d1)

(
1− d2

q

)
(1− ε) > δq(d)(1− ε).

where the last inequality follows from the following property of δq(d):

δq(d) 6 δq(d1)

(
1− d2

q

)
for all d1, d2 s.t. d1 + d2 6 d, 0 6 d2 6 q − 1.

Fix a quiet line `. We have a polynomial P |` : ` → Fq of degree d2 6 q − 1 and a randomized
received word F|` such that

d(P |`,F|`) = Ex∈`[SD(P (x),F(x))] = Ex∈`[η(x)] 6 δq(d2)− ε′

where δq(d2) = 1− d2
q and ε′ = 1

2δq(d2)ε. The final piece of the argument is to show that for every

quiet line, Infb(F) is high, which is essentially a claim about univariate polynomials.

Claim 4.2. For a quiet line `, we have Ex,y∈`[SD(F(x),F(y))] > ε′.

Let us defer the proof of this claim and finish the proof of Lemma 4.1. We have argued that

Pr
`∈V/{b}

[` is quiet] >
1

2
εδq(d1)(9)

Conditioned on the event that ` is quiet, we have proved that

E
x,y∈`

[SD(F(x),F(y))] >
1

2
εδq(d2)(10)

Plugging this into Equation 7 gives

Infb(F) = E`∈V/{b}
x,y∈`

[SD(F(x),F(y))] >
ε2

4
δq(d1)δq(d2) >

ε2

4
δq(d)(11)

which completes the proof of Lemma 4.1. �
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Proof of Claim 4.2. For the purposes of this claim, we use P and F|` to denote P |` and F` respec-
tively. Similarly d will denote distance between randomized functions on the line `.

For every distribution D on Fq, we can define the (constant) randomized function Dq : ` → Fq
where Dq(x) = D for every x ∈ `. We claim that d(P,Dq) > δq(d2) for every such distribution
D. In the case where D = Dy is concentrated at a single point y ∈ Fq, this holds since P (x) is a
univariate polynomial with deg(P ) = d2 and so Prx[P (x) = y] 6 d2/q. More generally, we have

d(P,Dq) = Ex[SD(P (x),D)] =
∑
x∈Fq

1

q
(1−D(P (x)) =

∑
y∈Fq

Pr[P (x) = y](1−D(y))

=
∑
y∈Fq

Pr[P (x) = y]−
∑
y∈Fq

Pr[P (x) = y]D(y) > 1− d2

q

where the last inequality uses Prx[P (x) = y] 6 d2/q as deg(P ) 6 d2. By the triangle inequality

d(F,Dq) > d(P,Dq)− d(F, P ) > δq(d2)− (δq(d2)− ε′) = ε′.

We compute Ex,y∈`[SD(F(x),F(y))] by first sampling x ∈ ` and then computing the distance
between F and the distribution Dq where D = F(x).

Ex,y∈`[SD(F(x),F(y))] = Ex∈`[Ey∈`[SD(F(x),F(y))]] = Ex∈`[d(F(x)q,F)] > ε′.

This finishes the proof of Claim 4.2. �

With the Main lemma in hand, Theorem 2.1 follows easily.

Lemma 4.3. The list L returned contains a basis for Spec(P ).

Proof. Assume that the Fourier coefficients in L∩ Spec(P ) do not span all of Spec(P ), rather they
span a subspace B of it that satisfies the additional constraint b · α = 0 for b 6∈ Inv(P ). We have

2

∑
c∈F?

q

∑
α:b·α 6=0

|f̂ cα|2
 1

2

> Infb(F) >
1

4
ε2δq(d)(12)

where the first inequality is from Lemma 3.8 and the second from Lemma 4.1. Applying Lemma
3.6 to the function F which is F folded over Inv(P ), we get f̂ c(α) = f̂ c(α) for α ∈ Spec(P ) and

f̂ c(α) = 0 otherwise. Combining these equations, we get∑
c∈F?

q

∑
α∈Spec(P )\B

|f̂ cα|2 >
1

64
ε4δq(d)2

Since we sum over (qk − qk−1)(q − 1) < qk+1 Fourier coefficients on the LHS, at least one of them
is as large as the average. Thus, there exist c ∈ F?q and α ∈ Spec(P ) \B so that

|f̂ c(α)|2 > 1

64

ε4δq(d)2

qk+1
.

This coefficient α must belong to the list L, which contradicts the assumption that L ∩ Spec(P ) is
contained within B. �

A simple calculation which we omit gives the following bound on the list-size for RMk
q (n, d) (we

have not attempted to optimize this bound). There exists a constant c > 0 such that

(13) `(RMk
q (n, d), δq(d)(1− ε)) 6 ckqk

d+k2+2k

ε4kδq(d)2k
.

The running time of Algorithm 1 is polynomial in nd, q and the list-size.
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5. Reduction to the low-dimensional case.

5.1. Quadratic Forms. We use the [GGR09] version of the deletion lemma from [GKZ08].

Lemma 5.1. [GKZ08, GGR09] (Deletion Lemma) Let C ⊂ Fnq be a linear code over Fq. Let C′ ⊆ C
be a (possibly non-linear) subset of codewords so that c′ ∈ C′ iff −c′ ∈ C′, and every codeword
c ∈ C \ C′ has wt(c) > δh. Let η = Jq(δh)− γ for γ > 0. Then `(C, η) 6 γ−2`(C′, η).

For quadratic forms Q : Fnq → Fq, dim(Q) coincides with the well-studied notion of the rank of a
quadratic form. Theorems 6.26, 6.27 and 6.32 from Chapter 6 of [LN97] give the following bound:

Lemma 5.2. Let Q : Fnq → Fq be a quadratic form such that dim(P ) = k. Then

wt(Q) > 1− 1

q
− 1

qk/2
.

We use this to complete the proof of Theorem 2.2.

Proof of of Theorem 2.2. By Lemma 6, if dim(Q) > 6, then we have

wt(Q) > 1− 1

q
− 1

q3
; Jq

(
1− 1

q
− 1

q3

)
> 1− 2

q
.

Hence we can apply Lemma 5.1 with C′ = RM6
q(n, 2) to conclude that there exists c so that

`(RMq(n, 2), δq(2)− ε) 6 1

ε2
`(RM6

q(n, 2), δq(2)− ε) 6 cq
84

ε26
.

�

5.2. The F2 case revisited. Using our techniques, we can give an alternate proof of the GKZ
result that LDR(RM2(n, d) = 2−d. A classical result of Kasami and Tokura allows us to bound the
dimension of any codeword of RM2(n, d) which has weight less than 2δ2(d).

Lemma 5.3. [KT70] Let d > 2. Let P : Fn2 → F2 with deg(P ) 6 d and wt(P ) < 2δ2(d). Then P
is of one of the following two types:

1. P (α1, . . . , αd+t) = α1 · · ·αd−t(αd−t+1 · · ·αd + αd+1 · · ·αd+t) 3 6 t < d.
2. P (α1, . . . , αd+2t−2) = α1 · · ·αd−2(αd−1αd + αd+1αd+2 + · · ·+ αd+2t−3αd+2t−2).

where the αis are independent linear forms.

Strictly speaking, the αis are affine rather than linear, but we can safely ignore this issue.

Corollary 5.4. Let P : Fn2 → F2 be a degree d polynomial with dim(P ) = k > 2d. Then wt(P ) >
2δ2(d)− 2−(k+d)/2.

Proof. Assume that wt(P ) < 2δ2(d), else the claim is trivial. Now applying Lemma 5.3, P must be
of type (2), since polynomials of type (1) have dimension less than 2d. A simple calculation shows

that for polynomials of type (2), if dim(P ) = k, then wt(P ) > 2δ2(d)− 2−(k+d)/2. �

We can now reprove the main result from [GKZ08]. Our list-size bound is polynomial in ε−d,

though the exact bound is inferior to GKZ, who also showed a lower bound of ε−Ω(d).

Theorem 5.5. [GKZ08] For all d > 1, it holds that LDR(RM2(n, d)) = 2−d.

11



Proof. Pick k = 3d. Take C′ = RMk
2(n, d). By Equation 13, we have

`(C′, δ2(d)− ε) 6 cε−12d

for some constant c = c(d) that depends on d. By Corollary 5.4, if dim(P ) > 3d,

wt(P ) > 2 · 2−d − 2−2d; J2(2 · 2−d − 2−2d) > 2−d.

Hence applying Lemma 5.1, we get

`(RM2(n, d), δ2(d)− ε) 6 cε−(12d+2)

which completes the proof. �

6. The Case of arbitrary d and q.

For cubic forms and higher, codewords of weight 1− 1
q −ε need not be low-dimensional. However

the results of [GT09, KL08] show that when q is prime, such codewords must be expressible as
functions of a few polynomials of degree d − 1. Define Rankd(P ) to be the smallest number of
degree d polynomials Q1, . . . , Qt such that P = f(Q1, . . . , Qt) for some function f . Note that
Rank1(P ) = dim(P ).

Theorem 6.1. [GT09, KL08] Let q be prime. For every degree d, there exists a function r(ε) such
that if deg(P ) = d and wt(P ) 6 1− 1

q − ε, then Rankd−1(P ) 6 r(ε).

This suffices to show that over prime fields, `(RMq(n, d), 1− 1
q − ε) 6 q

Oε(nd−1) as opposed to the

trivial qO(nd), by using the Deletion lemma. For d = 2 Lemma suffices, and it holds for all fields.
This question (for the case d = 2) was raised by Tim Gowers in a blog-post titled “A conversation
about complexity lower bounds, continued”. Further one can find the list of all such polynomials
in similar running time using Theorem 21 from [GKZ08].

To extend the approach taken in this work, one would need a good list-size bound for degree d
polynomials where Rankd−1(P ) 6 k. This seems fairly challenging given current techniques. As a
first step one would require the combining function f to be made explicit. This is done in the case
d = 3, 4 in recent work of Haramaty and Shpilka [HS10].

Nevertheless, we believe that with Theorem 2.1 in hand, it is possible to improve on currently
known bounds for all degrees. For cubic forms and higher, this leads to the question of how much
the distance improves by deleting all low-dimensional polynomials. To formalize this, we define
δhq (d) which is the smallest weight at which codewords of unbounded dimension appear. Let

(14) δkq (d) = min{wt(P ) : P s.t. deg(P ) 6 d, dim(P ) = k}; δhq (d) = lim inf
k→∞

δkq (d).

In defining δkq (d), we minimize over the infinite set of all degree d polynomials P with dim(P ) = k,
the number of variables n could be arbitrary. But since dim(P ) = k, we may assume that P is
on exactly k variables. Thus we are in effect minimizing over the finite set of P : Fkq → Fq s.t.

deg(P ) = d and dim(P ) = k, so δkq (d) is well-defined. Our interest in δhq (d) stems from the following
theorem.

Theorem 6.2. For all d and q it holds that LDR(RMq(n, d)) > min(Jq(δhq (d)), δq(d)).

Proof. Let η = min(δq(d), Jq(δhq (d))) − ε. Our goal is to show that for any ε > 0, `(RMq(n, d), η)
which is the list-size at radius η can be bounded independent of n.

Since η 6 δq(d)− ε, by Theorem 2.1 `(RMk
q (n, d), η) 6 `(d, k, q, ε).

We choose k large enough that

Jq(δkq (d)) > Jq(δhq (d))− ε/2 ⇒ η 6 Jq(δhq (d))− ε 6 Jq(δkq (d))− ε/2.
12



Every codeword outside of RMk
q (n, d) has dim(P ) > k, and hence wt(P ) > δkq (d). Thus we can

invoke Lemma 5.1 with C′ = RMk
q (n, d) to conclude that

`(RMq(n, d), η) 6
4

ε2
`(d, k, q, ε) = `′(d, k, q, ε).

This shows that the list-size at radius min(δq(d), Jq(δhq (d))) − ε is bounded independent of n for
every ε > 0, which proves the claim. �

While it is a priori unclear if δhq (d) > δq(d), we conjecture that it is in fact substantially larger.

Conjecture 2. For all d and q it holds that δhq (d) >
(

1− 1
q

)
δq(d− 2).

It is easy to see that δqh(d) is at most the claimed bound, by taking the product of a large rank
quadratic form and a minimum weight polynomial of degree d − 2. In the case of F2, Conjecture
2 is implied by classical results of Kasami and Tokura [KT70]. For degree 3 polynomials, Amir
Shpilka observed that it follows from the results of [HS10].

Observe that
(

1− 1
q

)
δq(d− 2) > δq(d− 1). Hence if Conjecture 2 holds, then Theorem 6.2 gives

LDR(RMq(n, d)) > min(Jq(δq(d− 1)), δq(d))

which improves on the bound of max(1
2δq(d − 1), Jq(δq(d))) from GKZ for all d and q where their

bound is less than δq(d).

Claim 6.3. For all d and q, it holds that

min(Jq(δq(d− 1)), δq(d)) > max(Jq(δq(d)),
1

2
δq(d− 1)).

The inequality is strict except when d = 1 and d ≡ 0 mod q − 1, and in both those cases the RHS
equals δq(d).

Proof. Note that for all η ∈ [0, 1− 1/q], we have η/2 6 Jq(η) 6 η with Jq(η) = η iff η = 1− 1
q and

Jq(η) = η/2 iff η = 0.

Further, if d = a(q − 1) + b for 1 6 b 6 q − 1, δq(d− 1) = δq(d)
(

1 + 1
q−b

)
hence

q

q − 1
δq(d) 6 δq(d− 1) 6 2δq(d).

The former is tight when d ≡ 1 mod (q − 1), the latter when d ≡ q − 1 mod (q − 1).

We now prove the above claim. Firstly, note that from the above inequalities, we have

Jq(δq(d− 1)) >
1

2
δq(d− 1) and Jq(δq(d− 1)) > Jq(δq).

Secondly, we also have

δq(d) >
1

2
δq(d− 1) and δq(d) > Jq(δq(d)).

The first inequality is strict, except when d ≡ q − 1 mod (q − 1). In this case, the GKZ bound
is already tight. Similarly, the second inequality is strict except when δq(d) = 1 − 1

q , which holds

when d = 1 or Hadamard codes, in which case the Johnson bound is tight. �

7. Applications to Learning and Testing

The machinery of Fourier analysis over Fq developed in previous sections allows to extend results
which were previously only known to hold over Fp or sometimes F2 to arbitrary fields. We present
two examples from learning and testing respectively.
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7.1. Learning Parity with Noise over Arbitrary Fields. The Noisy Parity problem is a central
problem in learning theory [BKW03, FGKP06], with connections to coding and cryptography.
There are cryptosystems whose security is based on the assumption that learning parity with
random noise is hard over large fields (see [Reg10] and references therein). The two natural noise
models for this problem are random noise and adversarial noise, which we define below. Unlike the
F2 case, there are many possible models for random noise over Fq of varying sophistication [LN98].
The model that we reduce to is the Discrete Memoryless Channel (DMC) noise model, which we
define formally below. We use η for the (non-trivial) agreement rate rather than the noise rate.

Adversarial Channel: We are given examples 〈x,F(x)〉 from some randomized function F : Fnq →
Fq where x ∈ Fnq is drawn uniformly at random and asked to find a linear function L : Fnq → Fq so

that Ag(F, L) > 1
q + η, if one exists.

Discrete Memoryless Channel (DMC): In this model, we are required to learn some linear
function α : Fnq → Fq, from samples of the form 〈x,F(x)〉, The noise is modeled by a q × q
stochastic matrix W , where wij = Pr[F(x) = j | α(x) = i]. Thus the noise added may depend on
α(x) but not on x itself, unlike the adversarial model. But the DMC model is stronger than the
additive noise model where the noise added is a random variable that is independent of the label.
The matrix W is not known to the algorithm, but we assume that∑

i6q

wii > 1 + qη.

This is analogous to assuming a bound on the overall noise rate since

Pr
x∈Fn

q

[F(x) = α(x)] =
∑
i∈Fq

Pr[α(x) = i]wii =
1

q

∑
i

wii >
1

q
+ η.

We will use the notation F = W (α) to denote the received word obtained by corrupting α.

The adversarial channel model seems harder, being a generalization of the DMC model. In the
adversarial setting there could a list of up to 1

η2
whereas in the DMC model, one can uniquely

recover linear functions (up to scalar multiplication).

Lemma 7.1. Assume that the linear function α : Fnq → Fq is corrupted in DMC model as described

above. For any linear function β which is linearly independent of α, we have d(β,F) = 1− 1
q .

Proof. Our goal is to show that Prx∈Fn
q

[F(x) = β(x)] = 1
q . Let us condition on the event α(x) =

i. Then F(x) is distributed according to wij , whereas β(x) is distributed uniformly at random,
by linear independence. Further the two variables are independent since fixing α(x) fixes the
distribution of F(x). Thus we have

Pr
x:α(x)=i

[F(x) = β(x)] =
∑
j∈Fq

1

q
wij =

1

q
.

Thus averaging over all i, we have d(F, β) = 1− 1
q . �

We note that the linear independence condition is in fact necessary, since it is easy to construct
matrices W where several multiples of scalar α have non-trivial agreement with F.

Feldman et al. show that over F2, there is an efficient reduction from learning parity with adver-
sarial noise to the problem of learning parity with random noise. We extend their result to show
such an equivalence between worst case noise and the DMC model for every field. The idea, as in
the [FGKP06] reduction is to fold F over a random subspace H. We show that with reasonable
probability, the resulting randomized function is a parity function with random noise. To prove

14



this, we need to simultaneously work with all q − 1 Fourier polynomials, as opposed to a single
polynomial in [FGKP06].

Fix α ∈ Fnq \ 0n. Let G = G(α) be the randomized function obtained by folding F over α⊥. In
other words G(x) = F(y) where y is sampled randomly from vectors such that α(y) = α(x). By the

definition of G, for every c ∈ F?q we have ĝc(β) = f̂ c(β) if β = dα for some d ∈ Fq, and ĝc(β) = 0
otherwise. If is easy to see that G preserves the agreement between F and (every multiple of) α,
and that G can be obtained by corrupting α over a DMC with a suitable matrix W . We omit the
proof of the following simple claim.

Lemma 7.2. We have G = W (α) where wij = Pry[F(y) = j|α(y) = i]. Further, Ag(G, α) =
Ag(F, α) = 1

q + η.

Of course, to sample from G, we need to fold over α⊥, and the aim of the algorithm is to find α
(equivalently α⊥). We circumvent this by showing that folding over a random subspace of suitable
dimension gives a function that is close to G with reasonable probability.

We begin with the following lemma which is an Fq analogue of Lemma 3 in [FGKP06].

Lemma 7.3. Fix any α ∈ Fnq \{0n}. Pick h1, . . . , hk ∈ Fnq randomly and let H = Span(h1, . . . , hk).
Let H be the function obtained by folding f over H. Then

Pr
H

[d(G,H) 6 q−(k−1)/2] >
1

2qk
.

Proof. We will show that with probability 1
2qk

, the following two events hold:

(1) α ∈ H⊥.

(2)
∑

β∈Fn
q \Span(α) ĥc(β)2 6 2q−(k−1) for every c ∈ F?q .

We have α ∈ H⊥ if α(hi) = 0 for every i ∈ [k], this happens with probability q−k. Conditioning
on this event, for any β ∈ Fnq \ Span(α), we have PrH [β ∈ H⊥] = q−k as the events α ∈ H⊥ and

β ∈ H⊥ are pairwise independent. Fix any c ∈ F?q . Note that

ĥc(β) =

{
f̂ c(β) for β ∈ H⊥

0 otherwise.
⇒

∑
β∈Fn

q \Span(α)

ĥc(β)2 =
∑

β∈H⊥\Span(α)

|f̂ c(β)|2

Hence we have

EH

 ∑
β∈Fn

q \Span(α)

ĥc(β)2

 = EH

 ∑
β∈Fn

q \Span(α)

|f̂ c(β)|2I(β ∈ H⊥)

 =
∑

β∈Fn
q \Span(α)

|f̂ c(β)|2q−k 6 q−k.

Thus by Markov’s inequality,

Pr
H

 ∑
β∈Fn

q \Span(α)

ĥc(β)2 >
2

qk−1

 6 1

2q
.

Taking the union bound over all c ∈ F?q , this holds for every c with probability 1
2 .

Thus both conditions (1) and (2) hold with probability 1
2qk

. Assuming this happens, by Equation

4, we have

d(G,H) 6
1

2

∑
c∈F?

q

∑
β∈Fn

q

|ĝc(β)− ĥc(β)|2
 1

2

6
1

2

 ∑
β∈Fn

q \Span(α)

ĥc(β)2

 1
2

6 q−(k−1)/2.
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We are now ready to prove our main theorem:

Theorem 7.4. Assume there is an algorithm A that solves the noisy parity problem over Fq in the
DMC model in time T (η, n) using S(η, n) 6 T (η, n) samples. Then there is an algorithm B that
solves the noisy parity problem over Fq in the adversarial noise model in time poly(q, T (η, n)).

Proof. Fix α ∈ Fqn \ {0n} so that Ag(F, α) > 1
q + η. Assume that the algorithm A uses S = S(η, n)

examples, time T = T (η, n), and returns α(x) with probability 3
4 .

Pick k so that q−(k−1)/2 < 1
10S . We pick a random subspace H and let H be the function obtained

by folding f over H. Assume that d(G,H) 6 q−(k−1)/2. which happens with probability at least
1

2qk
, by Lemma 7.3.

Let HS denote the distribution {〈x1,H(x1)〉, . . . , 〈xS ,H(xS)〉}, where the xis are sampled inde-
pendently at random from Fnq , and define GS similarly. We have

SD(G1,H1) 6 Ex[SD(G(x),H(x))] = d(G,H) 6 q−(k−1)/2.

Hence SD(GS ,HS) 6 Sq−(k−1)/2 6 1
10 .

Secondly, it is easy to simulate random examples from H: following [FGKP06] draw a random
example 〈x,F(x)〉 and return 〈x + h,F(x)〉. We sample from HS and run algorithm A on the
samples. SinceA returns α with probability 3

4 when run on GS , it will now return α with probability

at least 3
4 −

1
10 >

1
2 . Thus the probability of finding α is at least 1

2qk
. We repeat this experiment

O(qk) = O((qS)2) times to improve the probability of success to a constant. �

7.2. Linearity Testing for all fields. The linearity testing problem is perhaps the most basic
problem in all of property testing. Here we are given a function F : Fnq → Fq, and are asked to
test if it is close to a linear function. Since it was first studied in the seminal work of Blum et al.
[BLR93b], this test has been analyzed over F2 [H̊as01, BCH+96] and Fp [HW03]. We analyze the
test over arbitrary finite fields. While the analysis follows standard lines, using q − 1 polynomials
allows us to analyze arbitrary functions without assuming that they are folded.

The test we analyze is the natural generalization of the BLR test.

Algorithm 2. Linearity Testing over Fq
Input: F : Fnq → Fq.

Pick x, y ∈ Fnq , λ ∈ F ?q at random. Test if F (x) + λF (y) = F (x+ λy).

It is clear that the test accepts all linear functions. The non-trivial part is to show that if the
test accepts with probability significantly better than 1

q , then it agrees with some linear function.

Theorem 7.5. If F : Fnq → Fq passes the linearity test with probability 1
q +η, there a linear function

α : Fnq → Fq so that Ag(F, α) > 1
q + η.

Proof. Firstly, we claim that for any linear function α : Fnq → Fq,

Ag(F, α) =
1

q
(1 +

∑
c∈F?

q

f̂ c(cα))(15)
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which follows from Equation 2 and the observation that the cth Fourier polynomial corresponding
to α is χcα(x). We can arithmetize the acceptance probability as

Pr
x,y,λ

[Test accepts] =
1

q
Ex,y,λ[1 +

∑
c∈F?

q

ωTr(c(F (x)+λF (y)−F (x+λy)))]

=
1

q
Ex,y,λ[1 +

∑
c∈F?

q

ωTr(c(F (x)))ωTr(cλF (y))ω−Tr(cF (x+λy))]

=
1

q
Ex,y,λ[1 +

∑
c∈F?

q

f c(x)fλc(y)f c(x+ λy)]

=
1

q
Ex,y,λ[1 +

∑
c∈F?

q

∑
α,β,γ

f̂ c(α)f̂λc(β)f̂ c(γ)χα(x)χβ(y)χγ(x+ λy)]

=
1

q
Ex,y,λ[1 +

∑
c∈F?

q

∑
α,β,γ

f̂ c(α)f̂λc(β)f̂ c(γ)χα(x)χβ(y)χγ(x)χλγ(y)]

=
1

q
(1 +

∑
c∈F?

q

∑
α

|f̂ c(α)|2 Eλ[f̂λc(λα)])

Now assume that the test accepts with probability (exactly) 1
q + η. So we get∑

c∈F?
q

∑
α

|f̂ c(α)|2 Eλ[f̂λc(λα)] = qη ⇒
∑
c∈F?

q

∑
α

1

q − 1
|f̂ c(α)|2

∑
λ

f̂λc(λα) = qη

Define a distribution D on pairs (c, α) where we sample c ∈ F?q at random, and then pick α with

probability |f̂ c(α)2|. Then we get

E(c,α)←D

[∑
λ

f̂λc(λα)

]
= qη

So there exists some c ∈ F?q , α ∈ Fnq so that
∑

λ f̂
λc(λα) = qη. Writing c′ = λc, and α′ = c−1α, we

get
∑

c′∈F?
q
f̂ c
′
(c′α′) = qη. But by Equation 15, this implies that

Ag(F, α′) =
1

q
(1 + qη) =

1

q
+ η

�
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Appendix A. Proofs of Fourier-analytic Claims

Proof of Fact 3.1. Let f, g : Fq → R denote the p.d.f.s of Y,Z respectively. We use the inner-
product

〈f, g〉 = Ex∈Fq [f(x)g(x)]

for which the function ωTr(cx) are an orthonormal basis. Then we have

f(x) =
∑
c∈Fq

f̂(c)ωTr(cx)

Under this inner product, we have the Fourier coefficients f̂(c) = 〈f, ωTr(cx)〉 and hence

Ex[|f(x)− g(x)|] 6 (Ex[|f(x)− g(x)|2])
1
2 =

∑
c∈F?

q

|f̂(c)− ĝ(c)|2
 1

2

(16)

where in the last line, we use the fact that f̂(φ) = ĝ(φ) = 1
q since f, g are p.d.f.s over Fq.

Observe that

Ex[|f(x)− g(x)|] =
1

q

∑
x∈Fq

|f(x)− g(x)| = 2

q
SD(Y,Z)(17)

and that for every c ∈ F?q . Finally, we rewrite f̂(c) and ĝ(c) in terms of yc and zc.

f̂(c) =
1

q

∑
x∈Fq

f(x)ω−Tr(cx)

=
1

q

∑
x∈Fq

f(x)ωTr(−cx)

=
1

q
E[ωTr(−cY )] =

1

q
y−c(18)

where we use −Tr(c) = Tr(−c) which holds because Tr is Fp-linear. Plugging equations 17 and 18
into Equation 16 we get

2

q
SD(Y, Z) 6

1

q

∑
c∈F?

q

|yc − zc|2
 1

2

⇒ SD(Y, Z) 6
1

2

∑
c∈F?

q

|yc − zc|2
 1

2

(19)

�

Proof of Fact 3.2.

Ag(F,G) = Ex[
1

q

∑
c∈Fq

ωTr(c(F (x)−G(x)))]

=
1

q
(1 +

∑
c∈F?

q

Ex[f c(x)gc(x)])

=
1

q
(1 +

∑
c∈F?

q

〈f c, gc〉)

=
1

q
(1 +

∑
c∈F?

q

∑
α

f̂ c(α)ĝc(α))
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By symmetry, we also have

Ag(F,G) =
1

q
(1 +

∑
c∈F?

q

〈gc, f c〉) =
1

q
(1 +

∑
c∈F?

q

∑
α

f̂ c(α)ĝc(α))

Similarly, we can write Hamming distance between F and G as

∆(F,G) = 1−Ag(F,G) =
1

2q

2(q − 1)−
∑
c∈F?

q

〈f c, gc〉+ 〈gc, f c〉


=

1

2q

∑
c∈F?

q

‖f c − gc‖22 Since ‖f c‖2 = ‖gc‖2 = 1.

=
1

2q

∑
c∈F?

q

∑
α∈F̂q

n

|f̂ c(α)− ĝc(α)|2

�

Proof of Fact 3.3. We have

d(F,G) = Ex∈Fn
q
[SD(F(x),G(x))]

= Ex∈Fn
q

1

2

∑
c∈F?

q

|f c(x)− gc(x)|2
 1

2

 By Fact 3.1

=
1

2

∑
c∈F?

q

Ex∈Fn
q
[|f c(x)− gc(x)|2]

 1
2

Since E[X] 6 E[X2]
1
2

=
1

2

∑
c∈F?

q

∑
α∈F̂q

n

|f̂ c(α)− ĝc(α)|2
 1

2

.

�

Proof of Fact 3.4. Consider f c(x) = EF[ωTr(cF(x))]. Since F(x) is a function of α1(x), . . . , αk(x),
so is f c(x). Thus, the Fourier spectrum of f c is supported on Span(α1, . . . , αk) for every c, so
Spec(F) ⊆ Span(α1, . . . , αk). Hence dim(Spec(F)) 6 dim(F).

In the other direction, fix any basis (α1, . . . , αk) for Spec(F). Then knowing α1(x), . . . , α(x) fixes
f c(x) for all c ∈ F?q . But knowing the Fourier coefficients of the random variables F(x) allows us to
determine the distribution of F(x). Thus dim(F) 6 dim(Spec(F)). �

Proof of Fact 3.5. Fix h ∈ Inv(F). We have that for any λ ∈ Fq,

f c(x) = f c(x+ λh) =
∑
α

f̂ c(α)χα(x)χα(λh).

By the uniqueness of the Fourier expansion, it follows that for every α ∈ Spec(F), χα(λh) = 1 for

every λ ∈ Fq. But χα(λh) = ωTr(α(λh)) = ωTr(λα(h)). Thus we have Tr(λα(h)) = 0 for every λ ∈ Fq,
which implies that α(h) = α · h = 0. So the Fourier spectrum is supported entirely on Inv(F)⊥,
implying that Spec(F) ⊆ Inv(F)⊥.
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In the other direction, take a basis (α1, . . . , αk) for Spec(F). For any h ∈ Spec(F)⊥ we have
αi(x+ h) = αi(x). But since F(x) is a function of (α1, . . . , αk), we have F(x) = F(x+ h), showing
that Spec(F)⊥ ⊆ Inv(F) hence Inv(F)⊥ ⊆ Spec(F). �

Proof of Lemma 3.6. We have

f c(x) = EF[ωTr(cF(x))] = Eh∈H [ωTr(cF (x+h))] = Eh∈H [f c(x+ h)]

= Eh∈H [
∑
α∈F̂q

n

f̂ c(α)χα(x+ h)]

=
∑
α∈F̂q

n

f̂ c(α)χα(x)Eh∈H [χα(h)].

To analyze this last term, note that if α ∈ H⊥, then α(h) = 0 for every h ∈ H, so Eh∈H [χα(h)] =
1. On the other hand, when α 6∈ H⊥ the variable α(h) is uniformly distributed over Fq, hence
Eh∈H [χα(h)] = 0. Thus we have

f c(x) =
∑
α∈H⊥

f̂ c(α)χα(x).

�

Proof of Fact 3.7. If we define the function Gλ(x) = F (x+ λb) then we have

gcλ(x) =
∑
α∈F̂q

n

f̂ c(α)χα(x+ λb) =
∑
α∈F̂q

n

f̂ c(α)χα(x)ωTr(λα(b))

We have

Infb(F ) = Eλ∈Fq [∆(F,Gλ)]

= Eλ∈Fq [
1

2q

∑
c∈F?

q

∑
α∈F̂q

n

|f̂ c(α)− ĝcλ(α)|2]

= Eλ∈Fq [
1

2q

∑
c∈F?

q

∑
α:α(b)6=0

|f̂ c(α)(1− ωTr(λα(b)))|2]

=
1

2q

∑
c∈F?

q

∑
α:α(b)6=0

|f̂ c(α)|2 · Eλ∈Fq [|1− ωTr(λα(b))|2]

=
1

q

∑
c∈F?

q

∑
α:b·α 6=0

|f̂ c(α)|2(20)

�

Proof of Lemma 3.8. We have

Infb(F) = Ex∈Fn
q ,λ∈Fq [SD(F(x),F(x+ λb))] = Eλ∈Fq d(F(x),F(x+ λb))
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As before, we set G(x) = F(x + λb) and compute its Fourier polynomials. Using Equation 4, we
get

Infb(F) = Eλ∈Fq

1

2

∑
c∈F?

q

∑
α:α(b)6=0

| ˆf c(α)(1− ωTr(λα(b)))|2]

 1
2


6

1

2

Eλ∈Fq

∑
c∈F?

q

∑
α:α(b)6=0

| ˆf c(α)(1− ωTr(λα(b)))|2
 1

2

Since E[X] 6 E[X2]
1
2

=
1

2

∑
c∈F?

q

∑
α:α(b)6=0

| ˆf c(α)|2 Eλ∈Fq [|1− ωTr(λα(b))|2]

 1
2

=
1√
2

∑
c∈F?

q

∑
α:α(b)6=0

| ˆf c(α)|2
 1

2

Since Eλ[|1− ωTr(λ)|2] = 2

�
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