

A FOURIER-ANALYTIC APPROACH TO REED-MULLER DECODING

PARIKSHIT GOPALAN

ABSTRACT. We present a Fourier-analytic approach to list-decoding Reed-Muller codes over arbitrary finite fields. We use this to show that quadratic forms over any field are locally list-decodeable up to their minimum distance. The analogous statement for linear polynomials was proved in the celebrated works of Goldreich-Levin [GL89] and Goldreich-Rubinfeld-Sudan [GRS00]. Previously, tight bounds for quadratic polynomials were known only for $q = 2$ and 3 [GKZ08]; the best bound known for other fields was the Johnson radius.

Departing from previous work on Reed-Muller decoding which relies on some form of self-corrector [GRS00, AS03, STV01, GKZ08], our work applies ideas from Fourier analysis of Boolean functions to low-degree polynomials over finite fields, in conjunction with results about the weight-distribution. We believe that the techniques used here could find other applications, we present some applications to testing and learning.

1. INTRODUCTION

Traditional algorithms to decode error-correcting codes require that the received word is within less than half the minimum distance of a codeword, so that the codeword can be uniquely recovered. In the 1950s, Elias [Eli57] and Wozencraft [Woz58] introduced the notion of list-decoding in order to decode beyond this barrier. Rather than returning a single codeword, a list-decoding algorithm outputs all codewords within a specified radius of a received word. It took over thirty years before Goldreich and Levin [GL89] and Sudan [Sud97] gave efficient list-decoding algorithms for Hadamard codes and Reed-Solomon codes, respectively. Since these breakthroughs, there has been much progress in devising list-decoders for various codes [Gur04, Gur06, Sud00]. Indeed, list-decoding algorithms are the only tools that we have for solving the nearest codeword problem beyond half the minimum distance in the adversarial error model.

Algorithms for list-decoding error-correcting codes have proved tremendously useful in computer science (see [Gur04, Chapter 12]), with applications ranging from hardness amplification for weakly hard functions [STV01, Tre03], constructions of hard-core predicates from any one-way function [GL89, AGS03], constructions of extractors and pseudorandom generators [TSZS01, SU05] and the average-case hardness of the permanent [Lip89]. Despite the considerable progress in this area, for several natural and well-studied families of codes including Reed-Solomon and Reed-Muller codes, the *list-decoding* radius, or the largest error radius up to which the list-decoding problem is tractable is as yet unknown. This problem for Reed-Muller codes is the focus of our paper.

Reed-Muller codes (RM codes for short) were discovered by Muller in 1954. The message space of the code $\text{RM}_q(n, d)$ consists of all degree d polynomials in n variables over \mathbb{F}_q , the codewords are the evaluations of these polynomials at all points in \mathbb{F}_q^n . Let $\delta_q(d)$ denote the normalized minimum distance of $\text{RM}_q(n, d)$. If $d = a(q-1) + b$ where $0 \leq b \leq q-1$, then

$$(1) \quad \delta_q(d) = \frac{1}{q^a} \left(1 - \frac{b}{q}\right).$$

The case when $d < q$ is the famous Schwartz-Zippel lemma.

Reed-Muller codes are one of the most well-studied families of error-correcting codes in coding theory [MS77, Ass92]. They are ubiquitous in computer science, indeed several of the aforementioned applications of list-decoding [Lip89, GL89, STV01, TSZS01, SU05] use Reed-Muller codes. A closely related problem is that of low-degree testing, where we are given a function and asked to test if it is close to a codeword in the Reed-Muller code. This is a problem that has been studied extensively in computer science [BLR93a, AS03, AKK⁺05, JPRZ04, KR04, Sam07], and plays in a key role in the (original) proof of the celebrated PCP theorem [ALM⁺98, AS98].

For most applications above, the model of interest is the local-decoding model where we are given an oracle for the received word $R : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ that can be queried at chosen points. The goal is to devise an algorithm whose running time is polynomial in the size of the message (rather than the codeword). The message being a degree d polynomial (d will be constant) in n variables over \mathbb{F}_q , our goal is to run in time $\text{poly}(n)$. So we are interested in the settings where the list-size is a constant, or at worst $\text{poly}(n)$. Our running times are typically polynomial in q .

1.1. Previous Work. For (a family of) codes $\mathcal{C} \subset [q]^n$, let $\ell(\mathcal{C}, \eta)$ denote the maximum list-size at radius η (radius $\eta \in [0, 1]$ denotes normalized Hamming distance). $\text{LDR}(\mathcal{C})$ is the largest η for which $\ell(\mathcal{C}, \eta - \varepsilon)$ can be bounded by a function of ε (independent of n) for every $\varepsilon > 0$.

The study of list-decoding algorithms for Reed-Muller codes was initiated by the seminal work of Goldreich and Levin on list-decoding Hadamard codes over \mathbb{F}_2 or equivalently $\text{RM}_2(n, 1)$ codes [GL89]. They showed that $\text{LDR}(\text{RM}_2(n, 1)) = 1/2$. Goldreich, Rubinfeld and Sudan generalized this to Hadamard codes over \mathbb{F}_q , showing that $\text{LDR}(\text{RM}_q(n, 1)) = 1 - 1/q$ [GRS00]. An important

development was the discovery of powerful algorithms for list-decoding univariate polynomials over \mathbb{F}_q , due to Sudan [Sud97] and Guruswami and Sudan [GS99]. Sudan, Trevisan and Vadhan used these algorithms to devise a list-decoder that works up to radius $1 - \sqrt{2d/q}$ for [STV01], improving on work by Arora and Sudan [AS03] and Goldreich *et al.* [GRS00] (see also [PW04]).

All of the aforementioned decoding algorithms reach a coding theoretic bound known as the Johnson bound [Joh62, Joh63]. The Johnson bound guarantees that for *any* code of minimum distance δ over \mathbb{F}_q , $\text{LDR}(\mathcal{C}) \geq J_q(\delta) = (1 - 1/q)(1 - \sqrt{1 - q\delta/(q-1)})$. Since the Johnson bound is oblivious to the structure of the code apart from its minimum distance, one does not expect it to be tight for every code, yet examples of codes decodeable beyond the Johnson bound are relatively few and recent (see the discussion in [DGKS08, GKZ08]). A tantalizing open problem in this area is whether the Johnson bound is tight for Reed-Solomon codes, this is precisely the radius achieved by the Guruswami-Sudan algorithm [GS99].

Recently, Gopalan, Klivans and Zuckerman (GKZ) considered the problem of list-decoding Reed-Muller codes over \mathbb{F}_2 [GKZ08]. They showed that $\text{LDR}(\text{RM}_2(n, d)) = 2^{-d}$ which for $d \geq 2$ is much better than the Johnson bound. The GKZ algorithm is a generalization of the Goldreich-Levin algorithm: we assume that we have the correct value of the polynomial given as *advice* on a small random subspace A . This advice allows us to self-correct the values at randomly chosen shifts of A , using a unique decoding algorithm. As pointed out in GKZ, this relies crucially on the coincidence that the ratio of minimum distance to unique decoding radius equals the field size (which is 2), and does not seem to generalize to larger fields (see Appendix 2.2). They propose the following conjecture:

Conjecture 1. [GKZ08] *For any constants q, d , $\text{LDR}(\text{RM}_q(n, d)) = \delta_q(d)$.*

It is easy to show that $\text{LDR}(\text{RM}_q(n, d)) \leq \delta_q(d)$, the crux of the conjecture is the matching lower bound. GKZ show that once we bound $\ell(\text{RM}_q(n, d), \eta)$, (a suitable modification of) the [STV01] algorithm can be used to recover the list of polynomials within radius η . Thus the algorithmic problem reduces to the combinatorial problem of bounding the list-size. GKZ showed that $\text{LDR}(\text{RM}_q(n, d)) \geq \frac{1}{2}\delta_q(d-1)$; by Equation 3 this establishes the conjecture whenever $d \equiv 0 \pmod{q-1}$. This bound beats the Johnson bound for d sufficiently large. However when $d = 2$, Conjecture 1 states that agreement exceeding $2/q$ guarantees a small list, the Johnson bound guarantees a small list for agreement $\Omega(1/\sqrt{q})$ whereas the GKZ bound requires agreement exceeding $1/2$. Indeed, we believe that the hard(est) case of Conjecture 1 is when d is small, this precisely is where the gap between $\delta_q(d)$ and known bounds is largest.

2. OUR RESULTS

Previous work on local decoding of RM codes [GRS00, AS03, STV01, GKZ08] relies on the notion of a self-corrector. Starting the correct values at some points as advice, the algorithm self-corrects the values of the polynomial along some low-dimensional subspace. This relies on the locality of the property of being a low-degree polynomial. Our work departs entirely from this paradigm. We seek to explain the good list-decoding properties of RM codes by using the rich structure in the weight distribution of these codes. While the RM code has low-weight codewords, a random codeword is very likely to have weight which is close to $1 - \frac{1}{q}$ (this is in fact true of any linear code). But in RM codes, the low-weight codewords are far from random in a very strong sense: they have very special structure. Results of this form date back to the classical sum-of-squares result for quadratic forms (due to Jacobi and Sylvester) [LN97], and the work of Kasami and Tokura for the \mathbb{F}_2 case [KT70]. More recently, there has been great progress made in structure versus randomness dichotomies for low-degree polynomials [GT09, KL08, KL10, HS10].

Our approach is to reduce the problem of RM decoding to list-decoding low-weight codewords using the Deletion Lemma from [GKZ08, GGR09]. We then use the structure of low-weight codewords to bound the list size. We note that the work of [GKZ08, KL10] also uses the weight-distribution to bound the list-size for RM codes over \mathbb{F}_2 . However, these papers only require a bound on the number of low-weight codewords, whereas we make crucial use of the structure of these codewords. The structural property that we use is that of being low-dimensional. A k -dimensional function is one that can be expressed as a k -junta (a function of at most k variables) under a suitable change of basis for \mathbb{F} . The choice of low-dimensional codewords is natural for a couple of reasons: firstly, the examples we know for exhibiting large lists at radius $\delta_q(d)$ are all low-dimensional [GKZ08, Theorem 12]. Secondly, there are classical results showing that in the cases $d = 2$ and $q = 2$ respectively, all low-weight codewords in RM codes are low-dimensional [LN97, KT70].

Definition 1. *The dimension of $F : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ denoted $\dim(F)$ is the smallest k for which there exist linear functions $\alpha_1, \dots, \alpha_k : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ such that F can be expressed as a function of $\alpha_1, \dots, \alpha_k$.*

Let $\text{RM}_q^k(n, d)$ be the sub-code of $\text{RM}_q(n, d)$ consisting of all polynomials of dimension at most k (where k is constant).

Theorem 2.1. *For all q, k and d it holds that $\text{LDR}(\text{RM}_q^k(n, d)) = \delta_q(d)$.*

We prove this bound by designing a new Fourier-based algorithm for list-decoding low-dimensional polynomials. This algorithm and its analysis are the principal contributions of this work.

In the case of quadratic forms, our notion of dimension coincides with the classical notion of the rank of a quadratic form. It is well known that as the rank of a quadratic form increases, the distribution of its values approaches the uniform distribution over \mathbb{F}_q [LN97]. We use this to prove:

Theorem 2.2. *For all q , it holds that $\text{LDR}(\text{RM}_q(n, 2)) = \delta_q(2)$. Further, for any q and $\varepsilon > 0$, we have $\ell(\text{RM}_q(n, 2), \delta_q(2) - \varepsilon) = \text{poly}(q, \varepsilon^{-1})$.*

This gives a tight bound on the list-decoding radius of quadratic forms, resolving what is a special, but important case of the GKZ conjecture, given the rich history of quadratic forms in mathematics and coding theory [LN97, MS77]. In fact their conjecture was only for constant q , whereas our bound is reasonable even for $q = \text{poly}(n)$. Using the local list-decoder from GKZ, we get an algorithm to recover all quadratic polynomials that have agreement $\frac{2}{q} + \varepsilon$ in time $\text{poly}(n, q, \varepsilon^{-1})$. This improves on both the Johnson bound, which requires agreement $\frac{1}{\sqrt{q}}$ and the GKZ bound which requires $\frac{1}{2}$. Concretely, for $q = 256$, Theorem 2.2 guarantees constant list-size for agreement exceeding $\frac{1}{128}$, whereas Johnson and GKZ require agreement more than $\frac{1}{16}$ and $\frac{1}{2}$ respectively.

In the case of \mathbb{F}_2 , classical results of Kasami and Tokura [KT70] imply that deletion of low-dimensional codewords doubles the distance of RM codes. This allows us to give an alternate proof of the GKZ result that $\text{LDR}(\text{RM}_2(n, d)) = 2^{-d}$.

In the setting where d and q are arbitrary, we propose a conjecture quantifying how the deletion of low-dimensional codewords improves the distance of RM codes (see Conjecture 2 and Theorem 6.2 in Section 6). If the conjecture holds true, then with Theorem 2.1, we get an improvement on the best known current bounds for all d and q , which however falls short of the GKZ conjecture for $d > 3$. Nevertheless, Theorem 2.1 shows that low-dimensional polynomials are not an obstacle to the GKZ conjecture. Since the tight examples of configurations with large list-size at radius $\delta_q(d)$ stem from low-dimensional polynomials [GKZ08], this might be considered evidence in its favor.

2.1. Our Techniques. All previous work on Reed-Muller decoding [GRS00, AS03, STV01, GKZ08] relies on the notion of a self-corrector. Starting the correct values at some point(s) as advice, the algorithm self-corrects the values of the polynomial along some low-dimensional subspace. Our

work departs entirely from the self-correction paradigm and draws on ideas from Fourier analysis of Boolean functions; notably (a generalization of) the notion of influence of a variable. Fourier analytic methods are extensively used in learning, typically for concept classes such as halfspaces [KOS02, KKMS05] or decision trees [KM93] whose Fourier spectra show good *concentration*. Reed-Muller decoding is equivalent to (agnostically) learning low-degree polynomials over \mathbb{F}_q . It is not at all clear that Fourier analysis ought to be useful even for $d = 2$, since quadratic forms over \mathbb{F}_2 are the canonical examples of *bent* functions whose Fourier spectrum is maximally anti-concentrated [MS77]. However, the deletion lemma allows us to focus on low-degree polynomials which are additionally low-dimensional (dimension at most 6 for quadratic forms). The Fourier spectrum of a k -dimensional polynomial P is supported on a k -dimensional subspace which we denote by $\text{Spec}(P)$. Our key insight is that *within $\text{Spec}(P)$, the Fourier mass is anti-concentrated, which makes it possible to identify this subspace via Hadamard decoding, even after the adversary has corrupted the codeword*. We outline the main steps in our proof below:

1) Finding $\text{Spec}(P)$: Fix $q = 2$ for simplicity. The Fourier mass of a k -dimensional polynomial P lies entirely on a k -dimensional subspace $\text{Spec}(P)$. It is easy to recover P if we know $\text{Spec}(P)$, by enumerating over all degree d polynomials in k variables and replacing the variables by linear forms (recall that k is constant). Our goal is to show for any received word F where $\Delta(F, P) \leq \delta_q(d)$, the *large* Fourier coefficients of F contain a basis for $\text{Spec}(P)$. Equivalently, the large Fourier coefficients α of F that lie in $\text{Spec}(P)$ should not all fall in a low-dimensional subspace $B \subset \text{Spec}(P)$ satisfying an additional equation $b \cdot \alpha = 0$. One can try and prove this using the Fourier expression for ℓ_2 distance, but this approach fails. This suggests that one needs to use the *discreteness* of F .

2) The Influence of a Direction: Given a function F , the Fourier mass that lies in the set $S_b = \{\alpha : b \cdot \alpha \neq 0\}$ captures the influence of direction b , which is defined as $\Pr_{x \in \mathbb{F}_2^n}[F(x) \neq F(x + b)]$. This generalizes the notion of the influence of a variable [KKL88]. Influences in low-degree polynomials P show a dichotomy: they are 0 over a subspace $\text{Spec}(P)^\perp$, and large for all other b . We use this to show that if $\Delta(F, P) \leq \delta_q(d)$, and if b is influential in P , then it has noticeable influence on F . Hence, a noticeable fraction of the Fourier mass of F lies in the set S_b . But it falls short of the claim we really wish to prove, which is that there is noticeable Fourier mass lying in $\text{Spec}(P) \cap S_b$, since F (unlike P) need not be low-dimensional.

3) Folding the Received word: The crucial step of our analysis is to go from F to a randomized function \mathbf{F} , which is F folded over the subspace $\text{Spec}(P)$. While we defer the formal definition of folding, the following example is illustrative: if P depends only on X_1, \dots, X_k , then so does \mathbf{F} ; for each setting of x_1, \dots, x_k , $\mathbf{F}(x_1, \dots, x_k)$ equals $F(x_1, \dots, x_n)$ where x_{k+1}, \dots, x_n are set randomly. From the viewpoint of P , \mathbf{F} is a received word where the noise added at each point is randomized. The crucial observation is that the noise rate stays the same, so $\Delta(\mathbf{F}, P) \leq \delta_q(d)$, hence every influential direction b of P still has influence on \mathbf{F} . But since \mathbf{F} is obtained by folding F over $\text{Spec}(P)$, the Fourier spectrum of \mathbf{F} is just the spectrum of F projected on to $\text{Spec}(P)$. Thus we conclude that \mathbf{F} (and hence F) has noticeable Fourier mass lying in $\text{Spec}(P) \cap S_b$. Note that folding is just introduced for the sake of analysis, it plays no role in the algorithm.

4) Fourier analysis over \mathbb{F}_q : Implementing the above scheme over \mathbb{F}_q is fairly challenging, since it is unclear what the Fourier expansion of $F : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ should mean. Our main technical innovation is to associate $q - 1$ Fourier polynomials with every such F , this allows us to exactly arithmetize Hamming distance over \mathbb{F}_q and handle randomized functions which is crucial for us..

We believe the Fourier analytic techniques here will find other applications. We use them prove an equivalence between learning parity with worst-case noise and weaker noise models over \mathbb{F}_q , generalizing a result of [FGKP06] for \mathbb{F}_2 . Working with many Fourier polynomials as opposed to a single one is crucial for this result. We also present an analysis of linearity testing over any finite field.

2.2. Comparison to Dimension Reduction in GKZ. It is interesting to contrast our approach to that of [GKZ08]. While GKZ the bound also involves a *dimension reduction* step, the term refers to restricting the received word to a random low-dimensional subspace, which is very different from what we do. The GKZ algorithm is based on a self-corrector that works correctly given the right advice. The self-correction argument already shows that the list-size at radius $2^{-d} - \varepsilon$ is quasi-polynomial in ε^{-1} . The deletion lemma is used only to improve the bounds to polynomial in ε^{-1} . As remarked earlier though, this self-corrector does not seem to generalize well to larger fields.

Our approach is in fact inspired by the list-decoding algorithms of [GGR09] for tensor products and interleaved codes, which reduce bounding the list-size to the low-rank case (here codewords are matrices and rank refers to the rank of these matrices). Bounding the list-size for low-dimensional codewords is considerably harder in our setting.

Organization: We present Fourier-analytic preliminaries in Section 3, and proofs for this section in Appendix A. The decoding algorithm for low-dimensional polynomials and its analysis are in Section 4, with the proof of Theorem 2.2. We present reductions to the low-dimensional case for $d = 2$ and $q = 2$ in Section 5, and a discussion of the case $d \geq 3$ in Section 6. We present applications to the Noisy Parity problem and Linearity Testing in Section 7.

3. LOW-DIMENSIONAL FUNCTIONS, FOLDING AND INFLUENCES

The proofs for this section are somewhat technical, and are presented in Appendix A. We suggest that the reader focus on the definitions and skip these proofs on first reading.

Fourier analysis. Let $p = \text{char}(q)$ and let $q = p^h$. Let ω be a primitive p^{th} root of unity. Given a random variable Z taking values in \mathbb{F}_q , we define the quantities $z^c = \mathbb{E}_Z[\omega^{\text{Tr}(cZ)}]$, which we call the (un-normalized) Fourier coefficients of Z . For two such random variables Y, Z , let $\text{SD}(Y, Z)$ denote their statistical distance. The following relation to the Fourier transform is folklore:

Fact 3.1. *For two random variables Y, Z taking values in \mathbb{F}_q , we have*

$$\text{SD}(Y, Z) \leq \frac{1}{2} \left(\sum_{c \in \mathbb{F}_q^*} |y^c - z^c|^2 \right)^{\frac{1}{2}}.$$

Let $\text{Tr}(x) = \sum_{i=0}^{h-1} x^{p^i}$ denote the trace map from \mathbb{F}_q to \mathbb{F}_p . The set of all linear functions $\mathbb{F}_q \rightarrow \mathbb{F}_p$ is given by $\{\text{Tr}(cx)\}_{c \in \mathbb{F}_q}$. The character group $\hat{\mathbb{F}_q}^n$ of \mathbb{F}_q^n of all homomorphisms $\chi : \mathbb{F}_q^n \rightarrow \mathbb{C}$ comprises all functions of the form $\chi_\alpha(x) = \omega^{\text{Tr}(\alpha(x))}$ where $\alpha : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ is a linear function. It is easy to show that the functions χ_α form an orthonormal basis for all functions $f : \mathbb{F}_q^n \rightarrow \mathbb{C}$ under the inner-product $\langle f, g \rangle = \mathbb{E}_{x \in \mathbb{F}_q^n} f(x) \overline{g(x)}$. Thus every such f has a Fourier expansion given by

$$f(x) = \sum_{\alpha \in \hat{\mathbb{F}_q}^n} \hat{f}(\alpha) \chi_\alpha(x).$$

We also have $\|f\|_2 = \langle f, f \rangle = \sum_{\alpha} |\hat{f}(\alpha)|^2$. Given a polynomial $F : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$, we associate it with $q - 1$ Fourier polynomials mapping $\mathbb{F}_q^n \rightarrow \mathbb{C}$, one for every $c \in \mathbb{F}_q^*$, given by

$$f^c(x) := \omega^{\text{Tr}(cP(x))} = \sum_{\alpha \in \hat{\mathbb{F}_q}^n} \hat{f}^c(\alpha) \chi_\alpha(x).$$

The reason for using $q - 1$ polynomials is that we can exactly arithmetize agreement and Hamming distance; this is crucial in our applications.

Fact 3.2. Given functions F, G that map $\mathbb{F}_q^n \rightarrow \mathbb{F}_q$,

$$(2) \quad \text{Ag}(F, G) = \frac{1}{q} \left(1 + \sum_{c \in \mathbb{F}_q^*} \langle f^c, g^c \rangle \right) = \frac{1}{q} \left(1 + \sum_{c \in \mathbb{F}_q^*} \sum_{\alpha} \hat{f}_\alpha^c \overline{\hat{g}_\alpha^c} \right)$$

$$(3) \quad \Delta(F, G) = \frac{1}{2q} \sum_{c \in \mathbb{F}_q^*} \|f^c - g^c\|_2^2 = \frac{1}{2q} \sum_{c \in \mathbb{F}_q^*} \sum_{\alpha \in \hat{\mathbb{F}}_q^n} |\hat{f}_\alpha^c - \hat{g}_\alpha^c|^2$$

Randomized Functions. We consider randomized functions $\mathbf{F} : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$, where each $\mathbf{F}(x)$ is a random variable taking values in \mathbb{F}_q . We define the Fourier polynomials associated with \mathbf{F} :

Definition 2. Given a randomized function $\mathbf{F} : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$, for each $c \in \mathbb{F}_q^*$, we define the polynomial $\mathbf{f}^c : \mathbb{F}_q^n \rightarrow \mathbb{C}$ by $\mathbf{f}^c(x) = \mathbb{E}_{\mathbf{F}}[\omega^{\text{Tr}(c\mathbf{F}(x))}]$.

Note that \mathbf{f}^c is a (deterministic) function from $\mathbb{F}_q^n \rightarrow \mathbb{C}$ and the values $\{\mathbf{f}^c(x)\}_{c \in \mathbb{F}_q^*}$ give us the Fourier transform of $\mathbf{F}(x)$. Given two randomized functions $\mathbf{F}, \mathbf{G} : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$, we define

$$d(\mathbf{F}, \mathbf{G}) = \mathbb{E}_{x \in \mathbb{F}_q^n} [\text{SD}(\mathbf{F}(x), \mathbf{G}(x))], \quad \text{Ag}(\mathbf{F}, \mathbf{G}) = 1 - d(\mathbf{F}, \mathbf{G}).$$

generalizing the definitions for deterministic functions.

Fact 3.3. Given randomized function \mathbf{F}, \mathbf{G} that map $\mathbb{F}_q^n \rightarrow \mathbb{F}_q$, we have

$$(4) \quad d(\mathbf{F}, \mathbf{G}) \leq \frac{1}{2} \left(\sum_{c \in \mathbb{F}_q^*} \mathbb{E}_x [|f^c(x) - g^c(x)|^2] \right)^{\frac{1}{2}} = \frac{1}{2} \left(\sum_{c \in \mathbb{F}_q^*} \sum_{\alpha \in \hat{\mathbb{F}}_q^n} |\hat{f}_\alpha^c - \hat{g}_\alpha^c|^2 \right)^{\frac{1}{2}}.$$

Low-Dimensional Functions. Low dimensional deterministic functions are defined in Definition 1. We generalize the definition to randomized functions:

Definition 3. A randomized function $\mathbf{F} : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ is k dimensional if there exist k linear forms $\alpha_1, \dots, \alpha_k : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ such that knowing $\alpha_1(x), \dots, \alpha_k(x)$ fixes the distribution of $\mathbf{F}(x)$.

Hence \mathbf{F} is a (randomized) function of $\alpha_1, \dots, \alpha_k$, generalizing Definition 1. Facts 3.4 and 3.5 below are proved in [GKS07, GOS⁺09] for deterministic functions.

Fact 3.4. For each $c \in \mathbb{F}_q^*$, let $\text{Supp}(\mathbf{f}^c) \subseteq \hat{\mathbb{F}}_q^n$ denote the set of non-zero Fourier coefficients of $\mathbf{f}^c(x)$. Let $\text{Spec}(\mathbf{F}) = \text{Span}(\cup_{c \in \mathbb{F}_q^*} \text{Supp}(\mathbf{f}^c))$. Then $\dim(\mathbf{F}) = \dim(\text{Spec}(\mathbf{F}))$.

Alternatively, low-dimensional functions can be defined via invariant spaces.

Definition 4. Given $h \in \mathbb{F}_q^n$, if $\mathbf{F} : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ satisfies $\text{SD}(\mathbf{F}(x + \lambda h), \mathbf{F}(x)) = 0$ for all $x \in \mathbb{F}_q^n, \lambda \in \mathbb{F}_q$ we say that \mathbf{F} is h -invariant. We define $\text{Inv}(\mathbf{F}) = \{h : \mathbf{F} \text{ is } h\text{-invariant}\}$.

$\text{Inv}(\mathbf{F})$ is clearly a subspace of \mathbb{F}_q^n , and is in fact dual to $\text{Spec}(\mathbf{F})$.

Fact 3.5. We have $\text{Spec}(\mathbf{F}) = \text{Inv}(\mathbf{F})^\perp$. Hence $\dim(\mathbf{F}) = \text{codim}(\text{Inv}(\mathbf{F}))$.

Folding. Folding over subspaces was introduced in [FGKP06] (in the \mathbb{F}_2 case). Folding maps high-dimensional functions to lower-dimensional randomized functions.

Definition 5. Let H be a subspace of \mathbb{F}_q^n and let $F : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$. Define the randomized function $\mathbf{F}(x) = F(x + h)$ where $h \in H$ is chosen randomly. We call \mathbf{F} the folding of F over H .

Given an oracle for F , we can simulate an oracle for \mathbf{F} : on query x , choose a random point $x + h$ in the coset $x + H$ and return $F(x + h)$. Thus \mathbf{F} is invariant on H . In fact, its Fourier spectrum is obtained by projecting the spectrum of F onto H^\perp .

Lemma 3.6. [FGKP06] Let \mathbf{F} be the folding of F over H . For any $c \in \mathbb{F}_q^*$, we have $\hat{\mathbf{f}}^c(\alpha) = \hat{f}^c(\alpha)$ if $\alpha \in H^\perp$ and $\hat{\mathbf{f}}^c(\alpha) = 0$ otherwise.

The Influence of a Direction. We define the influence of a direction, which is a generalization of the notion of influence of a variable. Given a vector $b \in \mathbb{F}_q^n \setminus \{0^n\}$, we partition \mathbb{F}_q^n into lines along the direction b , which are the equivalence classes for the relation $x \sim y$ if $x - y = \lambda b$ for some $\lambda \in \mathbb{F}_q$. This partition is nothing but $\mathbb{F}_q^n / \{b\}$, and it is isomorphic to \mathbb{F}_q^{n-1} .

Definition 6. (Influence of a direction) Given $b \in \mathbb{F}_q^n$, and a function $F : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ we define

$$\text{Inf}_b(F) = \Pr_{x \in \mathbb{F}_q^n, \lambda \in \mathbb{F}_q} [F(x) \neq F(x + \lambda b)].$$

One can relate $\text{Inf}_b(F)$ to the Fourier mass lying outside the subspace of $\hat{\mathbb{F}}_q^n$ given by $b \cdot \alpha = 0$:

Fact 3.7. Given $b \in \mathbb{F}_q^n$, we have

$$(5) \quad \text{Inf}_b(F) = \frac{1}{q} \sum_{c \in \mathbb{F}_q^*} \sum_{\alpha: b \cdot \alpha \neq 0} |\hat{f}^c(\alpha)|^2.$$

We extend the notion of influences to randomized functions generalizing the above notion. To compute the influence of b for a deterministic function, we pick sample two points on a line in the direction b and compute their Hamming distance. For randomized function, we sample two such points and compute their statistical distance.

Definition 7. Given a randomized function $\mathbf{F} : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ and $b \in \mathbb{F}_q^n$, we define $\text{Inf}_b(\mathbf{F})$ as

$$\text{Inf}_b(\mathbf{F}) = \mathbb{E}_{x \in \mathbb{F}_q^n, \lambda \in \mathbb{F}_q} [\text{SD}(\mathbf{F}(x), \mathbf{F}(x + \lambda b))].$$

One can again bound the influence in terms of the Fourier mass that lies outside the subspace $b \cdot \alpha = 0$ (though the bound is no longer exact, owing to the application of Cauchy-Schwartz).

Lemma 3.8. Given $b \in \mathbb{F}_q^n$, we have

$$\text{Inf}_b(\mathbf{F}) \leq \frac{1}{\sqrt{2}} \left(\sum_{c \in \mathbb{F}_q^*} \sum_{\alpha: b \cdot \alpha \neq 0} |\hat{\mathbf{f}}^c(\alpha)|^2 \right)^{\frac{1}{2}}.$$

4. LIST-DECODING LOW-DIMENSIONAL POLYNOMIALS

In this section, we prove Theorem 2.1. Assume that we have an efficient procedure **Had** for finding large Fourier coefficients over \mathbb{F}_q^n . Given oracle access to $f : \mathbb{F}_q^n \rightarrow \mathbb{C}$ and a parameter μ , **Had**(f, μ) returns all $\alpha \in \hat{\mathbb{F}}_q^n$ so that $|\hat{f}(\alpha)|^2 \geq \mu$. The list-size is bounded by $\|f\|_2^2 / \mu$. Theorem 2.1 is proved by arguing that the polynomial P will be in the list of polynomials that is returned by the following algorithm.

Algorithm 1. List-Decoding Low-Dimensional Polynomials
Input: d, k, ε , oracle for $F : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$.

Output: All $P : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ s.t. $\deg(P) \leq d, \dim(P) \leq k$ and $\Delta(P, F) \leq \delta_q(d)(1 - \varepsilon)$.

1. Set $\mu = \varepsilon^4 \delta_q(d)^2 / (64q^{k+1})$.
2. Run $\text{Had}(f^c, \mu)$ for all $c \in \mathbb{F}_q^*$.
3. Let \mathcal{L} be the list of all linear functions α returned.
4. Pick $\alpha_1, \dots, \alpha_k$ from \mathcal{L} .
5. Return all $P(\alpha_1, \dots, \alpha_k)$ s.t. $\deg(P) \leq d$ and $\Delta(P, F) \leq \delta_q(d)(1 - \varepsilon)$.

In the last step, we enumerate over all polynomials P in k variables of degree d , after replacing the variables by $\alpha_1, \dots, \alpha_k$.

4.1. Correctness of the Algorithm. Fix a polynomial P with $\deg(P) \leq d, \dim(P) \leq k$ and $\Delta(F, P) = \eta \leq \delta_q(d)(1 - \varepsilon)$. Our goal is to prove that the list \mathcal{L} contains a basis for $\text{Spec}(P)$, which implies that P one of the polynomials returned by our algorithm. For the analysis, we work with the randomized function \mathbf{F} obtained by folding F over $\text{Inv}(P)$. Folding over $\text{Inv}(P)$ projects the Fourier spectrum of F on to $\text{Spec}(P)$, which is a *small* subspace with only q^k vectors in it. Our main lemma states that all directions that were influential in P continue to have some influence even in \mathbf{F} .

Lemma 4.1. (Main) *For the function \mathbf{F} defined above and any $b \notin \text{Inv}(P)$,*

$$\text{Inf}_b(\mathbf{F}) \geq \frac{\varepsilon^2}{4} \delta_q(d).$$

Proof. Consider the vector space $V = \mathbb{F}_q^n / \text{Inv}(P) \sim \mathbb{F}_q^k$. We can view P as a function $P : V \rightarrow \mathbb{F}_q$. Similarly, we can view \mathbf{F} as a randomized function $\mathbf{F} : V \rightarrow \mathbb{F}_q$, obtained by adding random noise of rate η to P . Formally, for each $y \in V$, define the noise rate

$$\eta(y) = \Pr_{\mathbf{F}}[\mathbf{F}(y) \neq P(y)] = \Pr_{x \in y + \text{Inv}(P)}[F(x) \neq P(y)]$$

and note that

$$\mathbb{E}_{y \in V} \eta(y) = \Pr_{y \in V, x \in y + \text{Inv}(P)}[F(x) \neq P(y)] = \Pr_{x \in \mathbb{F}_q^n}[F(x) \neq P(x)] = \eta.$$

Our goal is to show that any $b \notin \text{Inv}(P)$ has non-negligible influence on \mathbf{F} . Recall that for a randomized function $\mathbf{F} : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ and $b \in \mathbb{F}_q^n$, we defined $\text{Inf}_b(\mathbf{F})$ as

$$\text{Inf}_b(\mathbf{F}) = \mathbb{E}_{x \in \mathbb{F}_q^n, \lambda \in \mathbb{F}_q}[\text{SD}(\mathbf{F}(x), \mathbf{F}(x + \lambda b))].$$

Since \mathbf{F} is invariant on $\text{Inv}(P)$, this is equivalent to

$$(6) \quad \text{Inf}_b(\mathbf{F}) = \mathbb{E}_{y \in V, \lambda \in \mathbb{F}_q}[\text{SD}(\mathbf{F}(y), \mathbf{F}(y + \lambda b))].$$

Consider $V/\{b\}$, the partition of V into lines along b . We can rewrite Equation 6 as

$$(7) \quad \text{Inf}_b(\mathbf{F}) = \mathbb{E}_{\substack{L \in V/\{b\} \\ x, y \in L}}[\text{SD}(\mathbf{F}(x), \mathbf{F}(y))].$$

Let us fix a basis containing the vector b for V : call it $\{a_1, \dots, a_{k-1}, b\}$. Every vector $y \in V$ can be written in this basis as $y = \sum_{i=1}^{k-1} a_i y_i + b y_k$. The polynomial P can be written as $P(y_1, \dots, y_k)$

of degree d . Assume that y_k occurs with degree $d_2 \leq q-1$ (this might depend on the choice of basis). So we can write

$$P(y_1, \dots, y_k) = Q(y_1, \dots, y_{k-1})y_k^{d_2} + \sum_{e < d_2} Q_e(y_1, \dots, y_{k-1})y_k^e.$$

for some Q such that $\deg(Q) = d_1 \leq d - d_2$. Fixing values for (y_1, \dots, y_{k-1}) specifies a line in $V/\{b\}$, while fixing y_k specifies a point on that line. Thus we can rewrite

$$(8) \quad \text{Inf}_b(\mathbf{F}) = \mathbb{E}_{y_1, \dots, y_{k-1}, y_k, y'_k} [\text{SD}(\mathbf{F}(y_1, \dots, y_{k-1}, y_k), \mathbf{F}(y_1, \dots, y_{k-1}, y'_k))].$$

We say that a line $\ell = (y_1, \dots, y_{k-1}) \in V/\{b\}$ is good if $Q(y_1, \dots, y_{k-1}) \neq 0$. Since $\deg(Q) \leq d_1$, $\Pr_{\ell}[\ell \text{ is good}] \geq \delta_q(d_1)$. Conditioning on the event that ℓ is good, $P|_{\ell}$ is a univariate polynomial of degree d_2 . Hence, it takes on any particular value in \mathbb{F}_q no more than d_2 times. In contrast, if ℓ is bad, then $P|_{\ell}$ is constant.

Define the noise rate $\eta(\ell)$ for a line as $\eta(\ell) = \mathbb{E}_{y \in \ell}[\eta(y)]$. We have $\mathbb{E}_{\ell \in V/\{b\}}[\eta(\ell)] = \eta$. We say that a good line is *quiet* if the noise rate along the line is low:

$$\eta(\ell) \leq \left(1 - \frac{d_2}{q}\right) \left(1 - \frac{\varepsilon}{2}\right).$$

We claim that at least $\varepsilon/2$ fraction of good lines are quiet; else we have

$$\mathbb{E}_{\ell}[\eta(\ell)] \geq \delta_q(d_1) \left(1 - \frac{\varepsilon}{2}\right) \left(1 - \frac{d_2}{q}\right) \left(1 - \frac{\varepsilon}{2}\right) > \delta_q(d_1) \left(1 - \frac{d_2}{q}\right) (1 - \varepsilon) \geq \delta_q(d)(1 - \varepsilon).$$

where the last inequality follows from the following property of $\delta_q(d)$:

$$\delta_q(d) \leq \delta_q(d_1) \left(1 - \frac{d_2}{q}\right) \quad \text{for all } d_1, d_2 \text{ s.t. } d_1 + d_2 \leq d, 0 \leq d_2 \leq q-1.$$

Fix a quiet line ℓ . We have a polynomial $P|_{\ell} : \ell \rightarrow \mathbb{F}_q$ of degree $d_2 \leq q-1$ and a randomized received word $\mathbf{F}|_{\ell}$ such that

$$d(P|_{\ell}, \mathbf{F}|_{\ell}) = \mathbb{E}_{x \in \ell}[\text{SD}(P(x), \mathbf{F}(x))] = \mathbb{E}_{x \in \ell}[\eta(x)] \leq \delta_q(d_2) - \varepsilon'$$

where $\delta_q(d_2) = 1 - \frac{d_2}{q}$ and $\varepsilon' = \frac{1}{2}\delta_q(d_2)\varepsilon$. The final piece of the argument is to show that for every quiet line, $\text{Inf}_b(\mathbf{F})$ is high, which is essentially a claim about univariate polynomials.

Claim 4.2. *For a quiet line ℓ , we have $\mathbb{E}_{x, y \in \ell}[\text{SD}(\mathbf{F}(x), \mathbf{F}(y))] \geq \varepsilon'$.*

Let us defer the proof of this claim and finish the proof of Lemma 4.1. We have argued that

$$(9) \quad \Pr_{\ell \in V/\{b\}}[\ell \text{ is quiet}] \geq \frac{1}{2}\varepsilon\delta_q(d_1)$$

Conditioned on the event that ℓ is quiet, we have proved that

$$(10) \quad \mathbb{E}_{x, y \in \ell}[\text{SD}(\mathbf{F}(x), \mathbf{F}(y))] \geq \frac{1}{2}\varepsilon\delta_q(d_2)$$

Plugging this into Equation 7 gives

$$(11) \quad \text{Inf}_b(\mathbf{F}) = \mathbb{E}_{\ell \in V/\{b\}}_{x, y \in \ell}[\text{SD}(\mathbf{F}(x), \mathbf{F}(y))] \geq \frac{\varepsilon^2}{4}\delta_q(d_1)\delta_q(d_2) \geq \frac{\varepsilon^2}{4}\delta_q(d)$$

which completes the proof of Lemma 4.1. \square

Proof of Claim 4.2. For the purposes of this claim, we use P and $\mathbf{F}|_\ell$ to denote $P|_\ell$ and \mathbf{F}_ℓ respectively. Similarly d will denote distance between randomized functions on the line ℓ .

For every distribution \mathcal{D} on \mathbb{F}_q , we can define the (constant) randomized function $\mathcal{D}^q : \ell \rightarrow \mathbb{F}_q$ where $\mathcal{D}^q(x) = \mathcal{D}$ for every $x \in \ell$. We claim that $d(P, \mathcal{D}^q) \geq \delta_q(d_2)$ for every such distribution \mathcal{D} . In the case where $\mathcal{D} = \mathcal{D}_y$ is concentrated at a single point $y \in \mathbb{F}_q$, this holds since $P(x)$ is a univariate polynomial with $\deg(P) = d_2$ and so $\Pr_x[P(x) = y] \leq d_2/q$. More generally, we have

$$\begin{aligned} d(P, \mathcal{D}^q) &= \mathbb{E}_x[\text{SD}(P(x), \mathcal{D})] = \sum_{x \in F_q} \frac{1}{q} (1 - \mathcal{D}(P(x))) = \sum_{y \in F_q} \Pr[P(x) = y] (1 - \mathcal{D}(y)) \\ &= \sum_{y \in F_q} \Pr[P(x) = y] - \sum_{y \in F_q} \Pr[P(x) = y] \mathcal{D}(y) \geq 1 - \frac{d_2}{q} \end{aligned}$$

where the last inequality uses $\Pr_x[P(x) = y] \leq d_2/q$ as $\deg(P) \leq d_2$. By the triangle inequality

$$d(\mathbf{F}, \mathcal{D}^q) \geq d(P, \mathcal{D}^q) - d(\mathbf{F}, P) \geq \delta_q(d_2) - (\delta_q(d_2) - \varepsilon') = \varepsilon'.$$

We compute $\mathbb{E}_{x,y \in \ell}[\text{SD}(\mathbf{F}(x), \mathbf{F}(y))]$ by first sampling $x \in \ell$ and then computing the distance between \mathbf{F} and the distribution \mathcal{D}^q where $\mathcal{D} = \mathbf{F}(x)$.

$$\mathbb{E}_{x,y \in \ell}[\text{SD}(\mathbf{F}(x), \mathbf{F}(y))] = \mathbb{E}_{x \in \ell}[\mathbb{E}_{y \in \ell}[\text{SD}(\mathbf{F}(x), \mathbf{F}(y))]] = \mathbb{E}_{x \in \ell}[d(\mathbf{F}(x)^q, \mathbf{F})] \geq \varepsilon'.$$

This finishes the proof of Claim 4.2. \square

With the Main lemma in hand, Theorem 2.1 follows easily.

Lemma 4.3. *The list \mathcal{L} returned contains a basis for $\text{Spec}(P)$.*

Proof. Assume that the Fourier coefficients in $\mathcal{L} \cap \text{Spec}(P)$ do not span all of $\text{Spec}(P)$, rather they span a subspace B of it that satisfies the additional constraint $b \cdot \alpha = 0$ for $b \notin \text{Inv}(P)$. We have

$$(12) \quad 2 \left(\sum_{c \in \mathbb{F}_q^*} \sum_{\alpha: b \cdot \alpha \neq 0} |\hat{\mathbf{f}}_c^\alpha|^2 \right)^{\frac{1}{2}} \geq \text{Inf}_b(\mathbf{F}) \geq \frac{1}{4} \varepsilon^2 \delta_q(d)$$

where the first inequality is from Lemma 3.8 and the second from Lemma 4.1. Applying Lemma 3.6 to the function \mathbf{F} which is F folded over $\text{Inv}(P)$, we get $\hat{\mathbf{f}}^c(\alpha) = \hat{f}^c(\alpha)$ for $\alpha \in \text{Spec}(P)$ and $\hat{\mathbf{f}}^c(\alpha) = 0$ otherwise. Combining these equations, we get

$$\sum_{c \in \mathbb{F}_q^*} \sum_{\alpha \in \text{Spec}(P) \setminus B} |\hat{f}^c(\alpha)|^2 \geq \frac{1}{64} \varepsilon^4 \delta_q(d)^2$$

Since we sum over $(q^k - q^{k-1})(q-1) < q^{k+1}$ Fourier coefficients on the LHS, at least one of them is as large as the average. Thus, there exist $c \in \mathbb{F}_q^*$ and $\alpha \in \text{Spec}(P) \setminus B$ so that

$$|\hat{f}^c(\alpha)|^2 > \frac{1}{64} \frac{\varepsilon^4 \delta_q(d)^2}{q^{k+1}}.$$

This coefficient α must belong to the list \mathcal{L} , which contradicts the assumption that $\mathcal{L} \cap \text{Spec}(P)$ is contained within B . \square

A simple calculation which we omit gives the following bound on the list-size for $\text{RM}_q^k(n, d)$ (we have not attempted to optimize this bound). There exists a constant $c > 0$ such that

$$(13) \quad \ell(\text{RM}_q^k(n, d), \delta_q(d)(1 - \varepsilon)) \leq \frac{c^k q^{k^d + k^2 + 2k}}{\varepsilon^{4k} \delta_q(d)^{2k}}.$$

The running time of Algorithm 1 is polynomial in n^d, q and the list-size.

5. REDUCTION TO THE LOW-DIMENSIONAL CASE.

5.1. **Quadratic Forms.** We use the [GGR09] version of the deletion lemma from [GKZ08].

Lemma 5.1. [GKZ08, GGR09] (Deletion Lemma) *Let $\mathcal{C} \subset \mathbb{F}_q^n$ be a linear code over \mathbb{F}_q . Let $\mathcal{C}' \subseteq \mathcal{C}$ be a (possibly non-linear) subset of codewords so that $c' \in \mathcal{C}'$ iff $-c' \in \mathcal{C}'$, and every codeword $c \in \mathcal{C} \setminus \mathcal{C}'$ has $\text{wt}(c) \geq \delta^h$. Let $\eta = J_q(\delta^h) - \gamma$ for $\gamma > 0$. Then $\ell(\mathcal{C}, \eta) \leq \gamma^{-2} \ell(\mathcal{C}', \eta)$.*

For quadratic forms $Q : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$, $\dim(Q)$ coincides with the well-studied notion of the rank of a quadratic form. Theorems 6.26, 6.27 and 6.32 from Chapter 6 of [LN97] give the following bound:

Lemma 5.2. *Let $Q : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ be a quadratic form such that $\dim(Q) = k$. Then*

$$\text{wt}(Q) \geq 1 - \frac{1}{q} - \frac{1}{q^{k/2}}.$$

We use this to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. By Lemma 6, if $\dim(Q) \geq 6$, then we have

$$\text{wt}(Q) \geq 1 - \frac{1}{q} - \frac{1}{q^3}; \quad J_q\left(1 - \frac{1}{q} - \frac{1}{q^3}\right) > 1 - \frac{2}{q}.$$

Hence we can apply Lemma 5.1 with $\mathcal{C}' = \text{RM}_q^6(n, 2)$ to conclude that there exists c so that

$$\ell(\text{RM}_q(n, 2), \delta_q(2) - \varepsilon) \leq \frac{1}{\varepsilon^2} \ell(\text{RM}_q^6(n, 2), \delta_q(2) - \varepsilon) \leq c \frac{q^{84}}{\varepsilon^{26}}.$$

□

5.2. **The \mathbb{F}_2 case revisited.** Using our techniques, we can give an alternate proof of the GKZ result that $\text{LDR}(\text{RM}_2(n, d)) = 2^{-d}$. A classical result of Kasami and Tokura allows us to bound the dimension of any codeword of $\text{RM}_2(n, d)$ which has weight less than $2\delta_2(d)$.

Lemma 5.3. [KT70] *Let $d \geq 2$. Let $P : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ with $\deg(P) \leq d$ and $\text{wt}(P) < 2\delta_2(d)$. Then P is of one of the following two types:*

1. $P(\alpha_1, \dots, \alpha_{d-t}) = \alpha_1 \cdots \alpha_{d-t}(\alpha_{d-t+1} \cdots \alpha_d + \alpha_{d+1} \cdots \alpha_{d+t}) \quad 3 \leq t < d.$
2. $P(\alpha_1, \dots, \alpha_{d+2t-2}) = \alpha_1 \cdots \alpha_{d-2}(\alpha_{d-1}\alpha_d + \alpha_{d+1}\alpha_{d+2} + \cdots + \alpha_{d+2t-3}\alpha_{d+2t-2}).$

where the α_i s are independent linear forms.

Strictly speaking, the α_i s are affine rather than linear, but we can safely ignore this issue.

Corollary 5.4. *Let $P : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ be a degree d polynomial with $\dim(P) = k \geq 2d$. Then $\text{wt}(P) \geq 2\delta_2(d) - 2^{-(k+d)/2}$.*

Proof. Assume that $\text{wt}(P) < 2\delta_2(d)$, else the claim is trivial. Now applying Lemma 5.3, P must be of type (2), since polynomials of type (1) have dimension less than $2d$. A simple calculation shows that for polynomials of type (2), if $\dim(P) = k$, then $\text{wt}(P) \geq 2\delta_2(d) - 2^{-(k+d)/2}$. □

We can now reprove the main result from [GKZ08]. Our list-size bound is polynomial in ε^{-d} , though the exact bound is inferior to GKZ, who also showed a lower bound of $\varepsilon^{-\Omega(d)}$.

Theorem 5.5. [GKZ08] *For all $d \geq 1$, it holds that $\text{LDR}(\text{RM}_2(n, d)) = 2^{-d}$.*

Proof. Pick $k = 3d$. Take $\mathcal{C}' = \text{RM}_2^k(n, d)$. By Equation 13, we have

$$\ell(\mathcal{C}', \delta_2(d) - \varepsilon) \leq c\varepsilon^{-12d}$$

for some constant $c = c(d)$ that depends on d . By Corollary 5.4, if $\dim(P) \geq 3d$,

$$\text{wt}(P) \geq 2 \cdot 2^{-d} - 2^{-2d}; \quad \mathcal{J}_2(2 \cdot 2^{-d} - 2^{-2d}) > 2^{-d}.$$

Hence applying Lemma 5.1, we get

$$\ell(\text{RM}_2(n, d), \delta_2(d) - \varepsilon) \leq c\varepsilon^{-(12d+2)}$$

which completes the proof. \square

6. THE CASE OF ARBITRARY d AND q .

For cubic forms and higher, codewords of weight $1 - \frac{1}{q} - \varepsilon$ need not be low-dimensional. However the results of [GT09, KL08] show that when q is prime, such codewords must be expressible as functions of a few polynomials of degree $d - 1$. Define $\text{Rank}_d(P)$ to be the smallest number of degree d polynomials Q_1, \dots, Q_t such that $P = f(Q_1, \dots, Q_t)$ for some function f . Note that $\text{Rank}_1(P) = \dim(P)$.

Theorem 6.1. [GT09, KL08] *Let q be prime. For every degree d , there exists a function $r(\varepsilon)$ such that if $\deg(P) = d$ and $\text{wt}(P) \leq 1 - \frac{1}{q} - \varepsilon$, then $\text{Rank}_{d-1}(P) \leq r(\varepsilon)$.*

This suffices to show that over prime fields, $\ell(\text{RM}_q(n, d), 1 - \frac{1}{q} - \varepsilon) \leq q^{O_\varepsilon(n^{d-1})}$ as opposed to the trivial $q^{O(n^d)}$, by using the Deletion lemma. For $d = 2$ Lemma suffices, and it holds for all fields. This question (for the case $d = 2$) was raised by Tim Gowers in a blog-post titled “A conversation about complexity lower bounds, continued”. Further one can find the list of all such polynomials in similar running time using Theorem 21 from [GKZ08].

To extend the approach taken in this work, one would need a good list-size bound for degree d polynomials where $\text{Rank}_{d-1}(P) \leq k$. This seems fairly challenging given current techniques. As a first step one would require the combining function f to be made explicit. This is done in the case $d = 3, 4$ in recent work of Haramaty and Shpilka [HS10].

Nevertheless, we believe that with Theorem 2.1 in hand, it is possible to improve on currently known bounds for all degrees. For cubic forms and higher, this leads to the question of how much the distance improves by deleting all low-dimensional polynomials. To formalize this, we define $\delta_q^h(d)$ which is the smallest weight at which codewords of unbounded dimension appear. Let

$$(14) \quad \delta_q^k(d) = \min\{\text{wt}(P) : P \text{ s.t. } \deg(P) \leq d, \dim(P) = k\}; \quad \delta_q^h(d) = \liminf_{k \rightarrow \infty} \delta_q^k(d).$$

In defining $\delta_q^k(d)$, we minimize over the infinite set of all degree d polynomials P with $\dim(P) = k$, the number of variables n could be arbitrary. But since $\dim(P) = k$, we may assume that P is on exactly k variables. Thus we are in effect minimizing over the finite set of $P : \mathbb{F}_q^k \rightarrow \mathbb{F}_q$ s.t. $\deg(P) = d$ and $\dim(P) = k$, so $\delta_q^k(d)$ is well-defined. Our interest in $\delta_q^h(d)$ stems from the following theorem.

Theorem 6.2. *For all d and q it holds that $\text{LDR}(\text{RM}_q(n, d)) \geq \min(\mathcal{J}_q(\delta_q^h(d)), \delta_q(d))$.*

Proof. Let $\eta = \min(\delta_q(d), \mathcal{J}_q(\delta_q^h(d))) - \varepsilon$. Our goal is to show that for any $\varepsilon > 0$, $\ell(\text{RM}_q(n, d), \eta)$ which is the list-size at radius η can be bounded independent of n .

Since $\eta \leq \delta_q(d) - \varepsilon$, by Theorem 2.1 $\ell(\text{RM}_q^k(n, d), \eta) \leq \ell(d, k, q, \varepsilon)$.

We choose k large enough that

$$\mathcal{J}_q(\delta_q^k(d)) > \mathcal{J}_q(\delta_q^h(d)) - \varepsilon/2 \Rightarrow \eta \leq \mathcal{J}_q(\delta_q^h(d)) - \varepsilon \leq \mathcal{J}_q(\delta_q^k(d)) - \varepsilon/2.$$

Every codeword outside of $\text{RM}_q^k(n, d)$ has $\dim(P) \geq k$, and hence $\text{wt}(P) \geq \delta_q^k(d)$. Thus we can invoke Lemma 5.1 with $\mathcal{C}' = \text{RM}_q^k(n, d)$ to conclude that

$$\ell(\text{RM}_q(n, d), \eta) \leq \frac{4}{\varepsilon^2} \ell(d, k, q, \varepsilon) = \ell'(d, k, q, \varepsilon).$$

This shows that the list-size at radius $\min(\delta_q(d), J_q(\delta_q^h(d))) - \varepsilon$ is bounded independent of n for every $\varepsilon > 0$, which proves the claim. \square

While it is *a priori* unclear if $\delta_q^h(d) > \delta_q(d)$, we conjecture that it is in fact substantially larger.

Conjecture 2. *For all d and q it holds that $\delta_q^h(d) \geq \left(1 - \frac{1}{q}\right) \delta_q(d - 2)$.*

It is easy to see that $\delta_q^h(d)$ is at most the claimed bound, by taking the product of a large rank quadratic form and a minimum weight polynomial of degree $d - 2$. In the case of \mathbb{F}_2 , Conjecture 2 is implied by classical results of Kasami and Tokura [KT70]. For degree 3 polynomials, Amir Shpilka observed that it follows from the results of [HS10].

Observe that $\left(1 - \frac{1}{q}\right) \delta_q(d - 2) \geq \delta_q(d - 1)$. Hence if Conjecture 2 holds, then Theorem 6.2 gives

$$\text{LDR}(\text{RM}_q(n, d)) \geq \min(J_q(\delta_q(d - 1)), \delta_q(d))$$

which improves on the bound of $\max(\frac{1}{2} \delta_q(d - 1), J_q(\delta_q(d)))$ from GKZ for all d and q where their bound is less than $\delta_q(d)$.

Claim 6.3. *For all d and q , it holds that*

$$\min(J_q(\delta_q(d - 1)), \delta_q(d)) \geq \max(J_q(\delta_q(d)), \frac{1}{2} \delta_q(d - 1)).$$

The inequality is strict except when $d = 1$ and $d \equiv 0 \pmod{q - 1}$, and in both those cases the RHS equals $\delta_q(d)$.

Proof. Note that for all $\eta \in [0, 1 - 1/q]$, we have $\eta/2 \leq J_q(\eta) \leq \eta$ with $J_q(\eta) = \eta$ iff $\eta = 1 - \frac{1}{q}$ and $J_q(\eta) = \eta/2$ iff $\eta = 0$.

Further, if $d = a(q - 1) + b$ for $1 \leq b \leq q - 1$, $\delta_q(d - 1) = \delta_q(d) \left(1 + \frac{1}{q-b}\right)$ hence

$$\frac{q}{q-1} \delta_q(d) \leq \delta_q(d - 1) \leq 2\delta_q(d).$$

The former is tight when $d \equiv 1 \pmod{q - 1}$, the latter when $d \equiv q - 1 \pmod{q - 1}$.

We now prove the above claim. Firstly, note that from the above inequalities, we have

$$J_q(\delta_q(d - 1)) > \frac{1}{2} \delta_q(d - 1) \quad \text{and} \quad J_q(\delta_q(d - 1)) > J_q(\delta_q(d)).$$

Secondly, we also have

$$\delta_q(d) \geq \frac{1}{2} \delta_q(d - 1) \quad \text{and} \quad \delta_q(d) \geq J_q(\delta_q(d)).$$

The first inequality is strict, except when $d \equiv q - 1 \pmod{q - 1}$. In this case, the GKZ bound is already tight. Similarly, the second inequality is strict except when $\delta_q(d) = 1 - \frac{1}{q}$, which holds when $d = 1$ or Hadamard codes, in which case the Johnson bound is tight. \square

7. APPLICATIONS TO LEARNING AND TESTING

The machinery of Fourier analysis over \mathbb{F}_q developed in previous sections allows to extend results which were previously only known to hold over \mathbb{F}_p or sometimes \mathbb{F}_2 to arbitrary fields. We present two examples from learning and testing respectively.

7.1. Learning Parity with Noise over Arbitrary Fields. The Noisy Parity problem is a central problem in learning theory [BKW03, FGKP06], with connections to coding and cryptography. There are cryptosystems whose security is based on the assumption that learning parity with random noise is hard over large fields (see [Reg10] and references therein). The two natural noise models for this problem are random noise and adversarial noise, which we define below. Unlike the \mathbb{F}_2 case, there are many possible models for random noise over \mathbb{F}_q of varying sophistication [LN98]. The model that we reduce to is the Discrete Memoryless Channel (DMC) noise model, which we define formally below. We use η for the (non-trivial) agreement rate rather than the noise rate.

Adversarial Channel: We are given examples $\langle x, \mathbf{F}(x) \rangle$ from some randomized function $\mathbf{F} : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ where $x \in \mathbb{F}_q^n$ is drawn uniformly at random and asked to find a linear function $L : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ so that $\text{Ag}(\mathbf{F}, L) \geq \frac{1}{q} + \eta$, if one exists.

Discrete Memoryless Channel (DMC): In this model, we are required to learn some linear function $\alpha : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$, from samples of the form $\langle x, \mathbf{F}(x) \rangle$. The noise is modeled by a $q \times q$ stochastic matrix W , where $w_{ij} = \Pr[\mathbf{F}(x) = j \mid \alpha(x) = i]$. Thus the noise added may depend on $\alpha(x)$ but not on x itself, unlike the adversarial model. But the DMC model is stronger than the additive noise model where the noise added is a random variable that is independent of the label. The matrix W is not known to the algorithm, but we assume that

$$\sum_{i \leq q} w_{ii} \geq 1 + q\eta.$$

This is analogous to assuming a bound on the overall noise rate since

$$\Pr_{x \in \mathbb{F}_q^n} [\mathbf{F}(x) = \alpha(x)] = \sum_{i \in \mathbb{F}_q} \Pr[\alpha(x) = i] w_{ii} = \frac{1}{q} \sum_i w_{ii} \geq \frac{1}{q} + \eta.$$

We will use the notation $\mathbf{F} = W(\alpha)$ to denote the received word obtained by corrupting α .

The adversarial channel model seems harder, being a generalization of the DMC model. In the adversarial setting there could a list of up to $\frac{1}{\eta^2}$ whereas in the DMC model, one can uniquely recover linear functions (up to scalar multiplication).

Lemma 7.1. *Assume that the linear function $\alpha : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ is corrupted in DMC model as described above. For any linear function β which is linearly independent of α , we have $d(\beta, \mathbf{F}) = 1 - \frac{1}{q}$.*

Proof. Our goal is to show that $\Pr_{x \in \mathbb{F}_q^n} [\mathbf{F}(x) = \beta(x)] = \frac{1}{q}$. Let us condition on the event $\alpha(x) = i$. Then $\mathbf{F}(x)$ is distributed according to w_{ij} , whereas $\beta(x)$ is distributed uniformly at random, by linear independence. Further the two variables are independent since fixing $\alpha(x)$ fixes the distribution of $\mathbf{F}(x)$. Thus we have

$$\Pr_{x: \alpha(x) = i} [\mathbf{F}(x) = \beta(x)] = \sum_{j \in \mathbb{F}_q} \frac{1}{q} w_{ij} = \frac{1}{q}.$$

Thus averaging over all i , we have $d(\mathbf{F}, \beta) = 1 - \frac{1}{q}$. □

We note that the linear independence condition is in fact necessary, since it is easy to construct matrices W where several multiples of scalar α have non-trivial agreement with \mathbf{F} .

Feldman *et al.* show that over \mathbb{F}_2 , there is an efficient reduction from learning parity with adversarial noise to the problem of learning parity with random noise. We extend their result to show such an equivalence between worst case noise and the DMC model for every field. The idea, as in the [FGKP06] reduction is to fold \mathbf{F} over a random subspace H . We show that with reasonable probability, the resulting randomized function is a parity function with random noise. To prove

this, we need to simultaneously work with all $q - 1$ Fourier polynomials, as opposed to a single polynomial in [FGKP06].

Fix $\alpha \in \mathbb{F}_q^n \setminus 0^n$. Let $\mathbf{G} = \mathbf{G}(\alpha)$ be the randomized function obtained by folding \mathbf{F} over α^\perp . In other words $\mathbf{G}(x) = \mathbf{F}(y)$ where y is sampled randomly from vectors such that $\alpha(y) = \alpha(x)$. By the definition of \mathbf{G} , for every $c \in \mathbb{F}_q^*$ we have $\hat{\mathbf{g}}^c(\beta) = \hat{\mathbf{f}}^c(\beta)$ if $\beta = d\alpha$ for some $d \in \mathbb{F}_q$, and $\hat{\mathbf{g}}^c(\beta) = 0$ otherwise. It is easy to see that \mathbf{G} preserves the agreement between F and (every multiple of) α , and that G can be obtained by corrupting α over a DMC with a suitable matrix W . We omit the proof of the following simple claim.

Lemma 7.2. *We have $\mathbf{G} = W(\alpha)$ where $w_{ij} = \Pr_y[\mathbf{F}(y) = j | \alpha(y) = i]$. Further, $\text{Ag}(\mathbf{G}, \alpha) = \text{Ag}(\mathbf{F}, \alpha) = \frac{1}{q} + \eta$.*

Of course, to sample from \mathbf{G} , we need to fold over α^\perp , and the aim of the algorithm is to find α (equivalently α^\perp). We circumvent this by showing that folding over a random subspace of suitable dimension gives a function that is close to \mathbf{G} with reasonable probability.

We begin with the following lemma which is an \mathbb{F}_q analogue of Lemma 3 in [FGKP06].

Lemma 7.3. *Fix any $\alpha \in \mathbb{F}_q^n \setminus \{0^n\}$. Pick $h_1, \dots, h_k \in \mathbb{F}_q^n$ randomly and let $H = \text{Span}(h_1, \dots, h_k)$. Let \mathbf{H} be the function obtained by folding f over H . Then*

$$\Pr_H[d(\mathbf{G}, \mathbf{H}) \leq q^{-(k-1)/2}] \geq \frac{1}{2q^k}.$$

Proof. We will show that with probability $\frac{1}{2q^k}$, the following two events hold:

- (1) $\alpha \in H^\perp$.
- (2) $\sum_{\beta \in \mathbb{F}_q^n \setminus \text{Span}(\alpha)} \hat{\mathbf{h}}^c(\beta)^2 \leq 2q^{-(k-1)}$ for every $c \in \mathbb{F}_q^*$.

We have $\alpha \in H^\perp$ if $\alpha(h_i) = 0$ for every $i \in [k]$, this happens with probability q^{-k} . Conditioning on this event, for any $\beta \in \mathbb{F}_q^n \setminus \text{Span}(\alpha)$, we have $\Pr_H[\beta \in H^\perp] = q^{-k}$ as the events $\alpha \in H^\perp$ and $\beta \in H^\perp$ are pairwise independent. Fix any $c \in \mathbb{F}_q^*$. Note that

$$\hat{\mathbf{h}}^c(\beta) = \begin{cases} \hat{\mathbf{f}}^c(\beta) & \text{for } \beta \in H^\perp \\ 0 & \text{otherwise.} \end{cases} \Rightarrow \sum_{\beta \in \mathbb{F}_q^n \setminus \text{Span}(\alpha)} \hat{\mathbf{h}}^c(\beta)^2 = \sum_{\beta \in H^\perp \setminus \text{Span}(\alpha)} |\hat{\mathbf{f}}^c(\beta)|^2$$

Hence we have

$$\mathbb{E}_H \left[\sum_{\beta \in \mathbb{F}_q^n \setminus \text{Span}(\alpha)} \hat{\mathbf{h}}^c(\beta)^2 \right] = \mathbb{E}_H \left[\sum_{\beta \in \mathbb{F}_q^n \setminus \text{Span}(\alpha)} |\hat{\mathbf{f}}^c(\beta)|^2 \mathbf{I}(\beta \in H^\perp) \right] = \sum_{\beta \in \mathbb{F}_q^n \setminus \text{Span}(\alpha)} |\hat{\mathbf{f}}^c(\beta)|^2 q^{-k} \leq q^{-k}.$$

Thus by Markov's inequality,

$$\Pr_H \left[\sum_{\beta \in \mathbb{F}_q^n \setminus \text{Span}(\alpha)} \hat{\mathbf{h}}^c(\beta)^2 \geq \frac{2}{q^{k-1}} \right] \leq \frac{1}{2q}.$$

Taking the union bound over all $c \in \mathbb{F}_q^*$, this holds for every c with probability $\frac{1}{2}$.

Thus both conditions (1) and (2) hold with probability $\frac{1}{2q^k}$. Assuming this happens, by Equation 4, we have

$$d(\mathbf{G}, \mathbf{H}) \leq \frac{1}{2} \left(\sum_{c \in \mathbb{F}_q^*} \sum_{\beta \in \mathbb{F}_q^n} |\hat{\mathbf{g}}^c(\beta) - \hat{\mathbf{h}}^c(\beta)|^2 \right)^{\frac{1}{2}} \leq \frac{1}{2} \left(\sum_{\beta \in \mathbb{F}_q^n \setminus \text{Span}(\alpha)} \hat{\mathbf{h}}^c(\beta)^2 \right)^{\frac{1}{2}} \leq q^{-(k-1)/2}.$$

□

We are now ready to prove our main theorem:

Theorem 7.4. *Assume there is an algorithm \mathcal{A} that solves the noisy parity problem over \mathbb{F}_q in the DMC model in time $T(\eta, n)$ using $S(\eta, n) \leq T(\eta, n)$ samples. Then there is an algorithm \mathcal{B} that solves the noisy parity problem over \mathbb{F}_q in the adversarial noise model in time $\text{poly}(q, T(\eta, n))$.*

Proof. Fix $\alpha \in \mathbb{F}_q^n \setminus \{0^n\}$ so that $\text{Ag}(F, \alpha) > \frac{1}{q} + \eta$. Assume that the algorithm \mathcal{A} uses $S = S(\eta, n)$ examples, time $T = T(\eta, n)$, and returns $\alpha(x)$ with probability $\frac{3}{4}$.

Pick k so that $q^{-(k-1)/2} < \frac{1}{10S}$. We pick a random subspace H and let \mathbf{H} be the function obtained by folding f over H . Assume that $d(\mathbf{G}, \mathbf{H}) \leq q^{-(k-1)/2}$, which happens with probability at least $\frac{1}{2q^k}$, by Lemma 7.3.

Let \mathbf{H}^S denote the distribution $\{\langle x_1, \mathbf{H}(x_1) \rangle, \dots, \langle x_S, \mathbf{H}(x_S) \rangle\}$, where the x_i s are sampled independently at random from \mathbb{F}_q^n , and define \mathbf{G}^S similarly. We have

$$\text{SD}(\mathbf{G}^1, \mathbf{H}^1) \leq \mathbb{E}_x[\text{SD}(\mathbf{G}(x), \mathbf{H}(x))] = d(\mathbf{G}, \mathbf{H}) \leq q^{-(k-1)/2}.$$

Hence $\text{SD}(\mathbf{G}^S, \mathbf{H}^S) \leq Sq^{-(k-1)/2} \leq \frac{1}{10}$.

Secondly, it is easy to simulate random examples from \mathbf{H} : following [FGKP06] draw a random example $\langle x, \mathbf{F}(x) \rangle$ and return $\langle x + h, \mathbf{F}(x) \rangle$. We sample from \mathbf{H}^S and run algorithm \mathcal{A} on the samples. Since \mathcal{A} returns α with probability $\frac{3}{4}$ when run on \mathbf{G}^S , it will now return α with probability at least $\frac{3}{4} - \frac{1}{10} > \frac{1}{2}$. Thus the probability of finding α is at least $\frac{1}{2q^k}$. We repeat this experiment $O(q^k) = O((qS)^2)$ times to improve the probability of success to a constant. □

7.2. Linearity Testing for all fields. The linearity testing problem is perhaps the most basic problem in all of property testing. Here we are given a function $F : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$, and are asked to test if it is close to a linear function. Since it was first studied in the seminal work of Blum *et al.* [BLR93b], this test has been analyzed over \mathbb{F}_2 [Hås01, BCH⁺96] and \mathbb{F}_p [HW03]. We analyze the test over arbitrary finite fields. While the analysis follows standard lines, using $q - 1$ polynomials allows us to analyze arbitrary functions without assuming that they are folded.

The test we analyze is the natural generalization of the BLR test.

Algorithm 2. LINEARITY TESTING OVER \mathbb{F}_q

Input: $F : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$.

Pick $x, y \in \mathbb{F}_q^n$, $\lambda \in \mathbb{F}_q^*$ at random. Test if $F(x) + \lambda F(y) = F(x + \lambda y)$.

It is clear that the test accepts all linear functions. The non-trivial part is to show that if the test accepts with probability significantly better than $\frac{1}{q}$, then it agrees with some linear function.

Theorem 7.5. *If $F : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ passes the linearity test with probability $\frac{1}{q} + \eta$, there a linear function $\alpha : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ so that $\text{Ag}(F, \alpha) > \frac{1}{q} + \eta$.*

Proof. Firstly, we claim that for any linear function $\alpha : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$,

$$(15) \quad \text{Ag}(F, \alpha) = \frac{1}{q} \left(1 + \sum_{c \in \mathbb{F}_q^*} \hat{f}^c(c\alpha) \right)$$

which follows from Equation 2 and the observation that the c^{th} Fourier polynomial corresponding to α is $\chi_{c\alpha}(x)$. We can arithmetize the acceptance probability as

$$\begin{aligned}
\Pr_{x,y,\lambda}[\text{Test accepts}] &= \frac{1}{q} \mathbb{E}_{x,y,\lambda} [1 + \sum_{c \in \mathbb{F}_q^*} \omega^{\text{Tr}(c(F(x) + \lambda F(y) - F(x + \lambda y)))}] \\
&= \frac{1}{q} \mathbb{E}_{x,y,\lambda} [1 + \sum_{c \in \mathbb{F}_q^*} \omega^{\text{Tr}(c(F(x)))} \omega^{\text{Tr}(c\lambda F(y))} \omega^{-\text{Tr}(cF(x + \lambda y))}] \\
&= \frac{1}{q} \mathbb{E}_{x,y,\lambda} [1 + \sum_{c \in \mathbb{F}_q^*} f^c(x) f^{\lambda c}(y) \overline{f^c(x + \lambda y)}] \\
&= \frac{1}{q} \mathbb{E}_{x,y,\lambda} [1 + \sum_{c \in \mathbb{F}_q^*} \sum_{\alpha, \beta, \gamma} \hat{f}^c(\alpha) \hat{f}^{\lambda c}(\beta) \overline{\hat{f}^c(\gamma)} \chi_\alpha(x) \chi_\beta(y) \overline{\chi_\gamma(x + \lambda y)}] \\
&= \frac{1}{q} \mathbb{E}_{x,y,\lambda} [1 + \sum_{c \in \mathbb{F}_q^*} \sum_{\alpha, \beta, \gamma} \hat{f}^c(\alpha) \hat{f}^{\lambda c}(\beta) \overline{\hat{f}^c(\gamma)} \chi_\alpha(x) \chi_\beta(y) \overline{\chi_\gamma(x)} \chi_{\lambda\gamma}(y)] \\
&= \frac{1}{q} (1 + \sum_{c \in \mathbb{F}_q^*} \sum_{\alpha} |\hat{f}^c(\alpha)|^2 \mathbb{E}_\lambda[\hat{f}^{\lambda c}(\lambda\alpha)])
\end{aligned}$$

Now assume that the test accepts with probability (exactly) $\frac{1}{q} + \eta$. So we get

$$\sum_{c \in \mathbb{F}_q^*} \sum_{\alpha} |\hat{f}^c(\alpha)|^2 \mathbb{E}_\lambda[\hat{f}^{\lambda c}(\lambda\alpha)] = q\eta \Rightarrow \sum_{c \in \mathbb{F}_q^*} \sum_{\alpha} \frac{1}{q-1} |\hat{f}^c(\alpha)|^2 \sum_{\lambda} \hat{f}^{\lambda c}(\lambda\alpha) = q\eta$$

Define a distribution \mathcal{D} on pairs (c, α) where we sample $c \in \mathbb{F}_q^*$ at random, and then pick α with probability $|\hat{f}^c(\alpha)|^2$. Then we get

$$\mathbb{E}_{(c,\alpha) \leftarrow \mathcal{D}} \left[\sum_{\lambda} \hat{f}^{\lambda c}(\lambda\alpha) \right] = q\eta$$

So there exists some $c \in \mathbb{F}_q^*$, $\alpha \in \mathbb{F}_q^n$ so that $\sum_{\lambda} \hat{f}^{\lambda c}(\lambda\alpha) = q\eta$. Writing $c' = \lambda c$, and $\alpha' = c^{-1}\alpha$, we get $\sum_{c' \in \mathbb{F}_q^*} \hat{f}^{c'}(c'\alpha') = q\eta$. But by Equation 15, this implies that

$$\text{Ag}(F, \alpha') = \frac{1}{q} (1 + q\eta) = \frac{1}{q} + \eta$$

□

ACKNOWLEDGMENTS

I thank Prasad Raghavendra and Venkatesan Guruswami for numerous discussions about this problem, without which this paper would not exist. I also thank Sergey Yekhanin, David Zuckerman, Jaikumar Radhakrishnan, Madhu Sudan, Amir Shpilka, Irit Dinur, Ran Raz and Alex Samorodnitsky for many helpful discussions.

REFERENCES

- [AGS03] A. Akavia, S. Goldwasser, and S. Safra. Proving hard-core predicates using list decoding. In *Proc. 44th IEEE Symposium on Foundations of Computer Science (FOCS'03)*, 2003.
- [AKK⁺05] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing Reed-Muller codes. *IEEE Transactions on Information Theory*, 51(11):4032–4039, 2005.
- [ALM⁺98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness of approximation problems. *J. ACM*, 45(3):501–555, 1998.

[AS98] S. Arora and S. Safra. Probabilistic checking of proofs : A new characterization of NP. *J. ACM*, 45(1):70–122, 1998.

[AS03] S. Arora and M. Sudan. Improved low-degree testing and its applications. *Combinatorica*, 23(3):365–426, 2003.

[Ass92] E. F. Assmus. On the Reed-Muller codes. *DMATH: Discrete Mathematics*, 107, 1992.

[BCH⁺96] Mihir Bellare, Don Coppersmith, Johan Håstad, Marcos A. Kiwi, and Madhu Sudan. Linearity testing in characteristic two. *IEEE Transactions on Information Theory*, 42(6):1781–1795, 1996.

[BKW03] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the statistical query model. *J. ACM*, 50(4):506–519, 2003.

[BLR93a] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical problems. *J. Comput. Syst. Sci.*, 47(3):549–595, 1993.

[BLR93b] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications to numerical problems. *J. Comput. Syst. Sci.*, 47(3):549–595, 1993.

[DGKS08] I. Dinur, E. Grigorescu, S. Kopparty, and M. Sudan. Decodability of group homomorphisms beyond the Johnson bound. In *Proc. 40th ACM Symposium on Theory of Computing (STOC’08)*, pages 275–284, 2008.

[Eli57] P. Elias. List decoding for noisy channels. Technical Report 335, Research Laboratory of Electronics, MIT, 1957.

[FGKP06] V. Feldman, P. Gopalan, S. Khot, and A. K. Ponnuswami. New results for learning noisy parities and halfspaces. In *Proc. 47th IEEE Symp. on Foundations of Computer Science (FOCS’06)*, 2006.

[GGR09] P. Gopalan, V. Guruswami, and P. Raghavendra. List-decoding tensor products and interleaved codes. In *Proc. 41st ACM Symposium on the Theory of Computing (STOC’09)*, 2009.

[GKS07] P. Gopalan, S. Khot, and R. Saket. Hardness of reconstructing multivariate polynomials over finite fields. In *Proc. 48th IEEE Symp. on Foundations of Computer Science (FOCS’07)*, pages 349–359, 2007.

[GKZ08] P. Gopalan, A. Klivans, and D. Zuckerman. List-decoding Reed-Muller codes over small fields. In *Proc. 40th ACM Symposium on the Theory of Computing (STOC’08)*, 2008.

[GL89] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In *Proc. 21st ACM Symposium on the Theory of Computing (STOC’89)*, pages 25–32, 1989.

[GOS⁺09] P. Gopalan, R. O’Donnell, A. Shpilka, R. Servedio, and K. Wimmer. Testing Fourier dimensionality and sparsity. In *ICALP (1)*, pages 500–512, 2009.

[GRS00] O. Goldreich, R. Rubinfeld, and M. Sudan. Learning polynomials with queries: The highly noisy case. *SIAM J. Discrete Math.*, 13(4):535–570, 2000.

[GS99] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and Algebraic-Geometric codes. *IEEE Transactions on Information Theory*, 45(6):1757–1767, 1999.

[GT09] B. Green and T. Tao. The distribution of polynomials over finite fields, with applications to the Gowers norms. *Contrib. Discrete Math.*, 4(2):1–36, 2009.

[Gur04] V. Guruswami. *List Decoding of Error-Correcting Codes*, volume 3282 of *Lecture Notes in Computer Science*. Springer, 2004.

[Gur06] V. Guruswami. *Algorithmic Results in List Decoding*, volume 2 of *Foundations and Trends in Theoretical Computer Science*. Now Publishers, 2006.

[Hås01] Johan Håstad. Some optimal inapproximability results. *J. ACM*, 48(4):798–859, 2001.

[HS10] Elad Haramaty and Amir Shpilka. On the structure of cubic and quartic polynomials. In *Proc. 42nd ACM Symposium on the Theory of Computing (STOC’10)*, pages 331–340, 2010.

[HW03] Johan Håstad and Avi Wigderson. Simple analysis of graph tests for linearity and PCP. *Random Struct. Algorithms*, 22(2):139–160, 2003.

[Joh62] S. M. Johnson. A new upper bound for error-correcting codes. *IEEE Transactions on Information Theory*, 8:203–207, 1962.

[Joh63] S. M. Johnson. Improved asymptotic bounds for error-correcting codes. *IEEE Transactions on Information Theory*, 9:198–205, 1963.

[JPRZ04] C. Jutla, A. Patthak, A. Rudra, and D. Zuckerman. Testing low-degree polynomials over prime fields. In *Proc. 45th IEEE Symp. on Foundations of Computer Science (FOCS’04)*, 2004.

[KKL88] J. Kahn, G. Kalai, and N. Linial. The influence of variables on Boolean functions. In *Proc. 29th IEEE Symp. on Foundations of Computer Science (FOCS’88)*, pages 68–80, 1988.

[KKMS05] A. T. Kalai, A. R. Klivans, Y. Mansour, and R. A. Servedio. Agnostically learning halfspaces. In *Proc. 46th IEEE Symp. on Foundations of Computer Science (FOCS’05)*, pages 11–20, 2005.

[KL08] T. Kaufman and S. Lovett. Worst-case to average-case reductions for polynomials. In *Proc. 49th IEEE Symp. on Foundations of Computer Science (FOCS’08)*, 2008.

[KL10] Tali Kaufman and Shachar Lovett. Weight distribution and list-decoding size of Reed-Muller codes. In *Proc. 1st Symposium on Innovations in Computer Science (ICS 2010)*, 2010.

[KM93] E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum. *SIAM Journal of Computing*, 22(6):1331–1348, 1993.

[KOS02] A. Klivans, R. O’Donnell, and R. Servedio. Learning intersections and thresholds of halfspaces. In *Proc. 43rd IEEE Symp. on Foundations of Computer Science (FOCS’02)*, pages 177–186, 2002.

[KR04] T. Kaufman and D. Ron. Testing polynomials over general fields. In *Proc. 45th IEEE Symp. on Foundations of Computer Science (FOCS’04)*, 2004.

[KT70] T. Kasami and N. Tokura. On the weight structure of Reed-Muller codes. *IEEE Transactions on Information Theory*, 16(6):752–759, 1970.

[Lip89] R.J. Lipton. New directions in testing. In *Proc. DIMACS workshop on Distributed Computing and Cryptography*, 1989.

[LN97] R. Lidl and H. Neiderreiter. *Finite Fields*. Cambridge University Press, 1997.

[LN98] A. Lapidot and P. Narayan. Reliable communication under channel uncertainty. *IEEE Transactions on Information Theory*, 44(6):2148–2177, 1998.

[MS77] F. MacWilliams and N. Sloane. *The Theory of Error-Correcting Codes*. North-Holland, 1977.

[PW04] R. Pellikaan and X. Wu. List decoding of q-ary Reed-Muller codes. *IEEE Transactions on Information Theory*, 50(4):679–682, 2004.

[Reg10] Oded Regev. The learning with errors problem. In *CCC 2010, invited survey*, 2010.

[Sam07] A. Samorodnitsky. Low-degree tests at large distances. In *Proc. 39th ACM Symposium on the Theory of Computing (STOC’07)*, pages 506–515, 2007.

[STV01] M. Sudan, L. Trevisan, and S. P. Vadhan. Pseudorandom generators without the XOR lemma. *J. Comput. Syst. Sci.*, 62(2):236–266, 2001.

[SU05] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudorandom generator. *J. ACM*, 52(2), 2005.

[Sud97] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. *Journal of Complexity*, 13(1):180–193, 1997.

[Sud00] M. Sudan. List decoding: Algorithms and applications. *SIGACT News*, 31(1):16–27, 2000.

[Tre03] L. Trevisan. List-decoding using the XOR lemma. In *Proc. 44th IEEE Symposium on Foundations of Computer Science (FOCS’03)*, page 126, 2003.

[TSZS01] A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors from Reed-Muller codes. In *Proc. 42nd IEEE Symp. on Foundations of Computer Science (FOCS’01)*, pages 638–647, 2001.

[Woz58] J. Wozencraft. List decoding. Technical Report 48:90-95, Quarterly Progress Report, Research Laboratory of Electronics, MIT, 1958.

APPENDIX A. PROOFS OF FOURIER-ANALYTIC CLAIMS

Proof of Fact 3.1. Let $f, g : \mathbb{F}_q \rightarrow \mathbb{R}$ denote the p.d.f.s of Y, Z respectively. We use the inner-product

$$\langle f, g \rangle = \mathbb{E}_{x \in \mathbb{F}_q} [f(x) \overline{g(x)}]$$

for which the function $\omega^{\text{Tr}(cx)}$ are an orthonormal basis. Then we have

$$f(x) = \sum_{c \in \mathbb{F}_q} \hat{f}(c) \omega^{\text{Tr}(cx)}$$

Under this inner product, we have the Fourier coefficients $\hat{f}(c) = \langle f, \omega^{\text{Tr}(cx)} \rangle$ and hence

$$(16) \quad \mathbb{E}_x [|f(x) - g(x)|] \leq (\mathbb{E}_x [|f(x) - g(x)|^2])^{\frac{1}{2}} = \left(\sum_{c \in \mathbb{F}_q^*} |\hat{f}(c) - \hat{g}(c)|^2 \right)^{\frac{1}{2}}$$

where in the last line, we use the fact that $\hat{f}(\phi) = \hat{g}(\phi) = \frac{1}{q}$ since f, g are p.d.f.s over \mathbb{F}_q .

Observe that

$$(17) \quad \mathbb{E}_x [|f(x) - g(x)|] = \frac{1}{q} \sum_{x \in \mathbb{F}_q} |f(x) - g(x)| = \frac{2}{q} \text{SD}(Y, Z)$$

and that for every $c \in \mathbb{F}_q^*$. Finally, we rewrite $\hat{f}(c)$ and $\hat{g}(c)$ in terms of y^c and z^c .

$$(18) \quad \begin{aligned} \hat{f}(c) &= \frac{1}{q} \sum_{x \in \mathbb{F}_q} f(x) \omega^{-\text{Tr}(cx)} \\ &= \frac{1}{q} \sum_{x \in \mathbb{F}_q} f(x) \omega^{\text{Tr}(-cx)} \\ &= \frac{1}{q} \mathbb{E}[\omega^{\text{Tr}(-cY)}] = \frac{1}{q} y^{-c} \end{aligned}$$

where we use $-\text{Tr}(c) = \text{Tr}(-c)$ which holds because Tr is \mathbb{F}_p -linear. Plugging equations 17 and 18 into Equation 16 we get

$$(19) \quad \frac{2}{q} \text{SD}(Y, Z) \leq \frac{1}{q} \left(\sum_{c \in \mathbb{F}_q^*} |y^c - z^c|^2 \right)^{\frac{1}{2}} \Rightarrow \text{SD}(Y, Z) \leq \frac{1}{2} \left(\sum_{c \in \mathbb{F}_q^*} |y^c - z^c|^2 \right)^{\frac{1}{2}}$$

□

Proof of Fact 3.2.

$$\begin{aligned} \text{Ag}(F, G) &= \mathbb{E}_x \left[\frac{1}{q} \sum_{c \in \mathbb{F}_q} \omega^{\text{Tr}(c(F(x) - G(x)))} \right] \\ &= \frac{1}{q} \left(1 + \sum_{c \in \mathbb{F}_q^*} \mathbb{E}_x [f^c(x) \overline{g^c(x)}] \right) \\ &= \frac{1}{q} \left(1 + \sum_{c \in \mathbb{F}_q^*} \langle f^c, g^c \rangle \right) \\ &= \frac{1}{q} \left(1 + \sum_{c \in \mathbb{F}_q^*} \sum_{\alpha} \hat{f}^c(\alpha) \overline{\hat{g}^c(\alpha)} \right) \end{aligned}$$

By symmetry, we also have

$$\text{Ag}(F, G) = \frac{1}{q} \left(1 + \sum_{c \in \mathbb{F}_q^*} \langle g^c, f^c \rangle \right) = \frac{1}{q} \left(1 + \sum_{c \in \mathbb{F}_q^*} \sum_{\alpha} \overline{\hat{f}^c(\alpha)} \hat{g}^c(\alpha) \right)$$

Similarly, we can write Hamming distance between F and G as

$$\begin{aligned} \Delta(F, G) &= 1 - \text{Ag}(F, G) = \frac{1}{2q} \left(2(q-1) - \sum_{c \in \mathbb{F}_q^*} \langle f^c, g^c \rangle + \langle g^c, f^c \rangle \right) \\ &= \frac{1}{2q} \sum_{c \in \mathbb{F}_q^*} \|f^c - g^c\|_2^2 \quad \text{Since } \|f^c\|_2 = \|g^c\|_2 = 1. \\ &= \frac{1}{2q} \sum_{c \in \mathbb{F}_q^*} \sum_{\alpha \in \mathbb{F}_q^n} |\hat{f}^c(\alpha) - \hat{g}^c(\alpha)|^2 \end{aligned}$$

□

Proof of Fact 3.3. We have

$$\begin{aligned} d(\mathbf{F}, \mathbf{G}) &= \mathbb{E}_{x \in \mathbb{F}_q^n} [\text{SD}(\mathbf{F}(x), \mathbf{G}(x))] \\ &= \mathbb{E}_{x \in \mathbb{F}_q^n} \left[\frac{1}{2} \left(\sum_{c \in \mathbb{F}_q^*} |\mathbf{f}^c(x) - \mathbf{g}^c(x)|^2 \right)^{\frac{1}{2}} \right] \quad \text{By Fact 3.1} \\ &= \frac{1}{2} \left(\sum_{c \in \mathbb{F}_q^*} \mathbb{E}_{x \in \mathbb{F}_q^n} [|\mathbf{f}^c(x) - \mathbf{g}^c(x)|^2] \right)^{\frac{1}{2}} \quad \text{Since } \mathbb{E}[X] \leq \mathbb{E}[X^2]^{\frac{1}{2}} \\ &= \frac{1}{2} \left(\sum_{c \in \mathbb{F}_q^*} \sum_{\alpha \in \mathbb{F}_q^n} |\hat{f}^c(\alpha) - \hat{g}^c(\alpha)|^2 \right)^{\frac{1}{2}}. \end{aligned}$$

□

Proof of Fact 3.4. Consider $\mathbf{f}^c(x) = \mathbb{E}_{\mathbf{F}}[\omega^{\text{Tr}(c\mathbf{F}(x))}]$. Since $\mathbf{F}(x)$ is a function of $\alpha_1(x), \dots, \alpha_k(x)$, so is $\mathbf{f}^c(x)$. Thus, the Fourier spectrum of \mathbf{f}^c is supported on $\text{Span}(\alpha_1, \dots, \alpha_k)$ for every c , so $\text{Spec}(\mathbf{F}) \subseteq \text{Span}(\alpha_1, \dots, \alpha_k)$. Hence $\dim(\text{Spec}(\mathbf{F})) \leq \dim(\mathbf{F})$.

In the other direction, fix any basis $(\alpha_1, \dots, \alpha_k)$ for $\text{Spec}(\mathbf{F})$. Then knowing $\alpha_1(x), \dots, \alpha_k(x)$ fixes $\mathbf{f}^c(x)$ for all $c \in \mathbb{F}_q^*$. But knowing the Fourier coefficients of the random variables $\mathbf{F}(x)$ allows us to determine the distribution of $\mathbf{F}(x)$. Thus $\dim(\mathbf{F}) \leq \dim(\text{Spec}(\mathbf{F}))$. □

Proof of Fact 3.5. Fix $h \in \text{Inv}(\mathbf{F})$. We have that for any $\lambda \in \mathbb{F}_q$,

$$\mathbf{f}^c(x) = \mathbf{f}^c(x + \lambda h) = \sum_{\alpha} \hat{\mathbf{f}}^c(\alpha) \chi_{\alpha}(x) \chi_{\alpha}(\lambda h).$$

By the uniqueness of the Fourier expansion, it follows that for every $\alpha \in \text{Spec}(\mathbf{F})$, $\chi_{\alpha}(\lambda h) = 1$ for every $\lambda \in \mathbb{F}_q$. But $\chi_{\alpha}(\lambda h) = \omega^{\text{Tr}(\alpha(\lambda h))} = \omega^{\text{Tr}(\lambda\alpha(h))}$. Thus we have $\text{Tr}(\lambda\alpha(h)) = 0$ for every $\lambda \in \mathbb{F}_q$, which implies that $\alpha(h) = \alpha \cdot h = 0$. So the Fourier spectrum is supported entirely on $\text{Inv}(\mathbf{F})^{\perp}$, implying that $\text{Spec}(\mathbf{F}) \subseteq \text{Inv}(\mathbf{F})^{\perp}$.

In the other direction, take a basis $(\alpha_1, \dots, \alpha_k)$ for $\text{Spec}(\mathbf{F})$. For any $h \in \text{Spec}(\mathbf{F})^\perp$ we have $\alpha_i(x + h) = \alpha_i(x)$. But since $\mathbf{F}(x)$ is a function of $(\alpha_1, \dots, \alpha_k)$, we have $\mathbf{F}(x) = \mathbf{F}(x + h)$, showing that $\text{Spec}(\mathbf{F})^\perp \subseteq \text{Inv}(\mathbf{F})$ hence $\text{Inv}(\mathbf{F})^\perp \subseteq \text{Spec}(\mathbf{F})$. \square

Proof of Lemma 3.6. We have

$$\begin{aligned} \mathbf{f}^c(x) &= \mathbb{E}_{\mathbf{F}}[\omega^{\text{Tr}(c\mathbf{F}(x))}] = \mathbb{E}_{h \in H}[\omega^{\text{Tr}(cF(x+h))}] = \mathbb{E}_{h \in H}[f^c(x+h)] \\ &= \mathbb{E}_{h \in H} \left[\sum_{\alpha \in \hat{F}_q^n} \hat{f}^c(\alpha) \chi_\alpha(x+h) \right] \\ &= \sum_{\alpha \in \hat{F}_q^n} \hat{f}^c(\alpha) \chi_\alpha(x) \mathbb{E}_{h \in H}[\chi_\alpha(h)]. \end{aligned}$$

To analyze this last term, note that if $\alpha \in H^\perp$, then $\alpha(h) = 0$ for every $h \in H$, so $\mathbb{E}_{h \in H}[\chi_\alpha(h)] = 1$. On the other hand, when $\alpha \notin H^\perp$ the variable $\alpha(h)$ is uniformly distributed over \mathbb{F}_q , hence $\mathbb{E}_{h \in H}[\chi_\alpha(h)] = 0$. Thus we have

$$\mathbf{f}^c(x) = \sum_{\alpha \in H^\perp} \hat{f}^c(\alpha) \chi_\alpha(x).$$

\square

Proof of Fact 3.7. If we define the function $G_\lambda(x) = F(x + \lambda b)$ then we have

$$g_\lambda^c(x) = \sum_{\alpha \in \hat{F}_q^n} \hat{f}^c(\alpha) \chi_\alpha(x + \lambda b) = \sum_{\alpha \in \hat{F}_q^n} \hat{f}^c(\alpha) \chi_\alpha(x) \omega^{\text{Tr}(\lambda \alpha(b))}$$

We have

$$\begin{aligned} \text{Inf}_b(F) &= \mathbb{E}_{\lambda \in \mathbb{F}_q} [\Delta(F, G_\lambda)] \\ &= \mathbb{E}_{\lambda \in \mathbb{F}_q} \left[\frac{1}{2q} \sum_{c \in \mathbb{F}_q^*} \sum_{\alpha \in \hat{F}_q^n} |\hat{f}^c(\alpha) - \hat{g}_\lambda^c(\alpha)|^2 \right] \\ &= \mathbb{E}_{\lambda \in \mathbb{F}_q} \left[\frac{1}{2q} \sum_{c \in \mathbb{F}_q^*} \sum_{\alpha: \alpha(b) \neq 0} |\hat{f}^c(\alpha)(1 - \omega^{\text{Tr}(\lambda \alpha(b))})|^2 \right] \\ &= \frac{1}{2q} \sum_{c \in \mathbb{F}_q^*} \sum_{\alpha: \alpha(b) \neq 0} |\hat{f}^c(\alpha)|^2 \cdot \mathbb{E}_{\lambda \in \mathbb{F}_q} [|1 - \omega^{\text{Tr}(\lambda \alpha(b))}|^2] \\ (20) \quad &= \frac{1}{q} \sum_{c \in \mathbb{F}_q^*} \sum_{\alpha: b \cdot \alpha \neq 0} |\hat{f}^c(\alpha)|^2 \end{aligned}$$

\square

Proof of Lemma 3.8. We have

$$\text{Inf}_b(\mathbf{F}) = \mathbb{E}_{x \in \mathbb{F}_q^n, \lambda \in \mathbb{F}_q} [\text{SD}(\mathbf{F}(x), \mathbf{F}(x + \lambda b))] = \mathbb{E}_{\lambda \in \mathbb{F}_q} d(\mathbf{F}(x), \mathbf{F}(x + \lambda b))$$

As before, we set $\mathbf{G}(x) = \mathbf{F}(x + \lambda b)$ and compute its Fourier polynomials. Using Equation 4, we get

$$\begin{aligned}
\text{Inf}_b(\mathbf{F}) &= \mathbb{E}_{\lambda \in \mathbb{F}_q} \left[\frac{1}{2} \left(\sum_{c \in \mathbb{F}_q^*} \sum_{\alpha: \alpha(b) \neq 0} |\mathbf{f}^c(\hat{\alpha})(1 - \omega^{\text{Tr}(\lambda\alpha(b))})|^2 \right)^{\frac{1}{2}} \right] \\
&\leq \frac{1}{2} \left(\mathbb{E}_{\lambda \in \mathbb{F}_q} \left[\sum_{c \in \mathbb{F}_q^*} \sum_{\alpha: \alpha(b) \neq 0} |\mathbf{f}^c(\hat{\alpha})(1 - \omega^{\text{Tr}(\lambda\alpha(b))})|^2 \right] \right)^{\frac{1}{2}} \text{ Since } \mathbb{E}[X] \leq \mathbb{E}[X^2]^{\frac{1}{2}} \\
&= \frac{1}{2} \left(\sum_{c \in \mathbb{F}_q^*} \sum_{\alpha: \alpha(b) \neq 0} |\mathbf{f}^c(\hat{\alpha})|^2 \mathbb{E}_{\lambda \in \mathbb{F}_q} [|1 - \omega^{\text{Tr}(\lambda\alpha(b))}|^2] \right)^{\frac{1}{2}} \\
&= \frac{1}{\sqrt{2}} \left(\sum_{c \in \mathbb{F}_q^*} \sum_{\alpha: \alpha(b) \neq 0} |\mathbf{f}^c(\hat{\alpha})|^2 \right)^{\frac{1}{2}} \text{ Since } \mathbb{E}_{\lambda} [|1 - \omega^{\text{Tr}(\lambda)}|^2] = 2
\end{aligned}$$

□

MSR-SILICON VALLEY, MOUNTAIN VIEW, CA. AN EXTENDED ABSTRACT OF THIS WORK APPEARS IN FOCS 2010.

E-mail address: parik@microsoft.com