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ABSTRACT

Human interaction with devices is constrained to the sur-
face of these devices through widely used touch sensors. In
this work, we enable touchless interfaces that allow humans
to interact with devices from a distance. Our approach is
based on the design of a two-dimensional array of RF sen-
sors specifically designed to detect the proximity of human
body. Each sensor in the array acts as a near-field RF prox-
imity sensor. When parts of the human body come to close
proximity to the sensor, they slightly disturb its frequency
response, allowing the detection of human fingers or hands.
Since our approach is RF-based, it presents several distinct
advantages over current sensing technologies which include
the ability to work without line of sight, the ability to be
easily embedded behind any type of surface, and the abil-
ity to scale to almost any size; all while operating at a sim-
ilar power domain to current proximity sensing technolo-
gies. Using a prototype implementation and data collected
through a user study, we demonstrate that the RF-array can
detect the position and distance of a human hand located at
a distance of up to 2 inches with higher than 75% accuracy.

1. INTRODUCTION

Several decades ago, computers were mainly large desk-
top devices with which human interaction took place through
dedicated peripherals such as a keyboard and a mouse. With
the rise of mobile computing, phones and tablets became
the primary computing devices making touch sensors the
new standard in human-computer interaction. However, as
computing devices evolve and co-exist in multiple form fac-
tors, ranging from tiny wearable devices, such as watches
and wearable sensors, to huge displays like TVs, the limita-
tions of touch sensor as the primary input medium start to
emerge. In the case of small screens, like the ones found
on smartwatches, touching the screen is inherently difficult
as the user’s fingers can completely cover the screen, con-
stantly obstructing the visibility of the actual content. On the
other hand, interacting with touch sensors on large displays
becomes cumbersome as the user needs to physically move
his arm (i.e., large desktop screens) or even walk across the
device (i.e., large displays like the ones provided by Percep-
tive Pixel) to interact with the displayed content.

fMicrosoft Research
Redmond, WA
{dejean,rang,dlymper}@microsoft.com

To address these limitations, the research community has
been actively exploring touch-less human-computer interac-
tion techniques. To be able to support the wide range of com-
puting form factors, though, any touch-less human-computer
interaction technique must satisfy four basic requirements.
First, it should be able to scale along with the size of the de-
vice to be incorporated. A viable approach should be eas-
ily incorporated in a small wearable device like a watch,
and at the same time appropriately scale to orders of mag-
nitude higher sizes to enable interactions with larger devices
such as TV displays. Second, the power consumption of the
touch-less interface circuitry should be kept minimal to en-
able long-term operation of battery operated devices such as
watches and phones. Third, the distance range at which the
interface operates should be able to appropriately scale with
the form factor of the device. For instance, for a watch-like
device interactions within a few centimeters are appropri-
ate, but for larger devices such as computer monitors and
TVs, this distance can be in the order of meters. Fourth, the
touch-less interface circuitry should be easily embedded in
the device (i.e., stacked behind the display panel) without re-
quiring precious real-estate that is usually dedicated to large
displays.

Kinect [14] and LeapMotion [15] are the most popular
commercially available touch-less user interfaces today. The
former uses an advanced depth sensing camera that can ac-
curately capture the skeleton of the user and enable whole-
body gestures. Even though very accurate, it suffers from
size and power limitations that prevent easy embedding in
smaller, battery operated devices such as watches and phones.
LeapMotion, on the other hand, leverages low power in-
frared sensors to accurately determine the distance of your
fingers from the device, and properly translate your finger
motion into gestures. Even though accurate and low power,
such a solution is inherently difficult to embed into smaller
devices because of the line-of-sight requirement. Similarly
to other optical solutions[3], the infrared sensors and the
supporting circuitry cannot be embedded behind the display
or within the device, as they need to directly observe the
user’s fingers/hands.

At the physical layer, there has been a lot of research on
generating touch-less interactions based on capacitive sen-



sors [25]. In general, capacitive technologies require a user
to touch an electrode in order to be sensed. However, there
have been a few instances where a user does not have to be in
contact with the electrode for sensing to take place [1], but
this vertical sensing range is extremely small (well below
lem). In addition, with this approach only a single scalar
capacitive change is recorded. Even though a single scalar
capacitive change can be accurate enough to identify a fin-
ger tap on a screen, it does not provide enough resolution for
accurately detecting more complex 3D gestures.

Recently, researchers at Disney Research proposed a new
technology called Touche [20], that instead of recording a
single scalar capacitive change, it analyzes capacitive change
across a small frequency band. This higher resolution in-
formation can be used to detect how an electrode is con-
tacted, and possibly be used for complex gesture recogni-
tion. Capacitive-based approaches to touchless interaction
have two major limitations. First, in order to detect the pres-
ence of a human finger from a distance, the size of the elec-
trode must be relatively large (approximately two orders of
magnitude larger that the surface area of a human finger).
Second, capacitive based sensors do not scale well to large
screens due to the increased resistance over long electrodes.

In this work, we present a pure RF-based approach to real-
time, touchless gesture recognition [17]. Our approach con-
sists of a 2-dimensional array of RF sensors specifically de-
signed to detect the proximity of human body (i.e., finger,
hand, etc.). Each sensor in the array acts as a near-field RF-
based proximity sensor, that has been designed to resonate
at the 6-8GHz frequency range. When parts of the human
body come to close proximity with the sensor they slightly
disturb its frequency response. By monitoring variations in
the 6-8GHz frequency response of the sensor, the detection
of human fingers or hands is feasible. By combining mul-
tiple sensors into a 2-D array, we create a high resolution
RF-based proximity sensing solution that can track the fin-
gers and hands of a user over space and time, and therefore
recognize gestures.

Smaller or larger form factors can be easily achieved by

simply adding or removing RF sensors from the 2-dimensional

array. In addition, the effective range and sensitivity of the
proximity sensing simply depends on the size of the sensor
used, and thus it can be easily adjusted. Since the proposed
solution is RF-based, the sensor array can be easily embed-
ded behind a display or any other surface while still enabling
real-time gesture recognition. Every surface or object added
between the user’s hand and the sensor array manifests as a
constant shift in the frequency response of each sensor in the
array, and therefore can be easily taken into account during
calibration.

Recognizing gestures in real-time on top of the two di-
mensional array of RF sensor poses two major challenges.
First, simultaneously driving an array of sensors with such
high frequency signals becomes a bottleneck. Simply driv-
ing the input and sensing the frequency response of all the

sensors can require high computation and power resources.
We address this problem by intelligently multiplexing the
sensors at a high rate. In that way, only one sensor is active
at any given time, significantly reducing the power and com-
putation requirements. In addition, we demonstrate how we
can efficiently generate 6-8GHz signals at a low cost and low
power, by simply leveraging an MSP430 micro-controller,
an RC filter, and a voltage controlled oscillator. When com-
bined, these two techniques allow us to drive and sense the
frequency response of a 2-dimensional high frequency sen-
sor array at a power overhead that is comparable to that of a
simple IR proximity sensor.

Second, reading the frequency response of a sensor at this
wide frequency band (6-8GHz) requires significant amount
of time. For each sensor element, multiple frequencies need
to be set and then the response at those frequencies needs to
be recorded. Given that the frequency response of all sen-
sors in the array must be computed, this process can easily
take several seconds, preventing any real-time gesture recog-
nition. To address this problem, we perform feature selec-
tion analysis, and show that only a small set of frequency
responses can achieve recognition rates similar the highest
possible gesture recognition rate.

Using a prototype implementation of the 2-dimensional
sensor array', and data collected across 10 users, we first
show that we can accurately detect the position and distance
of the user’s hand above the sensor array. By properly se-
lecting the parts of the frequency response that are the most
important to distance and position classification, we show
that real-time gesture recognition can be performed with ac-
curacy higher than 75%.

The rest of the paper is organized as follows. Section 2
presents the basic principle of the single sensor cell, and Sec-
tion 3 describes the 2 dimensional sensor array design and
its supporting circuitry. Section 5 presents the experimental
results of a real user study for classifying four different ges-
tures types in real time. Section 6 provides an overview of
the related work, and Section 7 concludes the paper.

2. RF SENSOR CELL DESIGN

Building a sensor cell for sensing the presence of human
fingers requires the use of a cell that is robust to wear and
tear, cheap to manufacture, low in profile, and can be made
small for integration into mobile devices. In addition, in-
teraction between a human finger and the sensor cell must
be unobstructed by dielectric materials in between, small in
vertical sensing range, simple to scan the response, and have
a high enough resolution to distinguish uniqueness.

To meet all the requirements of sensing the proximity of
a human finger, a topology consisting of a two-port, half-
wavelength coupled bandpass filter with a resonator patch
loaded on top was selected. Figure 1 shows a model of the
sensor cell. On the bottom of the sensor lies a ground plane.

'A video showing the sensor array in action can be seen in http:
//sdrv.ms/J3LHGh



(a) Top View

(b) The 3 Layers

Figure 1: A schematic view of the single sensor cell. The bottom layer is the ground plane. The two-port, half-
wavelength coupled bandpass filter is the middle layer, and the resonator path sits on top. The size of the resonator
patch of the cell is 15 mm x 15 mm, and the total thickness is 1.6 mm.

The filter is in the middle, and the resonator patch is on the
top. The frequency response of the bandpass filter is between
6-8 GHz.

This sensor works by having the user’s finger interact with
the resonator patch of the cell, while the spectral response is
recorded through a bandpass filter. The operational princi-
ple of the single sensor lies on couple-line filters, a detailed
explanation of which can be found in [7]. At a high level,
the sensor cell in Figure 1 works as follows. Each of the
two ports acts as an input and output respectively. At the
input port (right most line in the middle layer in Figure 1)
a sine wave signal with a frequency in the range of 6-8GHz
is applied. The application of the high frequency signal ex-
cites current in the input port, that leads to capacitive cou-
pling between the input port and the middle line. This in
turn leads to capacitive coupling between the middle line
and the output port (left most line in the middle layer in Fig-
ure 1). This coupling of energy allows signals at frequencies
within a certain band to be transmitted, while other outside
of the given band to be suppressed. The length of the middle
coupling line is a half-wavelength long, and in turn, deter-
mines the frequency of operation for the filter. By placing a
resonator patch above the filter, energy from the filter cou-
ples to the resonator patch. This has two effects. First, the
patch creates a second bandpass response around 7.8 GHz,
and secondly, the patch radiates a small zone of electromag-
netic fields above its surface. This zone of electromagnetic
energy establishes the vertical sensing range for the sensor
cell. Therefore, placing a human finger above the cell alters
the frequency response, thus, creating a unique spectral sig-
nature of vertical placement of the human finger above the
cell.

In practice, a sine wave at the frequency range of 6-8GHz
is applied to one of the ports of the sensor cell. Due to the
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Figure 2: Transmission response for a human finger
placed 2, 5, 10, and 20 mm above a single sensor cell as
well as the case when no finger is present (denoted as ref-
erence).

capacitive coupling between the 3 lines in the middle layer
shown in Figure 1, a frequency response can be automat-
ically recorded at the other port of the single sensor cell.
When a human finger comes in close proximity to the sen-
sor cell, the electromagnetic field radiated from the resonator
patch on the top layer in Figure 1 is disturbed resulting into
a change to the frequency response at the output port. By ex-
citing the input port with sine waves of different frequencies
within the 6-8GHz range, multiple transmission responses
can be recorded to better characterize the distance, position,
and size of the finger placed close to the sensor cell.



To better illustrate the proposed sensor’s operation, Fig-
ure 2 shows the transmission response of the sensor across
frequencies when a finger is placed 2, 5, 10, and 20 mm
above the sensor cell, as well as in the case where no finger
is present (denoted as reference). It is clear that each place-
ment of the finger creates a unique frequency response. It is
extremely important to note that the purpose of this research
is to design a proximity sensor to sense different positions
of a human finger in close proximity to the sensor. Using a
small band of frequencies, as opposed to a single frequency,
provides more detailed characterization of the finger place-
ment, enabling better distinction across multiple distances.
For example, the frequency response at d = 5mm and 20mm
are the same at 6.6 GHz, but if we analyze a band of fre-
quencies around 6.6 GHz, it is evident that the responses at
d = 5mm and 20mm are clearly unique to each other. This
feature is essential in high resolution sensing, and the key to
enabling more complex 3D gestures.

2.1 Design Considerations

This sensor design offers several benefits. It is a circuit
that uses only passive distributed printed components, so
the cell itself is not a source of power consumption. It is
very cheap to manufacture, low in profile, and provides a
small but practical vertical sensing range. Another reason
for choosing this sensor cell topology is due to the properties
of bandpass filters. Bandpass filters allow a higher amount
of energy to be transmitted through from one port to another;
thus, the change in received power versus transmitted power
can be more easily detected.

Ideally, the frequency of operation of the sensor cell should
be low. This would enable low-cost, low power circuity to
easily interface with the input and output ports of the sensor
cell. Unfortunately, the frequency of operation of the sensor
cell is fundamentally limited by the size of the surface area
of the object being measured (in this case, the human finger).
If a sensor cell is larger than the finger’s surface area, the fin-
ger does not significantly affect the interrogation zone of the
cell, and thus it cannot be reliably detected. As a result, the
size of the sensor cell has to be similar to the surface area of
an average human finger.

However, the operating frequency of the cell is limited
by its size. As shown in Figure 1, the length of the middle
line in the middle layer of the sensor determines the oper-
ating frequency of the bandpass filter. The longer this line
is, the lower its operating frequency. Given that the size of
the cell needs to be smaller than the surface area of a typical
human finger, the operating frequency of the sensor cell is
constrained to the 6-8GHz range.

3. RF-BASED 3D GESTURE SENSING

The single sensor cell described in the previous section
was designed to sense the vertical proximity of a human fin-
ger as it approaches the interrogation zone of the cell. Note
that the cell itself only offers a 1-dimension interaction with
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Figure 4: The prototype implementation of the two-
dimensional RF array with the supporting circuitry.

a human finger. Whole hand gesture recognition, however,
requires the ability to sense the whole hand and its position
in the 3D space. To enable this type of 3D interaction, we
leverage the sensor cell as a building block to construct a
two-dimensional array. In particular, we combine 32 sensor
cells into a single 4 x 8 matrix as shown in Figure 3. The
size of the RF array is slightly larger than that of a typical hu-
man hand. As the human hand hovers over the board, each
sensor cell senses a different part of the hand. As the hand
moves to the left and right, the interrogation zone of differ-
ent subsets of sensor cells is disturbed, allowing us to track
the hand in the two dimensional space. In addition, as the
hand moves along the z axis, the distance from the sensors
changes, resulting in a change in the frequency response of
these sensors (Figure 2). By monitoring these changes in
each cell’s frequency response, the RF matrix can track the
hand in three dimensions.

However, combining 32 sensor cells into a single two-
dimensional array to form a high resolution RF-sensor poses
several challenges. First, each of the sensors needs to be
properly excited with multiple frequencies in the range of
6-8Ghz, and the corresponding frequency response of the
sensor must be recorded. Exciting the sensor cells with such
high frequency signals at a low power and low cost is chal-
lenging. Second, to enable real-time gesture recognition, all
32 sensors should be excited separately and all 32 frequency
responses must be read faster than the user performs the ges-
ture.

To address these challenges, we have designed a system-
level architecture around the RF array that is comprised of 4
distinct components: a low power micro-controller, a sensor
cell driver, a switching network, and a power detector.

The low power micro-controller, a TT MSP430 CPU[12],
was chosen as it has a low power envelope while supporting
the types of IO needed, and providing the necessary com-
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Figure 3: A schematic diagram of the setup configuration. The bolded components and connectors represent the high
frequency (RF) components of the circuit. There is a DC coupling capacitor on every connection which is not presented
here. The unbolded components and connectors are the low frequency and control components.

puting power. The micro-controller is able to configure a
two-layer network of switches to select an individual sensor
cell from the array. In that way, at any given time, only a sin-
gle sensor cell is active. Even though more time consuming,
this approach is necessary to constraint power consumption,
as simultaneously driving all 32 sensors with high frequency
signals comes with a high power overhead.

Therefore, the micro-controller selects a a sensor cell and
configures the sensor cell driver to generate a high frequency
signal in the 6-8GHz range and use it to drive the selected
sensor cell. The sensor cell driver contains the necessary
circuitry to enable a low power microprocessor running at
16MHz to generate 6-8Ghz sine waveforms. When the high
frequency signal at the input of the sensor cell has been ac-
tivated, a power detector is used at the output port of the
sensor cell to record the frequency response of the selected
sensor cell at the specified frequency. The power detec-
tor [22] converts the frequency response of the sensor cell
into a DC voltage? that is directly sampled by the embedded
A/D converter on the micro-controller. This process is re-
peated for multiple frequencies spanning the 6-8Ghz range,
and for each of the 32 sensor cells in the RF array.

Once a complete scan of the RF array has been completed,

2As an alternative, it is possible to mix the signal from the sensor
with the signal from the VCO to get a DC level signal without using
a power detector. We chose to use the power detector to simplify
the experimentation process.

the hosting device uses an inference algorithm to compute
the position of the hand, if any. By tracking the position and
distance of the hand from the board continuously, the RF
array enables real-time 3D gesture sensing.

Figure 5 shows the the data acquired from a complete scan
of the sensor matrix under 3 conditions. The red curve shows
the measurements when there is no object in the vicinity of
the sensor matrix, the blue shows the data when a hand is
present over the upper part of the board at a distance of 0.5-
inches. The green curve shows the data when a hand is cov-
ering the lower part of the board at a distance of 0.5-inches.
While the signal follows similar patterns in all conditions,
some deviations are apparent and allow recognition of the
different gestures. To better demonstrate this, Figure 6(a)
shows the response of a single cell under the same condi-
tions. This plot is a zoom in on the response of the second
from the left cell on the lowest row in Figure 5. The mea-
surements from this cell are very similar when the board is
clear and when a hand is covering its upper parts. How-
ever, when a hand is covering the lower parts of the board,
the measurements deviate in a way that allows recognition.
Similarly, Figure 6(b) is a zoom in on the upper right cell of
the matrix. In this figure we see larger deviation when the
hand covers the upper part of the board.

By closely observing Figure 5, two imperfections of the
prototype board we built become apparent. First, note that
the frequency response of the different RF-cells is very dif-
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Figure 5: The frequency response of the 32 cells under 3 conditions. The red curve represents the case in which there is
no object in the proximity of the RF matrix, the blue is when a hand is on the upper part of the board and the green is
when a hand is on the lower part of the board. The X-axis is the value of the PWM and hence represents the frequency
and the Y-Axis is the power measurement as measured by the A/D converter.
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Figure 6: The frequency response of two sensor cells from Figure 5. (a) sensor cell 29 in the lower part of the board. (b)
sensor cell 3 in the upper part of the board. For both cells, the frequency response under 3 conditions is shown. The
red curve represents the case where there is no object in the proximity of the RF array, the blue is when a hand is on
the upper part of the array and the green is when a hand is on the lower part of the array. The X-axis is the value of the
PWM and hence represents the frequency and the Y-Axis is the power measurement as measured by the A/D converter.
The cell in the lower part of the board (cell 29) reacts to the hand above it while the cell on the upper part of the board

(cell 3) reacts to the hand above its part of the board.

ferent from one another. This is due to the fact that the pro-
totype was built out of two substrate boards that were man-
ually glued together. This was necessary since each board
is made of a different material as described in Section 2.
However, the slight misalignments create noticeable affects
when working in such high frequencies. It is also noticeable
that the eight upper cells are reading lower values and have
higher noise levels. Since these cells were connected to the
same SP8T switches, this is likely to be due to imperfections
in the manual soldering process. Both of these imperfections
can be addressed when production-quality construction of
the RF array is leveraged.

In the next sections we describe the design of the sensor
cell driver and the RF array in more detail.

3.1 Single Sensor Cell Driver

The purpose of the sensor cell driver is to enable the low
power microprocessor running at 16MHz to generate 6-8Ghz
sine waveforms. To enable this, we leverage a voltage con-
trolled oscillator (VCO) chip [19]. The VCO is able to gen-
erate high frequency signals based on a DC input voltage in
the range of 7-9V. The higher the voltage is, the higher the
frequency of the signal will be.

However, the MSP430 processor’s voltage level is at 3.3V,
significantly lower than the 7-9V input range of the VCO. In
addition, even within the 0-3.3V operating voltage range of
the micro-controller, there is no way to generate DC volt-
age levels at finer levels of granularity (i.e., 1V, 1.2V, 1.4V
etc.). The ability to generate multiple constant DC levels is
necessary to excite the sensor cells with multiple frequencies

using the VCO.

We address these limitations in two steps. First, we feed
the Pulse Width Modulation (PWM) output of the micro-
controller into a low pass filter (R-C circuit) to generate fine-
grained DC voltage levels. The PWM output of the micro-
controller is a square pulse with an adjustable duty cycle.
By properly adjusting the duty cycle, we control the amount
of time that the PWM pin is at 3.3V. While at 3.3V, the ca-
pacitor of the R-C circuit is charged to a non-zero voltage
level. While the PWM output is at 0V, the output of the R-
C filter is not OV, but at the voltage level that the charged
capacitor is able to maintain. Note that as the capacitor dis-
charges over time, the output voltage of the R-C filter also
decreases. However, as the PWM output oscillates between
0V and 3.3V, the capacitor is automatically re-charged, be-
ing able to maintain a constant DC voltage at the output of
the R-C circuit. The DC voltage depends on the duty cycle
of the PWM pulse. By properly setting the duty cycle, dif-
ferent DC voltage levels are generated at the output of the
R-C filter.

The PWM signal has a frequency of 124KHz (16MHz
divided by 135). In order to obtain the needed voltage levels,
the duty cycle is scanned in the range of 1/135...128/135.
In that way, the frequency response of each sensor cell is
recorded for 128 different frequencies.

Note that the DC voltages produced this way are still within
the OV-3.3V range, which is less than the voltage input range
of the VCO. An amplifier [21] is used to raise the voltage
levels, so that they are compatible with the VCO input.
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Figure 7: Illustration of the 4 x 8 sensor board with in-
tegrated switches. The different colors represent the dif-
ferent layers. The blue is the top layer, the yellow is the
middle layer and the red is the bottom layer. The total
size of the board is 210 mm x 195mm. The row-to-row
separation between the cells is about 6.5 mm, while the
column-to-column separation is about 7.2 mm.

3.2 RF Array

Preserving the same requirements outlined in the descrip-
tion of the single sensor cell, a 4 x 8 array of single cells is
designed onto a single multilayer board to create a new 3D
interactive sensor layer. Figure 7 shows an illustration of this
new design. The arrangement of utilizing a two-port, half-
wavelength coupled bandpass filter with a resonator patch is
maintained for each of the 32 sensor cells. Besides the 32
sensors, the board is equipped with 10 RF switches, addi-
tional RF lines and DC control lines to control the switches,
and DC bias lines to power the switches. In order to main-
tain a compact design that is simple to implement and cheap
to manufacture, the ground plane and the bandpass filter ex-
ist on the same layer in a coplanar waveguide configuration.
All of these lines have 502 impedances. This implementa-
tion allows the use of only two substrate boards to realize
this sensor design. The use of 32 single sensor cells in this
configuration produces 32 transmission responses that can
be analyzed for unique signatures in the presence of a hu-
man hand similar to the responses of Figure 5.

In this multi-sensor design, it is strongly desired to mini-
mize the number of RF lines on the board to decrease poten-
tial cross coupling of signals and reduce power consumption.

Therefore, switches are implemented in this design to facil-
itate the transmission and reception of signals. Of the 10
switches used in the sensor board, eight of them are GaAs
MESFET single-pole eight-throw (SP8T) switches [10], and

two are GaAs MESFET single-pole four-throw (SP4T) switches [9].

Figure 8(a) displays a simplified and enlarged block di-
agram of the interaction between the SP8T switches and a
representative set of 8 sensor cells. A pair of SPST switches
(one for the transmission side of the filter and one to control
the receive side) is used to control the RF signals of the eight
sensor cells. The RF lines of each SP8T switch are voltage-
controlled by a 3-to-8 decoder. Each SP8T switch contains
one single-pole RF line, eight RF throw lines (connected to
each sensor cell), three voltage-controlled lines to control
the eight RF throw lines, and a DC bias line. The RF lines
of the SP8T switch are bidirectional; therefore, for the Tx
switches, the single-pole RF line operates as an input line,
and the eight RF throw lines serve as output lines. When re-
ferring to the Rx switches, this operation is reversed. All of
the DC lines (bias line and control lines) are on the backside
of the board to preserve good isolation between RF and DC
signals. Replicating this process four times governs how the
signals of the 4 x 8 matrix are controlled.

Figure 8(b) illustrates a block diagram of the interaction
between the SP4AT and SPS8T switches. Here, each of the
single-pole RF lines of the Tx SP8T switch is connected to a
throw line of the Tx SP4T switch. The same connections ex-
ist on the receive side. The RF lines of each SP4T switch are
voltage-controlled by a 2-to-4 decoder. Each SP4T switch
contains one single-pole RF line, four RF throw lines (each
connected to an SP8T switch), two voltage-controlled lines
to control the four RF throw lines, and a DC bias line. The
RF lines of the SP4T switch are also bidirectional; hence, for
the transmit side, the single-pole RF line operates as an input
line, and the four RF throw lines serve as output lines. When
referring to the Rx switches, this operation is reversed.

4. TIMING AND POWER ANALYSIS

In this section we analyze the timing of the sensors, that
is, the rate in which it completes a scan, and its power re-
quirements.

4.1 Timing

Each scan of the RF matrix requires the micro-controller
to set 128 different frequencies, sample the frequency re-
sponse for each frequency through the embedded ADC, and
repeat this process for all 32 sensor cells. Table 1 shows the
time it takes for each of these steps to complete in our im-
plementation. Simply recording the frequency response of a
sensor cell at a given frequency takes 520us, with the micro-
controller’s ADC being responsible for the majority of this
time (450us). Scanning all 128 frequencies for all 32 sensor
cells, takes 2.2s.

Our experimental setup was tuned towards verifying that
the measurements of the sensor allow recognizing the prox-
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imity of an object. Therefore, we did not attempt to opti-
mize the timing of our measurement equipment. However,
to turn this sensor into a useful human-computer interface,
the scan rate has to be improved by at least two orders of
magnitude. Therefore, we provide an analysis of method to
gain this speedup that according to our analysis can reduce
the time to complete a scan to less than 6 ms.

We propose two main tools to gain the desired speedup.
The first tool is a more careful use of the micro-controller
and its abilities. In our experiments, we have used the 16
bits sigma-delta analog to digital converter that the MSP430
offers. This converter uses interrupts to indicate the readi-
ness of a new sample and was responsible to most of the de-
lay in the scanning process. As Tablel shows, the ADC was
responsible to 456 s out of the 520 s that each frequency
reading consumed, or in other words 88% of the time. How-
ever, the same micro-controller has a 12 bits ADC which
is capable of sampling at up to 200 K S/s that is 5 us per
sample [12].

The second most time consuming action in each sample
is the time it takes the R-C circuit to stabilize every time a
new frequency is dialed. We can lower the penalty for this by
choosing to first tune a frequency and then scan all the sensor
cells. Therefore, under this scan order, every measurement
takes 5.24 us and additional 50 us every time a frequency is
changed. As a result, measuring all 128 frequencies on 32
cells can be done in less than 28 ms which amounts to 35
scans per second.

Even this number can be further improved. In Section 5.3
we show that it is not necessary to scan all 128 frequen-

Table 1: Delays for the different parts of the RF-sensor
scanning process

Stage Time
Setting the PWM duty cycle Negligible
R-C circuit stabilization 50 ps
VCO stabilization 90 ns
Switching delay 150 ns
Power Detector stabilization 90 ns
Reading a data sample from ADC 456 15
Time to read one frequency response per cell 520 us
Time to scan all 128 frequencies per cell 66.56 ms
Time to read one frequency across all 32 cells 16 ms
Time to scan all 128 frequencies for all 32 cells 225

cies. Instead, we leverage feature selection techniques to
show that the accuracy of the recognition is not significantly
harmed when not all frequencies and cells are scanned. Re-
ducing the number of frequencies scans results in a super-
linear improvement in the timing. For example, if we con-
sider scanning only 32 different frequencies, not only do we
get a 4x speedup due to the lower number of measurements
required, but we can also increase the frequency of the PWM
signal and hence reduce the stabilization time of the R-C cir-
cuit to about 12.5 ps. Therefore, in this setting, a complete
scan can take as little as 5.8 ms or 173 scans per second.



(a) Hand on the left side of the board.

(b) Hand on the middle of the board.

(c) Hand on the right side of the board.

Figure 9: The 3 different positions considered for gesture classification. At each position, data was recorded while the
subject’s hand was at 5 different distances from the board. From completely touching the board, all the way to 2-inches

distance from the board in 0.5inches increments.

4.2 Power consumption

Table 2 shows the current consumption of the different
components of the RF sensor’s supporting circuitry. When
added up, the current dissipation of the proposed approach
is approximately 115mA3. Note, however, that the power
detector requirement is an artifact of our prototype imple-
mentation and could be eliminated. Instead, the signal at the
output of the sensor cell could be directly mixed with the
signal at the input of the cell to provide a DC voltage rep-
resenting the transmission response of the sensor cell at the
current frequency. In this case, the overall dissipation of the
RF array would be approximately 75mA.

In comparison, a typical IR proximity sensor, one of the
most widely used proximity sensors in mobile devices, has
a typical current dissipation of 30m A. However, a single IR
proximity sensor can only perform 3D gesture recognition
when the human hand is at a minimum distance from the
sensor. When the hand is very close to the sensor, it com-
pletely covers its surface, and any movement of the hand
cannot be reliably detected for 3D gesture recognition. In
this case, an array of multiple IR proximity sensors is re-
quired. When two or three IR proximity sensors are com-
bined the current dissipation becomes approximately 60ma
and 90m A respectively, which is comparable to the current
dissipation of the proposed RF sensor. When a power detec-
tor is not utilized, as explained above, the power consump-
tion of the proposed RF sensor can be lower. As a result, the
proposed RF-based 3D gesture sensing solution can operate
at a similar power domain to traditional approaches while
eliminating some of their bottlenecks such as line-of-sight
requirements.

3In our calculations the current dissipation of the CPU is not taken
into account as any approach to the problem would require one to
process the data.
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Table 2: Power consumption of the different compo-
nents.

Component Power
Amplifier 4.3mA
VCO 53mA
Switches 16mA
Power Detector 41.6mA

S. EVALUATION

A user study with 10 adult subjects (7 men and 3 women)
was conducted to evaluate the performance of the proposed
RF-based gesture recognition approach. The goal of the user
study was to characterize the ability of the sensor array to ac-
curately and quickly recognize gestures at different positions
and distances. Each subject was asked to place his hand at
three different positions over the board as shown in Figure 9.
For each position, data was collected when the user’s hand
was at 5 different distances from the board; from completely
touching the board, all the way to 2-inches distance from
the board in 0.5-inches increments. For every position and
distance from the board, 10 complete scans of the sensor ar-
ray were collected to capture the temporal variability of the
RF signals. Overall, 150 scans were recorded for each user.
During each scan, the frequency response of all 32 sensors
on the board was measured on 128 different frequencies at
the range of 6-8GHz which corresponds to a resolution of
about 16MHz. Therefore, each complete scan consists of
4096 measurments.

The 4096 measurments at each position and distance com-
bination become the set of features used for training ma-
chine learning models to classify the distance and position
of a human hand above the board. In this work, we train
Random Forest Trees [2] using the WEKA machine learn-
ing toolkit [8]. We perform a leave-one-user-out evaluation,
where one user is left out as the test dataset and the remain-
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Figure 10: Distance classification accuracy.

ing users are used as the training dataset. This process is
repeated, leaving each one of the users out at a time and per-
formance results are averaged at the end.

5.1 Distance Classification

Using the complete set of features, we first train models
to classify the distance at which the human hand is from the
board. To do so, we use 6 classes. Five of them represent the
different distances from the board (0-inches to 2-inches with
0.5-inches increments), and the last one represents the case
where the board is clear in the sense that the human hand is
not hovering above the board. Using these classes, we first
train models for each of the 3 positions of the human hand
separately (Figure 9). Then we combine the data across all
hand positions to train a single distance classification model.
In all cases, Random Forest Tree models were trained with
10 trees.

Figure 10 shows the distance classification accuracy achieved

by the different models. Overall, distance of the human hand
can be classified with an accuracy that is higher than 78%.
Since we considered 6 different classes, a random predictor
would have an accuracy of only 17% which is approximately
5 times lower than the accuracy achieved by the random for-
est tree models. This indicates the ability of the RF-based
sensor cells to accurately capture the presence and proxim-
ity of the human hand in their frequency responses.

When considering the accuracy within each individual class
representing a distance from the board, more information
about the capabilities and limitations of the RF array are re-
vealed. Clearly, the highest accuracy is achieved when the
human hand completely touches the board. This is expected,
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Figure 11: Position classification accuracy.

as when the human hand touches the board, the impact on
the frequency response of the sensor is maximized resulting
into more distinguishing frequency responses. As the human
hand distance from the board increases, the impact of the
human hand on the frequency response of the sensor cells is
reduced, and the classification accuracy decays accordingly.

Note that the classification accuracy for the clear board
(no hand above the board) is not as high as when the human
hand touches the board. This is due to the temporal varia-
tions of the sensor cells’ frequency responses that are caused
by the manufacturing process of the current prototype. We
believe that a production-quality sensor cell would minimize
these temporal variations enabling higher classification ac-
curacy. However, even under our current implementation
imperfections, recognition accuracy remains higher than 78%.

When data across hand positions is used to train the dis-
tance classification model, the accuracy achieved is higher
compared to the accuracies achieved for individual positions.
At first, this is counter-intuitive as one would expect the
combination of data across hand positions to have greater
variability, and therefore lead to lower accuracy. However,
the spatial placement of the sensor cells helps mitigate these
variabilities, as different sensor cells react to the human hand
at different positions. In addition, when data across positions
is combined, a larger training dataset is available, helping
the distance classification model to better capture data vari-
ations.

Figure 10 also shows that distance classification varies
when different positions of the human hand are considered.
These variations can be as high as 26%. Intuitively, distance
classification accuracy should not depend on the position of
the user’s hand. However, as shown in Figure 5 the fre-
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Figure 12: Accuracy achieved in both classification tasks, when different number of features is used.

quency response of each sensor cell is different due to the
manual manufacturing process of the prototype. As a result,
different sensor cells have different sensitivity characteris-
tics leading to different areas of the board being able to rec-
ognize distances with a varying degree of success. Such im-

perfections are expected and can be addressed when production-

level manufacturing processes are used.

5.2 Position Classification

The exact same process we used for distance classification
is repeated in the case of position classification. This time
random forest trees are trained to classify the position of the
human hand on the board. Overall, four different classes are
used indicating the three different positions if the user’s hand
and the case where the board is clear (no user hand is above
the RF array). Accuracy is reported when the data recorded
at specific distances are used, as well as when all data across
distances are combined.

Figure 11 shows the performance of predicting the po-
sition of the user’s hand across all possible combinations.
Overall, an accuracy higher than 75%, and in most cases
higher than 85% is achieved. Given that we train models
against 4 classes, the achieved accuracy is approximately 3
times higher than the accuracy of a random predictor (25%).
As a result, the spatial resolution that the RF array of sensor
cells offers can accurately capture the position of the user’s
hand.

When considering the accuracy within each individual class
representing a position of the user’s hand, the imperfections
of the manufacturing process of the prototype board can be
seen. The highest prediction is achieved for the “Clear" class
where there is no human hand above the RF array. However,
the accuracy varies across positions with the “Middle" and
"Right" position achieving the lowest accuracy with respect
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to the rest of the classification labels. Again, this is attributed
to the imperfections of the different sensor cells leveraged in
the RF array (Figure 5).

Similarly to distance classification, position classification
accuracy degrades as the distance of the user’s hand from
the board increases (Figure 11). When the data across all
distances are combined to train a single position classifi-
cation model, the overall accuracy is reduced to 76% from
85%. This reduction is expected given the variability in the
recorded data that the placement of the user’s hand across
multiple distances introduces. However, even in this case,
the classification model can achieve high classification ac-
curacy.

5.3 Feature Set Size Reduction

In all of the experiments presented so far, all 4096 avail-
able features were used when training the random forest tree
classification models. However, as discussed in Section 4.1,
the larger the number of features we leverage the higher the
time it takes to scan all sensor cells in the RF array, and
therefore the slower gesture recognition is going to be. To
study the impact of the number of features leveraged during
training on the overall accuracy of the classification mod-
els, we repeat the leave-one-user-out cross-validation evalu-
ation of the previous section, but this time while limiting the
number of feature that the trained models can leverage. In
particular, we re-compute the accuracy for both distance and
position classification models when the random forest tree
models are restricted to leverage any 10, 100, 500, 1000,
2000, 3000, or all 4096 features.

Figure 12 shows the distance and position classification
accuracy as a function of the number of features used. When
500 and 100 features are used, the highest accuracy for clas-
sifying distances (79% and 82% respectively) and positions



(70% and 71% respectively) is achieved. Note that this cor-
responds to only using 12.2% and 2.44% of the overall num-
ber of features available. In addition, when only 10 features
are leveraged, distance and classification accuracy becomes
67% and 75% respectively. As a result, even a very small
number of features can provide high enough classification
accuracies.

By reducing the total number of features, the overall num-
ber of frequency responses we need to collect from each
sensor cell is reduced. For instance, scanning a single fre-
quency from a single sensor cell takes approximately 520us.
Scanning only 10 frequencies, instead of 4096, would re-
quire only 166ms, instead of 2.2 seconds (Table 1). In that
way, the scan rate of the RF array can be improved by sev-
eral orders of magnitude, while maintaining an acceptable
recognition accuracy.

The experiments conducted show that the RF sensor ma-
trix is delivering information about the position and the dis-
tance of a hand from the sensor. The accuracies reported are
significantly higher than the baseline. Furthermore, we con-
jecture that significantly higher accuracies are achivable by
more control on the production process of the board and by
larger training dataset.

6. RELATED WORK

Research in proximity sensors has been performed for well
over 50 years. Most of these sensors are derived from de-
tecting the change of electromagnetic fields in the presence
of a target [5, 13]. They fall into three main classes: opti-
cal proximity sensors, inductive proximity sensors, and ca-
pacitive proximity sensors. Much research has taken place
on designing optical proximity sensors for detecting human
presence [23]. These sensors have been embedded across
many industries including mobile devices, gaming consoles,
household appliances, and automotive applications. Although
this technology requires line-of-sight interaction to function
property (an attribute that may not be feasible for some sce-
narios), these sensors can be manufactured in a small form
factor (where circuit space may be constrained) and provide
great variation in range of detection.

Inductive proximity sensors have been utilized primarily
the detection of metals in machinery or automotive equip-
ment [11, 18] or for detection of cars in traffic. These sen-
sors offer non-touch detection, but the target object has to be
magnetic and induce a current in the sensor or sensor must be
powered to detect materials that interact with the magnetic
field. As a result, inductive sensing of humans is difiiAcult
to achieve.

Capacitive sensors have a wider range of applications from
mobile computing devices [1] to liquid level sensing [6]. A
major advantage of capacitive sensors is the ability to sense
objects that are in physical contact with electrodes as well
as those that are not in physical contact; this is extremely
useful for interacting with devices using the human hand
and fingers as input tools. Decades ago, a musical instru-
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ment, called a theremin, was very popular due to this in-
teraction [24]. An individual would stand in close prox-
imity to two capacitive plates connected to the instrument.
Each plate is loaded with an inductor to create an oscillator.
Since our human body has conductive properties, it behaves
as a grounded capacitor. As the distance between the hands
varies, the capacitance of the oscillator changes. Therefore,
when the individual moves his hands he is able to control the
frequency and amplitude of the audio signal, which in turn,
controls the pitch and the volume of the music.

Researchers at MIT expanded greatly on the idea of ca-
pacitive sensing by placing electrodes underneath the dis-
play of a portable computer [25]. In this approach, the elec-
tric field between two electrodes is disturbed by the presence
of a human finger which facilitates a change in the capaci-
tance. They call this technology electric field imaging. This
approach produces a limited amount of information that can
be obtained from a scalar capacitive change which may not
be suitable for complex gesture recognition. In addition, this
approach operates at low frequencies where the sensitivity
of sensing around the electrode can be small.

Recently, researchers at Disney Research proposed a new
technology called Touche [20]. This technology is a capaci-
tive sensor that detects the physical contact of an electrode.
It has been utilized in many instances such as with a utensil
to correct eating posture and embedded in a couch to signal
the presence of a human sitting down. This method expands
on the scalar capacitance change of [25] by analyzing this
change across a small frequency band which creates a signa-
ture profile that can change based on the way the electrode
is contacted. Here, the electric fields are tightly coninAned
to the electrode direct contact is necessary for sensing to
take place. At low frequencies, the fields of such electrodes
are mostly quasi-static, and sensing is based on field distur-
bances. A fundamental limitation of such an approach is that
the disturbance depends on the electrode size relative to the
objects. Given a defined object size, the sensitivity and range
can be improved with the electrode size, but it also increases
the amount of noise in the system. Furthermore, a minimum
size limitation on the electrode may be highly undesirable in
mobile electronics applications [4, 16].

7. CONCLUSIONS

We have presented a new RF-based approach to touchless
gesture recognition that enables more flexible and natural
interaction to current alternatives. Being RF-based, the pro-
posed solution presents several distinct advantages over cur-
rent sensing technologies which include the ability to work
without line of sight, the ability to be easily embedded be-
hind any type of surface, and the ability to scale to almost
any size; all while operating at a similar power domain to
current proximity sensing technologies. Using an empirical
user study we demonstrated that the proposed sensor can in-
deed accurately sense the proximity of the human hand in
three dimensions with an accuracy that is higher than 75%.



Our current prototype implementation, though, suffers from
inefficiencies that, if properly addressed, can increase the
performance and potential of the approach. For example,
although we have shown in our analysis that the scan rate
can be improved by more than 2 orders of magnitude, our
experimental setup achieved a low scan rate. Furthermore,
we have discussed several of the manufacturing inefficien-
cies of the current prototype, and suggested that improving
the manufacturing process and collecting more data will re-
sult into great improvements in terms of both the accuracy
and the usability of the sensor. We plan to address several of
these open topics in our future studies.
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