Domain Adaptation with Ensemble of Feature Groups

Rajhans Samdani¹ and Scott Wen-Tau Yih²

¹University of Illinois at Urbana-Champaign

²Microsoft Research

Simple and Effective Algorithm for Domain Adaptation

Domain Adaptation (DA)

- \Rightarrow Supervision for one domain (Source S): e.g. movie review sentiment detection
- **Little/no supervision for different but** related domain (Target *T*): book reviews

Source

- Use data on S to improve accuracy on T
- **Pervasive: labeled data is scarce!!!**
- **We show experiments on:**
 - > DA for Sentiment Analysis
 - ➤ Email spam detection: spammers adapt by hacking new computers and changing spam text need for DA for detection

Our Approach: FEAD

- ***** Feature Ensemble for Domain Adaptation
- Outputs weighted ensemble of classifiers based on different groups of features
 - 1. Classifiers are largely trained on source data (plus some labeled target data)
 - 2. Weights are tuned on small amount of labeled target data (not used in 1)
- ***** Fast and very easy to implement
- Allows for incorporating knowledge about features via. feature groups
- Beats state-of-the-art algorithms experimentally

Feature Groups: Concept Drift

- Moving from source to target, features undergo a change in distribution
 - \succ Features x_i change little reliable
 - \succ Features x_i change a lot unreliable
- **&** E.g. Email Spam Detection: time changes domain changes
- ➤ Email text features: easy to change; unreliable across time
- > Sender-ip features: hard to hack new computers; reliable
- **❖** Use "feature groups" as learned units with similar cross-domain behavior and learn ensemble

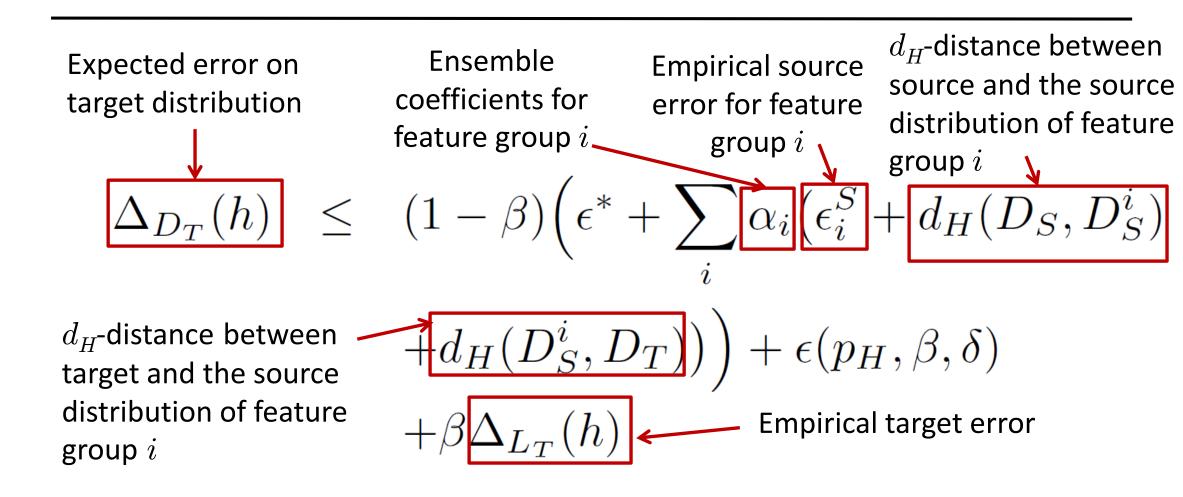
Our Algorithm: FEAD

- 1: **Given:** Data: L_S and L_T ; feature groups: X_0, \ldots, X_r ; convex loss function: Δ^c
- // Local classifiers learned on source
- 2: for i = 0 to r do
- 3: learn: $h_S^i \leftarrow \arg\min_h \Delta_{L_S}^c(h)$
- 4: end for
- // Ensemble weights tuned on target
- 5: $\alpha_0, \dots, \alpha_r \leftarrow \arg\min_{\alpha'_0, \dots, \alpha'_r \geq 0} \sum_{(\mathbf{x}, y) \in L_T} \Delta^c(\sum_i \alpha'_i h_S^i(\mathbf{x}), y)$ // Local classifiers "re-learned" on source+target
- 6: for i = 0 to r do
- 7: re-learn $h_S^i \leftarrow \arg\min_h \Delta_{L_S \cup L_T}^c(h)$
- 8: end for
- 9: return $\mathbf{w_t} = \sum_{i=0}^r \alpha_i h_S^i$ // final weighted ensemble

Discover Feature Groups by

- Domain knowledge: different feature generating functions
- ➤ E.g. Email spam detection: email, sender-ip features, user-id features
- **Simple ad-hoc measures: mutual information, frequency, etc.**
 - **E.g.** Sentiment detection: features based on mutual information and frequency

Generalization Bound for Ensemble h



- $4 d_h$ -distance: a measure of distance between distributions (Ben-David et al., 2006)
- **❖** Ensemble coefficients balance empirical target error, empirical source error(s), and distribution distances

Experiments: Sentiment Analysis

- **❖** 2000 labeled reviews for Movies, Books, Kitchen Appliances, DVDs and Electronics (Blitzer et al. 2006, Pang et al. 2002)
- Baselines: Logistic Regression on all data, EasyAdapt, and Multiview-Transfer
- **Feature groups:**
 - > Total: All features
 - Frequent: features which have high M.I. with output labels in source and occur frequently in target
- **FEAD** stat. significantly better than
 - ➤ Multiview-Transfer and EA in 8 cases
 - > Better than LR in 5 cases

Experiments: Sentiment Analysis

Algorithms

Setting

Jetting		Aigoritiiiis			
Src-Tgt	LR	Multi-T	EA	FEAD	
В-Е	78.88	78.82	79.38	79.34	
B-D	81.10	80.01	78.63	81.80	
В-К	82.29	79.60	81.66	82.26	
B-M	80.23	77.91	79.25	80.70	
E-B	75.34	72.74	75.85	75.60	
E-D	75.85	75.86	74.78	76.76	
E-K	86.50	83.77	85.33	87.59	
E-M	72.60	70.86	72.63	73.54	
D-B	81.60	79.91	80.14	82.46	
D-E	81.27	81.09	80.34	81.54	
D-K	82.95	81.83	82.08	82.81	
D-M	82.53	79.50	81.53	82.53	
K-B	74.74	75.47	74.78	75.75	
K-E	84.90	84.57	83.81	85.24	
K-D	75.93	76.97	75.21	76.88	
K-M	72.38	71.02	70.45	72.62	
M-B	77.11	77.06	76.07	78.88	
M-E	76.45	80.18	76.50	77.62	
M-D	77.76	77.94	76.20	79.52	
M-K	76.72	79.41	76.48	77.59	
Avg.	78.86	78.23	78.06	79.55	

Experiments: Spam Detection

- Hotmail Data: using historical data hence need DA as spam evolves
- ❖ Total 915,000 messages: first 765,000 as source data, next 30,000 as target tuning data, last 120,000 as target test data
- Feature Groups: Email-features, Sender-features, Use-features
- **Evaluation: ROC curve at low FPR values**

