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ABSTRACT 

In this paper, we report our recent work on applications of 
the MAP approach to estimating the time-varying polyno- 
mial Gaussian mean functions in the nonstationary-state or 
trended HMM. Assuming uncorrelatedness among the poly- 
nomial coefficients in the trended HMM, we have obtained 
analytical results for the MAP estimates of the time-varying 
mean and precision parameters. We have implemented a 
speech recognizer based on these results in speaker adapta- 
tion experiments using TI46 corpora. Experimental results 
show that the trended HMM always outperforms the stan- 
dard, stationary-state HMM and that adaptation of poly- 
nomial coefficients only is better than adapting both poly- 
nomial coefficients and precision matrices when fewer than 
four adaptation tokens are used. 

1. INTRODUCTION 

Bayesian learning has been widely used for obtaining max- 
imum a posteriori (MAP) estimates of the hidden Markov 
model (HMM) parameters (e.g. [6, 41). The MAP estima- 
tion framework provides a way of incorporating prior in- 
formation in the training process. This is particularly use- 
ful for dealing with problems arising from sparse training 
data, out of which the classical maximum likelihood (ML) 
approach gives poor estimates of model parameters. This 
MAP approach has been shown to be effective for speaker 
adaptation of alpha-digit recognition and a number of other 
tasks where the time-invariant (given HMM states) Gaus- 
sian densities are adapted to sparse training data obtained 
from new speakers [5]. 

The formulation of the trended HMM, also called the 
parametric nonstationary-state HMM or parametric tra- 
jectory model, has been proposed as a superior model for 
speech acoustics than the conventional HMM, and has been 
successfully used in speech recognition applications [1,2,7]. 
The parameters of the trended HMM, especially the state- 
dependent time-varying Gaussian means, used in the past 
were trained by a modified Viterbi algorithm based on the 
joint-state ML principle 121. In our previous study, we ex- 
tended the ML training algorithm to the minimum class% 
cation error (MCE) training algorithm for discriminatively 
estimating the state-dependent polynomial coefficients in 
the trended HMM [7]. Just as an extension of the ML 
trained unimodal Gaussian trended HMM to the M C E  
trained trended HMM is a step towards superior discrimina- 

tion of speech classes, we expect that the same superiority 
can be achieved in our trended-HMM framework (due to 
its superior modeling capabilities) by extending the ML- 
trained HMM to MAP-trained trended HMM for speaker 
adaptation applications. 

In this study, we investigate the problem of the MAP a p  
proach to estimating the time-varying polynomial Gaussian 
mean functions in the trended HMM. Assuming uncorre- 
latedness among the polynomial coefficients in the trended 
HMM, we obtain analytical results for the MAP estimates 
of the time-varying mean and precision parameters. Ac- 
cording to these results, the MAP estimates can be viewed 
as a weighted average of the estimate that the classical ML 
method would give and an estimate based on prior infor- 
mation. To examine the performance of the extended tech- 
niques, the MAP framework is applied to speaker adap  
tation experiments using TI46 corpora. The properties of 
the MAP formulation for training the trended HMM is ana- 
lyzed by examining goodness-of-fit of the raw speech data to 
the polynomial trajectories in the model, and comparative 
experimental results on alphabet classification are reported 
which demonstrated the effectiveness of the MAP algorithm 
for the trended HMM. 

2. MAP ESTIMATES FOR TRENDED HMMS 
Consider the trended HMM given by [2]: 

Ot = X F B i  +R,(o?) ,  (1) 

where 72, N i . i . d .M(O,~?) ,  Bi = [Bi(O) Bi(1) Bi(P)lT' 
is a (P + 1) x 1 vector of state-dependent polynomial re- 
gression coefficients, Xt = [ ( t - ~ i ) '  (t-7i)' .-. (t-7i)'ITr 
is a (P + 1) x 1 vector of exogenous explanatory variables 
with (t  - 7i) representing the sojourn time in state i. To 
simplify the presentation of our approach, the data feature 
vectors Ot , t = 1,2, - - * , T are assumed to be scalar-valued 
observation data sequence of length T. The MAP formu- 
lation requires a joint prior distribution for both 8; and 
U? (which are treated as random variables in the Bayesian 
analysis [4]). 

Suppose the prior information about 23; conditioned on 
the value for aT2 is represented by a Gaussian random vari- 
able N(Bi;pi,o!Mi). Its probability density function is 

f(Biloi2) = (2~u?) - i1MiI - i  exp [-0.50,~(& - pi)Tr 

Mf'(Bi -pi)] - (2) 
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Thus, prior to the observation of data samples, the best 
gue'ss to the value of B; is represented by the (P + 1) x 1 
vector pi, and the confidence in this guess is summarized 
by the (P + 1) x (P + 1) matrix a:Mi; a lower degree of 
the confidence is represented by a larger diagonal element 
of M i .  Knowledge about the exogenous variable Xt is pre- 
sumed to have no effects on the prior distribution; hence 
Eqn.(2) also describes the density f ( B i l a r 2 , X t ) .  Following 
[SI, it is convenient to describe the prior distribution not in 
terms of the variance U' but rather in terms of the recip- 
rocal of the variance, U;', which is known as the precision. 
The prior distribution for precision uy2 is provided by the 
gamma distribution [5]: 

where pi > 0 and qi > 0 are parameters that describe the 
prior information. Thus, f ( & ,  a,:'), the joint prior density 
for 8; and a i 2 ,  is given by the product of Eqn.(2) and 
Eqn.(t), or a normal-gamma distribution. The choice of 
such a prior density is made because the normal-gamma 
density is the conjugate density of the normal distribution, 
a fact that is essential for the analytical derivation of the 
MAP estimates. 

The MAP estimates are obtained according to 

6 M A P  = argmaze [qele,) + l o g f ( ~ i , o i ' ) ]  , (4) 

where the simplified log likelihood function is given by 

T N  

( 5 )  

The quantity T t ( i )  is either to be one if the model gener- 
ates Ut in state i at time t or to be zero otherwise. The 
maximization of Eqn.(4) is solved by using the expectation- 
maximization (EM) algorithm. Due to space limitations, we 
only summarize the final results for the MAP estimates of 
Bi, a:, and of their prior parameters here: 

According to the above formula, the MAP estimates can 
be interpreted as a weighted average of the corresponding 
prior information and of the sample data. The weights are 
computed iteratively based on a combination of the prior 
speaker-independent model parameters and of the new- 
speaker data in a non-linear fashion. The difference between 
the ML estimation procedure and the MAP procedure lies 
in the assumption of an appropriate prior distribution of 
the parameters to be estimated. By using a diffuse prior 
information, represented as pi = 0, qi = 0 and MF1 = 0, 
the MAP estimates for Bi and U: obtained above would 
become identical to the ML estimates derived in [2]. 

3. SPEAKER ADAPTATION EXPERIMENTS 

The experiments conducted to evaluate the MAP approach 
are aimed at recognizing the 26 letters in the English alpha- 
bet, contained in the TI46 speaker dependent isolated word 
corpus. It is produced by 16 speakers, eight males and eight 
females. The speaker-independent (SI) training set consists 
of 26 tokens per word from each of six male and six female 
speakers. For the remaining four speakers, up to ten tokens 
of each word are used as adaptation training data, and the 
remaining 16 tokens used as speaker dependent test data. 

The preprocessor produces a vector of 26 elements con- 
sisting of 13 Mel-frequency cepstral coefficients (MFCCs) 
and 13 delta MFCCs for every 10 msec of speech. In com- 
puting MFCCs, 25 triangular band pass filters are simu- 
lated, spaced linearly from 0 to 1 kHz and exponentially 
from 1 kHz to 8.86 kHz, with the adjacent filters overlapped 
in the frequency range by 50%. The FFT power spectral 
points are combined using a weighted sum to simulate the 
output of the triangular filter. The MFCCs are then com- 
puted according to 

C,, = S, cos (p x [r - 0.51 x 
25 

r r l  

where S, is the log-energy output of the r th  mel-filter 191. 
The delta MFCCs are constructed by taking the difference 
between two frame forward and two frame backward of the 
MFCCs. This window length of 50ms is found to be optimal 
in capturing the slope of the spectral envelope, i.e. the 
transitional information [SI. The augmented MFCCs and 
delta MFCCs are provided as the data input for every frame 
of speech into the modeling stage. 

Each word is represented by a single left-to-right, three- 
state HMM (no skips). The speaker-dependent (SD) mod- 
els are trained from adaptation data using five-iterations 
of the modified Viterbi algorithm with single mixture for 
each state in the HMMs [2]. To set up a baseline speaker- 
independent (SI) performance on the test data set, we cre- 
ated the SI models with a single mixture distribution for 
each state in the HMMs, by combining the parameters in 
the mixture components which had been well trained using 
the SI training set. The combination formulas are 

m r  1 
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Table 1. S u m m a r y  of speaker adaptation results .ar 
constant-trended HMM (benchmark, P=O). 

and the variance to be the variance of the corresponding 
Gaussian mixture distribution: 

Adaptation 
Tokens 

M 

P=l (Sk75.4890) 
SD I SA1 I SA2 

m= I 

where M, the actual number of mixture components used in 
each state, is set to five, Wm is the mixture weight, B;-(p) 
is the timavarying polynomial mean coefficients, and o h  
is the variance of the mth mixture component residing in 
the ith state. 

The initial prior density parameters are estimated first 
from those of the SI mixture HMMs according to 

qi = 1.0, 
M 

m= 1 

These prior parameters are then updated over iterations of 
the batch MAP algorithm according to Eqns.(6)-(9). Note 
that Mi@) above denotes the pth element of the diagonal 
correlation matrix Mi.  In the MAP batch estimation, the 
parameters are updated after processing all tokens for each 
iteration, in contrast with sequential adaptation where the 
parameters are adjusted at  the end of processing each token. 
We wil l  not address the sequential adaptation procedure in 
this study. In all of our experiments, a total of five batch 
adaptation iterations are performed. 

The speech recognition rates, averaged over two males 
and two females, are summarized in Table 1 and Table 2, for 
conventional, stationary-state HMM (benchmark) and for 
the trended HMM, respectively. Four experimental setups 
have been used: 1) speaker-independent (SI); 2) speaker- 
dependent (SD) ; 3) speaker-adaptation and adapting only 
polynomial coefficients for the time-varying means (SA1); 
and 4) speaker-adaptation and adapting both polynomial 

I Number of I Polynomial Order 1 

Table 2. Summary  of speaker adaptation results for 
linear-trended HMM (P=l). 

coefficients and precision matrices (SA2). The results in 
Table 1 and Table 2 are shown as a function of the num- 
ber of word tokens used in training from a new speaker. 
Comparing results in Table 1 and Table 2, the effective- 
ness of the MAP training on the trended HMM is clearly 
demonstrated. For example, in the SA1 experiments, the 
error rate reduction of 26.8% is obtained when moving from 
P = 0 (83.77%) model to P = 1 (88.11%) model with three 
adaptation takens. The best recognition rate of 92.1% is 
achieved when both polynomial coefficients and precision 
matrices are adapted using all ten tokens of adaptation 
data. The rate drops gradually with fewer adaptation to- 
kens for both SA1 and SA2 experiments, with somewhat 
faster drop for SA2 than for SA1. In contrast, for the SD 
experiments, the recognition rates drop rapidly when the 
training tokens reduce from ten to one. 

The results in Table 1 and Table 2 also show that the 
MAP estimates (SA1 and SA2) become approaching the ML 
estimates (SD) in performance when the number of training 
token increases from one to ten. This is reassuring because 
under the asymptotic condition, the posterior density would 
be dominated by the sample data likelihood function as 
demonstrated in Eqn.(lO) and Eqn.(ll) with T + 00. 

4. DATA FITTING RESULTS 
To analyze the mechanisms underlying the superiority of the 
MAP training on the trended HMM, we performed data fit- 
ting experiments. Once the structure of the trended HMM 
is determined, the MAP algorithm discussed in Section 2 
is used t o  reestimate the ML-trained trended HMM pa- 
rameters using a fixed set of adaptation data. The MAP 
models are constructed using the SA1 experimental setup 
with one adaptation token. Fig. 1 shows the results of fit- 
ting a test utterance (letter a from a first female speaker in 
the TI46 speech corpus) using the benchmark (P=O) and 
trended (P=l) HMMs. (Use of first-order MFCC, Cl, as 
speech data here, shown in solid lines in Fig. 1, is for il- 
lustration purposes only. Similar results are available for 
higher order cepstral coefficients.) The top two subplots 
of Fig.1 show the data-fitting results (dashed lines) for SI 
benchmark HMM (left) and trended HMM (right) when 
both models are trained by the ML method. The bottom 
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Time 
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Figure 1. Fitting three-state a /ey/ models (dashed- 
lines) to a speech data sequence (solid lines) 

two subplots show the corresponding results (dashed lines) 
using the MAP-trained HMMs (SA1). In all the plots, the 
solid lines are the real speech data, Ot, of the CI sequence 
from a test token not used in adapting the HMMs. The 
vertical axis represents the magnitude of Cz and the hori- 
zontal time axis is expressed in terms of the frame number. 
For each sub-plot of Fig. 1, the two break-points in the 
otherwise continuous solid lines correspond to the frames 
at  which the optimal state transitions occur from state one 
to state two, and from state two to state three, respec- 
tively. The dashed lines in all sub-plots of Fig. 1 are the 
four different trend functions, varying in the polynomial or- 
der (P = 0 or P = 1) and in the training procedure (ML or 
MAP). These labels are shown at the head of each sub-plot, 
together with the data-fitting error computed by a linear 
summation of the residual squares over the states and over 
the state-bound time frames. 

It is observed that the MAP-trained trended HMM fits 
the test token better than any other alternatives. For the 
benchmark HMM, error reduction in data fitting by incor- 
porating the MAP training goes from 2990 to 327. The 
MAP method for the trended HMM plays a more significant 
role of reducing the data-fitting error (a measure of better 
modeling capability) from 2343 to 198. This suggests that 
the time-varying mean parameters in the trended HMM 
represent essential characteristics of a particular speaker 
and they can be effectively estimated with a very small 
amount of training data using the MAP training procedure. 

5. SUMMARY AND CONCLUSIONS 
In this study, the Bayesian adaptation technique using the 
MAP approach is derived, implemented and evaluated for 
optimally estimating the time-varying polynomial Gaussian 
mean functions in the trended HMM. The main conclusions 
can be summaried as follows. First, compared with speaker- 
independent models, the MAP adaptive training procedure 
achieves consistently better performance even with a single 

token in the adaptation data. Second, the trended HMM 
always outperforms the benchmark HMM (with only one 
exception where one training token is used in the speaker- 
dependent mode). When ten training tokens are used to ob- 
tain adaptive estimates for both the polynomial coefficients 
and the precisions, the recognizer achieves the best recog- 
nition rate of 92.1% (averaged over four speakers). Third, 
adaptation of polynomial coefficients only is shown to be 
better than adapting both polynomial coefficients and pre- 
cision matrices when fewer than four adaptation tokens are 
used, while the opposite is true for more adaptation tokens. 
Comparisons of the alphabet classification performance and 
of data-fitting results demonstrate the effectiveness of the 
MAP-trained trended HMMs. A more detailed experiments 
with Use of higher order polynomial functions (P greater 
than one) using the MAP approach is currently under way 
and will be reported in the near future. 
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