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ABSTRACT

We develop and present a novel deep convolutional neural network
architecture, where heterogeneous pooling is used to provide
constrained frequency-shift invariance in the speech spectrogram
while minimizing speech-class confusion induced by such
invariance. The design of the pooling layer is guided by domain
knowledge about how speech classes would change when formant
frequencies are modified. The convolution and heterogeneous-
pooling layers are followed by a fully connected multi-layer neural
network to form a deep architecture interfaced to an HMM for
continuous speech recognition. During training, all layers of this
entire deep net are regularized using a variant of the “dropout”
technique. Experimental evaluation demonstrates the effectiveness
of both heterogeneous pooling and dropout regularization. On the
TIMIT phonetic recognition task, we have achieved an 18.7%
phone error rate, lowest on this standard task reported in the
literature with a single system and with no use of information
about speaker identity. Preliminary experiments on large
vocabulary speech recognition in a voice search task also show
error rate reduction using heterogeneous pooling in the deep
convolutional neural network.

Index Terms— convolution, heterogeneous pooling, deep,
neural network, invariance, discrimination, formants

1. INTRODUCTION

The deep neural network (DNN) is an emerging technology that
has recently demonstrated dramatic success in speech feature
extraction and recognition, scaling very well from small
[8]1[26][27][28] to medium [3][4][19][36] and to large [2][6][17]
[21][34][32][37] tasks. (For recent reviews on the use of neural
networks in speech recognition, see [29][17]). Some related DNN
architectures have also demonstrated effectiveness in speech
understanding and (small scale) image recognition tasks [7][9][35].
For larger scale image recognition and computer vision with high
variability, a convolutional structure is often needed. Incorporation
of convolution and subsequent pooling into a neural network gives
rise to a Convolutional Neural Network (CNN) [24][25]. Stacking
a CNN with a fully connected DNN or with one or more CNNs
gives rise to a deep CNN [1][22][23]. The deep CNN has been
shown to achieve a strong success for image recognition [5][22],
similar to the success achieved by the DNN on speech recognition.

For images, the convolutional structure followed by pooling in a
CNN is a natural way to embed translation invariance --- an object
can be located at different places in an image while maintaining the
same class identity of the object. However, for speech that is

represented as a 2D “image” or spectrogram over time and
frequency, things are different. This is because the same spectral
pattern that is present in separate frequency bands (or at different
temporal locations) would mean a different sound class. In other
words, the simple convolution-pooling operation in the CNN,
while introducing “translation” invariability either in frequency (or
in time or in both), would cause confusion among speech classes
and reduce the discrimination ability. This fundamental difference
between the image and speech tasks motivated us to analyze the
error patterns of phonetic recognition obtained by the deep CNN
architectures typically used for image classification, and to design
a new architecture, the heterogeneous-pooling CNN or HP-CNN.

Like image recognition, it is also desirable to derive invariant
features by normalizing and reducing the variability in acoustic
patterns --- e.g., the frequency shift due to vocal tract differences
across speakers or due to the contextual effects on the formant-
frequency changes [10][11] --- associated with the same speech
class. However, the challenge is to strike the right balance between
the extent of invariance (via convolution/pooling) and possible
speech-class confusion when the shift becomes too large. The HP-
CNN described in this paper is aimed at achieving such a tradeoff.

This paper is organized as follows. In Section 2, we provide
motivations for the development of the HP-CNN based on error
analysis on the results of a CNN with a fixed or homogeneous
pooling size for all convolutional feature maps. Details of the HP-
CNN are described in Section 3, highlighting the new set of hyper-
parameters not present in any previous CNN and the principles by
which they are determined. The roles of domain knowledge of
speech are discussed. Section 4 is devoted to describing the
“dropout” technique recently published in [18], which we modified
and used to regularize the HP-CNN and the higher-layer fully-
connected DNN used in our experiments. Experimental evaluation
of the HP-CNN-DNN and dropout technique is presented in
Section 5, reporting the best result in the literature on the standard
TIMIT phone recognition task. We discuss related work in Section
6 and conclude the paper in Section 7.

2. EFFECTS OF CNN’S POOLING SIZE ON
PHONETIC CONFUSION
To achieve the intended invariance to limited frequency shift via
convolution and pooling (while retaining the discrimination
ability), we use (scaled) filter-banks or spectrograms as the input
feature for the CNN. Compared with MFCCs which have been
most popular for speech recognition, spectrogram features not only
retain more information (despite possibly redundant or irrelevant
information for the recognition task), but also enable the use of the
convolution and pooling operations to represent some typical
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speech invariance and variability expressed explicitly in the
frequency domain. An example of such speech variability is
formant undershooting (or overshooting) caused by casual (or
forced) speaking styles that have been mathematically represented
by hidden dynamic or trajectory models of speech [11][12][13]
[14].

As a baseline, we first explored a primitive CNN studied in [1],
where the pooling size was fixed across all different convolutional
feature maps. A larger pooling size enforces a greater degree of
invariance in frequency shift but this also carries greater risk of
being unable to distinguish among different speech sounds with
similar formant frequencies. We have conducted detailed error
analysis on the effects of the CNN’s pooling size. When a fixed
pooling size increases from one to 12, we found increasing
confusions among the phones whose major formant frequencies are
close to each other; in the meantime, the discrimination among
phones whose formant frequencies are at extreme values tends to
improve. This observation and analysis motivated the development
of a new type of pooling strategy in DNNs, which we describe
below.

3. HETEROGENEOQOUS POOLING IN THE CNN
The basic CNN structure we use has the following three
characteristics: 1) input locality: We learn a set of filters, each of
which receives the input from a local range of frequencies; 2)
weight sharing: Each filter shifts along the frequency axis while
computing the output with tied filter weights (this is
mathematically equivalent to the ubiquitous convolution operation
in DSP); and 3) max pooling or sub-sampling: High-level features
with lower resolution are produced by the CNN. A combination of
these characteristics endows the CNN with invariant properties for
the input acoustic patterns that shift along the frequency axis. The
extent to which the invariance is represented depends on the
crucial parameter of the pooling size associated with 3) above.

We have extensively explored the use of a fixed pooling size
for all convolutional layers corresponding to a full set of feature
maps. As discussed in Section 2, any given pooling size
corresponds to a tradeoff between the desired invariance over a
range of frequency shift and the undesirable phonetic confusion
caused by having similar but distinct phones’ formants fall within
the range. A natural way to take advantage of this tradeoff to the
benefit of overall phonetic discrimination is to apply different or
heterogeneous pooling sizes to various subsets of the full feature
maps. We call this type of CNN as Heterogeneous-Pooling CNN,
or HP-CNN. Figure 1 illustrates an HP-CNN, with two sets of
pooling sizes, P; (of value 2) and P, (of value 3) shown,
corresponding to N; and N, maps, respectively, in the convolution
layer.

In general, the number of different pooling sizes can be much
larger than two, constrained by the total number of feature maps. A
general HP-CNN(m) is characterized by the following hyper-
parameter set: [Py, Ni: P, Ny . Pp Ny]. This gives the total
number of feature maps in the convolutional layer: N = >, N;.

The optimal choice of the above hyper-parameters’ values is
determined by the convolution filter design and, more importantly,
by the nature of the phonetic space expressed in scaled frequency
in accordance with the input filter-bank features. For example, for
highly fluent speech with a faster speaking rate, the formant space
of speech acoustics tends to shrink [11][31]. Thus, a larger number
(N;) of feature maps, which gives more presentational power

analogous to more hidden units in the fully-connected DNN,
should be given to lower pooling size P; in order to bias the
tradeoff towards a lesser degree of invariance and a higher degree
of discrimination. This type of domain knowledge on speech
acoustics has been incorporated into the design of hyper-parameter
values in our experiments reported in Section 5.

Figure 1. lllustration of convolution and heterogeneous-pooling layers in a
HP-CNN, followed by a fully connected DNN (not shown here). Note the
different columns represent separate feature maps corresponding to the
same input vector, not separate time frames.

The HP-CNN described above effectively converts the
spectrogram features of speech into a higher-level representation at
the heterogeneous pooling layer. This HP-CNN output, which is
equipped with partial within-class invariance, is followed by a
subsequent fully-connected DNN to form a deep-CNN architecture
that can be used for speech recognition after an interface to an
HMM in the same manner as described in [3][4][26].

4. REGULARIZING HP-CNN BY “DROPOUT”
Recently, a regularization procedure called “dropout” [18]
significantly improved image recognition and phone recognition
accuracy by randomly omitting half of the hidden units in each
layer of a DNN during training while doubling the size of each
layer. During run time, the effect is efficiently compensated by
scaling down the DNN weights. This regularization mechanism
lies in its ability to prevent “co-adaptation” in which a feature
detector is only helpful in the context of other feature detectors.
Like different hidden units in a DNN which tend to co-adapt each
other, different feature maps and different hidden units within the
same map in the HP-CNN also co-adapt. Hence, the HP-CNN is
expected to benefit from the dropout technique for its
regularization. Due to the weight constraints in the convolution
layer and the heterogeneous nature of the pooling layer in the HP-
CNN, co-adaptation among the hidden units within and across
feature maps in the HP-CNN would behave differently from those
in the DNN. Our experimental results in Section 5 have shown
more significant improvement in phone recognition accuracy than
reported in [18] on the same task of phone recognition.

In contrast to applying dropout for the DNN in the TIMIT task
as reported in [18], we found that applying dropout to input filter-
bank features for the HP-CNN has not been effective. Therefore,
we apply dropout only to the hidden units in the deep HP-CNN,
including those in both the convolution and pooling layers, as well
as in all the DNN layers on top of the HP-CNN’s pooling layer.



Further, in contrast to [18], we found that the dropout rate for
both the HP-CNN and DNN needs to be significantly smaller than
0.5 reported in [18] in order to make it effective in achieving low
recognition errors. Too large a dropout rate not only drastically
slows down the convergence in training but also leads to higher
recognition errors despite increases in the number of hidden units
as suggested in [18]. A typical effective value of the dropout rate is
between 0.05 and 0.25 for the deep HP-CNN with N=100 (the size
of the convolutional feature maps) and with 2000 hidden units per
layer in the DNN on top of the HP-CNN.

5. EXPERIMENTAL EVALUATION

5.1. Experimental setup and HP-CNN-DNN training

Reported in this paper are mainly the results of TIMIT’s standard
phonetic recognition task as used in [1][12][27][26][28][33].
Speech feature vectors are generated by a Fourier-transform-based
filter-bank, and include 40 coefficients distributed on a Mel scale,
plus their first and second temporal derivatives. Standard setups
are used, and in particular, we report the 39-folded-class results of
phonetic recognition using the 192 core test set sentences. The
targets of 183 mono-phone states are obtained by using a tri-phone
HMM model to generate state-level forced alignments. No phone
segment information provided in the TIMIT database is used.

The training objective is the standard, frame-level cross-
entropy, simpler than the full-sequence objective in our earlier
work [27]. For training the HP-CNN followed by a DNN with
three fully-connected hidden layers (HP-CNN-DNN), we find near
perfect correlation between the frame error rate and the objective,
as shown in Figure 2.

Correlation of error rate & X-entropy

08
¥y = 0. 7399 « D094
RY = 05893 =

ing set
o

Frame error rate in traink
n

o5 1 1.5 2 2.5 3

Crass entropy

Figure 2. Frame error rate vs. cross entropy during training HP-CNN
followed by a DNN with three fully connected layers. Cross entropy is the

objective function for optimization, correlating well with training error rate.

5.2. Phonetic recognition results

In Table 1, we summarize the phone recognition error rates for
several deep networks, including the HP-CNN-DNN with and
without using dropout regularization. Note that with a fixed
pooling size P in CNN-DNN, the error rates vary substantially
from P=1 to P=12, and P=6 gives the lowest error rate. The HP-
CNN-DNN uses a distributed P from 1 to m=12, and gives
significantly lower errors. The HP-CNN-DNN with dropout
regularization achieves the lowest published error rate of 18.7% on
this same task. We note that in [33] the same 18.7% error rate was
reported by exploiting multiple systems and using additional
information about speaker identity for adaptation. Our single deep
HP-CNN-DNN system does not make use of any information
about speaker identity as in the standard evaluation protocol. All
the CNNSs shown in Table 1 have the same structure (e.g., the same
number of convolutional feature maps) except for the differences
in the pooling layer.

For the HP-CNN-DNN configuration which produced the lowest
error rate, we plot the learning curve (for the training error rate) in
blue and phone recognition accuracy for the development (dev) or
validation set (in red) and test set (in green) in Figure 3. The
stopping criterion is determined solely by the behavior in the dev
set, following the same procedure as described in [26]. In Figure 4,
we show the confusion matrix of 39 merged-phone classes after
dynamic programming based decoding. Further, we present in
Figure 5 the normalized values of the diagonal elements in the
confusion matrix (i.e., correct phone recognition) for several deep
networks in Table 1, including the best-performing one (in light
blue). Publications of such detailed results are expected to benefit
future research into more advanced techniques. (Related error
analysis was performed in comparing DNN and hidden trajectory
systems in 2009, which ignited further research into DNN; see
[15][16]).

Deep Networks

Phone Error Rate

DNN (fully connected) 22.3%
CNN-DNN; P=1 21.8%
CNN-DNN; P=12 20.8%
CNN-DNN; P=6 (fixed P, optimal) 20.4%
CNN-DNN; P=6 (add dropout) 19.9%
CNN-DNN; P=1:m (HP, m=12) 19.3%
CNN-DNN; above (add dropout) 18.7%

Table 1: TIMIT core test set phone recognition error rate comparisons.
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Figure 3. Frame error rate in training (blue) and phone recognition'
accuracy of dev set (red) and core test set (green) as a function of training
epochs.

Our more recent, preliminary experiments extending the TIMIT
task to large vocabulary speech recognition in a voice search task
have shown error rate reduction from 32.4% to 30.1% after
incorporating heterogeneous pooling in the otherwise identical
deep CNN system.

6. RELATION TO OTHER WORK
The work presented in this paper has focused on the motivation
and construction of the HP-CNN. This network makes a flexible
tradeoff between invariance of speech patterns expressed in the
frequency domain and discrimination of speech classes. The earlier
work of [1] adopted fixed or homogeneous pooling, lacking such
flexibility.

While the present study is related to recent work on image
recognition where “tiled” CNN was proposed [23], they differ
from each other in two main aspects. In the tiled CNN, weights are
shared over the entire image. Hence the total number of different
sets of weights depends on the tile size. The HP-CNN reported in
this paper uses local weight sharing appropriate for speech, and it
uses completely different sets of filters for each pooling node.



Further, the design of the pooling takes into account discrimination
of classes in the HP-CNN, not so in the tiled CNN.

The dropout regularization technique used in this work is a
variant of that published in [18]. The main difference is that we
apply dropout in both the convolution and fully-connected layers
while the original dropout technique [18] was applied to only the
fully-connected layers. Experimentally we found that the best
dropout rate is between 0.05 to 0.25 for the typical size of the
network, and [18] reported only the results with the dropout rate of
0.5 incurring much longer training time (reflected by many more
training epochs) than ours.

One major motivation of the HP-CNN is to handle the acoustic
variability in frequency, in common with the feature normalization
technique exploited in [28]. The key difference is that our method
integrates such variability normalization and speech class
discrimination into a single framework in learning, while the study
of [28] separates out feature normalization and the deep net
learning. We report much stronger results than [28] on the same
evaluation task.

7. SUMMARY AND DISCUSSION
In the work reported in this paper, we have developed a novel deep
learning architecture, an HP-CNN followed by a DNN. We
motivate the HP-CNN by domain knowledge of speech pertaining
to the phonetic space expressed in the formant-frequency
distributions among distinct phonemes, as well as to how the
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phonetic space would shrink as the speaking style becomes more
casual. The HP-CNN is also motivated by the error analysis carried
out on the behavior of CNNs with a varying but fixed pooling size
across all convolutional features maps. We use a weighted mix of
pooling sizes in the HP-CNN to devise a strategy for trading
between within-class invariance and between-class discrimination.
This strategy reduces the TIMIT core test set’s phone recognition
error rate to 19.3% from 20.4% obtained with the optimal but
single fixed pooling size. After regularizing the CNN using a
variant of the “dropout” technique, the error rate of the HP-CNN-
DNN drops further to 18.7%, from 19.9% with the same dropout
but without heterogeneous pooling. Note that all the error analysis
and domain knowledge of speech leading to the fundamental
concept of the HP-CNN have been based on the invariance-vs.-
discrimination interpretation of the convolution and pooling
operations in the CNN. All this has been made possible only after
a change from the use of MFCCs to spectrogram-like features,
supporting the basic tenet of deep learning: back to more primitive
features while letting machine learning to automatically discover
the appropriate high-level features.

We are currently extending the application of the HP-CNN-
DNN to larger, real-world tasks, where we expect a greater need
for trading invariance with confusion due to the freer speaking
style and hence stronger shrinking in the phonetic space.
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