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ABSTRACT
Intersecting inverted indexes is a fundamental operation for many applicati-
ons in information retrieval and databases. Efficient indexing for this opera-
tion is known to be a hard problem for arbitrary data distributions. However,
text corpora used in Information Retrieval applications often have conveni-
ent power-law constraints (also known as Zipf’s Law and long tails) that
allow us to materialize carefully chosen combinations of multi-keyword in-
dexes, which significantly improve worst-case performance without requi-
ring excessive storage. These multi-keyword indexes limit the number of
postings accessed when computing arbitrary index intersections. Our eva-
luation on an e-commerce collection of 20 million products shows that the
indexes of up to four arbitrary keywords can be intersected while accessing
less than 20% of the postings in the largest single-keyword index.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing Methods

General Terms
Algorithms, Performance, Experimentation

Keywords
information retrieval, partial match, power law, heavy-tailed, index

1. INTRODUCTION
At the core of Information Retrieval performance lies the ability

to intersect long lists of postings quickly. Much research has cen-
tered on reordering these lists to reduce the fraction of them that
is processed (e.g. [11, 3]), and on improving the processing of the-
se intersections. Still, some queries require costly deep traversal
into long lists. Consider e-commerce web sites such as Amazon
and eBay with large catalogs of products. It is important to these
businesses that customers can find what they want quickly. Long
latencies increase abandonments and decrease sales and adverti-
sing revenue. A few long latencies can be serious, even when the
average is not that bad.

The challenge is to reduce the worst-case overhead required to
process arbitrary keyword queries. The database literature has stu-
died high-dimensional indexing and partial-match queries, and found
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this problem to be hard in the general case for unrestricted datasets.
Fortunately, datasets of interest to the SIGIR community may be
easier than the general case. SIGIR datasets tend to obey power
laws, which are common in natural language [4].

1.1 Motivating Scenario
Consider an e-commerce web-site where products are searchable

by name, description and category (e.g., ‘woman’s shoes’, ‘gold
jewelry’. . .). Some terms are more frequent than others. The more
frequent terms have relatively long inverted lists. Intersection time
typically depends on frequency; intersecting long lists can lead to
unacceptably long latencies.

Figure 1 shows that it can take much longer to intersect longer
lists than shorter lists. The figure is based on a corpus of more than
20 million products from a large e-commerce portal [1]. We used
keywords from three frequency ranges:F for frequent (over 900K
postings),M for middle (about 50K postings), andL for low fre-
quency (less than 1K postings). The intersections were performed
using the full-text component of a commercial database system.
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Figure 1: Pairs of frequent terms are relatively slow.

Intersections of long inverted indexes are very slow relative to
other queries. Unfortunately, they are not uncommon. We analyzed
a search trace of more than 3 million customer searches from the
portal and found that many searches (29%) contained a frequent
keyword (in the top 0.1% of keywords)1, 8% of searches contained
at least one of the0.01% most frequent keywords and1.8% of sear-
ches contained at least one of the0.001% most frequent keywords.
The higher the frequency of a keyword, the longer the intersection
cost; this means that there is an opportunity for improving the inter-
section performance, as frequent keywords are commonly queried
and even very frequent keywords are not rare.

1.2 Problem Statement
In the remainder of the paper, we address the following problem:

1To avoid skewing these results, we eliminated tail end of the vocabulary
by removing prices, numbers and IDs.



Given a document collection, propose a set of indexes to mate-
rialize, so that the time for intersecting keywords does not exceed a
given threshold∆. The key challenge here is the space requirement.
If space were not an issue, we could trivially archive the time requi-
rement by materializing all possible combinations of keywords, but
this would take exponential space. The additional indexes should
not be larger thank times the size of the original inverted index, for
a small factor ofk. We will show how to materialize such a set of
indexes for reasonable values of∆ (e.g., the time required to scan
20% of the largest inverted index), at least for a collection of short
documents distributed by a power law.

1.3 Related Work
To address search performance, the IR community has developed

numerous techniques aimed at reducing the amount of data that
needs to be processed, by either ordering the postings within each
index in a suitable manner, or by proposing approximations of the
used scoring methods which may be computed more efficiently. We
take a different approach in that our techniques are orthogonal to
the specific ranking function used and address the issue of reducing
the time needed to compute the intersectionexactly.

The problem studied in this paper is related to the issue of inde-
xing phrases in Information Retrieval. Similar to our problem sce-
nario, full materialization of indexes of all common phrases entails
prohibitive storage costs. The approach adopted in [5, 12] is to use
different types of indices – inverted indices for rare words, a variant
of nextword indicesfor the commonest words and a phrase index
for the commonest phrases; similarly, we use different combinati-
ons of access paths depending on keyword frequencies.

The underlying indexing problem can also be phrased as an in-
stance of thepartial-matchproblem: lower bounds on the perfor-
mance of partial-match queries have been studied theoretically in [8]
using a cell-probe framework.

Also in the database context, various multidimensional search
structures [7] have been proposed. To apply them, each keyword
query could either be formulated as a high-dimensional range que-
ry over point data or as a high-dimensional point query over heavily
overlapping spatial data. Either problem formulation results in an
indexing problem over very sparse data in very high dimensionality
(>10K dimensions). It is well known [6] that non-redundant space-
partitioning techniques suffer from the “curse of dimensionality”,
meaning that they result in access times exceeding the cost of scan-
ning the full data set for as little as 10 dimensions, rendering them
useless for our purposes.

1.4 Our Contributions
In this paper we will present index structures and processing stra-

tegies addressing the above problems. Our work makes the followi-
ng salient contributions:
(1) We introduce index structures and a query processing frame-
work that enforce a given threshold∆ on the overhead of compu-
ting conjunctive keyword queries.
(2) We leverage the fact that the frequency distribution of natural-
language text follows a power law to model the resulting index size.
In particular, we show that while the number of possiblel-keyword
combinations relevant for indexing grows exponentially with incre-
asingl, the underlying data distribution implies that only a small
fraction of these combinations needs to be indexed, when the docu-
ment sizes are small.
(3) Determining for which keyword-combination to materialize in-
dexes may require significant I/O and main memory. To overcome
this limitation, we will describe a probabilistic scheme that signifi-
cantly reduces this overhead.

(4) We provide an extensive experimental evaluation of the perfor-
mance on large real-life datasets.

The remainder of this paper is organized as follows: Next, we
will describe the query processing strategies we consider and the
details of the index structure we propose (Section 2). Then we will
describe how to instantiate this structure to ensure a given thres-
hold∆ on the execution cost of conjunctive keyword queries. Sub-
sequently, we describe the relevant properties of the distributions of
keywords and keyword-combinations in natural-language text and
show how to leverage these to model on the size of the resulting in-
dex structure (Section 3). We will describe the index construction
in Section 4 and provide an experimental evaluation in Section 5.

2. INDEX STRUCTURE AND USAGE

2.1 System Setup and Notation
For each queryQ, we denote the keywords it contains bywords(Q)

= {w1, . . . , wl}. In the following, we consider only queries con-
taining up to a thresholdkmax of keywords (e.g., 7). Each of these
keywords comes from a global vocabularyV. Note that the maxi-
mum number of keywords in a single query we have to consider for
searches in the e-commerce scenario is small; it is well-known that
most search queries are short (e.g., according to [14] over 50% of
all internet searches contain at most two words, and 75% at most
three). We have found similar trends in traces of search queries
against the e-commerce site [1].

For all keywords we maintain a global orderingπ. We use this or-
dering for indexing; i.e. when materializing a keyword-combination
C containing the words{w1, . . . , wl}we leti1, . . . , il ∈ {1, . . . , l}
be a set of indices such that∀j ∈ 1, . . . l − 1 : wij <π wij+1 , with
<π denoting the ordering induced byπ and writeC as(wi1 , . . . , wil)
instead. Basically, this ensures that we never distinguish between
permutations of the same keyword-combination.

In the following, we sometimes use a queryQ and the set of key-
wordswords(Q) interchangeably, with the correct meaning being
clear from context. We denote the number of items (=documents)
whose text contains all keywords of a queryQ by size(Q); simi-
larly, for a single keywordw we denote the number of documents
containingw bysize(w). Finally, we use the notation|Q| to denote
the number of keywords a queryQ contains.

2.2 Processing Strategies and Cost Model
To build structures that reduce the maximum latency of keyword

queries, we introduce a simple cost model to quantify these laten-
cies. Costs will be expressed as a linear combination of two costs:
(1) disk seeks to the beginning of posting lists, plus (2) scanning
postings. It is useful to consider these two costs separately becau-
se the combination rule is a bit of a moving target. Computatio-
nal costs have decreased dramatically over time and will continue
to do so going forward. However, some costs have decreased mo-
re than others. Scanning costs are dropping faster than seek costs.
This trend is likely to continue going forward.

For ease of exposition, we normalize the costs s.t. scanning a
single posting in an inverted index has unit cost. This normalization
allows us to think of∆ as specifying both a cost bound as well as
a maximum number of postings that can be scanned.

The cost model assumes only the simplest possible IR-engine,
which computes intersections by fully scanning the inverted in-
dex of every keyword. However, our approach is equally appli-
cable to more sophisticated engines and hardware configurations
(which in turn would lead to different cost models), in particular
the case in which the all inverted indexes are read and intersected
in parallel (allowing the intersection of the indexes for keywords



(w1), . . . , (wk) in O(maxi=1,...,k size(wi))) or for engines allo-
wing random access within the indexes (allowing the intersection of
two indexes of sizen, m, with n < m in O(n · log2m) operations).
In both cases, fewer keyword-combinations are indexed, which in
turn reduces the size of materialized structures significantly.

The cost of a queryQ depends on the execution strategy chosen.
Initially, there are two access strategies available to us:
ID-intersection: This strategy retrieves all inverted indexes of the
queried keywords and intersects them. We model the execution cost
as|Q| seek accesses to disk (the cost of one of which we model as
a constantCostseek) to retrieve the inverted indices and the cost of
reading their contents entirely:

CostInt(Q) := |Q| · Costseek +
X

w∈words(Q)

size(w)

Post-filtering: If one of the keywordswi in Q is very rare, we can
processQ by only processing the inverted index ofwi and then re-
trieving the text of all matching items and verifying the remaining
keyword constraints using text itself. The advantage of this strat-
egy is that its processing costs become independent of the number
of additional keywords and the lengths of their inverted indices;
however, matching the remaining keywords against the text is si-
gnificantly more expensive than index-intersections for the same
number of postings. We model its cost as the cost to retrieve the
text associated withsize(wi) items (which is dominated by the
seek times) and applying|Q| − 1 keyword-filters to the text, which
is a function of the text-length for each column. For simplicity, we
model the text length of the items as a constantlength, which we
multiply by the cost of applying a single like-predicate:CostFilter.
If necessary, we can ensure that this function over-estimates latency
in cases with varying text-lengths by choosing this constant large
enough; however, for the scenarios we consider, the text lengths
tend to be small and not vary very much; hence, the costs for this
strategy tend to be dominated by the seek times:

CostProbe(wi) :=

size(wi) ·
�
Costseek + (|Q| − 1)length · CostFilter

�
.

2.3 Index Structure
Given a cost model we now describe additional indexes to com-

plement single-keyword inverted indexes which enforce an executi-
on cost of less than a threshold∆ by limiting the maximum number
of postings we need to retrieve for an arbitrary query. The structure
that we utilize are additional inverted indices that materialize the
postings for documents containingcombinationsof keywords; i.e.,
each such index can be thought of as the materialized result to that
particular keyword query. The salient features of these structures
are that
(a) We only materialize indexes for ak-keyword combination if the
corresponding query result can not be obtained quickly (i.e., with
less then∆/2 overhead) using intersection of inverted indexes for
keyword combinations of sizek′ < k.
(b) Part of the query-processing time of a query is allotted to pro-
bing the “catalogue” of the materialized structures to discover which
relevant keyword-combinations are indexed. We also obtain infor-
mation on the size of the inverted indexes as part of this probing,
allowing us to subsequently chose the best possible execution stra-
tegy (as predicted by the cost-model) before the actual processing
of the query.
(c) For a small number of keyword combinations simply retrieving
the fully pre-computed answer to a search query requires more than
the target latency. However – again due to data skew – there will be
few such instances; moreover, since these are search results, the

user interface needs to initially display only the top-ranked results
(ordered by whatever ranking scheme we use) and can use the ti-
me required for the user to browse them to retrieve the remainder.
Therefore, for the few such keywords or keyword-combinations,
we materialize the top-ranked results separately.

Posting ListsVocabulary Match Lists

166, 177, 217, …gold, earring 19

12, 33book, golfbook 3409 70

1, 22, 719…book, cooking 580

1, 10, 239, …book, C++, code 310

17, 19, 112, …gold, braceletgold 7800 117

sizes
1, 10, 99, …book, C++ 917

sizes

Figure 2: Index Structure

The main structure we use to complement the inverted indexes
adds one layer of of indirection to the standard inverted index (Fi-
gure 2): instead of pointers from each vocabulary item to the cor-
responding inverted index, we maintain – for each vocabulary item
w – a list of all keyword combinations containingw for which we
have materialized the corresponding inverted index, the so-called
match list. We denote the set of all keyword combinations reali-
zed as match list entries byMatch. Each entry in the match list
in turn points to an inverted index containing postings of all items
matching all keywords in the entry. In addition, each entry in the
match list also stores the number of postings in the corresponding
inverted index; we also maintain the number of postings in each
single-keyword inverted index together with the vocabulary. The
resulting structure is in many ways similar to thenextword indexes
of [5, 12] and can be implemented in a similar manner.

The physical layout of this structure is as follows: since (as we
will describe later) we only materialize combinations of frequent
keywords and only a small fraction of them, it is possible to main-
tain an index with the first two keywords of each combination in
main memory2. In the following, we will assume for purposes of
cost modelling that this layout is in place.

2.4 Query Processing
Once we have this index structure in place, we process a query

Q over keywordsw1, . . . , wk as follows: ifQ contains a keyword
wi sufficiently rare so that the post-filtering strategy becomes suffi-
ciently inexpensive, we use this strategy. Otherwise, we retrieve all
match-list entries containing two keywords fromQ as their prefix
(we assume that the single-keyword vocabulary and sizes are alrea-
dy memory-resident). Using the size-information contained in the
match-list entries we can now determine ifsize(Q) is sufficiently
large that we cannot processQ entirely without violating the cost-
threshold∆; if this is the case, we retrieve the top-ranked tuples
from the corresponding index. For queries with smaller result si-
zes, we now determine which combination of inverted indexes co-
vers all keywords inQ (possibly more than once) while minimizing
the cost (using our cost model) of intersecting these indexes – note
that this covers both multi- and single-keyword inverted indexes.
This formulation results in an optimization problem

2If the match listgrows to large, then part of this index can be written to
disk, inducing 1 additional seek per keyword.



CostOpt(Q) := min
C⊆V∪Match:S

C=words(Q)

X
c∈C

CostSeek + size(c), (1)

which is a variant of theset coverproblem; however we do not
require an exact solution, but only a approximation as long as ful-
fills two properties:

(A) We require that the algorithm considers – when it chooses
a set of inverted indexes to process a queryQ overwords(Q) =
{w1, . . . , wk} (among other alternatives) the execution plan for-
med by intersecting the (sets of) inverted indexes used when pro-
cessing the queries formed by the keyword setsS1 andS2 con-
structed as follows: letwf

1 , wf
2 be the two most frequent (i.e., oc-

curring most often in the corpus) keywords inwords(Q) (ties are
broken using the orderingπ); now letS1, S2 be defined asS1 =
words(Q)− {wf

1}, S2 = words(Q)− {wf
2}.

(B) We require that the algorithm considers intersecting the (sets
of) inverted indexes used when processing the queries formed by
the keyword setsC1 andC2 constructed as follows: letwl

1 andwl
2

be the least frequent keywords amongwords(Q) (ties are broken
using the orderingπ); now let C1, C2 be any two sets for which
C1 ∪ C2 = words(Q), C1 ∩ C2 = ∅ andwl

1 ∈ C1, wl
2 ∈ C2.

We will illustrate the relevance of these properties later. From
now on, we will denote the set of inverted indexes this algorithm
selects when processing a queryC asindex(C); in particular, for
any wordw, index(w) refers to the “standard” inverted index for
a single keywordw. Similarly, we will refer to cost of the solution
provided by the algorithm employed asCostOpt(Q).

Once we have determined a suitable combinations of inverted
indices, we compute the query result by retrieving the inverted in-
dexes in the inverse order of their sizes and intersecting them. The
total cost of this execution plan is the cost of retrieving all rele-
vant match list entries and the cost of retrieving and intersecting
the selected inverted indexes (=CostOpt(Q)). The cost for retrie-
ving the match list entries is dominated by the number of disk seeks
required, so we use the disk-seeks alone to model this cost. For a
k-keyword query up to

�
k
2

�
entries in the match lists have to be ex-

amined; given that the number of keywords in a query is small, this
number of seeks can be upper-bounded by the number of keywords
multiplied with a small constant (e.g.kmax = 5, the bound is3k).
We define∆′ = ∆ −

�
kmax

2

�
CostSeek as the minimum laten-

cy “available” after all relevant match-lists entries have been read.
Thus, in order to ensure the overall latency threshold∆, we have
to materialize additional indexes ensuring thatCostOpt(Q) ≤ ∆′.

This also means that for any queryQ with size(Q) > ∆′ −
CostSeek we may need to explicitly materialize the top-ranked tup-
les, as we can’t process the query with a larger result under the
latency-threshold.

3. MODELLING THE INDEX SIZE
In the following, we will first give a general overview of the pro-

perties of large corpora that are relevant to this problem setting and
show them to be present in a variety of real-life data sets (Secti-
on 3.1). Then we will describe in detail for which combinations of
keywords we materializematch listentries and posting lists (Secti-
on 3.2). Finally, we show how we use the properties of the underly-
ing corpora to model the size resulting index structure (Section 3.3).
This model makes a number of simplifying assumptions and is not
useful for directly predicting the exact sizes of the structures we
eventually materialize. Rather, their purpose is to give an intuition
as to why the proposed structures do not require prohibitive sto-
rage in cases when the underlying text corpora display power law
constraints and the document sizes are relatively small.
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Figure 3: Natural language obeys power laws. This fact has been well-
established for keywords taken one at a time, as well as ngrams, se-
quences of adjacent terms. We find that power-laws also apply to pairs
of keywords (and multi-way combinations without the adjacency cons-
traint).

3.1 Properties of Natural Language Corpora
In this section, we give a quick overview and experimental vali-

dation of the properties of natural language corpora we leverage.
Word frequency distributions in natural language have been stu-

died extensively (see [4] for a summary) and have been found to be
shaped according to a power law. Most of these studies have been
conducted on either longer texts by a single author or literary cor-
pora; we have examined the keyword distributions found in a series
of natural language datasets selected to capture some of the scenari-
os found in database-driven web sites: the text corpora underlying
(a) the e-commerce database described in Section 1.1, (b) a one-
month slice of text from a web news portal as well as two publicly
available datasets: (c) a subset of 314K newspaper articles from the
AQUAINT Corpus used in the TREC QA track and (d) the polarity
V2.0 data containing 2K movie reviews [2]. For every one of these
datasets, the distribution of single keywords exhibited power-law
behavior, as expected: Figure 3 depicts the frequency distribution
of the 26K most frequent keywords for the news data and the 32K
most frequent keywords in the e-commerce portal described in Sec-
tion 1.1 as well as the AQUAINT corpus (after stopword pruning).
Note that all the graph displays only the head of the distribution;
e.g., less than3% of the vocabulary of the product data.

Moreover, we found the same property to hold for the frequen-
cy distribution over multi-keyword combinations occurring in the
data: Figure 3 depicts the frequency distribution of the 90K most
frequent 2- and 3-keyword combinations in the product and movie
data. To the best of our knowledge, the distribution of keyword-
combinations have not been studied (except for distributions ofad-
jacentkeywords in the context oflanguage models).

To give an intuition of how we leverage these properties, our
approach essentially performs a “triage” over keywords, assigning
them into three categories: (a) low-frequency keywords for which
we don’t need to materialize additional indexes, (b) medium-frequency
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Figure 4: There aren’t very many frequent words, even in large docu-
ment collections.

keywords, at mostoneof which may appear in a match list entry
and (c) a small number of high-frequency keywords for which we
materialize a number of indexes. We will describe this in detail in
Section 3.3. For our method to be scalable, we need to ensure that
the number of keywords in the latter two classes does not grow
quickly with corpus size.

Fortunately, this appears to be the case, as illustrated in Figure 4.
Each line, labeledN(α), shows the growth rate in the AQUAINT
corpus for words with document frequency ofα or more. Thus,
for example, the line forN(10000) shows that there aren’t very
many words that appear in 10000 documents or more. The number
of such words increases slowly with corpus size, much slower than
N(1000). We are particularly concerned with largeαs. Note that
N(10000) << N(1000) << N(100) << N(10). There aren’t
very many frequent words, even in large document collections.

3.2 Populating the Match List
In this section we will describe the structures materialized to en-

sure that the cost for processing an query of up tokmax keywords
does not exceed∆. To populate the match-lists, we first consider
keyword-combinations of size 2 for materialization, and then incre-
ase the size until we reachkmax. Now, for any sizek we materialize
all combinationsC for which

∀w ∈ words(C) : CostProbe(w) > ∆ (2)

andCostOpt(C) ≥ ∆′

2
− CostSeek using existing indexes (3)

andsize(C) ≤ ∆′ − CostSeek. (4)

The resulting structures ensure that any queryQ for which it holds
thatsize(Q) ≤ ∆′−CostSeek can be computed using less than∆

cost: If CostOpt(Q) ≥ ∆′

2
− CostSeek using indexes over com-

binations of less than|Q| − 1 keywords (condition 3) and post-
filtering is not an option (condition 2), then we materialize an addi-
tional inverted index, as condition 4 must hold.

3.3 Modelling the Size of the Match List
To model the index sizes based on these observations, we will

use a relatively simple analytical model of the word-frequency dis-
tributions for ease of exposition. The main contribution of the theo-
retical model will be to show that the potentially exponential grow-
th of possible keyword-combinations is balanced by the power-law
behavior of the word-distribution in natural language corpora.

We use the following notation: letN be the total number of
words in the text distribution, andV = |V| be the number of di-
stinct words. Due to the power-law, the frequency of a word of rank

z can be expressed as

f(z) =
ζ

zα
N

where ζ is a normalizing constant smaller than1 ensuring thatPV
z=1 f(z) = N andα is a fitting parameter modelling the skew

of the distribution. For ease of exposition we setα equal to uni-
ty, resulting in thestandard harmonicprobability distribution over
words. Under this distribution, the number of words that occurm
times,V (m), can be modelled as

V (m) =
V

m(m + 1)
.([4], p.17) (5)

We will first show how the power-law distribution and the con-
struction of the previous section lead to the “triage” of keywords
we have described: since the cost of thepost-filteringstrategy on-
ly depends on the length of the text associated with items and the
number of occurrences of the rarest keyword in a query, equation 5
means that the majority of keywords will not occur in any keyword-
combination in the match list. Any keywordw for which

size(w) ≤ δtail =
∆�

Costseek + (k − 1)length · CostFilter

�

cannot lead to execution costs in excess of∆, and hence no addi-
tional indexing is required, eliminatingV − ζ·N

δtail
keywords from

consideration.
Similarly, not more thanonekeywordw with size(w) ≤ δmatch :=

(∆′/2− CostSeek) can occur in ank-keyword entry in the match
list. We will prove this by contradiction: consider the case of such
a combination being materialized: assume a keyword-entryC con-
sisting ofk keywordswords(C) = {w1, . . . , wk}; let w1, w2 be
the least frequent keywords withsize(w1) ≤ size(w2) < δmatch.
The (because of the requirements described in Section 2.4) the al-
gorithm must consider an execution strategy that intersects the in-
dexes used when processing two subsetsC1, C2 of words(Q) sha-
ring no keywords, one of which containsw1 and the otherw2. The-
refore, eitherC1 is not materialized, implying thatCostOpt(C1) <
∆′/2 − CostSeek, or it is, meaning we can retrieve it using cost
∆′/2. Using a similar argument forC2, CostOpt(C) can be at
most∆′, meaning there is no need to materialize an entryC, lea-
ding to a contradiction.
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Figure 5: Only words of frequency greater than δmatch can occur
multiple times in a single match-list entry.

Modelling the number of frequent keyword-combinations:Now
we will use this model to model the number ofl-keyword combina-
tions that occur in more documents than a thresholdχ. We denote
this value asoccurrences(l, χ). Subsequently, we will show that



the number ofl-keyword entries into the match list can be modelled
as a function ofoccurrences(. . .) . Note that in the target scenario
the individual items are associated with relatively small text entries
(e.g., a product, a review, or a seller), which we will show to result
in a small rate of growth foroccurrences(l, χ) with increasing
values ofl.

First, we defineavg w as the average numbers of words contai-
ned in the text associated with an item. For ease of exposition, we
will assume that all items are associated with exactlyavg w words
(as opposed to modelling the distribution of this value explicitly).
There are necessarily some duplicate words in an item, so we mo-
del the number of distinct wordsVe(n) in a document ofn words
as a function of the document size:

Ve(n) = R ·
√

n (see [4], p.25),

for a constant3 R. Using this model any item will contain
�

R
√

avg w
l

�
distinct l-keyword combinations. Under the simplifying assumpti-
on that the power-law distribution governing thel-keyword distri-
bution follows the same skew-parameter as the original keyword-
distribution, the number ofl-keyword combinations occurring mo-
re often thanχ can be constrained as

occurrences(l, χ) =
ζ ·N (R

√
avg w
l )

avg w

χ
(6)

This means that while the number of possible keyword-combinations
grows exponentially in the number of keywords, the number ofl-
keyword combinations larger than a thresholdχ grows by a factor
of R

√
avg w−l

l
with increasingl. Here, the key takeaway is that (a)

this factor is a function of the square root of the individual text si-
zes (which are small for the target scenarios) and independent of
the corpus size or the vocabulary size (both of which can become
very large in this context), and (b) the factor decreases asl grows,
resulting in tractable numbers of combinations to materialize.

This immediately allows us to model the number of keyword-
combinations for which we have to explicitly materialize the top
results, since their result-sets are too large to be read within∆ cost
as
Pkmax

l=2 occurences(l, ∆′ − CostSeek).
Example: To demonstrate the size of the resulting values, con-
sider a data distribution modelled on the product database des-
cribed in Section 1.1, containingN/avg w = 60 · 106 entities;
each entity contains roughlyw = 100 words, meaningζ beco-
mes≈ 1/15 and there is a total ofN · avg w = 6000 Million
postings. We chooseR = 2.5. Assuming we index for queries con-
taining up tok = 5 keywords, and setχ at50K ID-values, we ob-
tain: occurrences(3, χ) = 18.4K, occurrences(4, χ) = 101K
andoccurrences(5, χ) = 425K. Even when multiplied with the
number of top-ranked postings we materialize for these keyword-
combinations, these numbers still are small fraction of the 6 Billion
postings in the original index.
Modelling the number of match list entries: Moreover, we can
use the above to model a loose constraint the number ofl-keyword
entries in the match list, of the formf ·occurrences((l−1), χ)/l.
To show this, consider an arbitrary entryC = {w1, . . . wl} in the
match-list; letwmin be the keyword inC for which size(wmin)
in minimal,C′ = words(C)− wmin. Now one of two conditions
must hold:

(a) size(C′) > δmatch: in this case, the only statement we can
make aboutsize(wmin) is that it must be larger thanδtail,

3The authors of [4] note that this model is flawed in thatR itself varies
slightly with large changes inn; however, since in our scenarios the sizes
of the text fields do not vary significantly between items, this is an non-issue
for our purposes.

meaning that there are at most

occurrences
�
l − 1, δmatch

�
| {z }

number of combinations forC′

·
�ζ ·N

δtail

�
| {z }

possible values forwmin

such combinations possible.
(b) or size(C′) ≤ δmatch: In this case, letS1, S2 be subsets of

words(C) as defined in Section 2.4, both containingwmin.
We know thatsize(wmin) > δmatch (otherwise we could
computeC via the intersection ofindex(wmin) andindex(C′)
in time less than∆′). We also know and that eithersize(S1) >
δmatch or size(S2) > δmatch (again, otherwise we would
not need to index, as we could computeC as the intersection
of index(S1) andindex(S2)). The number of such combi-
nations can be no more than

occurrences
�
l − 2, δmatch

�
| {z }

number of combinations forS1∩S2

·
� ζ ·N
δmatch

�2
/2

| {z }
possible combinations ofwords(C)−S1∩S2

– for ease of notation,occurences(0, χ) is defined as1.

This means that – with growing number of keywords – we expect
the number of entries in the match list to grow more slowly than
the number of keyword-combinations occurring more often than a
threshold (asδmatch grows linearly withl). However, depending
on the value of∆, the factors

�
ζ·N
δtail

�
or
�

ζ·N
δmatch

�2
/2 may become

very large. In these cases, we may have to apply our techniques to
a subset of the most frequent keywords only (e.g., only keywords
occurring in search logs).
Size-distribution of the resulting inverted indices:While the abo-
ve calculations allow us to model thenumberof keyword combina-
tions for which we create additional inverted indexes, it does not tell
us anything non-trivial about the distribution of posting-sizes of the
corresponding inverted indexes. We studied these size-distributions
resulting from experiments and found them to be highly skewed as
well. Not only does the vast majority of keyword-combinations sa-
tisfying conditions 2-4 result in empty intersections4, but most of
the remaining indexes have less than 10 postings. To demonstrate
this, Figure 6 shows the size distribution of the 32K largest inver-
ted indexes in an experiment similar to the one described in detail
in Section 5.1 (with a different value of∆). Again, we find a power
law governing the distribution of the index sizes.
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Figure 6: The distribution of inverted index sizes follows a power law

4In this case we do not have to materialize the corresponding match-list
entry; using size-information stored as part of the non-empty match list
entries, the execution engine can infer these cases.



4. INDEX CONSTRUCTION
Construction of the proposed structures requires two elementary

operations: (a) deciding which additional inverted indices to ma-
terialize and (b) building and maintaining the indexes themselves.
Part (b) has been studied in great depth already, part (a) however is
challenging, as it requires knowledge of the intersection sizes for
very large inverted indexes, which are unlikely to fit into main me-
mory at the same time. This may make this part of the computation
prohibitively expensive.

As a consequence, we use a probabilistic scheme toestimatethe
required intersection sizes, allowing us to maintain compact repre-
sentations of the relevant inverted indexes, which fit into main me-
mory. This is made possible by the fact that the cost-thresholds
themselves are necessarily large enough so allow the retrieval of
tens of thousands of postings without exceeding∆ (a full-text re-
trieval system that cannot handle these numbers is likely a no-
starter in the first place), providing some leeway regarding the ac-
curacy of the probabilistic techniques.

4.1 Approximation of Intersection-Sizes
Computing the size of intersections between lists of postings cor-

responds to the problem of computingL1-distances between co-
lumns in the indicator matrixA formed using the keywords as one
dimension and the item/document ID values as the other. Popular
techniques for such distance computations in limited memory are
based onrandom projections, which multiplyA by a appropriately
chosen random matrixR to generate a much smaller data matrix
B = A · R. However, these estimation methods are typically not
applicable to multi-way intersections, which we require. As a con-
sequence, we use a different technique, based on a combination of
sketches and sampling introduced in [9, 10]: LetID denote the set
of identifiers all documents in the corpus. This method then uses a
random permutationπID : ID 7→ {1, . . . , |ID|} and – for every
inverted index – constructs a sample the first (according toπID)
postings in the index. Now we can estimate intersection sizes bet-
ween a list of inverted indexesI1, . . . , Il, based on these samples as
follows: letDs be the smallest among the maximum (according to
πID) postings in the respective samples. Now we trim the samples
from all postingsi for whichπID(i) > Ds. The resulting samples
are equivalent to a random sample ofDs rows from across the re-
spectivel columns in he indicator matrixA; this sample can now be
used to compute a maximum-likelihood estimate of the intersection
size. We evaluate the accuracy of this approach in Section 5.3.

4.2 Robustness of the Approximation
Note that the sampling ultimately only affects one condition among

the three governing which keyword-combinations to materialize
(Section 3.2): Condition (4). Condition (2) depends only on the
sizes of single-keyword indexes, which we store together with the
vocabulary. Moreover, since we construct the match-list entries and
the corresponding indexes in order of the number of keywords they
contain (this way, we can use existing indexes, significantly redu-
cing construction-costs), the exact sizes of allmaterializedmulti-
keyword indexes over(k − 1)-keyword combinations are known
when determining which indexes overk-keyword combinations to
construct; this is turn means that condition (3) can also be evaluated
exactly and only the size of the new index has to estimated. Note
that this means that bad estimates can never cause us to fail to meet
the threshold∆; we just might construct too many indexes.

4.3 Additional Index Compression
In order to further compress the resulting structures, we augmen-

ted each posting (which in our experimental setup corresponds to a

32-bit document ID before compression) with an additional 32-bit
field, which indicates the presence of certain high-frequency key-
words in the document the posting refers to. For example, we can
use this field to indicate the presence or absence of one of the 32
most frequent non-stopwords in the corpus. In this case, we of-
ten can avoid having to materialize a multi-keyword index over a
combination of these high-frequency words and less frequent words
{w1, . . . , wh}, as we can use the index on{w1, . . . , wh} (which,
however, may be larger) to obtain the same information.

In the experiments on the e-commerce dataset, most frequent
keywords correspond to distinct product categories (e.g., ’book’)
and a few frequent product attributes (’red’, ’black’, ’pages’), mea-
ning that relatively few combinations of them actually co-occur in
product descriptions in the corpus. This allows us to encode all
occurring combinations of significantly more than 32 frequent key-
words in the 32 bit field. While the additional field doubles the size
of each posting before compression (the encoded values are highly
skewed and thus should compress well), it can significantly decre-
ase the number of keyword-combinations we materialize.

5. EXPERIMENTS
In this section, we describe the experimental evaluation of our

techniques, including the resulting query costs for real-life data
(Section 5.1), the total size of the structure on disk (Section 5.2)
and the accuracy the probabilistic techniques to estimate the inter-
section sizes (Section 5.3).
Prototype Implementation: We implemented the match-list da-
ta structures using a commercial database system, which we also
use to process queries against the match-lists. Due to size restric-
tions we omit the implementation details. While our experimental
results can be used as a proof-of-concept, the absolute performan-
ce is not representative of the performance improvement possible
when using a full-fledged IR system. To measure the performance
of the unmodified IR system, we used a commercial “full-text” ex-
tension shipped as part of the database system. In all experiments
we pruned the indexed corpora of stop-words and formatting tags.

5.1 Evaluation of Query Cost
To evaluate the effect of our approach on measured query cost,

we used the product data set described in Section 1.1, containing 20
million items. For this experiment, we materialized the index struc-
ture for a subset of frequent keywords with more than 10K postings
that occurred at least once in the query log; we used the parameters
kmax = 4, CostSeek = 1000 (i.e. a disk seek is as expensive as
scanning 1000 postings) and set∆ to the cost of scanning 20% of
the number of postings of the largest single-keyword inverted in-
dex. This means that – once our structure is in place – no query
of 4 or fewer keywords accesses more than a fifth of the number
of postings in total that would have been read when scanning the
inverted index of the most frequent keyword alone.

To measure performance, we generated random 2-word and 4-
word queries from the keyword set and compared the running ti-
mes of the commercial IR engine to our approach, with all inverted
indexes residing on disk. We flushed the database caches before
every measurement. For individual queries, our approach resulted
in speed-ups of up to a factor of 18x (2 keywords) and 14x (4 key-
words); averaged over the query set, our approach improved query
times by a factor of 6.7x (2 keywords), and 3.1x (4 keywords).

Because we selected the workload as a random combination of
keywords, especially the latter results significantly overstate the im-
pact our techniques would have on average query performance. Ho-
wever, they do indicate that our approach can significantly benefit
the sub-class of queries that cause user-perceptible latency.



5.2 Evaluation of Index Sizes
The most important aspect of our work is the size of the resulting

indexes; if they are overly large, any gains in processing times be-
come immaterial. To evaluate index sizes, we used the e-commerce
corpus which contains a total of 899M postings. We use the para-
meterskmax = 4, CostSeek = 1000, set∆ to the cost of scanning
20% of the number of postings in the largest inverted index and
usedδtail = 50 (i.e. no additional indexes for keywords occurring
in less than 50 documents), leaving141K keywords for indexing.
For queries with results of more than∆′ − CostSeek postings, we
materialize the top 20 postings. The resulting multi-keyword index
structures contained 734M postings, i.e. an 81.6% increase, indica-
ting that our approach scales up to large corpora and vocabularies.
Corpora of larger Documents: The significant limitation of our
approach is that it does not scale to corpora with larger document
lengths. To demonstrate this, we evaluated the index sizes on the
314K document subset of the AQUAINT corpus; the average length
of these documents is almost an order of magnitude larger than it
is for the e-commerce corpus. In addition, this corpus is challen-
ging for our techniques as a number of keywords occur in 50% or
more of the corpus (unlike the e-commerce data where the most
frequent keyword occurs in 23% of the documents). For this col-
lection, we used the same parameters as above, but set∆ to the
cost of reading 1/3 of the number of postings in the largest inver-
ted index. The resulting multi-keyword index structures contained
more than 10x the number of postings of the original index, ma-
king straight-forward application of our technique impractical. For
such corpora with larger document lengths, depending on the app-
lication details, our techniques may still be applicable, if either the
number of relevant keyword combinations is reduced in a suitable
manner (e.g., by only taking keyword-combinations that appear in
query logs into consideration) or the documents are broken down
into smaller chunks (e.g., paragraphs). Also note that our cost mo-
del is based on the assumption of an overly simplistic processing
engine, as we assume that all indexes are processedentirelywhen
computing intersections. If an IR engine can compute the intersec-
tion between a small and a very large index by scanning the small
index and doing random lookups/skips into the large index (e.g.
see [13], Chapter 4.3), then match-list entries for such combinati-
ons need not be materialized, potentially reducing the size of the
materialized structures dramatically.

5.3 Accuracy of Intersection-size Estimation
Finally, we studied the effect of the probabilistic techniques de-

scribed in Section 4.1. Here, we used sampling rates of1% and
0.1%, i.e. for each inverted index we maintained the 1% (or 0.1%)
smallest elements (according to theπID) and used these samples to
determine which nodes to materialize in the match list. For this ex-
periments, we used the inverted indexes for a subset of 2000 words
from the e-commerce corpus, which were evenly distributed across
the spectrum of frequency-ranks.

The experimental results underline the robustness of the estima-
tion: for the1% sampling rate the match list constructed via proba-
bilistic techniques contained99.3% of the entries in the exact one –
here, nearly all missing entries were due to underestimation of “lar-
ge result” combinations for which we would otherwise materialize
only the top-ranked results (a case that we can detect and correct at
build-time, but did not for this experiment); these in turn then made
materialization of some larger keyword-combinations unnecessary.
Compared to the exact list, the probabilistic technique materialized
indexes for0.08% additional keyword combinations. Interestingly,
for 0.1% sampling, we achieved almost the same numbers, con-
structing99.2% of the entries in the correct match list.

6. SUMMARY
This paper proposed a multi-dimensional index structure that

improves latencies for intersecting postings. In the general case,
multi-dimensional indexes consume exponential space, which is
prohibitive. However, there are some important special cases that
include many of the collections of interest to the Information Re-
trieval community, where multi-dimensional indexes are more pro-
mising, especially when appropriate care is taken in deciding which
indexes to materialize.

We introduced a cost model to decide what to materialize. The
cost model, in junction with various power-law assumptions, led to
a triage process, where keywords were assigned to three tiers based
on document frequency. The most frequent words require extensive
indexing, but fortunately, there are not too many high frequency
words. There are more words in the middle tier, at most one of
which can occur in a query for which we materialize the result.
The vast majority of keywords are assigned to the low frequency
tier. No additional indexes beyond standard inverted indexes are
required for these low frequency keywords.

The cost model was primarily motivated by latency considerati-
ons. We do not have any guarantees on space, though space is not
prohibitive for the collections of short documents we have looked
at thus far. The experiments with the AQUAINT corpus suggest
that space requirements also depend on a few other factors such as
document length5.
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