
Improving Local Search Ranking through External Logs

Klaus Berberich
Max-Planck Institute for

Informatics
Saarbrücken, Germany

kberberi@mpi-inf.mpg.de

Arnd Christian König,
Dimitrios Lymberopoulos

Microsoft Research
Redmond, WA 98052
{chrisko,dlymper}
@microsoft.com

Peixiang Zhao
Univ. of Illinois at

Urbana-Champaign
Urbana, IL 61801, USA
pzhao4@illinois.edu

ABSTRACT
The signals used for ranking in local search are very different from web
search: in addition to (textual) relevance, measures of (geographic) distance
between the user and the search result, as well as measures of popularity of
the result are important for effective ranking. Depending on the query and
search result, different ways to quantify these factors exist – for example,
it is possible to use customer ratings to quantify the popularity of restau-
rants, whereas different measures are more appropriate for other types of
businesses. Hence, our approach is to capture the different notions of dis-
tance/popularity relevant via a number of external data sources (e.g., logs
of customer ratings, driving-direction requests, or site accesses).

In this paper we will describe the relevant signal contained in a number
of such data sources in detail and present methods to integrate these external
data sources into the feature generation for local search ranking. In particu-
lar, we propose novel backoff methods to alleviate the impact of skew, noise
or incomplete data in these logs in a systematic manner. We evaluate our
techniques on both human-judged relevance data as well as click-through
data from a commercial local search engine.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval

General Terms
Algorithms, Experimentation, Measurement

1. INTRODUCTION
Local search queries – which can be defined as queries which

employ user location or geographic proximity (in addition to search
keywords, a business category, or a product name) as a key factor
in result quality – are becoming a more important part of (web)
search. Specialized local search verticals are now part of all major
web search engines and typically surface businesses, restaurants or
points-of-interest relevant to search queries. Moreover, their re-
sults are also often integrated with “regular” web search results on
the main search page when appropriate. Also, local search is a
commonly used application on mobile devices.

Because of the importance of location and the different types of
results (typically businesses, restaurants and points-of-interest as
opposed to web pages) surfaced by local search engines, the signals
used in ranking local search results are very different from the ones

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’11, July 24–28, 2011, Beijing, China.
Copyright 2011 ACM 978-1-4503-0757-4/11/07 ...$10.00.

used in web search ranking. For example, consider the local search
query [pizza], which is intended to surface restaurants selling pizza
in the vicinity of the user. For this (type of) query, the keyword(s) in
the query itself do very little for ranking, beyond eliminating busi-
nesses that do not feature pizza (in the text associated with them).
Moreover, the businesses returned as local search results are often
associated with significantly less text than web pages, giving tra-
ditional text-based measures of relevance less content to leverage.
Instead, key signals used to rank results for such queries are (i) a
measure of the distance between the result business and the user’s
location (or a measure of the effort to get there) and (ii) a measure
of its popularity1. To assess these signals directly on the basis of
click information derived from the local search vertical is very dif-
ficult, in part due to the position bias of the click signal [21]. Our
approach therefore leverages external data sources such as logs of
driving-direction requests to quantify these two signals.

In case of result popularity, the related notion of preference has
been studied in the context of web search (e.g., [28]); however,
techniques to infer preferences in this context are based on ran-
domized swaps of results, which are not desirable in a production
system, especially in the context of mobile devices which only dis-
play a small number of results at the same time. Other techniques
used to quantify the centrality or authority of web pages (e.g., those
based on their link structure) do not directly translate to the busi-
ness listings surfaced by local search.

Instead, we look into data sources from which we can derive pop-
ularity measures specific to local search results; for example, one
might use customer ratings, the number of accesses to the business
web site in search logs, or – if available – data on business rev-
enues or the number of customers. Depending on the type of busi-
ness and query, different sources may yield the most informative
signal. Customer ratings, for instance, are common for restaurants
but rare for other types of businesses. Other types of businesses
(e.g., plumbers) may often not have a web site, so that there is no
information about users’ access activity.

In case of result distance, it easy to compute the geographic dis-
tance between a user and a business once their locations are known.
This number itself, however, does not really reflect the effort re-
quired for a user to travel to the business in question. For one, how
sensitive a user is to the geographic distance is a function of the
type of business that is being ranked: for example, users may be
willing to drive 20 minutes for a furniture store, but not for a cof-
fee shop. Moreover, if the travel is along roads or subways, certain
locations may be much easier to reach for a given user than others,
even though they have the same geographic distance; this can even
lead to asymmetric notions of distance, where travel from point A

1Note that additional signals such as weather, time or personalization fea-
tures (see [24]) can also be integrated into our overall framework.

to B is much easier than from B to A (e.g. due to traffic conditions)
or simply much more common. We will provide concrete examples
of such cases later.

Again, it is useful to employ external data sources to assess the
correct notion of distance for a specific query: for example, one
may use logs of driving-direction requests from map verticals –
by computing the distribution of requests ending at specific busi-
nesses, one might assess what distances users are willing to travel
for different types of businesses. Alternatively, one might use mo-
bile search logs to assess the variation in popularity of a specific
business for groups of users located in different zip codes. As be-
fore, the different logs may complement each other.
Challenges for integrating these external data sources stem from
the fact that they are often sparse (i.e., cover only a subset of the
relevant businesses), skewed (i.e., some businesses are covered in
great detail, others in little detail or not at all) and noisy (e.g., con-
tain outliers such as direction requests that span multiple states).

To illustrate why this poses a challenge, consider the following
scenario: assume that we want to use logs of driving direction re-
quests obtained from a map vertical to assess the average distance
that users drive to a certain business. This average is then used
in ranking to determine how much to penalize businesses that are
farther away. Now, for some businesses we may have only few di-
rection requests ending at the business in our logs, in which case
the average distance may be unrepresentative and/or overly skewed
by a single outlier. Moreover, for some businesses we may not
have any log entries at all, meaning that we have to fall back on
some default value. In both cases, we may consequently not rank
the corresponding businesses accurately.

One approach to alleviate this issue is to model such statistical
aggregates (i.e., the average driving distance in the example above)
at multiple resolutions, which include progressively more “simi-
lar” objects or observations. While the coarser resolutions offer
less coherent collections of objects, they yield more stable aggre-
gates. When there is not enough information available about a spe-
cific object, one can then resort to the information aggregated at
coarser levels, i.e., back off to successively larger collections of
similar objects. Strategies of this nature have been used in different
contexts, including click prediction for advertisements [2, 18, 29],
collection selection [19], as well as language models in information
retrieval [36] and speech recognition [22].

To give a concrete example, for the pizza scenario above we may
want to expand the set of businesses based on which we compute
the average driving distances to include businesses that (a) sell sim-
ilar products/services and reside in the same area, (b) belong to the
same chain (if applicable) and reside in different areas or (c) be-
long to the same type of business, regardless of location. All of the
resulting averages can be used as separate features in the ranking
process, with the ranker learning how to trade off between them.
Contributions: In this paper, we describe an approach to integrate
and leverage external data sources in the feature generation pro-
cess for local search ranking. First, we will describe different rele-
vant external sources and examine which properties of user behav-
ior/preferences they express. To capture the signals represented by
these sources we propose a framework for feature generation which
(a) allows us to integrate a wide range of external data sources
into the feature generation for ranking, (b) addresses the issues
of sparseness and skew via a flexible “multi-resolution approach”
based on backoff techniques specific to our setting that extend to
a variety of different distance functions, and (c) yields consider-
able improvements in ranking quality, which we will demonstrate
through experiments on real-world data using both relevance judge-
ments as well as click-through information.

2. RELATED WORK
We now put our work in context with existing prior research. The

work that we deem related can be broadly classified as follows:
Backoff Methods and Smoothing. Katz [22], coining the notion
of backoff, pioneered the idea of using observations about related
objects (in his case N -grams) for statistical estimation in the con-
text of language models; a number of competing techniques exist
in this area. Similar concepts have been used in text database se-
lection: Ipeirotis and Gravano [19] propose a approach to compute
document synopses taking into account other documents from sim-
ilar categories. This can be seen as a form of smoothing – a tech-
nique popular in language modeling [36]. Mei and Church [26],
finally, study how effective a backoff based on IP-address prefixes
can be for personalized search. In contrast to these approaches that
determine related objects to consider based on rigid schemes, our
approach is flexible by allowing for arbitrary distance functions to
steer the backoff process.
Click-through Modeling and Estimation in computational adver-
tising is also related to our work. Click-through data for ads suffers
from a sparsity problem like our external data sources. Therefore,
models proposed in the literature factor in information from related
ads that are determined, for instance, based on term overlap [29],
the ads’ positions in a class taxonomy [2], or knowledge about the
customer and her past campaigns [18].
External Data Sources (e.g., logs of user behavior) have proven
useful in different applications. Selecting the right vertical (e.g.,
news or images) is one that was addressed in [4]. GPS traces, yet
another kind of external data, were used in [10] to construct maps.
Lane al. [24], most recently and closest to our work, used exter-
nal data (including weather information) to improve relevance in
mobile search.
Geographic Information Retrieval considers, for instance, rank-
ings of documents that take into account geographic references –
the problem addressed in [1, 5]. Queries, though, may not contain
an explicit geographic reference (e.g., a city name) but have a “geo
intent” nevertheless. Identifying such queries is orthogonal to our
work and has been studied in [6, 25, 32, 35]. The issue of efficient
index structures and query processing to support spatial keyword
queries was studied in [14]. The problem addressed in this paper is
to retrieve the k nearest results to a query location that contain all
query keywords. The authors propose a dedicated index structure
called IR2-Tree for this task. Extension of their ideas to ranking
functions that are a monotonic combination of textual similarity
and spatial distance scores are described in [13] and [11]. A dif-
ferent data structure for queries with both textual as well as spatial
filter conditions is introduced in [17]. Unlike all of these papers,
our approach is not concerned with the indexing of the objects it-
self and is focused on a much more complex, machine-learning
based ranking function incorporating a wide variety of features.

3. OUR APPROACH
In this section, we describe the overall architecture behind our

approach. Our goal is an architecture to incorporate external data
sources into the feature generation process for local search ranking.
Examples of such data sources include logs of accesses to busi-
ness web sites, customer ratings, GPS traces, and logs of driving-
direction requests. Each of these logs is modeled as a set O of
objects O = {o1, . . . , ok}. The different features that we consider
in this paper are derived from these logs by means of (a) a selec-
tion function that selects an appropriate subset of objects and (b) an
aggregation function that is applied to this subset to derive a single
feature value.

!"#$%#&'
()*+,'

!"#$%&'()*+,

-+"./0'12+.3'-
4)/"5)#'l

4)/",'-+"./0'
627%#+77'
'8"9"

!"#$%&##&#' (&)*"+&'#&*'
'

,-' (-'''(.''///'

,.'

,0'

1'

:;<+/9'+.)
:;<+/9'+/)
'''''''''='
:;<+/9'+0)+.1)

+22)
3)

+.45)

*+6'()7$'%68)
9$:;(#:)

<=(#$%)7$#)

6"/$)>'

?&&.+&"5)#'

Figure 1: Our Architecture

For example, consider the running example of ranking a specific
pizza restaurant and a log of driving direction requests; here, the
selection function might select all log entries ending in the same
location as the restaurant and the aggregation function might com-
pute the average distance of the requests. We also refer to these
features as aggregate features in the following.

Figure 1 depicts the overall architecture of our system. Initially,
a query and location are sent as an input to the local search en-
gine; this request can either come from a mobile device, from a
query explicitly issued against a local search vertical, or a query
posted against the web search engine for which local results shall
be surfaced together with regular results. In the latter two cases, the
relevant (user) location can be inferred using IP-to-location lookup
tables or from the query itself (e.g., if it contains a city name). As a
result, a local search produces a ranked list of entities from a local
search business database; for ease of notation, we will refer to these
entities as businesses in the following, as these are the most com-
mon form of local search results. However, local search may also
return other entity types including sights and “points-of-interest”.

Ranking in local search usually proceeds as a two-step approach:
an initial “rough” filtering step eliminates obviously irrelevant or
too distant businesses, thus producing a filter set of businesses,
which are then ranked in a subsequent second step using a learned
ranking model. Our backoff methods operate in an intermediate
step, as illustrated in Figure 1, enriching businesses in the filter set
with additional features aggregated from a suitable subset of ob-
jects in the external data source O.

Given the current query q, user location l, and a specific business
b from the filter set, the selection function first selects a subset of
objects from the external data sourceO, from which aggregate fea-
tures are generated. We implement different levels of granularity
in our backoff methods using different selection function; hence,
we also refer to set of objects selected as the backoff set. The dif-
ferent selection functions are steered by a set of distance functions
d1, . . . dm each of which captures a different notion of distance be-
tween the triple (q, l, b) (further referred to as source object) and an
object oi from the external data source. Examples of distance func-
tions, that we consider later on, include geographic business dis-
tance (e.g., measured in kilometers) and categorical business dis-
tance that reflects how similar two businesses are in terms of their
business purpose.

Unlike other backoff techniques (e.g., [26]), which only use sin-
gle distance function, our approach does neither restrict the choice
of distance functions nor their number. This in turn poses the chal-

lenge that the different distance functions must be combined or
traded off when doing the backoff.

Our approach to do this is to expose aggregate features from a
number of different backoff sets machine-learning based ranking
model, each of which relaxed a different (combination) of distance
function(s). This approach also has the advantage that we do not
have to explicitly formulate a single scoring function that trades
off between distance, popularity and other factors (as is done, for
example, in [11] or [24] where this is realized through a metric em-
bedding). Instead, the ranker can (learn to) trade off between the
different features in different ways for different types of queries.
As we will illustrate in the next section, the relative importance of
distance, popularity, etc. can vary significantly for different types
of business entities or queries, thereby making this flexibility es-
sential for ranking.

4. LEVERAGING EXTERNAL SOURCES
We now describe the external data sources that we leverage using

our architecture, give details on their characteristics, and explain
why we consider them important for local search ranking.

4.1 Direction Requests
The first type of external data that we use for local search are logs

of driving-direction requests, which could stem from map search
verticals (e.g., maps.google.com or www.bing.com/maps/), web sites
such as Mapquest or any number of GPS-enabled devices serving
up driving directions. In particular, we focus on direction requests
ending at a business that is present in our local search data. For
these requests, we use both the (aggregated) driving distances (in
miles) as well as the (aggregate) driving times (in minutes) to gen-
erate ranking features, as they represent two different aspects of
how much “effort” is spent to reach a given business.
Data Preparation and Quality: Independent of whether the logs
of direction requests record the actual addresses or latitude/longitude
information, it is often not possible to tie an individual direction
request to an individual business with certainty: in many cases
(e.g., for a shopping mall) a single address or location is associated
with multiple businesses and some businesses associate multiple
addresses with a single store/location. Moreover, we found that in
many cases users do not use their current location (or the location
they start their trip from) as the starting location of the direction
request, but rather only a city name (typically of a small town) or
a freeway entrance. As a consequence, our techniques need to be
able to deal with the underlying uncertainty; we use (additional)
features associated with each business that encode how many other
businesses are associated with the same physical location.

One important concern with location information is location pri-
vacy [23]; fortunately, our approach does not require any fine-grained
data on the origin of a driving request and – because all features we
describe in this paper are aggregates – they are also somewhat re-
silient to the types of obfuscation used in this context (see [23] for
a more detailed description of the applicable techniques). In fact,
any feature whose value is strongly dependent on the behavior of a
single user is by default undesirable for our purposes, as we want
to capture common behavior of large groups of users. We omit a
more detailed discussion of privacy issues due to space limitations.
The Value of Direction Requests: The value of the direction re-
quest data stems from the fact that it allows us to much better quan-
tify the impact of distance between a user and a local search result
than mere geographic distance would. For one, the route length and
estimated duration reflect the amount of “effort” required to get to
a certain business much better than the geographic distance, since
they take into account the existing infrastructure. Moreover, in ag-

gregate, the direction requests can tell us something about which
routes are more likely to be traveled than others even when the as-
sociated length/duration is identical.

Direction request data can also be used to assess popularity, as
a direction request is typically a much stronger indicator of the in-
tent to visit a location than an access to the corresponding web site
would be. However, they do not convey reliable data on the like-
lihood of repeated visits as users are not very likely to request the
same directions more than once. Also, directions to more popular
or famous destinations are more likely to be known to users already.
Varying Distance Sensitivity: A hypothesis we mentioned in the
introduction was that users’ “sensitivity” regarding distance is a
function of the type of business considered. In order to test this,
we used a multi-level tree of business categories (containing paths
such as /Dining/Restaurants/Thai); every business in the
local search data was assigned to one or more nodes in this tree.
We computed the average route length for driving requests in every
category. The averages (normalized to the interval [0, 1]) for top-
level categories are shown in Figure 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Entertainment & Arts

Automotive

Business to Business

Technology

Education

Dining

Government & Community

Health & Beauty

Home & Family

Legal & Finance

Professionals & Services

Real Estate & Construction

Shopping

Sports & Recreation

Travel & Vacation

Normalized Average Driving Distance

Figure 2: Average Driving Distance per Top-Level Category

As we can see, there are considerable differences between the
average distances traveled to different types of businesses. Busi-
nesses associated with travel have the highest average, which is not
at all surprising (the requests in this category are dominated by di-
rection requests to hotels). While some of these numbers mainly
reflect the density of businesses in categories where competition is
not an issue (e.g., public institutions in the Government & Commu-
nity category), larger averages in many cases also indicate a smaller
“sensitivity” towards increased distances (e.g., entries in the fine
dining category). To give one particular example, the (high) av-
erage driving distances to hotels are not at all a reflection of the
density of distribution of hotels; approaches that seek to model dis-
tance sensitivity by retrieving the top-k closest distances to the user
would fail for this scenario. As a consequence, we model both the
distribution of driving distances for individual businesses as well as
the “density” of alternatives around them in our features.
Distance Asymmetry: Some variation in the distance distribution
of driving directions cannot be explained by the different business
categories of the destinations themselves. To illustrate this, we plot-
ted the starting points of driving directions to restaurants in Red-
mond and Bellevue (located east of Lake Washington) and of di-
rections to restaurants in Seattle (west of Lake Washington) on the
map in Figure 3 (larger circles denote more requests starting in the
same vicinity). The figure shows that it is common for users from
Redmond/Bellevue to drive to Seattle for dinner, but the converse
does not hold. Hence, there appears to be a difference in the “dis-

tance sensitivity” for each group of users even though technically,
the route lengths and durations are the same. While some of these
effects can be explained by the greater density and (possibly qual-
ity) of restaurants in Seattle, a lot of the attraction of a large city
lies in the additional businesses or entertainment offered.

Consequently, we either need to be able to incorporate distance
models that are non-symmetric or be able to model the absolute
location of a business (and the location’s attractiveness) as part of
our feature set. In the features proposed in this paper, we will opt
for the second approach, explicitly modeling the popularity of areas
(relative to a user’s current location) as well as (the distance to)
other attractions from the destination.

Directions to
Restaurants in Seattle

Directions to
Restaurants in Redmond

Directions to
Restaurants in Bellevue

Figure 3: Distribution of a sample of starting points for driving di-
rection requests to restaurants in Seattle, Bellevue and Redmond. This
distribution is highly asymmetric: many users are willing to drive from
Redmond or Bellevue to Seattle for dinner, but very few are willing to
drive the opposite way, even though the driving times are similar.

4.2 Browsing Trail Logs
The second type of external data that we use are logs of Brows-

ing/Search Trails [33]. These are logs of browsing activity col-
lected with permission from a large number of users; each entry
consists of (among other things) an anonymous user identifier, a
timestamp and the URL of the visited web page (where we track
only a subset of pages for privacy reasons2), as well as informa-
tion on the IP address in use. A more detailed description of trail
extraction can be found in [33].

Using these logs, we can now attempt to (partially) characterize
the popularity of a specific business via the number of accesses we
see to the web site associated with the business, by counting the
number of distinct users, or the number of total accesses or even
tracking popularity over time. In our experiments, we (similarly
to [33]) break down the trails into sessions, and count repeated ac-
cesses to a single page within a session as one access. Note that
our current approach does not make full use of the sequence infor-
mation and dwell-times on contained in the trail log; we hope to
further exploit this signal in future work.
Data Preparation and Quality: The main issue with tracking ac-
cesses here is how we define what precisely we count as an ac-
cess to the web site stored with the business. For example, if the
2In the experiments in this paper we restrict this set to pages associated with
the individual businesses in our databases, as well as a small set of referring
sites (such as search engines, portals and review sites).

Rank Business Web Site
1 http://www.lwtc.edu/
2 http://www.costco.com/
3 http://bellevuecollege.edu/
4 http://www.alaskaair.com/
5 http://www.windermere.com/
6 http://www.macys.com/
7 http://shop.nordstrom.com/

. . .

Figure 4: The most frequently accessed business web sites in the Belle-
vue zip code in our browsing trail log data

site of a business according to our local search data is www.joeys-
pizza.com/home/, do we also count accesses to www.joeyspizza.com/
or www.joeyspizza.com/home/staff/ ? For simplicity, in this paper,
we consider an access a match if the string formed by the union of
domain and path of a browsed URL is a super-string of the domain
+ path stored in our local search data (we ignore the port and query
part of the URL). Finding a better matching function than this for
tracking accesses is actually an interesting engineering challenge,
which is outside the scope of this work.

Similar to the issues we discussed earlier encountered with asso-
ciating businesses with individual locations, we also face the issue
that in our local search data, some web site URLs are associated
with multiple businesses (typically, multiple instances of the same
chain). To address this, we keep track of the total number of ac-
cesses as well as the number of businesses associated with a site
and encode this information as a feature.
The Value of Trail Logs: We use the trail logs to derive features
quantifying the popularity of businesses by tracking how often the
corresponding sites are accessed over time. Here, the main advan-
tage over search logs (local or otherwise) lies in the fact that trail
logs allow us to account for accesses that originate from sites other
than search engines (such as e.g., Yelp or Citysearch), which make
up a very significant fraction of access for some types of businesses,
especially smaller ones. Moreover, we can use the the notion of
sessions, to avoid double-counting of repeated visits to a single site
within a single session. Finally, using the IP information contained
in the logs, we can (using appropriate lookup tables) determine the
zip code the access originated from with high accuracy, thereby al-
lowing us to break down the relative popularity of a business by
zip codes. To illustrate this, consider Figure 4, which shows – for
one month of data – the web sites associated with a business in our
data that were most frequently accessed from the Bellevue zip code
(98004), ranked by frequency. Both the top-ranked and 3rd-ranked
site correspond to businesses (colleges) local to the Bellevue area;
when comparing this to the adjacent Redmond zip code (98052),
both of these web sites fail to make the top 20 of most frequently
accessed sites; also, their relative order is reversed.

4.3 Mobile Search Logs
The final external data source that we use are logs of mobile

search queries submitted to a commercial mobile search engine to-
gether with the resulting clicks from mobile users. The information
recorded includes the GPS location from which the query was sub-
mitted, the query string submitted by the user, an identifier of the
business(es) clicked in response to the query and a timestamp.
The Value of Mobile Search Logs: We use these logs to derive
features relevant to both popularity (by counting the number of ac-
cesses to a given (type of) business or area) as well as to capture the
distance sensitivity (by grouping these accesses by the location of
the mobile device the query originated from). For this purpose, the
mobile search logs differ from the other sources discussed previ-
ously in two important ways: first, they give a better representation

of the “origin” of a trip to a business than non-mobile logs – in part
due to the factors discussed above for direction requests (where the
origin of the request is often not clear) and in part because these re-
quests are more likely to be issued directly before taking action in
response to a local search result (as the requester may already be on
the move as opposed to in front of his PC). Second, mobile search
logs contain significantly more accurate location information (e.g.,
via GPS, cell tower and/or wifi triangulation) compared to the re-
verse IP lookup-based approach used for desktop devices [27, 31].

5. DISTANCE-BASED BACKOFF
Having described our overall approach and the practical chal-

lenges associated with the external data sources that we want to
leverage, we now introduce our approach to distance-based back-
off. The importance of the resulting features is two-fold: first, the
backoff method allows us to overcome issues like sparseness and
outliers by yielding more robust aggregates; second, they help us
express some of the properties of user preferences we have de-
scribed in Section 4. For example, as illustrated previously, the
relative importance of signals such as distance and popularity may
vary tremendously across queries. Consequently, we do not want to
propose a ranking model that uses a simple weighted combination
of distance/popularity measures (with the weights computed from
training data). Instead, the features generated from backoff sets
allow us to detect behaviors specific to certain sets of retrieved ob-
jects dynamically – for example, using a backoff set that retrieves
similar businesses (for driving direction logs) allows us to detect
the relevant distance sensitivity (similar to Figure 2). Similarly, we
can detect the popularity of regions (as discussed in Figure 3) by
using a backoff set containing adjacent businesses.
Backoff Framework: As we already sketched in Section 3, our
idea is to generate additional aggregate features for a concrete busi-
ness in our filter set based on a subset of objects from the ex-
ternal data source. Selecting the subset of objects to consider is
the task accomplished by a backoff method. Given a source object
s = (q, l, b) consisting of the user’s query q, current location l, and
the business b from our filter set, as well as an external data source
O, a backoff method thus determines a backoff set B(s) ⊆ O of
objects from the external data source.
Running Example: Consider an example user from Redmond (i.e.,
l = (47.64,−122.14), when expressed as a pair of latitude and
longitude) looking for a pizza restaurant (i.e., q = [pizza]) and a
specific business (e.g., b = Joey’s Pizza as a fictitious pizza restau-
rant located in Bellevue). Our external data source in the example is
a log of direction requests where each individual entry, for simplic-
ity, consists of a business, as the identified target of the direction
request, and the corresponding route length.

Apart from that, we assume a set of distance functions d1, . . . , dm

that capture different notions of distance between the source object
s = (q, l, b) and objects from the external data source. Example
distance functions of interest in our running example could be:

• geographic business distance dgeo between the locations as-
sociated with businesses b and o, or

• categorical business distance capturing how similar the two
businesses are in terms of their business purpose. Letting
Cat(s) and Cat(o) denote the sets of business categories
(e.g., /Dining/Italian/Pizza) that the businesses are
associated with, a sensible definition based on the Jaccard
coefficient would be

dcat(s, o) = 1.0− |Cat(s) ∩ Cat(o)||Cat(s) ∪ Cat(o)|

• geographic user distance which – when combined with logs
that contain observations with a starting point (e.g., a current
user location) and endpoint (e.g., a destination business) –
measure the distance between the starting locations.

One baseline method is to include only objects in the backoff set
for which all m distance functions report zero distance, i.e.,

BBL(s) = { o ∈ O | ∀i : di(s, o) = 0 } .

In our running example this only includes direction requests that
have Joey’s Pizza as a target location (assuming that there is no
second pizza restaurant at exactly the same geographic location).
Due to the sparseness of external data sources, though, this method
produces empty backoff sets for many businesses.

To alleviate this, we have to relax the constraints that we put on
our distance functions. For our running example, we could thus
include other pizza restaurants in the vicinity by relaxing the geo-
graphic distance to dgeo(s, o) ≤ 2.5, include other similar busi-
nesses (e.g., other restaurants) at the same location by relaxing
dcat ≤ 0.1. Which choice is best, though, is not clear upfront
and may depend on the business itself (e.g., whether Joey’s Pizza is
located in a shopping mall or at an out-of-town location). Further-
more, it is not easy to pick suitable combinations of threshold val-
ues for the distance functions involved, as the notions of distance
introduced by each function are inherently different. We address
the first issue by exposing (features based on) a number of differ-
ent relaxations to the ranker, which can then pick and combine the
most informative among them; regarding the second issue, we use
a simple normalization scheme described in the following.
Distance Normalization: We address the issue of “incompatible”
distance functions by re-normalizing them in a generic manner as

dN
i (s, o) =

|{ o′ ∈ O | di(s, o
′) < di(s, o) }|

|O| ,

so that the normalized distance dN
i (s, o) conveys the fraction of

objects that have a smaller distance than o from the source object.
Building on our distance normalization, we introduce an aggre-
gated distance

d(s, o) =

m∑
i=1

dN
i (s, o)

that captures the overall distance of object o.

5.1 Near-Neighbor Backoff
Our first method, coined near-neighbor backoff (NN), includes

all objects in the backoff set that have an aggregated distance below
a threshold α. Formally, the method produces the backoff set

BNN (s, α) = { o ∈ O | d(s, o) < α } .

Figure 5 illustrates near-neighbor backoff when applied to our
running example. The determined backoff set contains all objects
in the shaded triangle defined by d(s, o) < 0.01, i.e., only objects
that are sufficiently close to the source object but none that are both
geographically distant and of a very different business type (e.g., a
Volvo dealer in Tacoma).
Computational Overhead: By its definition, near-neighbor back-
off requires identifying all objects that have an aggregated distance
below the specified threshold. If objects can be retrieved in ascend-
ing order of their distance, this can be done efficiently in practice.
For instance, as an example optimization, once an object with dis-
tance α ≤ dN

i (s, o) has been seen, one can stop retrieving dis-
tances for the distance function di. Other optimizations, such as
those proposed for efficient text retrieval [3] or top-k aggregation
in databases [15], are also applicable in this case.

!"#$%&'#!()*+,-&.##

!/
#$-
+*
&%
'0
1.
##

!"#$"%&'(#')%
*+%,(-".(%

2(33+#2+4+-&#
(,#5&+64&##

7+08&0#9'8:)#
(,#;&44&<=&#

>'&1:)#2(33+#
(,#;&44&<=&#

/0))*1"%2'($'+%
*+%3'4."+4%

Figure 5: Near-Neighbor Backoff Illustrated

5.2 Pivot Backoff
Near-neighbor backoff, as explained above, ensures that all ob-

jects in the backoff set are individually close to the source ob-
ject. Their distances according to the different distance functions,
though, can be rather different, as can be seen from Figure 5 where
we include Farmer Tom’s in Bellevue (a fictitious supermarket) and
Pizza Palace in Seattle, each of which is close to the source accord-
ing to one but very distant according to the other distance function
considered. As this demonstrates, near-neighbor backoff may pro-
duce a set of objects that, though individual objects are close to the
source, is incoherent as a whole, which can be problematic when
aggregating over them.

Pivot backoff, which we introduce next, addresses this issue and
goes beyond near-neighbor backoff by not only ensuring that ob-
jects in the backoff set are individually close to the source object
but also choosing a coherent set of objects. To this end, the method
chooses the backoff set relative to a pivot object that has maximal
distance, among the objects in the backoff set, for every distance
function. The pivot thus serves as an extreme object and charac-
terizes the determined backoff set – all objects in it are at most as
distant as the pivot. While this ensures consistency among the ob-
jects in the backoff set, the choice of the pivot object now becomes
critical. Since we are interested in determining reliable aggregate
features in the end, we select the pivot object (among all pivot ob-
jects with aggregate distance less than α) that yields the largest
backoff set, thereby creating an optimization problem. The backoff
set is formally defined relative to a pivot object p as

BP (s, α) =
{
o ∈ O | ∀i : dN

i (s, o) ≤ dN
i (s, p)

}
.

The pivot object p is chosen so that the backoff set has maximal
size, while ensuring that the pivot (and, in turn, all other objects in
the backoff set) have aggregated distance below a specified thresh-
old α. Formally, this can be cast into the optimization problem

argmax
p∈O

∣∣{ o ∈ O | ∀i : dN
i (s, o) ≤ dN

i (s, p)
}∣∣

s.t. d(s, p) < α .

Figure 6 illustrates pivot backoff when applied to our running
example. The method determines Burrito Heaven in Redmond as a
pivot, thus producing a backoff set that contains the seven objects
falling into the shaded rectangle.
Computational Overhead: It follows from our definition of pivot
backoff that we only need to consider objects that have an aggre-
gated distance d(s, o) < α. These can be identified using tech-
niques similar to the ones used in near-neighbor backoff. We now
address the question of how a pivot object can be determined ef-
ficiently among these near neighbors. Note that our definition of

!"#$%&'#!()*+,-&.##

!/
#$-
+*
&%
'0
1.
##

!"#$"%&'(#')%
*+%,(-".(%

/*00(%/(#(-'%
*+%1'(2#'%%

3().')%,".45%
*+%6'##'$7'%

2'&13)#4(55+#
(,#6&77&89&#

6900(*'#:&+8&,#
(,#;&!<',!#

Figure 6: Pivot Backoff Illustrated

pivot backoff resembles skylines [7] that have been investigated
in depth, for instance, in the database community. Algorithm 1
gives pseudo code for determining a pivot object, building on ideas
from the sort-filter skyline computation described by Chomicki et
al. [12]. Here, we exploit their idea that an object o can only be con-
tained in the backoff set defined by the pivot p if d(s, o) ≤ d(s, p).
For ease of explanation, we also assume that objects have distinct
aggregate distances.

1: Input: nearNeighbors = { o ∈ O | d(s, o) < α }
2: sort nearNeighbors in descending d(s, o) order
3: p∗ = nearNeighbors.removeFirst()
4: pivotCandidates = { p∗ }
5: for o ∈ nearNeighbors do
6: for p ∈ pivotCandidates do
7: if ∀i : dN

i (s, p) ≤ dN
i (s, o) then

8: o.containedIn++;
9: p.contains++;

10: if p.contains > p∗.contains then
11: p∗ = p
12: end if
13: end if
14: if o.containedIn = 0 then
15: pivotCandidates.add(o)
16: end if
17: end for
18: end for
19: return p∗

Algorithm 1: Pivot Identification

The algorithm first sorts nearNeighbors in descending or-
der of d(s, o). The set of potential pivots, as those objects not
contained in the set defined by another object, is maintained in
pivotCandidates. When reading an object o from the sorted
nearNeighbors, the algorithm tests whether the object is con-
tained in the set of any potential pivot p. If so, it updates the count
p.contains of objects in that set. Otherwise, if o is not con-
tained in any such set, it is a potential pivot and thus added to
pivotCandidates. As a side aspect, the algorithm maintains
the currently best-known object p∗ from pivotCandidates and
finally returns it as the pivot. The algorithm has time complexity in
O(n2) and space complexity in O(n) where n denotes the number
of near neighbors. The worst case occurs if every object defines a
backoff set that contains only the object itself.

6. EXPERIMENTAL EVALUATION
In the following, we evaluate the effectiveness of our methods

using two data sets. We first evaluate the improvement in ranking
quality based on a set of 80K pairs of queries and local search re-

sults, which have been assigned relevance labels by human judges.
While this data allows us to have clean relevance judgements ren-
dered by experts, this type of “in-vitro” evaluation may not capture
all real-life factors (e.g., the attractiveness of locations surrounding
a business, or travel duration due to traffic) that impact local search
result quality in practice. To capture these factors, we also evaluate
our techniques using a data set of queries and click-through infor-
mation from a commercial local search portal; for this data, we do
not have human relevance judgements, so we instead we use the
features in a click-predict setting and evaluate if the new features
result in significant improvements in predicting result clicks.

6.1 Learning Model
The learning method for click prediction is based on Multiple

Additive Regression-Trees (MART) [34]. MART is based on the
Stochastic Gradient Boosting paradigm described in [16] which
performs gradient descent optimization in the functional space. In
our experiments on click prediction, we used the log-likelihood
as the loss function (optimization criterion), used steepest-decent
(gradient descent) as the optimization technique, and used binary
decision trees as the fitting function.

To illustrate this in the context of our click-prediction experi-
ments: at the beginning of every iteration, the click probabilities of
the training data are computed using the current model. The click
prediction is now compared with the actual click outcome to derive
the errors (or residuals) for the current system, which is then used
to fit a residue model – a function that approximates the errors –
using MSE (Mean Square Error) criteria. In MART, we compute
the derivatives of the log-loss for each training data point as the
residual and use the regression tree as the approximation function-
residual model. A regression tree is a binary decision tree, where
each internal node splits the features space into two by comparing
the value of a chosen feature with a pre-computed threshold; once
a terminal node is reached, an optimal regression value is returned
for all the data falling into the region. Finally, the residual model is
added back to the existing model so that the overall training error
is compensated for and reduced for this iteration. The new model
– the current plus the residual model – will be used as the current
model for the next boosting/training iteration. The final model after
M boosting iterations is the sum of all M regression trees built.
Properties of MART: MART is robust in that it is able to han-
dle the diverse sets of features proposed in the previous section.
For one, it does not require transformations to normalize the inputs
into zero mean and unit variance which is essential for other algo-
rithms such as logistic regression or neural nets. More importantly,
by its internal use of decision trees, which are able to “break” the
domain of each feature arbitrarily, it is able to handle non-linear
dependencies between the feature values and the output.

MART also computes the importance of a feature by summing
the number of times it is used in splitting decisions weighted by the
MSE gain this split has achieved. The relative importance of a fea-
ture is computed by normalizing its importance by the importance
of the largest feature, i.e., the most important feature will have rel-
ative importance 1 and and other features will have relative impor-
tance between 0 and 1. These relative importances of input features
makes the model interpretable – helping us gain an understanding
of the input variables that are most influential.

For the experiments on relevance judgements, we use Lambda-
MART [8], which is a state-of-the-art ranking algorithm based on
a combination of boosted regression trees and LambdaRank [9],
which has the same robustness and interpretability properties de-
tailed above as MART. A detailed description of both LambdaMART
as well as LambdaRank can be found in [8].

6.2 Feature Sets
In the following, we will describe the different feature sets used

in our experiments. We begin by describing a “baseline” ranking
feature set that does not make use of external information, sub-
sequently define an “aggregate” feature set containing simple ag-
gregate features derived from external sources, but not any of the
backoff features. Finally, we add the features derived from the two
types of backoff methods in Section 5 into the “backoff” feature set.
Baseline Features: in the baseline feature set, we characterize the
location of the user and the local result using features encoding the
latitude and longitude of both as well as their geographic distance
(DistanceInKM). Also, if a query contains a reference to a city, state
or zip code (e.g., [pizza in Miami] or [sushi near 98052]), we en-
code the location of the center of the mass of the polygon describ-
ing boundaries of the city/state/zip-code in question in two features
(Implicit_Latitude, Implicit_Longitude) and encode the presence of
a city/state/zip-code in the query in binary features. As before, we
encode the geographic distance between this point and the location
of the user (Implicit_DistanceInKM).

To characterize the textual relevance of a result, we use a feature
(Result_Relevance) encoding the BM25 score [30] of the query and
the text associated with the local search result.

Finally, we use some features to characterize the query itself: in
addition to two features encoding the number of tokens and charac-
ters, we use two binary features that encode if (a) the query matches
a business name exactly (e.g., [dunkin donuts]) and (b) if the query
matches a business category in our category hierarchy (e.g., [pizza]
or [mexican food]), as in these cases the expected ranking behavior
is dramatically different: in case of the user specifying a business
directly, this is a very strong indicator that the top-ranked result
should be an instance of this business, even in spite of there be-
ing closer and more popular alternatives. In the case of categorical
queries, we see the opposite behavior – the importance of matching
the text in the query (e.g., in the business title) is low, whereas the
other signals dominate the ranking.

In the click prediction experiment, we have additional informa-
tion on the queries: first, and most importantly, the different re-
sults are displayed at different positions, which have a major im-
pact on the click probabilities; we encode the position in a feature
(Result_Position). Second, as shown in [24], time is an important
factor in local search; hence, we use different features to encode
the hour, day of the week and month each query was issued.
Aggregate Features: For this feature set, we used the basic fea-
tures and add the following features derived from the external logs
described in Section 4: first, as one way of measuring result popu-
larity, we count the average number of accesses to a web site asso-
ciated with a business in the trail logs (ResultClickPopularity). We
use a log of 36M such requests for this purpose, limited to requests
issued in the United States. To account for a web site being associ-
ated with multiple businesses, we also encode the total number of
businesses associated with it (WebsiteCohostedEntities).

To model the distance sensitivity, we encode the average driving
distance (AvgDrivingDistance) and average route length (as esti-
mated by the direction provider) (AvgRouteLength) for the direc-
tion requests ending at the location of the result business; in order
to assess the stability of these estimates, we also encode the number
of such requests (which can also serve as a measure of popularity)
(NoDrivingDirectionRequests) as well as the number of businesses
located at the same location (LocationCoLocatedEntities).

Finally, we use the mobile search logs to model the overall pop-
ularity of the area a business is located in, given the area the user
resides in. Because of the small size of the log we used, we use
a relatively coarse “resolution” here, computing the fraction of ac-

cesses in the mobile search logs made from the current zip code
of the user and accessing a business in the zip code of the result
(HitRateZip).

In addition, as we discussed in Section 4.1, the attractiveness of
a result may not only depend on the properties of the correspond-
ing business, but also on the available shopping, parking, entertain-
ment, etc. in its vicinity. To test this hypothesis, we experimented
with features that measure the distance from the result to the near-
est businesses of different types, with smaller distances being in-
dicative of areas offering more attractions. In this feature set, we
incorporate a single feature of this type, measuring the distance to
the nearest coffee shop of a major chain (DistanceToCoffee). Note
that in practice, this feature doesn’t only reflect the availability of
espresso, but serves as a proxy of how “urban” the area is where a
business is located. Since urban areas contain – on average – more
other “attractions” besides coffee shops, we can think of it as a very
simple and crude heuristic to characterize the attractiveness of the
surroundings of a business. A more detailed study of the effects
of proximity of other businesses/attractions is an interesting area of
study in its own right and beyond the scope of this paper.
Backoff Features: In our third feature set, we add features gener-
ated using the two backoff methods described in Section 5. In order
to describe these, we first need to define the distance functions we
use and the objects they operate on. As in Section 5, we define
the source object s = (q, l, b) for which we generate features as
the 3-tuple formed by a query string q, the user’s location l and the
result business b. We use the two backoff methods on features gen-
erated from the logs of search trails (see Section 4.2) and logs of
direction requests (see Section 4.1). Each observation o in one of
these logs is characterized by its origin oorig (which corresponds
to the user location (inferred via the IP address) in the trail logs, or
the starting point of the direction request) and its destination odest

(corresponding to the location of the clicked business in the trail
logs, or the end point of the direction request). Using these, we can
now define the distance functions we use for backoff as:

Geographic Business Distance dgeo(s, o), which is defined as the
geographic distance between the location of b and the desti-
nation odest of an observation in the logs.

Categorical Business Distance: dcat(s, o), which is defined (see
Section 5) as the overlap in business categories between b the
destination odest of an observation.

Geographic User Distance: duser(s, o) which is defined as the
geographic distance between the location of l of the user and
the origin oorig of an observation in the logs.

Using these distances, we now compute backoff features as follows:
for a given source, we iterate over all combinations of distance
functions and thresholds α ∈ {0.001, 0.01, 0.025, 0.05} and com-
pute the corresponding backoff sets BNN (s, α) and BP (s, α) for
both the direction request and the browsing/search trail logs. Now,
for each of these, we use the following aggregate functions to com-
pute the final features from each backoff set: (a) the count of ob-
jects in the backoff set, (b) for the driving direction log, we encode
the average distance of the routes contained in the backoff set as
well as the variance of the distances, and (c) for the trail log, we en-
code the average number of accesses for the businesses contained
in the backoff set as well as their variance. Finally, for each en-
tity b, we also compute the difference in average route length/time
and number of accesses between b and (i) all other members in the
backoff set and (ii) all other businesses in the filter set, and encode
these as features.

6.3 Experiments using Relevance Judgements
Dataset: In this experiment, we use a set of 80K pairs of a query
and a local search result, the quality of each of which has been
judged by a human expert on a 5-level scale from 0 (the worst) to 4
(the highest). Note that we refer to these as quality scores and not
as relevance scores, since they incorporate additional factors other
than pure query relevance (e.g., distance). The queries were sam-
pled at random from query log files of a commercial local search
engine and the results correspond to businesses in our local search
data; all queries are in English and contain up to 7 terms. To avoid
any training/test contamination, we partition the data into training,
test, and validation data, such that every query string is present
only in one of these partitions. After this partitioning, we retain a
set of 8K distinct queries for training, 1.7K queries in the valida-
tion set and 1.7K queries in the test set. We choose the parameters
of LambdaMART based on the validation set, using 30 leaves in
the LambdaMART decision trees, M = 300 iterations and using a
random sample of 90% of the training data for each split.
Performance Measure: To evaluate the performance of the re-
sult ranking, we employ Normalized Discounted Cumulative Gain
(nDCG) [20], which is defined as

nDCGp =
100

Z

p∑
r=1

2l(r) − 1

log(1 + r)
, (1)

where l(r) ∈ [0, 4] is the quality label of the local search result
returned at rank position r and p is the cut-off level (i.e., maximal
rank considered) at which we compute the nDCG, and Z is chosen
such that the perfect ranking would result in nDCGp = 100. We
evaluate our results using the mean nDCG10.
Results: We present the improvements in nDCG resulting from the
different feature sets in Figure 7. As we can seen, the aggregate
feature set yields a considerable improvement in nDCG. When us-
ing backoff features we observe a smaller improvement on top of
that. We also evaluated the backoff feature set when using only
features generated through either near-neighbor or pivot backoff.
Interestingly, both of these perform as well as the full backoff set.
To quantify the significance of the results, we performed signif-
icance tests, using paired t-tests. Both the gain of the aggregate
features as well as the gain of the various backoff feature sets over
the baseline are statistically significant at the 99% level.

Baseline Aggregate Backoff NN Pivot
nDCG@10 76.80 77.25 77.79 77.79 77.79

Figure 7: nDCG@10

Feature Importance Analysis: As we described above, MART is
able to assign meaningful feature-importance scores to the features
used in ranking, allowing us to assess the relative importance of the
different features. In this set of experiments, the most important
features were (in order) the DistanceInKM between user and result
business, the ResultRelevance and the Implicit_DistanceInKM be-
tween a business and the center of a city explicitly mentioned in
the query. As expected, these very general measures of distance
and relevance were the key factors in ranking – result popularity
was less significant, which is in part a result of these experiments
being done “in vitro”: judges were not about to visit the result busi-
ness and hence not influenced by its actual quality. For the same
reason, the features characterizing average route length and driving
duration for direction requests did also rank lower in feature impor-
tance, as “typical” user behavior is unlikely to be reflected via rele-
vance judgements. Still, the aggregate features resulted in a notice-
able improvement in nDCG, validating our use of external sources

for ranking. The likely main reason for the additional improvement
when adding the backoff features were features characterizing the
differences (in route time/ length and popularity) between the busi-
ness b to be ranked and the other businesses in the filter set, which
ranked highest among the backoff features. Otherwise, few backoff
features (≤ 3%) were picked up by the classifier.

6.4 Experiments using Click Data
Dataset: Our second set of experiments uses logs of queries and
displayed results from a commercial local search engine as well as
click information. The motivation behind using this data is that it is
able to capture additional real-life considerations (e.g., the attrac-
tiveness of the surroundings of a result, or the impact of time, etc.)
that matter in (mobile) local search, but are hard to model through
off-line relevance judgements.

The logs used were sampled at random (at the level on indi-
vidual queries, for which we recorded the top-10 results and their
clicks); in total, we recorded 352K impressions. We only consid-
ered queries for which there was at least one click on a result. All
queries are in English and contain up to 6 query terms. Because we
lack relevance judgements for this data, we instead use the features
we generate for the task of predicting which of the results will re-
ceive clicks. Given the close relationship between the rate at which
a result is clicked and its relevance, features that help us improve
the accuracy of click prediction are also very likely to be beneficial
for result ranking. We chose the MART parameters using the vali-
dation set, using 35 leaves in the MART regression trees,M = 200
iterations and a different 85% sample for each split.
Performance Measure: We report the error in click prediction
(i.e., the 1 minus the accuracy) of the click-predictor.
Results and Discussion: For the purpose of evaluating our tech-
niques, the most interesting results are seen when looking at the
clicks for top-ranking results – for the lower results there is a high
baseline probability that no click may occur. We present the perfor-
mance for the different features sets defined above when predicting
a click on the top result in Figure 8 (note that we are using the pre-
diction error in this graph, so lower values are better). The fraction
of clicks in the test data for this experiment is 47.13%, meaning
that the accuracy of the click-predictor based on each feature set
significantly improves upon this probability. As we can see, similar
to the earlier ranking experiments, using the aggregate feature set
results in a significant improvement over the baseline one. Unlike

Baseline Aggregate Backoff NN Pivot
Prediction Error 0.3245 0.3155 0.2894 0.2932 0.2938

Figure 8: Prediction error for clicks at rank-position 1

before, the improvement resulting from the backoff features is even
more significant. It appears that these can capture various aspects
of popularity and distance “sensitivity”, which appear to make a
noticeable difference regarding user clicks.
Feature Importance Analysis: The most important features for
this experiment are shown in Figure 9. Here, the top-ranking fea-
ture (after the result rank itself) was ResultRelevance; however, un-
like the earlier experiments, none of the various features encoding
distance between user and business was among the top-5 features
(most likely, because the result rank already reflected the distance
to a large degree). Among the features in the aggregate set, the
most important ones were the WebsiteCohostedEntities (which is a
strong indicator of the overall success of a business, as the busi-
nesses with more than one location associated with a site are typi-
cally large, nation-wide chains), followed by the DistanceToCoffee

(which is a proxy of the attractiveness of an area), both of which
were among the 5 most important features. In addition to Distance-
ToCoffee, the feature HitRateZip, which encodes the attractiveness
of an area using the mobile search logs, also ranks among the top
10 most important features, reflecting the importance of surround-
ings/location as opposed to the absolute distance of the business
itself. Unlike the previous experiment, about 50% of the backoff

Feature Importance Feature Name
1.0000 Result_Relevance
0.3945 QueryMatchesEntityCategory
0.3865 WebsiteCohostedEntities
0.3499 DistanceToCoffee
0.3320 QueryMatchesEntityName
0.2852 DistanceInKM

.
0.2117 HitRateZip
.

Figure 9: Feature Importance in Click Prediction

features are picked up by the model. Interestingly, the 10 most
important backoff features all relax all three distance dimensions.
This illustrates the value of our approach’s ability to incorporate
multiple, very different notions of distance and relax multiple of
them in parallel. Also, most of these top-ranking backoff features
have relatively large values α (8 of the top-10 features used the
larger thresholds α ∈ {0.025, 0.05}), which points to the value of
coarser aggregates which trade off the coherence of objects for a
larger number of observations from the external logs.

7. CONCLUSION
In this paper, we explored the benefits of additional signals de-

rived from external logs for local search ranking. Here, we first
described a number of logs and the type of user behavior cap-
tured by them in detail. Given that the logs can be sparse, skewed
and noisy, we proposed an approach to alleviate these challenges
through the use of a novel backoff framework that is highly cus-
tomizable through different distance functions. We proposed two
concrete backoff techniques, characterized their asymptotic over-
head and evaluated the quality of the resulting features using human
judged query-result pairs as well as click-through data from a com-
mercial local search engine. Here, we showed that even without the
backoff scheme, features derived from the external logs resulted in
significant improvements in nDCG as well as click-prediction accu-
racy. Moreover, the aggregate features generated through the back-
off approaches resulted in significant further improvements, espe-
cially in the experiments on real click data, which reflect a number
of real-life factors that influence local search user behavior that are
difficult to capture through human relevance judgements.

8. REFERENCES
[1] T. Abou-Assaleh and W. Gao. Geographic ranking for a local search

engine. In SIGIR 2007.
[2] D. Agarwal, A. Z. Broder, D. Chakrabarti, D. Diklic, V. Josifovski,

and M. Sayyadian. Estimating rates of rare events at multiple
resolutions. In SIGKDD 2007.

[3] V. N. Anh and A. Moffat. Pruned query evaluation using
pre-computed impacts. In SIGIR 2006.

[4] J. Arguello, F. Diaz, J. Callan, and J.-F. Crespo. Sources of Evidence
for Vertical Selection. In SIGIR 2009.

[5] S. Asadi, X. Zhou, and G. Yang. Using local popularity of web
resources for geo-ranking of search engine results. World Wide Web,
12(2), 2009.

[6] L. Backstrom, J. Kleinberg, R. Kumar, and J. Novak. Spatial
variation in search engine queries. In WWW 2008.

[7] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator.
In ICDE 2001.

[8] C. Burges. From ranknet to lambdarank to lambdamart: An
overview. Technical report, Microsoft Research, 2010.

[9] C. J. C. Burges, R. Ragno, and Q. V. Le. Learning to rank with
nonsmooth cost functions. In NIPS 2006.

[10] L. Cao and J. Krumm. From gps traces to a routable road map.
In GIS 2009.

[11] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query processing in
geographic web search engines. In SIGMOD 2006.

[12] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting: Theory and optimizations. In Intelligent Information
Systems 2005.

[13] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k
most relevant spatial web objects. Proc. VLDB Endow., 2(1), 2009.

[14] I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial
databases. In ICDE 2008.

[15] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. J. Comput. Syst. Sci., 66(4), 2003.

[16] J. Friedman. Greedy Function Approximation: a Gradient Boosting
Machine. Annals of Statistics, 29(5), 2001.

[17] R. Göbel, A. Henrich, R. Niemann, and D. Blank. A hybrid index
structure for geo-textual searches. In CIKM 2009.

[18] D. Hillard, S. Schroedl, E. Manavoglu, H. Raghavan, and
C. Leggetter. Improving ad relevance in sponsored search.
In WSDM 2010.

[19] P. G. Ipeirotis and L. Gravano. When one sample is not enough:
Improving text database selection using shrinkage. In SIGMOD 2004.

[20] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir
techniques. ACM TOIS, 20(4), 2002.

[21] T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski, and
G. Gay. Evaluating the accuracy of implicit feedback from clicks and
query reformulations in web search. ACM TOIS, 25(2), 2007.

[22] S. Katz. Estimation of probabilities from sparse data for the language
model component of a speech recognizer. IEEE Transactions on
Acoustics, Speech and Signal Processing, 35(3), 1987.

[23] J. Krumm. A survey of computational location privacy. Personal
Ubiquitous Comput., 13(6), 2009.

[24] N. D. Lane, D. Lymberopoulos, F. Zhao, and A. T. Campbell. Hapori:
Context-based Local Search for Mobile Phones using Community
Behavioral Modeling and Similarity. In Ubicomp 2010.

[25] Y. Lu, F. Peng, X. Wei, and B. Dumoulin. Personalize web search
results with user’s location. In SIGIR 2010.

[26] Q. Mei and K. Church. Entropy of search logs: how hard is search?
with personalization? with backoff? In WSDM 2008.

[27] J. Paek, J. Kim, and R. Govindan. Energy-efficient Rate-adaptive
GPS-based Positioning for Smartphones. In MobiSys 2010.

[28] F. Radlinski and T. Joachims. Active exploration for learning
rankings from clickthrough data. In SIGKDD 2007.

[29] M. Richardson, E. Dominowska, and R. Ragno. Predicting clicks:
estimating the click-through rate for new ads. In WWW 2007.

[30] S. E. Robertson and S. Walker. Some simple effective
approximations to the 2-poisson model for probabilistic weighted
retrieval. In SIGIR 1994.

[31] G. Sun, J. Chen, W. Guo, and K. Liu. Signal processing techniques in
network-aided positioning: a survey of state-of-the-art positioning
designs. IEEE Signal Processing Magazine, 22(4), 2005.

[32] L. Wang, C. Wang, X. Xie, J. Forman, Y. Lu, W.-Y. Ma, and Y. Li.
Detecting dominant locations from search queries. In SIGIR 2005.

[33] R. W. White, M. Bilenko, and S. Cucerzan. Studying the use of
popular destinations to enhance web search interaction.
In SIGIR 2007.

[34] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao. Ranking, Boosting,
and Model Adaptation. Technical report, Microsoft Research, 2008.

[35] X. Yi, H. Raghavan, and C. Leggetter. Discovering users’ specific
geo intention in web search. In WWW 2009.

[36] C. Zhai and J. D. Lafferty. A study of smoothing methods for
language models applied to information retrieval.
ACM TOIS, 22(2), 2004.

