
Consistent Bipartite Graph Co-Partitioning for Star-
Structured High-Order Heterogeneous Data Co-Clustering

Bin Gao1*, Tie-Yan Liu2, Xin Zheng3*, Qian-Sheng Cheng1, and Wei-Ying Ma2
1LMAM, Dept. of Information

Science, School of Mathematical
Sciences, Peking University,
Beijing, 100871, P. R. China
gaobin@math.pku.edu.cn

qcheng@pku.edu.cn

2Microsoft Research Asia
5F, Sigma Center, No. 49,

Zhichun Road, Haidian District,
Beijing, 100080, P. R. China

{t-tyliu, wyma}@microsoft.com

3Key Lab of Pervasive Computing,
Dept. of Computer Science and

Technology, Tsinghua University,
Beijing 100084, P. R. China

zhengxin99@mails.tsinghua.edu.cn

ABSTRACT
Heterogeneous data co-clustering has attracted more and more
attention in recent years due to its high impact on various
applications. While the co-clustering algorithms for two types of
heterogeneous data (denoted by pair-wise co-clustering), such as
documents and terms, have been well studied in the literature, the
work on more types of heterogeneous data (denoted by high-order
co-clustering) is still very limited. As an attempt in this direction,
in this paper, we worked on a specific case of high-order co-
clustering in which there is a central type of objects that connects
the other types so as to form a star structure of the inter-
relationships. Actually, this case could be a very good abstract for
many real-world applications, such as the co-clustering of
categories, documents and terms in text mining. In our philosophy,
we treated such kind of problems as the fusion of multiple pair-
wise co-clustering sub-problems with the constraint of the star
structure. Accordingly, we proposed the concept of consistent
bipartite graph co-partitioning, and developed an algorithm based
on semi-definite programming (SDP) for efficient computation of
the clustering results. Experiments on toy problems and real data
both verified the effectiveness of our proposed method.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering – algorithms.

General Terms
Algorithms, Performance, Design, Experimentation, Theory.

Keywords
Co-clustering, High-Order Heterogeneous Data, Consistency,
Spectral Graph.

1. INTRODUCTION
Clustering is a process that partitions a set of objects into groups
or clusters such that objects in the same cluster are similar while

objects in different clusters are dissimilar. Homogeneous data
clustering has been a well-studied research area in the community
of machine learning and data mining. Several algorithms have
been developed including k-means [7], maximum likelihood
estimation [7], spectral clustering [1][22] and so on.

In recent years, more and more data mining applications have
asked for the clustering of highly inter-related heterogeneous
objects, such as documents and terms in a text corpus, customers
and purchasing items in market basket analysis and reviewers and
movies in movie recommender systems. In such scenarios, using
previous methods to cluster each type of objects independently
might not work very well since the similarities among one type of
objects sometimes can only be defined by the other type of objects.
To tackle this problem, many researchers started to study the co-
clustering of two types of heterogeneous data. Dhillon et al [4]
and Zha et al [26] extended the traditional spectral clustering
algorithms and proposed the bipartite spectral graph partitioning
algorithm to co-cluster documents and terms simultaneously.
Similar techniques were also applied in biology [14] and image
processing [19]. Moreover, Dhillon et al [5] proposed the
information theoretic co-clustering method based on mutual
information.

As can be seen, the co-clustering of two types of heterogeneous
objects (denoted by pair-wise co-clustering) has attracted much
attention in recent years. However, comparatively speaking, the
co-clustering of multiple types of objects (denoted by high-order
co-clustering) has not been well studied in the literature. Some
limited works include [23], [25] and so on. Take [23] for example,
Zeng et al proposed a unified framework named ReCoM to cluster
multi-type interrelated Web objects. However, there is no sounded
objective function and theoretical proof on the effectiveness of
this iterative algorithm.

For the above discussion, one may argue that the high-order co-
clustering could be solved by trivially extending the pair-wise co-
clustering methods. For example, one can use the spectral cut of a
k-partite graph1 to analyze the inter-relationship among the k types

* This work was performed when the first and the third authors were

visiting students at Microsoft Research Asia.
1 Here a k-partite graph is a graph whose graph vertices can be partitioned

into k disjoint sets so that no two vertices within the same set are
adjacent.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’05, August 21-24, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-135-X/05/0008…$5.00.

41

Research Track Paper

of objects. However, as will be seen in this paper later, such a
trivial extension is only a pretty trap and we can not really get the
desirable co-clustering results in such a way. Therefore, it is
necessary to work on some more advanced technologies to handle
the high-order co-clustering problems.

As a preliminary attempt to the high-order co-clustering problem,
in this paper, we will work on a specific case of it in which there
is a central type of objects that connects the other types so as to
form a star structure of the inter-relationships (see Figure 1).
Actually, this case could be a very good abstract of many real-
world applications, such as Web users, search queries and Web
pages in Web search systems (corresponding to Figure 1(a), where
the query is the central data type), authors, conferences, papers,
and key words in academic publications (corresponding to Figure
1(b), where paper is the central data type); customers, shops,
shareholders, suppliers, and advertisement medias (corresponding
to Figure 1(c), where shop is the central data type). Co-clustering
over such heterogeneous data has its explicit meaning. For
example, in an academic publication system, the co-clustering
results might indicate that a certain group of authors usually write
research papers of a certain series of topics using a certain list of
key words, and submitted to a certain kind of conferences.

Figure 1. The Star-structured High-order Heterogeneous Data.

It is easy to understand that the basic element of the star structure
is the triplet as shown in Figure 1(a). If we can successfully co-
cluster such triplet data, the corresponding technology would be
easily extended to more complicated star structures. Therefore, in
the following discussions of our paper, we will focus on the
processing of such triplet data, and use X={x1, x2,…, xm}, Y={y1,
y2,…, yn} and Z={z1, z2,…, zt} to represent the three types of
objects. Y is the central type that connects X and Z. The distinct
relations exist both between X and Y, and between Y and Z, but
absent between X and Z.

Recalling the discussion about the trivial extension of pair-wise
co-clustering to the high-order case, although the relations among
X, Y and Z could be represented by a tripartite graph, we can not
use spectral cut of this graph to get the desirable co-clustering
results. Instead, we model this problem as the consistent fusion of
two pair-wise co-clustering sub-problems, with the constraint of
the triplet structure. That is, we look for such two partitions for
the sub-problems of X-Y co-clustering and Y-Z co-clustering,
provided that each of them is not locally optimal, but their
clustering results on the central type Y are the same and the
overall partitioning is globally optimal under a certain objective
function. We call such partitions by consistent bipartite graph co-
partitions. We proved in this paper that such kind of consistent
partitions could be found by semi-definite programming (SDP).
Then we tested the above ideas and the corresponding algorithms

on both toy and real data. The results showed the feasibility and
validity of our methods.

The rest of this paper is organized as follows. In Section 2 the
background knowledge on graph-based clustering is introduced
while the concept of consistency is proposed in Section 3. Then in
Section 4 the method to solve the triplet co-clustering is described
in details and the experimental results are discussed in Section 5.
Concluding remarks and future work directions are listed in the
last section.

2. SPECTRAL CLUSTERING
In this section, we will review some research works on spectral
clustering, which serves as the foundation of our proposed
concept of consistent bipartite graph co-partitioning.

2.1 Homogeneous Spectral Clustering
Spectral clustering [1][22] is a category of clustering algorithms
based on spectral graph partitioning [18], which was proposed
and well studied in the literature. To explain how this method
works, we need to enumerate some basic knowledge in graph
theory first.
A graph G=(V, E) is composed by a set of vertices V={1,2,…,|V|}
and a set of edges E={<i, j>| i, j∈ V}, where |V| represents the
number of vertices. If using Eij to denote the weight of edge <i,j>,
we can further define the adjacency matrix M of the graph by

, ,
0, otherwise

ij
ij

E if i j E
M

< >∈
= 


. (1)

In the spectral graph partitioning methods, the vertices correspond
to data objects, the edges correspond to the relationships among
objects and the edge weights correspond to the strength of the
relationships. Suppose the vertex set V is partitioned into two
subsets V1 and V2, then the corresponding cut might be defined as:

∑ ∈∈
=

21 ,21),(
VjVi ijMVVcut . (2)

The above definition can be easily extended to k subsets:

∑ <
=

θη θη),(),,,(21 VVcutVVVcut kK . (3)

Then the clustering is achieved by minimizing the cut. Usually,
balanced clusters are more preferred, so some variations of the
definition of cut were proposed and therefore different kinds of
spectral clustering methods [6][12][22] were derived. For
example, Ratio Cut [12] is achieved by balancing cluster sizes,
while Normalized Cut [22] is attained by balancing cluster
weights. Among these variations, Normalized Cut (or NCut) is
one of the most popularly-used spectral clustering methods. Its
objective function is shown in (4) where e is the column vector
with all its elements equal to 1:

min , subject to 0, 0
T

T
T

q Lq q De q
q Dq

= ≠ . (4)

Here D is a diagonal matrix with Dii=∑kEik, and L=D-M is called
Laplacian matrix. q is a column vector with qi= c1 if i∈ V1 and qi=
-c2 if i ∈ V2, where c1

 and c2 are constants derived from D. By
relaxing qi from discrete values to continuous values, it can be
proved that the solution for (4) is the eigenvector corresponding

42

Research Track Paper

to the second smallest eigenvalue λ2 of the following generalized
eigenvalue problem [4][11][22]:

DqLq λ= . (5)

Then we can obtain the desired clusters by running some routine
clustering algorithms such as k-means [7] on this eigenvector q.

2.2 Bipartite Spectral Graph Partitioning
In order to use spectral graph partitioning to solve the pair-wise
co-clustering problem, Dhillon [4] used the undirected bipartite
graph2 in Figure 2 to represent the relationship between the two
types of heterogeneous objects. In this figure, squares and circles
represent two types of objects X = {x1, x2,…, xm} and Y = {y1,
y2,…, yn} respectively, and the edges only exist between
heterogeneous items. Then the bipartite graph can be represented
by a triplet G=(X, Y, E), where E is a set of edges connecting
vertices from different vertex sets, i.e., E={<i, j> | i∈ X, j∈ Y}. If
we further use A to denote the inter-relation matrix in which Aij
equals to Eij, the adjacency matrix of the bipartite graph will be
written as:








=
0

0
TA

A
Y
X

YX
M , (6)

where the vertices have been ordered such that the first m vertices
index the objects of X while the last n index the objects of Y.

Figure 2. The Bipartite Graph of X and Y.

Suppose the dashed line in Figure 2 shows the very partition that
minimizes (4), we will obtain two subsets {x1,x2,y1,y2,y3,y4} and
{x3,x4,y5,y6}. Therefore, the objects in X are clustered into two
subsets {x1,x2} and {x3,x4}, while the objects in Y are clustered
into two subsets {y1,y2,y3,y4} and {y5,y6} simultaneously. To work
out this very partition, we also need to solve a generalized
eigenvalue problem like (5). Due to the bipartite property of the
graph, after some trivial deduction, this problem can be converted
to a singular value decomposition (SVD) [11] problem, which can
be compute more efficiently. For the details of this algorithm,
please refer to [4].

3. THE CONCEPT OF CONSISTENCY
After reviewing some background knowledge on spectral
clustering, one natural question is whether this technology can be
trivially extended to the high-order case. In this section, we will
show that such an extension does not work as one expects. And
then we will propose our concept of consistency, which models

2 If the vertices of a graph can be decomposed into two disjoint subsets

such that no two vertices within the same set are adjacent, the graph is
named a bipartite graph.

the high-order co-clustering problem as the fusion of pair-wise
sub problems.

3.1 A Pretty Trap in Traditional Spectral
Clustering
Consider the triplet data mentioned in the introduction. Inheriting
the representations in Section 2, this triplet data can be pictured as
a tripartite graph as shown in Figure 3 (for this specific example,
the reasonable co-clustering results are labeled by the dashed line
in the figure). If we use A and B to denote the inter-relationship
matrices between X and Y, and between Y and Z respectively, it is
easy to derive the adjacency matrix for Figure 3:
















=

00
0

00

T

T

B
BA

A

Z
Y
X

ZYX

M

α
α , (7)

where α is a weighting parameter, and the vertices have been
ordered such that the first m vertices index the objects of X, the
next n index the objects of Y and the last t index the objects of Z.

Figure 3. The Tripartite Graph of X, Y and Z.

Although it seems natural to partition the graph by working out
the generalized eigenvalue problem corresponding to the
adjacency matrix (7), we would like to point out that this idea
does not always work as it seems. Actually, if we move the
vertices of X in Figure 3 to the side of the vertices of Z, the
original tripartite graph will turn to be a bipartite graph as Figure
4 shows.

Figure 4. The Bipartite Graph of X, Y and Z.

Therefore, we are actually working on a {Y}-{X & Z} bipartite
graph and have to distinguish the loss of cutting an X-Y edge from
the loss of cutting a Y-Z edge since they contribute to the same
loss function. However, these two kinds of edges are
heterogeneous and might not be comparable. Although we could
try to make them comparable by introducing the weighting
parameter α, however, it is non-trivial to choose a proper value for

43

Research Track Paper

α and we can not avoid the risk of assigning all vertices in Z (or X)
into one subset like the ill partitioning shown in Figure 4. In other
words, analyzing the matrix M in (7) by traditional spectral
clustering method (we denote this approach by TSC for ease of
reference) does not work as it is expected, and it is necessary for
us to develop more advanced technology to handle high-order co-
clustering.

3.2 Consistent Bipartite Graph Co-
Partitioning (CBGC)
To tackle the aforementioned problem, we propose to treat the
tripartite graph in Figure 3 as two bipartite graphs in Figure 2 and
Figure 5 respectively, which share the central part of objects in Y.
Then we transform the original high-order problem to the fusion
of the pair-wise co-clustering problems over these two bipartite
graphs.

Figure 5. The Bipartite Graph of Y and Z.

However, if we conduct bipartite spectral graph partitioning on
Figure 2 and 5 independently, it will have a great probability that
the partitioning scheme for Y is different in the two solutions. In
other words, the two locally optimal partitioning schemes in Y do
not match in most cases. This is not what we want. Actually, we
are looking for such two partitions for Figure 2 and 5, provided
that each of them is not locally optimal, but their clustering results
on the central type Y are the same, and the overall partitioning is
globally optimal under a certain objective function. We call it by
consistent bipartite graph co-partitioning (CBGC).
So far, the aforementioned concept of CBGC is very generic. To
make it computable, we will give a specific objective function and
discuss how to optimize it efficiently. Note that, in this paper, we
will only focus on a partition of two clusters, where all types of
objects will be simultaneously clustered into two groups
respectively. For this purpose, we let x, y, z act as the indicating
column vectors of m, n, t dimensions for the objects in X, Y, Z
respectively. We denote q=(x, y)T and p=(y, z)T as the indicating
vectors for the two local bipartite graphs, and denote D(1), D(2), L(1)
and L(2) as the diagonal matrices and Laplacian matrices for the
adjacent matrices A and B. Then we mathematically model the
consistent co-partitioning problem as follows,

(1) (2)

(1) (2)

(1)

(2)

 min (1)

 subject to 0, 0
 0, 0
 0 1

T T

T T

T

T

q L q p L p
q D q p D p

q D e q
p D e p

β β

β


+ −

 = ≠
 = ≠
 < <

, (8)

where β is a weighting parameter to balance which local graph we
trust more. We can see that the above additive objective function

commendably reflects the concept of consistency, and the two
constraints might avoid the awkward situation in Figure 4.

4. SOLVING CBGC BY SEMI-DEFINITE
PROGRAMMING
In this section we will propose an algorithm to compute the
solution of the optimization problem defined in Section 3.2. The
core idea is to convert it to a semi-definite programming (SDP)
problem so that it can be computed efficiently.

For this purpose, we set ω=(x, y, z)T to be a union indicating
vector of s=m+n+t dimensions, and extend the matrices
L(1),L(2),D(1) and D(2) to adapt the length of ω:

(1)

1 2 (2),
s ss s

L
L ××

   
Γ = Γ =   

  

0 00
00 0

, (9)

(1)

1 2 (2),
s ss s

D
D ××

   
Π = Π =   

  

0 00
00 0

, (10)

where the 0’s are matrix blocks with all the elements equal to zero.
Then accordingly (8) can be rewritten as:

1 2

1 2

1

2

min (1)

subject to 0

0
0, 0 1

T T

T T

T

T

e
e

ω ω ω ωβ β
ω ω ω ω

ω
ω
ω β

  Γ Γ+ −  Π Π 


Π =
 Π =
 ≠ < <

. (11)

Problem (11) is a typical sum-of-ratios quadratic fractional
programming problem [8], which is hard and complicated to solve
although there has been some branch-and-bound algorithms [2].
To avoid solving this fractional programming problem, we use a
familiar skill in spectral clustering to simplify it: by fixing the
values of the denominators in (11) to eTΠ1e and eTΠ2e
respectively, we have:

1 1

2 2

1

2

min
subject to

0

0

T

T T

T T

T

T

e e
e e

e
e

ω ω
ω ω
ω ω
ω
ω

 Γ


Π = Π
 Π = Π
 Π =
 Π =

, (12)

where 10,1
2

2
1

1

<<Γ
Π
−+Γ

Π
=Γ βββ

eeee TT . (13)

Optimization problem (12) turns to be a quadratically constrained
quadratic programming (QCQP) [3] problem and it is not difficult
to verify that the constraints are all convex because matrices Π1
and Π2 are both positive semi-definite. As we know, convex
QCQP problem can be cast in the form of a semi-definite
programming problem (SDP) [3] for efficient computation.

44

Research Track Paper

SDP is an optimization problem with the form as below:

 min
 subject to , 1,...,

 0
i i

C W
A W b i k

W

•
 • = =

 f

 , (14)

where C is a symmetric coefficient matrix and W is a symmetric
parameter matrix; the symbol 0f means positive semi-definite;
Ai (and bi), i=1,…,k are coefficient matrices (and vectors) for the
constraints; the matrix inner-product is defined as:

∑=•
ji

ijijWCWC
,

. (15)

As it turns out, QCQP can be reformed as a SDP by relaxing the
product terms ωiωj to an element Ωij of a symmetric matrix Ω. To
show this, we begin with the following elementary proposition.

PROPOSITION. Given a vector kR∈ω and a matrix kkR ×∈Ω ,

then 








Ωω
ωT1

 is positive semi-definite if and only if Tωω−Ω

is positive semi-definite.
Proof. This is a standard result from linear algebra [11].

Using this proposition, it is straightforward to show that the
QCQP in (12) is equivalent to the following SDP:

,

1

1

2

2

1

1

2

2

0 1
 min

1
subject to 0

1
0

0 2 1
0

2

0 2 1
0

2

1
0

T

T T

T T

T T

T T

T

e e

e e

e
e

e
e

ω
ω

ω

ω
ω

ω
ω

ω
ω

ω
ω

ω
ω

Ω

   
•   Γ Ω   

    − Π • =    Π Ω  
   − Π

• =    Π Ω   


   Π • =    Π Ω  
    Π

• =    Π Ω   


 
  Ω 

0
0

0
0

0
0

0

0

f

 (16)

As it has been proved that the SDP relaxation of a QCQP may
produce an approximation to the original problem with a good
error bound [21], we further ignore the constraints of Ω =ωiωj and
get the following relaxation:

1

1

2

2

1

1

2

2

1

0
 min

subject to 0

0

0 2
0

2

0 2
0

2

1
 1,

0
 ,

0

W

T

T

T

T

W

e e
W

e e
W

e
W

e

e
W

e

W

e
W

e

W
E

θ

  • Γ 
 − Π

• = Π 
 − Π

• = Π 
 Π

• = Π 
 Π

• = Π 
 

• = 
 
 

• = 
 
 

• = 
 

0
0

0
0

0
0

0

0

0
0 0

0
0

0 2

0W

θ




























 f

 (17)

where E is a matrix block with all the elements equal to one; the

constraint 1
1W 

• = 
 

0
0 0

 guarantees W11=1, and the next two

constrains are bound controllers with some constants θ1 and θ2.

Up to now, we have got a standard form of SDP. The first column
of W (except W11) can be regarded as the representation of ω.
SDP is a hot research field [21] in recent years, and many fast
iterative algorithms have been designed to solve it [13][16][17].
For example, an interior-point method SDPA [20] was
implemented in [9] for solving the standard form SDP and its dual
problem. We could use it to compute an efficient solution to the
optimization problem (17).

To summarize, our algorithm to solve the co-clustering of triplet
data can be listed as below. For ease of reference, we also use
CBGC to abbreviate it in the future discussions.

The CBGC Algorithm

1. Set the parameters β, θ1 and θ2.

2. Given the inter-relation matrices A and B, form the
corresponding diagonal matrices and Laplacian matrices D(1),
D(2), L(1) and L(2).

3. Extend D(1), D(2), L(1) and L(2) to Π1, Π2, Г1 and Г2, and form
Г, such that the coefficient matrices in SDP (17) can be
computed.

4. Solve (17) by a certain iterative algorithm such as SDPA.

5. Extract ω from W and regard it as the embedding vector of
the heterogeneous objects.

6. Run the k-means algorithm on ω to obtain the desired
partitioning of the heterogeneous objects.

45

Research Track Paper

Although when explaining the concept and the algorithm of
CBGC, we take the triplet heterogeneous data co-clustering for
example, here we want to point out that they can be easily
generalized to solve the co-clustering of star-structured k-partite
heterogeneous objects. In such case, we only need to refine the
optimization problem (8) to the following form:

()1

()
1

()

1

1

min

subject to 0, 0, 1,..., 1

1, 0 1

T ik
i i

i T i
i i i

T i
i i

k

i i
i

q L q
q D q
q D e q i k

β

β β

−

=

−

=




 = ≠ = −

 = < <


∑

∑

, (18)

where qi, i=1,..,k-1 are indicating vectors for the local bipartite
graphs. Once again, (18) can be re-organized as a QCQP and
further solved as a SDP.

5. EXPERIMENTAL EVALUATION
In this section, we evaluated the effectiveness of our proposed
consistency concept and the corresponding SDP-based CBGC
algorithm. For this purpose, we conducted three experiments. The
first one was a toy problem to show that the proposed CBGC
algorithm could avoid the ill partitioning situation in Figure 4 to
many extents. The second experiment was another toy to show
that our method could get a trade off partitioning on the central
type of objects under the concept of consistency. The last
experiment was implemented on a real data set to confirm our
conclusions.

5.1 Toy Problem I
In the first toy problem, the set sizes of X, Y and Z were 3, 8 and 6
respectively, and the inner-relationships among objects were
shown in Figure 6. Suppose the edge weights were all assigned
with 1, then it is not difficult to get that the partitioning scheme
illuminated by the dashed lines in Figure 6 might be what we
wanted. On this toy data, we compared the clustering results
produced by the traditional spectral clustering method (TSC) and
our CBGC algorithm.

Figure 6. The Tripartite Graph of Toy Problem I.

5.1.1 Clustering Results of TSC
In TSC, we treated Figure 6 as an ordinary graph and worked out
the generalized eigenvalue problem corresponding to the
adjacency matrix like (7). We tuned α in a large range and plotted
the embeddings when α = 0.01, 1, and 100 in Figure 7, 8 and 9.

The vertical axis reflected the corresponding embedding values,
and the colors of the points showed the k-means clustering results.
As Figure 6 was actually a {Y}-{X & Z} bipartite graph, the
embedding values of X and Z were mixed together in the results.
For example, the first 3 points in Figure 7(a) represented X (from
x1 to x3), while the next 6 points represented Z (from z1 to z6); the
embedding of Y (from y1 to y8) was shown in Figure 7(b).
From Figure 7 to 9 and many results that were not listed in this
paper, we could find that TSC failed in partitioning X no matter
what value α took: all vertices in X and a part of vertices in Z were
always clustered together while the rest vertices in Z made another
cluster. This told us that in some cases, the ill partitioning results
as mentioned in Section 3.1 could hardly be avoided if we treat
the relationship among heterogeneous data as a homogeneous
graph.

Figure 7. The Embeddings Produced by TSC (α = 0.01).

Figure 8. The Embeddings Produced by TSC (α = 1).

Figure 9. The Embeddings Produced by TSC (α = 100).

5.1.2 Clustering Results of CBGC
In this subsection, we ran CBGC also on the toy data as shown in
Figure 6. Here, we use A to denote the adjacency matrix of the X-
Y bipartite graph and use B to denote that of the Y-Z bipartite
graph. As the embedding values of X, Y and Z were extracted from
the resulting matrix W of SDP, they were mixed together in one
vector ω. Specifically, when we set β=0.3 and θ1=θ2=1, we got the
embeddings in this vector as shown in Figure 10. As can be seen,
CBGC successfully avoided the ill partitioning and the co-

46

Research Track Paper

clustering results of the three heterogeneous objects were quite
accordant with our desire.
Then we turned the value of β in the interval [0, 1]. We found that
the clustering results changed along with the changing of β. For
example, when setting β=0.1, we got the results in Figure 11, in
which the partitioning on X was different from in Figure 10
because matrix B had much more influence than A. When setting
β=0.9, matrix A became dominant so that y7 and z6 were picked
out from the whole set (see Figure 12). This is also reasonable
because the X-Y bipartite graph was actually unconnected. If we
further change the value of β to very close to 0 or 1, the
partitioning on X or Z will fail because the co-clustering actually
degrade to be working on only one bipartite graph.

Figure 10. The Embeddings Produced by CBGC (β=0.3).

Figure 11. The Embeddings Produced by CBGC (β=0.1).

Figure 12. The Embeddings Produced by CBGC (β=0.9).

To summarize, this experiment showed that CBGC can avoid the
case of ill partitioning to many extents, and tuning β is an
effective way to trade-off between the two bipartite graphs.

5.2 Toy Problem II
In the second toy problem, the set sizes of X, Y and Z were 16, 20
and 21 respectively, and the two inter-relationship matrices A and
B were shown in Figure 13 and 14, where the size of the circle at
(i,j) illuminated the corresponding edge weight (the quantization
range is 0~9).

Figure 13. The Inter-relation Matrix A for Toy Problem II.

Figure 14. The Inter-relation Matrix B for Toy Problem II.

From matrix A, we could find that the reasonable co-clustering
results of the X-Y bipartite graph should be {x1,…,x7} vs
{x8,…,x16} and {y1,…y12} vs {y13,…,y20}. From matrix B, we
could find that the co-clustering results of the Y-Z bipartite graph
should be {y1,…,y8} vs {y9,…y20} and {z1,…,z11} vs {z12,…,z21}.
It was clear that the partitioning scheme for Y was different in the
two bipartite graphs. In such a situation, it is an interesting
question what kind of co-clustering results our CBGC algorithm
will produce.
To get a comprehensive answer to this question, we tuned the
parameter β in CBGC from 0 to 1 with a step of 0.2, and got the
embedding values as shown in Figure 15 to 20. Here the
parameters θ1 and θ2 were both set to 1. From these figures, we
could find that when β=0, matrix A was suppressed to zero and
the partitioning on Y and Z were completely accordant with what
matrix B showed. When β=0.6, the partitioning scheme on Y was
a tradeoff between the two locally optimal partitioning schemes of
the two bipartite graphs. This well showed the core idea of our
consistency concept. When β went up to 1, matrix B vanished and
the partitioning on X and Y were in accordance with what matrix
A showed. Besides these three typical cases, β=0.2, 0.4, 0.8 just
showed how the partitioning schemes transited from one case to
another.

47

Research Track Paper

Figure 15. The Embeddings Produced by CBGC (β=0.0).

Figure 16. The Embeddings Produced by CBGC (β=0.2).

Figure 17. The Embeddings Produced by CBGC (β=0.4).

Figure 18. The Embeddings Produced by CBGC (β=0.6).

Figure 19. The Embeddings Produced by CBGC (β=0.8).

Figure 20. The Embeddings Produced by CBGC (β=1.0).

5.3 Real Data
In the field of text categorization, hierarchical taxonomy
classification is widely used to get better trade-off between
effectiveness and efficiency compared with flat taxonomy
classification. Unfortunately, many data sets are not explicitly
organized in hierarchical forms. To take advantages of
hierarchical classification, people have to mine a hierarchical
taxonomy from the data set. We can see that the relationship
between categories, documents and terms is just a star structure,
so we modeled it by a tripartite graph and solved it by the CBGC
algorithm. Then the category clusters could be used to generate a
hierarchical taxonomy. In this section, we would like to show that
the proposed algorithm could output reasonable category clusters
for hierarchical taxonomy building, while the building process is
omitted, for the details of which, please refer to [10].
The real data used in our experiments were sampled from the
dataset of 20-newsgroups3 which contains about 20,000 articles
from 20 newsgroups. We picked five categories (see Table 1) and
randomly select 30 articles for each category. Then we used the
technique as described in the Appendix to build the category-by-
document matrix A and used term frequency to build the
document-by-term matrix B. Here we carried out feature selection
according to [24] for terms so that only 533 terms were reserved.
It could be easily seen from the category names listed in Table 1
that the expected co-clustering results on categories should be {C1,
C2} and {C3, C4, C5}, and the documents should be clustered
according to the categories they belong to.

Table 1. A real data set sampled from 20-newsgroups.

Category Name Notation
rec.sport.baseball C1
rec.sport.hockey C2
talk.politics.guns C3

talk.politics.mideast C4
talk.politics.misc C5

5.3.1 Clustering Results of TSC
We tuned different values of α to see the performance of the TSC
algorithm. From Table 2 we can see that the results were
disappointing no matter how this parameter was set. In fact, when
α was small, the algorithm degenerated to co-cluster on a
category-document bipartite graph which is unconnected in this
data set. Otherwise, all categories were assigned to one cluster.

Table 2. Performance under different values of α.
α Cluster 1 Cluster 2

1e-10 C1, C2, C4, C5 C3
0.01 C1, C2, C4, C5 C3
0.1 C1, C2, C3, C4, C5 null
1 C1, C2, C3, C4, C5 null

10 C1, C2, C3, C4, C5 null
100 C1, C2, C3, C4, C5 null
1e10 C1, C2, C3, C4, C5 null

3 http://people.csail.mit.edu/~jrennie/20Newsgroups

48

Research Track Paper

5.3.2 Clustering Results of CBGC
Then we ran CBGC on the same real data with θ1=θ2=1. The
results under different settings of β were shown in Figure 21 to 23.
As the total number of categories, documents and terms was too
large, we plotted the embeddings of terms in a separate sub-figure
to show the results distinctly, although the embedding values of
the three heterogeneous objects were co-clustered together.
From Figure 21, we found that when β=0.5, the first two
categories (C1 and C2) were clustered together with their
documents (the first 60 documents) and a part of terms (the dark-
colored points), while the rest categories (C3, C4 and C5),
documents (the last 90 documents) and terms (the white-colored
points) were grouped into another cluster. When β was set to 0
and 1, the results (Figure 22 and 23) looked similar to the
degraded cases as shown in Figure 15 and 20. These results
confirmed from a practical point of view the advantages of our
consistent bipartite graph co-partitioning over analyzing the
category-document and document-term bipartite graphs separately.

Figure 21. The Embeddings Produced by CBGC (β=0.5).

Figure 22. The Embeddings Produced by CBGC (β=0.0).

Figure 23. The Embeddings Produced by CBGC (β=1.0).

To summarize, our experiments on both toy and real data showed
that our concept of consistent bipartite graph co-partitioning can
well handle the star-structured high-order heterogeneous data co-
clustering, and greatly outperform the traditional spectral
clustering either on separate bipartite graphs or on the tripartite
graph.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we used a k-partite graph to represent the star-
structured inter-relationships among high-order heterogeneous
objects, and proposed the concept of consistent bipartite graph co-
partitioning to get the co-clustering of these objects
simultaneously. Then we proved our desired consistent co-
clustering can be achieved by optimizing a certain objective
function based on semi-definite programming. Experiments on
both toy and real data showed that our approach worked
effectively and efficiently.

For the future work, we plan to investigate the following issues:

1. So far, in this paper we only discussed the case of a partition
of two clusters. Although our unreported experiments
showed that the indicating vector produced by SDP also
embeds rich information for the k-partitioning cases,
currently its theoretical effectiveness still needs proving.

2. We will put effort on developing a fast and simple technique
to choose the parameters (β, θ1 and θ2) automatically, for
when dealing with k-partite graphs, there are k parameters of
β to estimate, in the case of which the task of parameter
estimation might be burdensome. We have found the work in
[15] quite useful in the guidance of choosing parameters and
our corresponding work is ongoing.

3. We are willing to implement the proposed algorithm on
larger datasets to discuss the scalability issues and on other
applications such as image clustering to see the performance.

4. We will study how the CBGC algorithm will perform if we
relax the consistent partitioning on the central type of objects
from exactly the same to almost the same (i.e. soft
consistency).

5. We will further explore whether there are any more
reasonable objective functions, and whether it is possible to
get a close-form solution for them.

49

Research Track Paper

6. We also plan to apply our method to extend other algorithms
such as information-theoretic co-clustering [5] to handle
high-order heterogeneous data.

7. ACKNOWLEDGMENTS
We would like to thank Professor Kurt M. Anstreicher for his
great generosity and enthusiasm in helping us nail down some
facts on semi-definite programming. We should also thank Tao
Qin, Guang Feng and Huai-Yuan Yang for their constructive
suggestions on this work. Dr. Tie-Yan Liu was the corresponding
author of this paper.

8. REFERENCES
[1] Bach, F.R., and Jordan, M.I. Learning spectral clustering.

Neural Info. Processing Systems 16 (NIPS 2003), 2003.
[2] Benson, H.P. Global Optimization Algorithm for the

Nonlinear Sum of Ratios Problem. Journal of Optimization
Theory and Applications: Vol. 112, No. 1, pp. 1–29, January
2002.

[3] Boyd, S., and Vandenberghe, L. Convex Optimization.
Cambridge University Press, 2004.

[4] Dhillon, I.S. Co-clustering documents and words using
bipartite spectral graph partitioning. In KDD’01, 2001.

[5] Dhillon, I.S., Mallela, S., and Modha, D.S. Information-
Theoretic co-clustering. SIGKDD ’03, 2003.

[6] Ding, C., He, X., Zha, H., Gu, M., and Simon, H. A min-max
cut algorithm for graph partitioning and data clustering.
Proc. IEEE Int'l Conf. Data Mining, 2001.

[7] Duda, R.O., Hart, P.E., and Stork, D.G. Pattern
classification, Second Edition. John Wiley & Sons Inc. 2001.

[8] Frenk, J.B.G., and Schaible, S. Fractional Programming.
ERIM Report Series Reference No. ERS-2004-074-LIS.
http://ssrn.com/abstract=595012.

[9] Fujisawa, K., Fukuda, M., Kojima, M., and Nakata, K.
Numerical evaluation of the SDPA (SemiDefinite
Programming Algorithm). High Performance Optimization,
Kluwer Academic Press, 267-301, 2000.

[10] Gao, B., Liu, T., Cheng, Q., Feng, G., Qin, T., and Ma, W.
Hierarchical Taxonomy Preparation for Text Categorization
Using Consistent Bipartite Spectral Graph Co-partitioning.
Accepted for publication, IEEE Transactions on Knowledge
and Data Engineering, Special Issue on Data Preparation,
2005.

[11] Golub, G.H., and Loan, C.F.V. Matrix computations. Johns
Hopkins University Press, 3rd edition, 1996.

[12] Hagen, L., and Kahng, A.B. New spectral methods for ratio
cut partitioning and clustering. IEEE. Trans. on Computed
Aided Desgin, 11:1074-1085, 1992.

[13] Klerk, E. Aspects of Semidefinite Programming: Interior
Point Algorithms and Selected Applications. Applied
Optimization Series, Volume 65. Kluwer Academic
Publishers, March 2002, 300 pp., ISBN 1-4020-0547-4.

[14] Kluger, Y., Basri, R., Chang, J.T., and Gerstein, M. Spectral
biclustering of microarray cancer data: co-clustering genes
and conditions. Genome Res., Apr 2003; 13: 703 - 716.

[15] Modha, D.S., and Spangler, W.S. Feature Weighting in k-
Means Clustering. Machine Learning, Volume 52, Issue 3,
Sep 2003, Pages 217-237.

[16] Monteiro, R.D.C. First- and Second-Order Methods for
Semidefinite Programming. Georgia Tech, January 2003.

[17] Pardalos, P.M. and Wolkowicz, H. Topics in Semidefinite
and Interior Point Methods. Fields Institute Communications
18, AMS, Providence, Rhode Island, 1998.

[18] Pothen, A., Simon, H.D., and Liou, K.P. Partitioning sparse
matrices with eigenvectors of graph. SIAM Journal of Matrix
Anal. Appl., 11:430-452, 1990.

[19] Qiu, G. Image and Feature Co-clustering. ICPR (4) 2004:
991-994.

[20] SDPA Online for your future. http://grid.r.dendai.ac.jp/sdpa/.
[21] Semidefinite Programming. http://www-user.tu-

chemnitz.de/~helmberg/semidef.html.
[22] Shi, J., and Malik, J. Normalized cuts and image

segmentation. IEEE. Trans. on Pattern Analysis and Machine
Intelligence, 22:888-905, 2000.

[23] Wang, J., Zeng, H., Chen, Z., Lu, H., Tao, L., and Ma, W.
ReCoM: reinforcement clustering of multi-type interrelated
data objects. Proceedings of ACM SIGIR’03, 2003, Toronto,
Canada.

[24] Yang, Y., and Pedersen J.P. A Comparative Study on Feature
Selection in Text Categorization. Proceedings of the
Fourteenth International Conference on Machine Learning
(ICML'97), 1997, pp412-420.

[25] Zeng, H., Chen, Z., and Ma, W. A Unified Framework for
Clustering Heterogeneous Web Objects. In Proc. 3rd WISE
2002, 12-14 December, Singapore, IEEE Computer Society
(2002) 161–172.

[26] Zha, H., Ding, C., and Gu, M. Bipartite graph partitioning
and data clustering. In proceedings of CIKM’01, 2001.

9. APPENDIX
In this appendix we would like to illuminate how we built the
category-by-document matrix A in Section 5.3.
Suppose D={d1,d2,…,dn} denotes the documents in the dataset for
text categorization and T={w1,w2,…,wt} denotes the terms, then
each document di in D can be represented by a t-dimensional
vector di={xi1,xi2,…,xit}, where xij is the term frequency of term wj
in document di. Furthermore, each document is assigned a
category label from the set C={c1,c2,…,cm}, where m is the total
number of categories.
The category-by-document matrix A can be easily built according
to the information from the corpus. In this matrix, rows
correspond to categories and columns to documents. Each element
Aij indicates the correlation between document dj and category ci.
If document dj belongs to k categories c1, c2, … , ck, the weights
A1j, A2j, … , Akj are set to 1/k, and the other elements of the j-th
column of matrix A are set to zero.
After a series of processing as described above, the category-by-
document matrix A can be easily obtained.

50

Research Track Paper

