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ABSTRACT 
Heterogeneous data co-clustering has attracted more and more 
attention in recent years due to its high impact on various 
applications. While the co-clustering algorithms for two types of 
heterogeneous data (denoted by pair-wise co-clustering), such as 
documents and terms, have been well studied in the literature, the 
work on more types of heterogeneous data (denoted by high-order 
co-clustering) is still very limited. As an attempt in this direction, 
in this paper, we worked on a specific case of high-order co-
clustering in which there is a central type of objects that connects 
the other types so as to form a star structure of the inter-
relationships. Actually, this case could be a very good abstract for 
many real-world applications, such as the co-clustering of 
categories, documents and terms in text mining. In our philosophy, 
we treated such kind of problems as the fusion of multiple pair-
wise co-clustering sub-problems with the constraint of the star 
structure. Accordingly, we proposed the concept of consistent 
bipartite graph co-partitioning, and developed an algorithm based 
on semi-definite programming (SDP) for efficient computation of 
the clustering results. Experiments on toy problems and real data 
both verified the effectiveness of our proposed method. 

Categories and Subject Descriptors 
I.5.3 [Pattern Recognition]: Clustering – algorithms. 

General Terms 
Algorithms, Performance, Design, Experimentation, Theory. 

Keywords 
Co-clustering, High-Order Heterogeneous Data, Consistency, 
Spectral Graph. 

1. INTRODUCTION 
Clustering is a process that partitions a set of objects into groups 
or clusters such that objects in the same cluster are similar while 

objects in different clusters are dissimilar. Homogeneous data 
clustering has been a well-studied research area in the community 
of machine learning and data mining. Several algorithms have 
been developed including k-means [7], maximum likelihood 
estimation [7], spectral clustering [1][22] and so on.  

In recent years, more and more data mining applications have 
asked for the clustering of highly inter-related heterogeneous 
objects, such as documents and terms in a text corpus, customers 
and purchasing items in market basket analysis and reviewers and 
movies in movie recommender systems. In such scenarios, using 
previous methods to cluster each type of objects independently 
might not work very well since the similarities among one type of 
objects sometimes can only be defined by the other type of objects. 
To tackle this problem, many researchers started to study the co-
clustering of two types of heterogeneous data. Dhillon et al [4] 
and Zha et al [26] extended the traditional spectral clustering 
algorithms and proposed the bipartite spectral graph partitioning 
algorithm to co-cluster documents and terms simultaneously. 
Similar techniques were also applied in biology [14] and image 
processing [19]. Moreover, Dhillon et al [5] proposed the 
information theoretic co-clustering method based on mutual 
information. 

As can be seen, the co-clustering of two types of heterogeneous 
objects (denoted by pair-wise co-clustering) has attracted much 
attention in recent years. However, comparatively speaking, the 
co-clustering of multiple types of objects (denoted by high-order 
co-clustering) has not been well studied in the literature. Some 
limited works include [23], [25] and so on. Take [23] for example, 
Zeng et al proposed a unified framework named ReCoM to cluster 
multi-type interrelated Web objects. However, there is no sounded 
objective function and theoretical proof on the effectiveness of 
this iterative algorithm.  

For the above discussion, one may argue that the high-order co-
clustering could be solved by trivially extending the pair-wise co-
clustering methods. For example, one can use the spectral cut of a 
k-partite graph1 to analyze the inter-relationship among the k types 
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of objects. However, as will be seen in this paper later, such a 
trivial extension is only a pretty trap and we can not really get the 
desirable co-clustering results in such a way. Therefore, it is 
necessary to work on some more advanced technologies to handle 
the high-order co-clustering problems. 

As a preliminary attempt to the high-order co-clustering problem, 
in this paper, we will work on a specific case of it in which there 
is a central type of objects that connects the other types so as to 
form a star structure of the inter-relationships (see Figure 1). 
Actually, this case could be a very good abstract of many real-
world applications, such as Web users, search queries and Web 
pages in Web search systems (corresponding to Figure 1(a), where 
the query is the central data type), authors, conferences, papers, 
and key words in academic publications (corresponding to Figure 
1(b), where paper is the central data type); customers, shops, 
shareholders, suppliers, and advertisement medias (corresponding 
to Figure 1(c), where shop is the central data type). Co-clustering 
over such heterogeneous data has its explicit meaning. For 
example, in an academic publication system, the co-clustering 
results might indicate that a certain group of authors usually write 
research papers of a certain series of topics using a certain list of 
key words, and submitted to a certain kind of conferences. 

 
Figure 1. The Star-structured High-order Heterogeneous Data. 

It is easy to understand that the basic element of the star structure 
is the triplet as shown in Figure 1(a). If we can successfully co-
cluster such triplet data, the corresponding technology would be 
easily extended to more complicated star structures. Therefore, in 
the following discussions of our paper, we will focus on the 
processing of such triplet data, and use X={x1, x2,…, xm}, Y={y1, 
y2,…, yn} and Z={z1, z2,…, zt} to represent the three types of 
objects. Y is the central type that connects X and Z. The distinct 
relations exist both between X and Y, and between Y and Z, but 
absent between X and Z.  

Recalling the discussion about the trivial extension of pair-wise 
co-clustering to the high-order case, although the relations among 
X, Y and Z could be represented by a tripartite graph, we can not 
use spectral cut of this graph to get the desirable co-clustering 
results. Instead, we model this problem as the consistent fusion of 
two pair-wise co-clustering sub-problems, with the constraint of 
the triplet structure. That is, we look for such two partitions for 
the sub-problems of X-Y co-clustering and Y-Z co-clustering, 
provided that each of them is not locally optimal, but their 
clustering results on the central type Y are the same and the 
overall partitioning is globally optimal under a certain objective 
function. We call such partitions by consistent bipartite graph co-
partitions. We proved in this paper that such kind of consistent 
partitions could be found by semi-definite programming (SDP). 
Then we tested the above ideas and the corresponding algorithms 

on both toy and real data. The results showed the feasibility and 
validity of our methods. 

The rest of this paper is organized as follows. In Section 2 the 
background knowledge on graph-based clustering is introduced 
while the concept of consistency is proposed in Section 3. Then in 
Section 4 the method to solve the triplet co-clustering is described 
in details and the experimental results are discussed in Section 5. 
Concluding remarks and future work directions are listed in the 
last section. 

2. SPECTRAL CLUSTERING 
In this section, we will review some research works on spectral 
clustering, which serves as the foundation of our proposed 
concept of consistent bipartite graph co-partitioning. 

2.1 Homogeneous Spectral Clustering 
Spectral clustering [1][22] is a category of clustering algorithms 
based on spectral graph partitioning [18], which was proposed 
and well studied in the literature. To explain how this method 
works, we need to enumerate some basic knowledge in graph 
theory first. 
A graph G=(V, E) is composed by a set of vertices V={1,2,…,|V|} 
and a set of edges E={<i, j>| i, j∈ V}, where |V| represents the 
number of vertices. If using Eij to denote the weight of edge <i,j>, 
we can further define the adjacency matrix M of the graph by 

, ,
0, otherwise

ij
ij

E if i j E
M

< >∈
= 


.                (1) 

In the spectral graph partitioning methods, the vertices correspond 
to data objects, the edges correspond to the relationships among 
objects and the edge weights correspond to the strength of the 
relationships. Suppose the vertex set V is partitioned into two 
subsets V1 and V2, then the corresponding cut might be defined as: 

∑ ∈∈
=

21 ,21 ),(
VjVi ijMVVcut .                                     (2) 

The above definition can be easily extended to k subsets: 

∑ <
=

θη θη ),(),,,( 21 VVcutVVVcut kK .                    (3) 

Then the clustering is achieved by minimizing the cut. Usually, 
balanced clusters are more preferred, so some variations of the 
definition of cut were proposed and therefore different kinds of 
spectral clustering methods [6][12][22] were derived. For 
example, Ratio Cut [12] is achieved by balancing cluster sizes, 
while Normalized Cut [22] is attained by balancing cluster 
weights. Among these variations, Normalized Cut (or NCut) is 
one of the most popularly-used spectral clustering methods. Its 
objective function is shown in (4) where e is the column vector 
with all its elements equal to 1: 

min , subject to 0, 0
T

T
T

q Lq q De q
q Dq

= ≠ .               (4) 

Here D is a diagonal matrix with Dii=∑kEik, and L=D-M is called 
Laplacian matrix. q is a column vector with qi= c1 if i∈ V1 and qi= 
-c2 if i ∈ V2, where c1

 and c2 are constants derived from D. By 
relaxing qi from discrete values to continuous values, it can be 
proved that the solution for (4) is the eigenvector corresponding 
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to the second smallest eigenvalue λ2 of the following generalized 
eigenvalue problem [4][11][22]: 

DqLq λ= .                                         (5) 

Then we can obtain the desired clusters by running some routine 
clustering algorithms such as k-means [7] on this eigenvector q.  

2.2 Bipartite Spectral Graph Partitioning 
In order to use spectral graph partitioning to solve the pair-wise 
co-clustering problem, Dhillon [4] used the undirected bipartite 
graph2 in Figure 2 to represent the relationship between the two 
types of heterogeneous objects. In this figure, squares and circles 
represent two types of objects X = {x1, x2,…, xm} and Y = {y1, 
y2,…, yn} respectively, and the edges only exist between 
heterogeneous items. Then the bipartite graph can be represented 
by a triplet G=(X, Y, E), where E is a set of edges connecting 
vertices from different vertex sets, i.e., E={<i, j> | i∈ X, j∈ Y}. If 
we further use A to denote the inter-relation matrix in which Aij 
equals to Eij, the adjacency matrix of the bipartite graph will be 
written as: 








=
0

0
TA

A
Y
X

YX
M ,                                  (6) 

where the vertices have been ordered such that the first m vertices 
index the objects of X while the last n index the objects of Y. 

 
Figure 2. The Bipartite Graph of X and Y. 

Suppose the dashed line in Figure 2 shows the very partition that 
minimizes (4), we will obtain two subsets {x1,x2,y1,y2,y3,y4} and 
{x3,x4,y5,y6}. Therefore, the objects in X are clustered into two 
subsets {x1,x2} and {x3,x4}, while the objects in Y are clustered 
into two subsets {y1,y2,y3,y4} and {y5,y6} simultaneously. To work 
out this very partition, we also need to solve a generalized 
eigenvalue problem like (5). Due to the bipartite property of the 
graph, after some trivial deduction, this problem can be converted 
to a singular value decomposition (SVD) [11] problem, which can 
be compute more efficiently. For the details of this algorithm, 
please refer to [4]. 

3. THE CONCEPT OF CONSISTENCY 
After reviewing some background knowledge on spectral 
clustering, one natural question is whether this technology can be 
trivially extended to the high-order case. In this section, we will 
show that such an extension does not work as one expects. And 
then we will propose our concept of consistency, which models 

                                                                 
2 If the vertices of a graph can be decomposed into two disjoint subsets 

such that no two vertices within the same set are adjacent, the graph is 
named a bipartite graph. 

the high-order co-clustering problem as the fusion of pair-wise 
sub problems. 

3.1 A Pretty Trap in Traditional Spectral 
Clustering 
Consider the triplet data mentioned in the introduction. Inheriting 
the representations in Section 2, this triplet data can be pictured as 
a tripartite graph as shown in Figure 3 (for this specific example, 
the reasonable co-clustering results are labeled by the dashed line 
in the figure). If we use A and B to denote the inter-relationship 
matrices between X and Y, and between Y and Z respectively, it is 
easy to derive the adjacency matrix for Figure 3: 
















=

00
0

00

T

T

B
BA

A

Z
Y
X

ZYX

M

α
α ,                          (7) 

where α is a weighting parameter, and the vertices have been 
ordered such that the first m vertices index the objects of X, the 
next n index the objects of Y and the last t index the objects of Z. 

 
Figure 3. The Tripartite Graph of X, Y and Z. 

Although it seems natural to partition the graph by working out 
the generalized eigenvalue problem corresponding to the 
adjacency matrix (7), we would like to point out that this idea 
does not always work as it seems. Actually, if we move the 
vertices of X in Figure 3 to the side of the vertices of Z, the 
original tripartite graph will turn to be a bipartite graph as Figure 
4 shows. 

 
Figure 4. The Bipartite Graph of X, Y and Z. 

Therefore, we are actually working on a {Y}-{X & Z} bipartite 
graph and have to distinguish the loss of cutting an X-Y edge from 
the loss of cutting a Y-Z edge since they contribute to the same 
loss function. However, these two kinds of edges are 
heterogeneous and might not be comparable. Although we could 
try to make them comparable by introducing the weighting 
parameter α, however, it is non-trivial to choose a proper value for 
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α and we can not avoid the risk of assigning all vertices in Z (or X) 
into one subset like the ill partitioning shown in Figure 4. In other 
words, analyzing the matrix M in (7) by traditional spectral 
clustering method (we denote this approach by TSC for ease of 
reference) does not work as it is expected, and it is necessary for 
us to develop more advanced technology to handle high-order co-
clustering. 

3.2 Consistent Bipartite Graph Co-
Partitioning (CBGC) 
To tackle the aforementioned problem, we propose to treat the 
tripartite graph in Figure 3 as two bipartite graphs in Figure 2 and 
Figure 5 respectively, which share the central part of objects in Y. 
Then we transform the original high-order problem to the fusion 
of the pair-wise co-clustering problems over these two bipartite 
graphs. 

 
Figure 5. The Bipartite Graph of Y and Z. 

 
However, if we conduct bipartite spectral graph partitioning on 
Figure 2 and 5 independently, it will have a great probability that 
the partitioning scheme for Y is different in the two solutions. In 
other words, the two locally optimal partitioning schemes in Y do 
not match in most cases. This is not what we want. Actually, we 
are looking for such two partitions for Figure 2 and 5, provided 
that each of them is not locally optimal, but their clustering results 
on the central type Y are the same, and the overall partitioning is 
globally optimal under a certain objective function. We call it by 
consistent bipartite graph co-partitioning (CBGC). 
So far, the aforementioned concept of CBGC is very generic. To 
make it computable, we will give a specific objective function and 
discuss how to optimize it efficiently. Note that, in this paper, we 
will only focus on a partition of two clusters, where all types of 
objects will be simultaneously clustered into two groups 
respectively. For this purpose, we let x, y, z act as the indicating 
column vectors of m, n, t dimensions for the objects in X, Y, Z 
respectively. We denote q=(x, y)T and p=(y, z)T as the indicating 
vectors for the two local bipartite graphs, and denote D(1), D(2), L(1) 
and L(2) as the diagonal matrices and Laplacian matrices for the 
adjacent matrices A and B. Then we mathematically model the 
consistent co-partitioning problem as follows, 

(1) ( 2 )

(1) (2 )

(1)

( 2)

  min (1 )

  subject to 0, 0
    0, 0
   0 1

T T

T T

T

T

q L q p L p
q D q p D p

q D e q
p D e p

β β

β


+ −

 = ≠
 = ≠
 < <

,                         (8) 

where β is a weighting parameter to balance which local graph we 
trust more. We can see that the above additive objective function 

commendably reflects the concept of consistency, and the two 
constraints might avoid the awkward situation in Figure 4. 

4. SOLVING CBGC BY SEMI-DEFINITE 
PROGRAMMING 
In this section we will propose an algorithm to compute the 
solution of the optimization problem defined in Section 3.2. The 
core idea is to convert it to a semi-definite programming (SDP) 
problem so that it can be computed efficiently. 

For this purpose, we set ω=(x, y, z)T to be a union indicating 
vector of s=m+n+t dimensions, and extend the matrices 
L(1),L(2),D(1) and D(2) to adapt the length of ω: 

 

(1)

1 2 (2),
s ss s

L
L ××

   
Γ = Γ =   

  

0 00
00 0

,                      (9) 

(1)

1 2 (2),
s ss s

D
D ××

   
Π = Π =   

  

0 00
00 0

,                (10) 

 

where the 0’s are matrix blocks with all the elements equal to zero. 
Then accordingly (8) can be rewritten as: 

1 2

1 2

1

2

min (1 )

subject to 0

0
0, 0 1

T T

T T

T

T

e
e

ω ω ω ωβ β
ω ω ω ω

ω
ω
ω β

  Γ Γ+ −  Π Π 


Π =
 Π =
 ≠ < <

.                   (11) 

Problem (11) is a typical sum-of-ratios quadratic fractional 
programming problem [8], which is hard and complicated to solve 
although there has been some branch-and-bound algorithms [2]. 
To avoid solving this fractional programming problem, we use a 
familiar skill in spectral clustering to simplify it: by fixing the 
values of the denominators in (11) to eTΠ1e and eTΠ2e 
respectively, we have: 

1 1

2 2

1

2

min
subject to

0

0

T

T T

T T

T

T

e e
e e

e
e

ω ω
ω ω
ω ω
ω
ω

 Γ


Π = Π
 Π = Π
 Π =
 Π =

,                           (12) 

where    10,1
2

2
1

1

<<Γ
Π
−+Γ

Π
=Γ βββ

eeee TT .                    (13) 

Optimization problem (12) turns to be a quadratically constrained 
quadratic programming (QCQP) [3] problem and it is not difficult 
to verify that the constraints are all convex because matrices Π1 
and Π2 are both positive semi-definite. As we know, convex 
QCQP problem can be cast in the form of a semi-definite 
programming problem (SDP) [3] for efficient computation.  
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SDP is an optimization problem with the form as below: 

 min
  subject to , 1,...,

  0
i i

C W
A W b i k

W

•
 • = =

 f

    ,                 (14) 

where C is a symmetric coefficient matrix and W is a symmetric 
parameter matrix; the symbol 0f  means positive semi-definite; 
Ai (and bi), i=1,…,k are coefficient matrices (and vectors) for the 
constraints;  the matrix inner-product is defined as: 

∑=•
ji

ijijWCWC
,

.                              (15) 

As it turns out, QCQP can be reformed as a SDP by relaxing the 
product terms ωiωj to an element Ωij of a symmetric matrix Ω. To 
show this, we begin with the following elementary proposition. 
 

PROPOSITION. Given a vector kR∈ω  and a matrix kkR ×∈Ω , 

then 








Ωω
ωT1

 is positive semi-definite if and only if Tωω−Ω  

is positive semi-definite. 
Proof. This is a standard result from linear algebra [11]. 

 

Using this proposition, it is straightforward to show that the 
QCQP in (12) is equivalent to the following SDP: 

,

1

1

2

2

1

1

2

2

0 1
 min

1
subject to 0

1
0

0 2 1
0

2

0 2 1
0

2

1
0

T
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T T

T T

T T

T

e e

e e

e
e

e
e

ω
ω

ω

ω
ω

ω
ω

ω
ω

ω
ω

ω
ω

Ω

   
•   Γ Ω   

    − Π • =    Π Ω  
   − Π

• =    Π Ω   


   Π • =    Π Ω  
    Π

• =    Π Ω   


 
  Ω 

0
0

0
0

0
0

0

0

f

   (16) 

As it has been proved that the SDP relaxation of a QCQP may 
produce an approximation to the original problem with a good 
error bound [21], we further ignore the constraints of Ω =ωiωj and 
get the following relaxation:  

1

1

2

2

1

1

2

2

1

0
 min

subject to 0

0

0 2
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0 2
0
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                1,

0
                ,
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0
0

0

0

0
0 0

0
0

0 2

0W

θ




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
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



















 f

                    (17) 

where E is a matrix block with all the elements equal to one; the 

constraint 1
1W 

• = 
 

0
0 0

 guarantees W11=1, and the next two 

constrains are bound controllers with some constants θ1 and θ2.  

Up to now, we have got a standard form of SDP. The first column 
of W (except W11) can be regarded as the representation of ω.  
SDP is a hot research field [21] in recent years, and many fast 
iterative algorithms have been designed to solve it [13][16][17]. 
For example, an interior-point method SDPA [20] was 
implemented in [9] for solving the standard form SDP and its dual 
problem. We could use it to compute an efficient solution to the 
optimization problem (17). 

To summarize, our algorithm to solve the co-clustering of triplet 
data can be listed as below. For ease of reference, we also use 
CBGC to abbreviate it in the future discussions. 

The CBGC Algorithm 

1. Set the parameters β, θ1 and θ2. 

2. Given the inter-relation matrices A and B, form the 
corresponding diagonal matrices and Laplacian matrices D(1), 
D(2), L(1) and L(2). 

3. Extend D(1), D(2), L(1) and L(2) to Π1, Π2, Г1 and Г2, and form 
Г, such that the coefficient matrices in SDP (17) can be 
computed. 

4. Solve (17) by a certain iterative algorithm such as SDPA. 

5. Extract ω from W and regard it as the embedding vector of 
the heterogeneous objects. 

6. Run the k-means algorithm on ω to obtain the desired 
partitioning of the heterogeneous objects. 
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Although when explaining the concept and the algorithm of 
CBGC, we take the triplet heterogeneous data co-clustering for 
example, here we want to point out that they can be easily 
generalized to solve the co-clustering of star-structured k-partite 
heterogeneous objects. In such case, we only need to refine the 
optimization problem (8) to the following form: 

( )1

( )
1

( )

1

1

min

subject to 0, 0, 1,..., 1

1, 0 1

T ik
i i

i T i
i i i

T i
i i

k

i i
i

q L q
q D q
q D e q i k

β

β β

−

=

−

=




 = ≠ = −

 = < <


∑

∑

,         (18) 

where qi, i=1,..,k-1 are indicating vectors for the local bipartite 
graphs. Once again, (18) can be re-organized as a QCQP and 
further solved as a SDP. 

5. EXPERIMENTAL EVALUATION 
In this section, we evaluated the effectiveness of our proposed 
consistency concept and the corresponding SDP-based CBGC 
algorithm. For this purpose, we conducted three experiments. The 
first one was a toy problem to show that the proposed CBGC 
algorithm could avoid the ill partitioning situation in Figure 4 to 
many extents. The second experiment was another toy to show 
that our method could get a trade off partitioning on the central 
type of objects under the concept of consistency. The last 
experiment was implemented on a real data set to confirm our 
conclusions. 

5.1 Toy Problem I 
In the first toy problem, the set sizes of X, Y and Z were 3, 8 and 6 
respectively, and the inner-relationships among objects were 
shown in Figure 6. Suppose the edge weights were all assigned 
with 1, then it is not difficult to get that the partitioning scheme 
illuminated by the dashed lines in Figure 6 might be what we 
wanted. On this toy data, we compared the clustering results 
produced by the traditional spectral clustering method (TSC) and 
our CBGC algorithm. 

 
Figure 6. The Tripartite Graph of Toy Problem I. 

5.1.1 Clustering Results of TSC 
In TSC, we treated Figure 6 as an ordinary graph and worked out 
the generalized eigenvalue problem corresponding to the 
adjacency matrix like (7). We tuned α in a large range and plotted 
the embeddings when α = 0.01, 1, and 100 in Figure 7, 8 and 9. 

The vertical axis reflected the corresponding embedding values, 
and the colors of the points showed the k-means clustering results. 
As Figure 6 was actually a {Y}-{X & Z} bipartite graph, the 
embedding values of X and Z were mixed together in the results. 
For example, the first 3 points in Figure 7(a) represented X (from 
x1 to x3), while the next 6 points represented Z (from z1 to z6); the 
embedding of Y (from y1 to y8) was shown in Figure 7(b).  
From Figure 7 to 9 and many results that were not listed in this 
paper, we could find that TSC failed in partitioning X no matter 
what value α took: all vertices in X and a part of vertices in Z were 
always clustered together while the rest vertices in Z made another 
cluster. This told us that in some cases, the ill partitioning results 
as mentioned in Section 3.1 could hardly be avoided if we treat 
the relationship among heterogeneous data as a homogeneous 
graph. 

 
Figure 7. The Embeddings Produced by TSC (α = 0.01). 

 
Figure 8. The Embeddings Produced by TSC (α = 1). 

 
Figure 9. The Embeddings Produced by TSC (α = 100). 

5.1.2 Clustering Results of CBGC 
In this subsection, we ran CBGC also on the toy data as shown in 
Figure 6. Here, we use A to denote the adjacency matrix of the X-
Y bipartite graph and use B to denote that of the Y-Z bipartite 
graph. As the embedding values of X, Y and Z were extracted from 
the resulting matrix W of SDP, they were mixed together in one 
vector ω. Specifically, when we set β=0.3 and θ1=θ2=1, we got the 
embeddings in this vector as shown in Figure 10. As can be seen, 
CBGC successfully avoided the ill partitioning and the co-
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clustering results of the three heterogeneous objects were quite 
accordant with our desire.  
Then we turned the value of β in the interval [0, 1]. We found that 
the clustering results changed along with the changing of β. For 
example, when setting β=0.1, we got the results in Figure 11, in 
which the partitioning on X was different from in Figure 10 
because matrix B had much more influence than A. When setting 
β=0.9, matrix A became dominant so that y7 and z6 were picked 
out from the whole set (see Figure 12). This is also reasonable 
because the X-Y bipartite graph was actually unconnected. If we 
further change the value of β to very close to 0 or 1, the 
partitioning on X or Z will fail because the co-clustering actually 
degrade to be working on only one bipartite graph.  

 
Figure 10. The Embeddings Produced by CBGC (β=0.3). 

 
Figure 11. The Embeddings Produced by CBGC (β=0.1). 

 
Figure 12. The Embeddings Produced by CBGC (β=0.9). 

To summarize, this experiment showed that CBGC can avoid the 
case of ill partitioning to many extents, and tuning β is an 
effective way to trade-off between the two bipartite graphs. 

5.2 Toy Problem II 
In the second toy problem, the set sizes of X, Y and Z were 16, 20 
and 21 respectively, and the two inter-relationship matrices A and 
B were shown in Figure 13 and 14, where the size of the circle at 
(i,j) illuminated the corresponding edge weight (the quantization 
range is 0~9). 

 
Figure 13. The Inter-relation Matrix A for Toy Problem II. 

 
Figure 14. The Inter-relation Matrix B for Toy Problem II. 

From matrix A, we could find that the reasonable co-clustering 
results of the X-Y bipartite graph should be {x1,…,x7} vs 
{x8,…,x16} and {y1,…y12} vs {y13,…,y20}. From matrix B, we 
could find that the co-clustering results of the Y-Z bipartite graph 
should be {y1,…,y8} vs {y9,…y20} and {z1,…,z11} vs {z12,…,z21}. 
It was clear that the partitioning scheme for Y was different in the 
two bipartite graphs. In such a situation, it is an interesting 
question what kind of co-clustering results our CBGC algorithm 
will produce. 
To get a comprehensive answer to this question, we tuned the 
parameter β in CBGC from 0 to 1 with a step of 0.2, and got the 
embedding values as shown in Figure 15 to 20. Here the 
parameters θ1 and θ2 were both set to 1. From these figures, we 
could find that when β=0, matrix A was suppressed to zero and 
the partitioning on Y and Z were completely accordant with what 
matrix B showed. When β=0.6, the partitioning scheme on Y was 
a tradeoff between the two locally optimal partitioning schemes of 
the two bipartite graphs. This well showed the core idea of our 
consistency concept. When β went up to 1, matrix B vanished and 
the partitioning on X and Y were in accordance with what matrix 
A showed. Besides these three typical cases, β=0.2, 0.4, 0.8 just 
showed how the partitioning schemes transited from one case to 
another.  
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Figure 15. The Embeddings Produced by CBGC (β=0.0). 

 
Figure 16. The Embeddings Produced by CBGC (β=0.2). 

 
Figure 17. The Embeddings Produced by CBGC (β=0.4). 

 
Figure 18. The Embeddings Produced by CBGC (β=0.6). 

 
Figure 19. The Embeddings Produced by CBGC (β=0.8). 

 
Figure 20. The Embeddings Produced by CBGC (β=1.0). 

5.3 Real Data 
In the field of text categorization, hierarchical taxonomy 
classification is widely used to get better trade-off between 
effectiveness and efficiency compared with flat taxonomy 
classification. Unfortunately, many data sets are not explicitly 
organized in hierarchical forms. To take advantages of 
hierarchical classification, people have to mine a hierarchical 
taxonomy from the data set. We can see that the relationship 
between categories, documents and terms is just a star structure, 
so we modeled it by a tripartite graph and solved it by the CBGC 
algorithm. Then the category clusters could be used to generate a 
hierarchical taxonomy. In this section, we would like to show that 
the proposed algorithm could output reasonable category clusters 
for hierarchical taxonomy building, while the building process is 
omitted, for the details of which, please refer to [10]. 
The real data used in our experiments were sampled from the 
dataset of 20-newsgroups3 which contains about 20,000 articles 
from 20 newsgroups. We picked five categories (see Table 1) and 
randomly select 30 articles for each category. Then we used the 
technique as described in the Appendix to build the category-by-
document matrix A and used term frequency to build the 
document-by-term matrix B. Here we carried out feature selection 
according to [24] for terms so that only 533 terms were reserved. 
It could be easily seen from the category names listed in Table 1 
that the expected co-clustering results on categories should be {C1, 
C2} and {C3, C4, C5}, and the documents should be clustered 
according to the categories they belong to. 

Table 1.  A real data set sampled from 20-newsgroups. 

Category Name Notation 
rec.sport.baseball C1 
rec.sport.hockey C2 
talk.politics.guns C3 

talk.politics.mideast C4 
talk.politics.misc C5 

5.3.1 Clustering Results of TSC 
We tuned different values of α to see the performance of the TSC 
algorithm. From Table 2 we can see that the results were 
disappointing no matter how this parameter was set. In fact, when 
α was small, the algorithm degenerated to co-cluster on a 
category-document bipartite graph which is unconnected in this 
data set. Otherwise, all categories were assigned to one cluster.  

Table 2. Performance under different values of α. 
α Cluster 1 Cluster 2 

1e-10 C1, C2, C4, C5 C3 
0.01 C1, C2, C4, C5 C3 
0.1 C1, C2, C3, C4, C5 null 
1 C1, C2, C3, C4, C5 null 

10 C1, C2, C3, C4, C5 null 
100 C1, C2, C3, C4, C5 null 
1e10 C1, C2, C3, C4, C5 null 

                                                                 
3 http://people.csail.mit.edu/~jrennie/20Newsgroups 
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5.3.2 Clustering Results of CBGC 
Then we ran CBGC on the same real data with θ1=θ2=1. The 
results under different settings of β were shown in Figure 21 to 23. 
As the total number of categories, documents and terms was too 
large, we plotted the embeddings of terms in a separate sub-figure 
to show the results distinctly, although the embedding values of 
the three heterogeneous objects were co-clustered together. 
From Figure 21, we found that when β=0.5, the first two 
categories (C1 and C2) were clustered together with their 
documents (the first 60 documents) and a part of terms (the dark-
colored points), while the rest categories (C3, C4 and C5), 
documents (the last 90 documents) and terms (the white-colored 
points) were grouped into another cluster. When β was set to 0 
and 1, the results (Figure 22 and 23) looked similar to the 
degraded cases as shown in Figure 15 and 20. These results 
confirmed from a practical point of view the advantages of our 
consistent bipartite graph co-partitioning over analyzing the 
category-document and document-term bipartite graphs separately.  

 
Figure 21. The Embeddings Produced by CBGC (β=0.5). 

 
Figure 22. The Embeddings Produced by CBGC (β=0.0). 

 
Figure 23. The Embeddings Produced by CBGC (β=1.0). 

To summarize, our experiments on both toy and real data showed 
that our concept of consistent bipartite graph co-partitioning can 
well handle the star-structured high-order heterogeneous data co-
clustering, and greatly outperform the traditional spectral 
clustering either on separate bipartite graphs or on the tripartite 
graph. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we used a k-partite graph to represent the star-
structured inter-relationships among high-order heterogeneous 
objects, and proposed the concept of consistent bipartite graph co-
partitioning to get the co-clustering of these objects 
simultaneously. Then we proved our desired consistent co-
clustering can be achieved by optimizing a certain objective 
function based on semi-definite programming. Experiments on 
both toy and real data showed that our approach worked 
effectively and efficiently.  

For the future work, we plan to investigate the following issues: 

1. So far, in this paper we only discussed the case of a partition 
of two clusters. Although our unreported experiments 
showed that the indicating vector produced by SDP also 
embeds rich information for the k-partitioning cases, 
currently its theoretical effectiveness still needs proving. 

2. We will put effort on developing a fast and simple technique 
to choose the parameters (β, θ1 and θ2) automatically, for 
when dealing with k-partite graphs, there are k parameters of 
β to estimate, in the case of which the task of parameter 
estimation might be burdensome. We have found the work in 
[15] quite useful in the guidance of choosing parameters and 
our corresponding work is ongoing. 

3. We are willing to implement the proposed algorithm on 
larger datasets to discuss the scalability issues and on other 
applications such as image clustering to see the performance. 

4. We will study how the CBGC algorithm will perform if we 
relax the consistent partitioning on the central type of objects 
from exactly the same to almost the same (i.e. soft 
consistency). 

5. We will further explore whether there are any more 
reasonable objective functions, and whether it is possible to 
get a close-form solution for them. 
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6. We also plan to apply our method to extend other algorithms 
such as information-theoretic co-clustering [5] to handle 
high-order heterogeneous data. 
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9. APPENDIX 
In this appendix we would like to illuminate how we built the 
category-by-document matrix A in Section 5.3.  
Suppose D={d1,d2,…,dn} denotes the documents in the dataset for 
text categorization and T={w1,w2,…,wt} denotes the terms, then 
each document di in D can be represented by a t-dimensional 
vector di={xi1,xi2,…,xit}, where xij is the term frequency of term wj 
in document di. Furthermore, each document is assigned a 
category label from the set C={c1,c2,…,cm}, where m is the total 
number of categories.  
The category-by-document matrix A can be easily built according 
to the information from the corpus. In this matrix, rows 
correspond to categories and columns to documents. Each element 
Aij indicates the correlation between document dj and category ci. 
If document dj belongs to k categories c1, c2, … , ck, the weights 
A1j, A2j, … , Akj are set to 1/k, and the other elements of the j-th 
column of matrix A are set to zero. 
After a series of processing as described above, the category-by-
document matrix A can be easily obtained. 
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