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Abstract. We consider a symmetric random walk on a connected graph, where each edge is
labeled with the probability of transition between the two adjacent vertices. The associated Markov
chain has a uniform equilibrium distribution; the rate of convergence to this distribution, i.e., the
mixing rate of the Markov chain, is determined by the second largest eigenvalue modulus (SLEM)
of the transition probability matrix. In this paper we address the problem of assigning probabilities
to the edges of the graph in such a way as to minimize the SLEM, i.e., the problem of finding the
fastest mixing Markov chain on the graph.

We show that this problem can be formulated as a convex optimization problem, which can in
turn be expressed as a semidefinite program (SDP). This allows us to easily compute the (globally)
fastest mixing Markov chain for any graph with a modest number of edges (say, 1000) using standard
numerical methods for SDPs. Larger problems can be solved by exploiting various types of symmetry
and structure in the problem, and far larger problems (say 100000 edges) can be solved using a
subgradient method we describe. We compare the fastest mixing Markov chain to those obtained
using two commonly used heuristics: the maximum-degree method, and the Metropolis-Hastings
algorithm. For many of the examples considered, the fastest mixing Markov chain is substantially
faster than those obtained using these heuristic methods.

We derive the Lagrange dual of the fastest mixing Markov chain problem, which gives a so-
phisticated method for obtaining (arbitrarily good) bounds on the optimal mixing rate, as well the
optimality conditions. Finally, we describe various extensions of the method, including a solution of
the problem of finding the fastest mixing reversible Markov chain, on a fixed graph, with a given
equilibrium distribution.

Key words. Markov chains, second largest eigenvalue modulus, fast mixing, semidefinite pro-
gramming, subgradient method
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1. Introduction.

1.1. Fastest mixing Markov chain problem.

1.1.1. Markov chain on an undirected graph. We consider a connected
graph G = (V, E) with vertex set V = {1, . . . , n} and edge set E ⊆ V × V, with
(i, j) ∈ E ⇔ (j, i) ∈ E . We assume that each vertex has a self-loop, i.e., an edge from
itself to itself: (i, i) ∈ E for i = 1, . . . , n.

We define a discrete-time Markov chain on the vertices of the graph as follows.
The state at time t will be denoted X(t) ∈ V, for t = 0, 1, . . .. Each edge in the graph
is associated with a transition probability, with which X makes a transition between
the two adjacent vertices. These edge probabilities must be nonnegative, and the sum
of the probabilities of edges connected to each vertex (including the self-loop), must
be one. Note that the probability associated with self-loop (i, i) is the probability
that X(t) stays at vertex i.
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We can describe this Markov chain via its transition probability matrix P ∈ Rn×n,
where

Pij = Prob(X(t + 1) = j | X(t) = i), i, j = 1, . . . , n.

This matrix must satisfy

P ≥ 0, P1 = 1, P = PT ,(1.1)

where the inequality P ≥ 0 means elementwise, i.e., Pij ≥ 0 for i, j = 1, . . . , n, and 1

denotes the vector of all ones. The condition (1.1) is simply that P must be symmetric
and doubly stochastic; it must also satisfy

Pij = 0, (i, j) /∈ E ,(1.2)

which states that transitions are allowed only between vertices that are linked by an
edge.

Let π(t) ∈ Rn be the probability distribution of the state at time t: πi(t) =
Prob(X(t) = i). The state distribution satisfies the recursion π(t + 1)T = π(t)T P ,
so the distribution at time t is given by

π(t)T = π(0)T P t.

Since P is symmetric and P1 = 1, we conclude 1T P = 1T , so the uniform distribution
(1/n)1 is an equilibrium distribution for the Markov chain. If the chain is irreducible
and aperiodic (the case we will focus on in this paper), then the distribution π(t)
converges to the unique equilibrium distribution (1/n)1 as t increases.

1.1.2. SLEM, mixing rate, and mixing time. We are concerned with the
rate of convergence of π(t) to the uniform distribution, which is determined by the
eigenstructure of the probability transition matrix P . The eigenvalues of P are real
(since it is symmetric), and by Perron-Frobenius theory, no more than one in magni-
tude. We will denote them in nonincreasing order:

1 = λ1(P ) ≥ λ2(P ) ≥ · · · ≥ λn(P ) ≥ −1.

The asymptotic rate of convergence of the Markov chain to the uniform equilibrium
distribution is determined by the second largest eigenvalue modulus (SLEM) of P :

µ(P ) = max
i=2,...,n

|λi(P )| = max{λ2(P ), − λn(P )},

The smaller the SLEM, the faster the Markov chain converges to its equilibrium
distribution.

There are several well-known specific bounds on the convergence of the state
distribution to uniform. One of these is given in terms of the total variation dis-
tance between two distributions ν and ν̃ on V, defined as the maximum difference in
probability assigned to any subset:
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If the Markov chain is irreducible and aperiodic, then µ(P ) < 1 and the distribution
converges to uniform asymptotically as µt. We call the quantity log(1/µ) the mixing

rate, and τ = 1/ log(1/µ) the mixing time. The mixing time τ gives an asymptotic
measure of the number steps required for the difference between the distribution and
uniform to be reduced by the factor e. If the SLEM is very close to one, the mixing
rate log(1/µ) is approximately 1− µ, which is often refered as the spectral gap in the
liturature.

The mixing rate, mixing time, and the spectral gap can all serve as the measure
for fast mixing. Since they are all monotone in the SLEM, we will focus on the SLEM
in this paper. For background on Markov chains, eigenvalues and fast mixing, see,
e.g., [13].

1.1.3. Fastest mixing Markov chain problem. In this paper we consider
the following problem: find edge transition probabilities that give the fastest mixing
Markov chain, i.e., minimizes the SLEM µ(P ). This can be posed as the following
optimization problem:

minimize µ(P )
subject to P ≥ 0, P1 = 1, P = PT

Pij = 0, (i, j) /∈ E .
(1.3)

Here P is the optimization variable, and the graph is the problem data. We call this
problem the fastest mixing Markov chain (FMMC) problem.

We denote the optimal SLEM (which is a function of the graph) as µ⋆:

µ⋆ = inf{µ(P ) | P ≥ 0, P1 = 1, P = PT , Pij = 0, (i, j) /∈ E}.

Since µ is continuous and the set of possible transition matrices is compact, there is
at least one optimal transition matrix P ⋆ i.e., one for which µ(P ⋆) = µ⋆.

There are several other equivalent ways to formulate the FMMC problem. For
example, we can take the edge probabilities as optimization variables, and impose the
constraints that they be nonnegative, and sum to no more than one at each vertex
(see §5).

1.2. Two simple heuristic methods. Several simple methods have been pro-
posed to obtain transition probabilities that give (it is hoped) fast mixing, if not the
fastest possible.

1.2.1. The maximum-degree chain. Let di be the degree of vertex i, not
counting the self-loop, i.e., di is the number of neighbor vertices of vertex i, not
counting i itself. Let dmax = maxi∈V di denote the maximum degree of the graph.
The maximum-degree chain is obtained by assigning probability 1/dmax to every edge
except the self-loops, and choosing the self-loop probabilities to ensure that the sum
of the probabilities at each vertex is one. The maximum-degree transition probability
matrix Pmd is given by

Pmd
ij =







1/dmax if i 6= j and (i, j) ∈ E
1 − di/dmax if i = j
0 if (i, j) /∈ E .

For regular bipartite graphs, this construction just gives the usual random walk which
is periodic and has −1 as an eigenvalue.
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1.2.2. The Metropolis-Hastings chain. A slightly more sophisticated heuris-
tic can be constructed by applying the Metropolis-Hastings algorithm ([34, 23]) to a
random walk on a graph. The transition probabilities of the simple random walk on
a graph are given by

P rw
ij =

{

1/di if (i, j) ∈ E and i 6= j
0 otherwise.

This Markov chain (the base chain) is in general not symmetric; its equilibrium dis-
tribution is proportional to the degree.

To obtain a reversible Markov chain with an equilibrium distribution π = (π1, . . . , πn)
based on this random walk, we start by setting Rij = (πjP

rw
ji )/(πiP

rw
ij ). The Metropolis-

Hastings algorithm modifies the transition probabilities as

Pmh
ij =

{

P rw
ij min {1, Rij} if (i, j) ∈ E and i 6= j

P rw
ii +

∑

(i,k)∈E P rw
ik (1 − min{1, Rik}) if i = j.

(See [8] for a nice geometric interpretation of the Metropolis-Hastings algorithm.) If π
is the uniform distribution, then the transition probability matrix Pmh is symmetric
and can be simplified as

Pmh
ij =







min{1/di, 1/dj} if (i, j) ∈ E and i 6= j
∑

(i,k)∈E max{0, 1/di − 1/dk} if i = j

0 if (i, j) /∈ E .

In other words, the transition probability between two distinct, connected vertices is
the reciprocal of the larger degree, and the self-loop probabilities are chosen to ensure
the sum of the probabilities at each vertex is one.

An interesting property of the Metropolis-Hastings chain is that the transition
probability on an edge only depends on local information, i.e., the degrees of its two
adjacent vertices.

1.3. Applications and previous work. Determining or bounding the SLEM
of Markov chains is very important in Markov chain Monte Carlo simulation, which
is a powerful algorithmic paradigm in statistics, physics, chemistry, biology, computer
science and many others (see, e.g., [33, 13, 47]). The chief application of Markov
chain simulation is to the random sampling of a huge state space (often with com-
binatorial structure) with a specified probability distribution. The basic idea is to
construct a Markov chain that converges asymptotically to the specified equilibrium
distribution. Then starting from an arbitrary state, simulate the chain until it is
close to equilibrium, and the distribution of the states will be close to the desired
distribution.

The efficiency of such algorithms depends on how fast the constructed Markov
chain converges to the equilibrium, i.e., how fast the chain mixes. An efficient al-
gorithm can result only if the number of simulation steps is reasonably small, which
usually means dramatically less than the size of the state space itself. For example, a
Markov chain is called rapidly mixing if the size of state space is exponential in some
input data size, whereas the mixing time is bounded by a polynomial.

Most previous work focused on bounding the SLEM (or the spectral gap) of a
Markov chain with various techniques, and developing some heuristics to assign tran-
sition probabilities to obtain faster mixing Markov chains. Some well-known analytic
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approaches for bounding the SLEM are: coupling methods and strong stationary
times [1, 16], conductance [27], geometric bounds [20], multicommodity flows [46, 28].
Diaconis and Saloff-Coste [19] survey what is rigorously known about running times
of the Metropolis-Hastings algorithm — the most celebrated algorithm for construct-
ing Markov chains in Monte Carlo methods. Kannan [29] surveys the use of rapidly
mixing Markov chains in randomized polynomial time algorithms to approximately
solve certain counting problems. More background on fast mixing Markov chains can
be found in, e.g., [13, 4, 42] and references therein.

In this paper, we show that the fastest mixing Markov chain on a given graph can
be computed exactly by a polynomial time optimization algorithm. In practice, this
is feasible at least for graphs with a modest number of edges, such as 1000. We also
give a subgradient method that can solve large problems with up to 100000 edges.
Although these sizes are still far smaller than the sizes that arise in practical Monte
Carlo simulations, the convex optimization formulation and associated duality theory
offer the potential of deriving improved bounds for the SLEM. We also hope that the
FMMC solution for small size graphs can give insight on how to improve the efficiency
of practical Markov chain Monte Carlo simulations.

On the other hand, many practical applications have very rich combinatorial
structure that can be exploited to greatly reduce the solution complexity of the FMMC
problem. The paper [10] and the work in progress [40] studies in detail the FMMC
problem on graphs with rich symmetry properties.

1.4. Outline. In §2, we show that the FMMC problem can be cast as a convex
optimization problem, and even more specifically, as a semidefinite program (SDP).
In §3, we give some numerical examples of the FMMC problem, and show that the
fastest mixing chain is often substantially faster than the maximum-degree chain and
the Metropolis-Hastings chain. In §4, we describe the Lagrange dual of the FMMC
problem and give the (necessary and sufficient) optimality conditions. In §5, we
describe a subgradient method that can be used to solve larger FMMC problems.
In §6, we generalize the FMMC problem to reversible Markov chains. In §7, we
discuss some extensions of the FMMC problem. In particular, we briefly discuss
how to exploit graph symmetry to simplify computation, give some bounds relating
the spectral gaps of different Markov chains on the same graph, and show that the
log-Sobolev constant, another measure of fast mixing, is concave in the transition
probability matrix.

2. Convex optimization and SDP formulation of FMMC.

2.1. Convexity of SLEM. We first show that the SLEM µ is a convex function
of P , on the set of doubly stochastic symmetric matrices. There are several ways to
establish this. Our first proof uses the variational characterization of eigenvalues (see,
e.g., [26, §4.2]). Since λ1(P ) = 1, with associated eigenvector 1, we can express the
second largest eigenvalue as

λ2(P ) = sup{uT Pu | ‖u‖2 ≤ 1, 1T u = 0}.

This shows that λ2(P ) is the pointwise supremum of a family of linear functions of
P (i.e., uT Pu), and so is a convex function of P (see, e.g., [41, §5] and [12, §3.2]).
Similarly, the negative of the smallest eigenvalue,

−λn(P ) = sup{−uT Pu | ‖u‖2 ≤ 1},
5



is also convex. Therefore the SLEM µ(P ) = max{λ2(P ),−λn(P )}, which is the
pointwise maximum of two convex functions, is convex.

We can also derive convexity of µ from known results for eigenvalues of symmetric
matrices. The sum of any number of the largest eigenvalues of a symmetric matrix is
a convex function of the matrix (see, e.g., [15, 38]). In particular, the function λ1 +λ2

is convex for general symmetric matrices. Since our matrices are stochastic, we have
λ1 = 1, so we conclude that λ2 = (λ1 + λ2) − 1 is a convex function.

We can also show convexity of µ by expressing it as the spectral norm of P
restricted to the subspace 1⊥:

µ(P ) = ‖(I − (1/n)11T )P (I − (1/n)11T )‖2 = ‖P − (1/n)11T ‖2.(2.1)

Here the matrix I − (1/n)11T gives orthogonal projection on 1⊥, and ‖ · ‖2 denotes
the spectral norm, or maximum singular value. (In this case, since the matrices are
symmetric, ‖ · ‖2 is the largest magnitude eigenvalue.) The formula (2.1) gives µ(P )
as the norm of an affine function of P , and so is a convex function (see, e.g., [12,
§3.2]).

2.2. Convex optimization formulation. The FMMC problem (1.3) is evi-
dently a convex optimization problem, since the constraints are all linear equalities or
inequalities, and the objective function is convex. Using the expression (2.1) we can
formulate the FMMC problem as

minimize µ(P ) = ‖P − (1/n)11T ‖2

subject to P ≥ 0, P1 = 1, P = PT

Pij = 0, (i, j) /∈ E ,
(2.2)

i.e., a norm minimization problem over a set of symmetric stochastic matrices.
We can add any convex constraints to the FMMC problem, and still have a convex

problem that is efficiently solvable. One interesting case is the local degree FMMC
problem, where we require that the transition probability on an edge must depend on
the degrees of its two end vertices. This problem can be viewed as a generalization of
the Metropolis-Hastings chain, in which the edge probability is the minimum of the
inverses of the two degrees. To formulate the local degree FMMC problem, we simply
add the (linear equality) constraints that require the probabilities to be equal for any
two edges that have identical degrees at its adjacent vertices.

2.3. Semidefinite programming formulation. We can express the FMMC
problem (2.2) as an SDP by introducing a scalar variable s to bound the norm of
P − (1/n)11T :

minimize s
subject to −sI � P − (1/n)11T � sI

P ≥ 0, P1 = 1, P = PT

Pij = 0, (i, j) /∈ E .

(2.3)

Here the variables are the matrix P and the scalar s. The symbol � denotes matrix
inequality, i.e., X � Y means Y − X is positive semidefinite. (The symbol ≤ is used
to denote elementwise inequality.)

The problem (2.3) is not in one of the standard forms for SDP, but is readily
transformed to a standard form, in which a linear function is minimized, subject
to a linear matrix inequality (the constraint that an affine symmetric-matrix valued
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function be positive semidefinite), and linear equality constraints. The inequalities
in (2.3) can be expressed as a single linear matrix inequality (LMI),

diag
(

P − (1/n)11T + sI, sI − P + (1/n)11T , vec(P )
)

� 0.

Here, diag(·) forms a block diagonal matrix from its arguments, and vec(P ) is a vector
containing the n(n + 1)/2 different coefficients in P . Since a block diagonal matrix
is positive semidefinite if and only if its blocks are positive semidefinite, this single
LMI is equivalent to the inequalities in (2.3). (See [51, 12] for more details of such
transformations.)

The FMMC problem can also be expressed in several other equivalent SDP forms,
using the characterization of sum of largest eigenvalues given in Overton and Wom-
ersley [38]; see also Alizadeh [2, §4].

The SDP formulation (2.3) has several important ramifications. First of all, it
means that the FMMC problem can be solved efficiently (and globally) using standard
SDP solvers, at least for small or medium size problems (with number of edges up
to a thousand or so). A custom designed SDP solver for the FMMC problem, which
exploits the special structure of the problem (e.g., sparsity of P ) would be able solve
even larger problems. Detailed accounts of interior-point algorithms for SDP, as well
as its many applications, can be found in, for example, Nesterov and Nemirovsky [36,
§6.4], Alizadeh [2], Vandengerghe and Boyd [51], Ye [54], Wolkowicz, Saigal and Van-
dengerghe [52], Todd [50], and Ben-Tal and Nemirovski [5, §4]. Benson, Ye and Zhang
[6] exploit the structure and sparsity of some large-scale SDPs arising in combinatorial
optimization with a dual scaling method.

Another consequence of the SDP formulation is that we can easily obtain the dual
of the FMMC problem, via standard SDP duality theory, as well as a set of necessary
and sufficient optimality conditions. (These appear in §4.)

3. Examples. In this section we give several numerical examples, comparing
the fastest mixing chain (obtained via SDP) to the maximum-degree and Metropolis-
Hastings chains.

3.1. Some small examples. We first consider the four simple small graphs
shown in figure 3.1. For each graph, we consider the maximum-degree chain, the
Metropolis-Hastings chain, and the optimal (fastest mixing) chain, obtained by solving
an SDP (for these examples, exactly). Table 3.1 shows the SLEMs of the three Markov
chains for each graph, as well as the transition probability matrices of the fastest
mixing chains. Note that for graph (b) and (c), neither the maximum-degree nor
Metropolis-Hastings chains give the smallest SLEM.

We should note that the fastest mixing chain, i.e., the solution to the FMMC
problem, need not be unique. For example, another optimal solution for graph (b)
can be obtained by changing the lower two by two diagonal block to

[

3/11 5/11
5/11 3/11

]

.

Any convex combination of these two sub-blocks would also provide an optimal chain.
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(b)
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(c)

1 2
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(d)

Fig. 3.1. Four small graphs.

graph µmd µmh µ⋆ optimal transition matrix P ⋆

(a)
√

2/2
√

2/2
√

2/2









1/2 1/2 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 1/2 1/2









(b) 2/3 2/3 7/11









6/11 5/11 0 0
5/11 0 3/11 3/11

0 3/11 4/11 4/11
0 3/11 4/11 4/11









(c) 2/3 2/3 3/7













1/7 2/7 0 2/7 2/7
2/7 3/7 2/7 0 0
0 2/7 1/7 2/7 2/7

2/7 0 2/7 3/7 0
2/7 0 2/7 0 3/7













(d) 1/4 7/12 1/4













1/4 1/4 1/4 0 1/4
1/4 1/4 0 1/4 1/4
1/4 0 1/4 1/4 1/4
0 1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4 0













Table 3.1

SLEMs and optimal transition matrices for the small graphs.
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3.2. Random walk on contingency tables. We consider the set of all nr by
nc matrices with nonnegative integer entries and fixed row and column sums, i.e., the
set

X = {X ∈ Znr×nc

+ | X1 = r, XT 1 = c}

where r ∈ Znr

+ is the vector of fixed row sums and c ∈ Znc

+ is the vector of fixed
column sums. We construct a graph with X as the vertex set. We say that two tables
(matrices) X and X̃ (both in X ) are adjacent (connected by an edge) if

X−X̃ = (ei−ej)(ek−el)
T for some 1 ≤ i, j ≤ nr, 1 ≤ k, l ≤ nc, i 6= j, k 6= l,

(3.1)
where ei denotes the ith standard unit vector. (The first two vectors, ei and ej , have
dimension nr; the second two, ek and el, have dimension nc.)

Equation (3.1) can be explained by a random walk on the contingency tables.
Given any X ∈ X , we randomly pick a pair of rows and a pair of columns, and modify
the four intersecting entries by

+1 −1
−1 +1

or
−1 +1
+1 −1

with probability 1/2 each. This modification doesn’t change the row and column
sums. If the modification results in negative entries, we discard it (and stay at the
current table); otherwise we accept the modification (jump to an adjacent table). We
then repeat the process, by selecting new pairs of rows and columns. This describes a
Markov chain on X , and it can be shown that this chain (graph) is connected. Actually
this is precisely the maximum-degree Markov chain on the graph of contingency tables,
and it generates uniform sampling of the tables in steady state. See [17] for a review
of the background and applications of contingency tables.

While the maximum-degree chain seems to be the only practical method that can
be implemented to carry out uniform sampling on a set of contingency tables, it is
of academic interest to compare its mixing rate with that of the Metropolis-Hastings
chain and the FMMC. Even this comparison can only be done for very small tables
with small row and column sums, due to the rapid growth of the number of tables
and transitions when the table size, or the row and column sums, are increased.

1 1 1 3
1 1 2 4
1 1 3 5
3 3 6

Table 3.2

A small contingency table and its row sums and column sums.

As an example, consider matrices in Z3×3
+ that have fixed row sums r = (3, 4, 5)

and column sums c = (3, 3, 6). There are 79 such matrices (nodes of the graph, one
example given in table 3.2) and 359 allowed transitions (edges not counting self-loops).
The maximum degree of the graph is dmax = 18 and the minimum degree is dmin = 4.
We found that the SLEMs of the three Markov chains are µmd = 0.931, µmh = 0.880
and µ⋆ = 0.796 respectively.

Random walks on contingency tables is a special case of a class of problems
studied by Gröbner basis methods in [21]. They give graph structures for higher
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dimensional tables, logistic regression problems and much else. In each case, they use
the maximum-degree heuristic to get a uniform distribution. We hope to apply our
methods to these problems to get faster algorithms.

3.3. A random family. We generate a family of graphs, all with 50 vertices,
as follows. First we generate a symmetric matrix R ∈ R50×50, whose entries Rij ,
for i ≤ j, are independent and uniformly distributed on the interval [0, 1]. For each
threshold value c ∈ [0, 1] we construct a graph by placing an edge between vertices i
and j, for i 6= j if Rij ≤ c. We always add every self-loop to the graph.

By increasing c from 0 to 1, we obtain a monotone family of graphs, i.e., the
graph associated with a larger value of c contains all the edges of the graph associated
with a smaller value of c. We only consider values of c above the smallest value that
gives a connected graph. For each graph, we compute the SLEMs of the maximum-
degree chain, the Metropolis-Hastings chain, and the fastest mixing chain (using SDP).
Figure 3.2 shows the mixing rates of the three Markov chains for the graphs obtained
for c = 0.1, 0.2, . . . , 0.9 (all of which were connected). For these 9 examples, the
Metropolis chain is faster than the maximum-degree chain, but the optimal chain is
always substantially faster than the Metropolis-Hastings chain.

Figure 3.3 shows the eigenvalue distribution of the three Markov chains for the
particular graph with c = 0.2. Each of the distributions has a single eigenvalue at
one. The mixing of the maximum-degree chain is determined by its second eigenvalue,
although it has some negative eigenvalues. For the Metropolis-Hastings chain, the
second eigenvalue is smaller, and the smallest eigenvalue is more negative, but still
not enough to affect the SLEM. For the fastest mixing chain, the eigenvalues (other
than 1) have an approximately symmetric distribution, with many at or near the two
critical values ±µ⋆.
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Fig. 3.2. SLEMs of three Markov chains on a family of 9 randomly generated graphs with 50
vertices.
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maximum-degree chain

Metropolis-Hastings chain
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Fig. 3.3. Eigenvalue distributions of the three transition probability matrices on the graph with
c = 0.2. The dashed lines indicate the values ±µ for each chain.
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4. The dual problem and optimality conditions.

4.1. The dual problem. Just as in linear programming, (Lagrange) duality
plays an important role in convex optimization and semidefinite programming. The
dual of the fastest mixing Markov chain problem can be expressed as

maximize 1T z
subject to Y 1 = 0, Y = Y T , ‖Y ‖∗ ≤ 1

(zi + zj)/2 ≤ Yij , (i, j) ∈ E ,
(4.1)

with variables z ∈ Rn and Y ∈ Rn×n. Here ‖Y ‖∗ =
∑n

i=1 |λi(Y )|, the sum of the
singular values of Y . The sum of the singular values of a symmetric matrix is a norm;
indeed, it is the dual norm of the spectral norm, so we denote it by ‖ · ‖∗. The dual
FMMC problem is convex, since the objective, which is maximized, is linear, hence
concave, and the constraints are all convex.

This dual problem can be derived in several ways (and expressed in several equiv-
alent forms). It can be derived directly, or via the standard SDP dual of the SDP
formulation (2.3). The dual problem satisfies the following:

• Weak duality. If Y , z are feasible for the dual problem (4.1), then we have
1T z ≤ µ⋆. In other words, dual feasible points yield bounds on the optimal
SLEM.

• Strong duality. There exist Y ⋆, z⋆ that are optimal for the dual problem, and
satisfy 1T z⋆ = µ⋆. This means that optimal values of the primal and dual
problems are the same, and that the dual problem yields a sharp lower bound
on the optimal SLEM.

Both of these conclusions follow from general results for convex optimization
problems (see, e.g., [41, 7, 12]). We can conclude strong duality using (a refined form
of) Slater’s condition (see, e.g., [7, §3.3] and [12, §5.2]), since the constraints are all
linear equalities and inequalities.

4.1.1. Derivation of weak duality. In this section we give a self-contained
derivation of weak duality. We will show that if P is primal feasible and Y , z are dual
feasible, then

1T z ≤ µ(P ).(4.2)

We prove this by bounding TrY (P − (1/n)11T ) from above and below. By the
definition of dual norm, we have

TrY
(

P − (1/n)11T
)

≤ ‖Y ‖∗‖P − (1/n)11T ‖2

≤ ‖P − (1/n)11T ‖2

= µ(P )

The second inequality uses the fact that Y is dual feasible (hence ‖Y ‖∗ ≤ 1), and the
equality uses the definition of the mixing rate. On the other hand, we have

TrY
(

P − (1/n)11T
)

= TrY P =
∑

i,j YijPij

≥ ∑

i,j(1/2)(zi + zj)Pij

= (1/2)(zT P1 + 1T Pz)

= 1T z.
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The first equality uses the fact that Y 1 = 0, and the inequality comes from primal
and dual feasibility: Pij = 0 for (i, j) /∈ E and (1/2)(zi + zj) ≤ Yij for (i, j) ∈ E .
Combining the upper and lower bounds gives the desired result (4.2).

As an example, consider the FMMC problem associated with the graph shown in
figure 3.1(b). The dual variables

z =
1

44









25
−15

9
9









, Y =
1

44









25 5 −15 −15
5 1 −3 −3

−15 −3 9 9
−15 −3 9 9









(4.3)

are easily verified to satisfy Y 1 = 0, Y = Y T and (zi + zj)/2 ≤ Yij for (i, j) ∈ E .
Moreover, Y can be expressed as

Y = vvT , v =
1√
44









5
1

−3
−3









,

so its eigenvalues are 0, 0, 0, and ‖v‖2 = 1. Therefore, we have ‖Y ‖∗ = 1. Thus, z
and Y given in (4.3) are feasible dual variables.

Therefore weak duality tells us that the corresponding dual objective, 1T z = 7/11,
is a lower bound on µ⋆. Since the matrix P given in table 3.1 yields µ(P ) = 7/11, we
can conclude that it is optimal.

4.2. Optimality conditions. From strong duality (or general convex analysis)
we can develop necessary and sufficient conditions for P to be optimal for the FMMC
problem. The primal variable P ⋆ is optimal if and only if there exist dual variables
z⋆ and Y ⋆ that satisfy the following set of (Karush-Kuhn-Tucker) conditions:

• Primal feasibility.

P ⋆ ≥ 0, P ⋆1 = 1, P ⋆ = P ⋆T

P ⋆
ij = 0, (i, j) /∈ E

• Dual feasibility.

Y ⋆1 = 0, Y ⋆ = Y ⋆T , ‖Y ⋆‖∗ ≤ 1

(z⋆
i + z⋆

j )/2 ≤ Y ⋆
ij , (i, j) ∈ E

• Complementary slackness.
(

(z⋆
i + z⋆

j )/2 − Y ⋆
ij

)

P ⋆
ij = 0

Y ⋆ = Y ⋆
+ − Y ⋆

−, Y ⋆
+ = Y ⋆T

+ � 0, Y ⋆
− = Y ⋆T

− � 0

P ⋆Y ⋆
+ = µ(P ⋆)Y ⋆

+, P ⋆Y ⋆
− = −µ(P ⋆)Y ⋆

−, TrY ⋆
+ + TrY ⋆

− = 1

The matrices Y ⋆
+ and Y ⋆

− can be viewed as the positive semidefinite and negative
semidefinite parts of Y ⋆ respectively. In §5 we will see a nice interpretation of the
complementary slackness conditions in terms of the subdifferential of µ at P ⋆. These
optimality conditions can be derived with similar arguments as given in [38].

As an example, consider again the FMMC problem for the graph in figure 3.1(b).
It is easy to verify that the matrix P given in table 3.1 and z and Y given in (4.3)
satisfy the above necessary and sufficient conditions.

The results of this section have been used to prove that the fastest mixing Markov
chain on a path with n vertices results from putting loops at the two end vertices and
assigning transition probability half on all edges and the two loops; see [11].
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5. A subgradient method. Standard primal-dual interior-point algorithms for
solving SDPs work well for problems with up to a thousand or so edges. There are
many popular SDP solvers available, such as SDPSOL [53], SDPpack [3] and SeDuMi
[49]. A list of 16 SDP solvers can be found at the SDP website maintained by Helmberg
[44]. The particular structure of the SDPs encountered in FMMC problems can be
exploited for some gain in efficiency, but problems with 10000 or more edges are
probably beyond the capabilities of interior-point SDP solvers.

In this section we give a simple subgradient method, that can solve the FMMC
problem on very large-scale graphs, with 100000 or more edges. The disadvantage,
compared to a primal-dual interior-point method, is that the algorithm is relatively
slow (in terms of number of iterations), and has no simple stopping criterion that can
guarantee a certain level of suboptimality.

5.1. Subdifferential of the SLEM. A subgradient of µ at P is a symmetric
matrix G that satisfies the inequality

µ(P̃ ) ≥ µ(P ) + TrG(P̃ − P ) = µ(P ) +
∑

i,j

Gij(P̃ij − Pij)(5.1)

for any symmetric stochastic matrix P̃ . Subgradients play a key role in convex anal-
ysis, and are used in several algorithms for convex optimization.

We can compute a subgradient of µ at P as follows. Suppose µ(P ) = λ2(P )
and v is a unit eigenvector associated with λ2(P ). Then the matrix G = vvT is a
subgradient of µ(P ). To see this, we first note that vT 1 = 0. By the variational
characterization of the second eigenvalue of P and P̃ , we have

µ(P ) = λ2(P )=vT Pv,

µ(P̃ ) ≥ λ2(P̃ )≥vT P̃ v.

Subtracting the two sides of the above equality from that of the inequality, we have
the desired inequality

µ(P̃ ) ≥ µ(P ) + vT (P̃ − P )v = µ(P ) +
∑

i,j

vivj(P̃ij − Pij).

Similarly, if µ(P ) = −λn(P ) and v is a unit eigenvector associated with λn(P ), then
the matrix −vvT is a subgradient of µ(P ).

The subgradient method we describe requires only the computation of one sub-
gradient, as described above. But in fact we can characterize the subdifferential of µ
at P , defined as the set of all subgradients of µ at P , and denoted ∂µ(P ). It can be
shown that

∂µ(P ) = Co
(

{vvT | Pv = µ(P )v, ‖v‖2 = 1} ∪ {−vvT | Pv = −µ(P )v, ‖v‖2 = 1}
)

= {Y | Y = Y+ − Y−, Y+ = Y T
+ � 0, Y− = Y T

− � 0,

PY+ = µ(P )Y+, PY− = −µ(P )Y−, TrY+ + TrY− = 1},

where Co(·) denotes the convex hull. For derivation of this result, and detailed
nonsmooth analysis of spectral functions, see [38, 30, 31]. More general background
on nonsmooth analysis and optimization can be found in, e.g., [14, 25, 9].
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5.2. Projected subgradient method. Let p denote the vector of transition
probabilities on the non-self-loop edges (edges that connect two different vertices).
For convenience, we label these edges by integers l = 1, 2, . . . ,m. Because the staying
probabilities at the vertices can be eliminated using the equality P1 = 1, we can
express the transition probability matrix as an affine function of p,

P (p) = I +

m
∑

l=1

plE
(l).

Suppose that edge l connects two vertices i and j (i 6= j), which we denote by l ∼ (i, j),

then E
(l)
ij = E

(l)
ji = +1, E

(l)
ii = E

(l)
jj = −1, and all other entries of E(l) are zero. The

diagonal of P (p), i.e., the vector of staying probabilities at the vertices, can be written
as 1−Bp, where the n by m matrix B is the vertex-edge incidence matrix defined as

Bil =

{

1, if edge l incident to vertex i
0, otherwise.

Notice that each column of B has exactly two non-zero entries indicating the two
end vertices of the edge. The entry (Bp)i is the sum of transition probabilities on
the incident edges at vertex i (excluding the self-loop). For p to be feasible, it must
satisfy

p ≥ 0, Bp ≤ 1.

Now we can write the FMMC problem in terms of the optimization variable p:

minimize µ(P (p))
subject to p ≥ 0, Bp ≤ 1.

(5.2)

In the subgradient method, we need to compute a subgradient of the objective function
µ(P (p)) for a given feasible p. If µ(P (p)) = λ2(P (p)) and u is a unit eigenvector
associated with λ2(P (p)), then a subgradient g(p) is given by

g(p) =
(

uT E(1)u, . . . , uT E(m)u
)

,

with components

gl(p) = uT E(l)u = −(ui − uj)
2, l ∼ (i, j), l = 1, . . . ,m.

Similarly, if µ(P (p)) = −λn(P (p)) and v is a unit eigenvector associated with λn(P (p)),
then

g(p) =
(

−vT E(1)v, . . . ,−vT E(m)v
)

is a subgradient, with components

gl(p) = −vT E(l)v = (vi − vj)
2, l ∼ (i, j), l = 1, . . . ,m.

For large sparse symmetric matrices, we can compute a few extreme eigenvalues and
their corresponding eigenvectors very efficiently using Lanczos methods, see, e.g.,
Parlett [39] and Saad [43].

Now we give a simple subgradient method with approximate projection at each
step k:
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given a feasible p (e.g., the maximum-degree chain or Metropolis-Hastings chain)
k := 1
repeat

1. Subgradient step. Compute a subgradient g(k) and let

p := p − αkg(k)/‖g(k)‖2

2. Sequential projection step.

(a) pl := max{pl, 0}, l = 1, . . . ,m

(b) for node i = 1, . . . , n, I(i) = {l | edge l incident to node i}
while

∑

l∈I(i) pl > 1

I(i) :={l | l ∈ I(i), pl > 0}(5.3)

δ =min

{

min
l∈I(i)

pl,
(

∑

l∈I(i) pl − 1
)

/|I(i)|
}

(5.4)

pl :=pl − δ, l ∈ I(i)(5.5)

end while

end for

(c) k := k + 1
In this algorithm, step 1 moves p in the direction of the subgradient with stepsize αk,
which satisfies the diminishing stepsize rule:

αk ≥ 0, αk → 0,
∑

k

αk = ∞.(5.6)

Step 2 approximately projects the vector p onto the feasible set {p | p ≥ 0, Bp ≤
1}. While the exact projection (minimum distance) can be computed by solving a
quadratic program, it is computationally very expensive for very large graphs. Here
we use a sequential projection method: Step (2a) projects p onto the nonnegative
orthant; in step (2b), we project p onto one halfspace at a time, and each projection
is very easy to compute.

During each execution of the inner loop (the while loop), equation (5.3) updates
I(i) as the set of incident edges to node i with strictly positive transition probabilities,
and |I(i)| is its cardinality. If psum =

∑

l∈I(i) pl > 1, we would like to project p onto

the halfspace
∑

l∈I(i) pl ≤ 1, but doing so may cause some components of p to be
negative. Instead we project p onto the halfspace

∑

l∈I(i)

pl ≤ psum − δ|I(i)|(5.7)

where δ is chosen to avoid negative components of the projection; see equation (5.4).
The projection step (5.5) is very simple. The right-hand side of (5.7) is at least one,
and it is easy to verify that the while loop terminates in a finite number of steps,
bounded by the degree of the node. Moreover, every halfspace of the form (5.7)
contains the feasible set {p | p ≥ 0, Bp ≤ 1}. This implies that the distance from
any feasible point is reduced by each projection.

Once the sum probability constraint is satisfied at a node, it will never be de-
stroyed by later projections because the edge probabilities can only decrease in the
sequential projection procedure.
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Let p denote the probability vector after step 1, and p+ denote the vector after
step 2. It is clear that p+ produced by the sequential projection method is always
feasible, and the distance to any optimal solution is reduced, i.e.,

‖p⋆ − p+‖2 ≤ ‖p⋆ − p‖2

for any optimal solution p⋆. This is a critical property that allows us to prove the
convergence of this algorithm using standard arguments for projected subgradient
methods with the diminishing stepsize rule (5.6). Such proofs can be found in [45,
§2.2] and [7, §6.3].

Closely related to subgradient method is the spectral bundle method for solving
large-scale SDPs; see, e.g., [25, 24, 35]. Other methods for solving large eigenvalue
optimization problems can be found in, e.g., [37, 32].

5.3. Example. To demonstrate the projected subgradient algorithm, we apply
it to a large-scale graph with 10000 vertices and 100000 edges, generated using the
same method described in section 3.3. We use a simple Lanczos method to compute
λ1, λ2 and λn, which exploits sparsity of P and the rank-one property of 11T for
efficiency. We used step length αk = 1/

√
k, and started the transition matrix at the

Metropolis-Hastings chain.
The progress of the algorithm is plotted in figure 5.1, which shows the magnitude

of the two extreme eigenvalues λ2 and λn, versus iteration number. After 500 itera-
tions, the algorithm gives µ = 0.472, which is a significant reduction compared with
the Metropolis-Hastings chain, which has SLEM µ(Pmh) = 0.730 (at k = 0). The
spike at k = 463 happened when λn had a larger magnitude than λ2, and the subgra-
dient computation used the eigenvector associated with λn. At all other iterations, λ2

had a larger magnitude than λn. Figure 5.2 shows the distribution of the 101 largest
and 100 smallest eigenvalues of the two Markov chains at k = 0 and k = 500.
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Fig. 5.1. Progress of subgradient method for FMMC problem with a graph with 10000 vertices
and 100000 edges.
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Fig. 5.2. Distribution of the 101 largest and 100 smallest eigenvalues. The dashed lines indicate
the values ±µ for each Markov chain.
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6. Fastest mixing reversible Markov chain. We can generalize the FMMC
problem to reversible Markov chains, or equivalently, to random walks on a graph with
weighted edges. In this case, each edge (i, j) ∈ E is associated with two transition
probabilities Pij and Pji. The transition matrix is not required to be symmetric, but
it must satisfy the detailed balance condition

πiPij = πjPji, i, j = 1, . . . , n,(6.1)

where π = (π1, . . . , πn) is the equilibrium distribution of the Markov chain.
The two heuristics — the Metropolis and max-degree construction — can easily

be adapted to the non-uniform case. For Metropolis, take the proposal distribution to
be nearest neighbor random walk on the underlying graph with uniform weights. A
move from vertex i to j is accepted with probability min (1, (πjdi)/(πidj)). Otherwise
the walk stays at i. For max-degree, suppose we are given positive weights wi at each
vertex. Choose w⋆ ≥ maxi

∑

(i,j)∈E wj . Then set Pij = wj/w⋆ for i 6= j with (i, j) ∈ E
and choose Pii to satisfy P1 = 1. Both constructions give a reversible Markov chain
with stationary distribution proportional to wi.

In the fastest mixing reversible Markov chain problem, we are given a fixed equi-
librium distribution π, and the goal is to find a reversible transition probability matrix
with smallest SLEM. Let Π = diag(π), so the detailed balance condition (6.1) can be
written as ΠP = PT Π, which means that the matrix Π1/2PΠ−1/2 is symmetric (and
of course, has the same eigenvalues as P ). The eigenvector of Π1/2PΠ−1/2 associated
with the maximum eigenvalue one is q = (

√
π1, . . . ,

√
πn). The SLEM µ(P ) equals the

second largest (in magnitude) eigenvalue of Π1/2PΠ−1/2, or equivalently, its spectral
norm restricted to the subspace q⊥. This can be written as

µ(P ) = ‖(I − qqT )Π1/2PΠ−1/2(I − qqT )‖2 = ‖Π1/2PΠ−1/2 − qqT ‖2.

Thus the fastest mixing reversible Markov chain problem can be formulated as

minimize µ(P ) = ‖Π1/2PΠ−1/2 − qqT ‖2

subject to P ≥ 0, P1 = 1, ΠP = PT Π
Pij = 0, (i, j) /∈ E ,

(6.2)

which is a convex optimization problem. We can derive an SDP formulation of this
problem by introducing a scalar variable s to bound the norm of Π−1/2PΠ1/2 − qqT ,
as in (2.3).

7. Extensions.

7.1. Exploiting symmetry. Many graphs of interest have large symmetry groups,
and this can be exploited to substantially increase the efficiency of solution methods,
or even, in some cases, to solve the FMMC problem analytically. This is explored in
far more detail in [10, 40]; here we describe a very simple case to illustrate the basic
idea.

We first observe that if a graph is symmetric, then we can assume without loss
of generality that the optimal transition matrix P ⋆ is also symmetric. To see this,
let P ⋆ be any optimal transition matrix. If g is a permutation of V that preserves
the graph, then gP ⋆ (which is P ⋆ with its rows and columns permuted by g) is also
feasible. Let P denote the average over the orbit of P under the symmetry group.
This matrix is feasible (since the feasible set is convex, and each gP ⋆ is feasible), and
moreover, using convexity of µ, we have µ(P ) ≤ µ(P ⋆). It follows that µ(P ) = µ⋆,
i.e., P is optimal. It is also, by construction, invariant under the symmetry group.
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Now we consider a specific example, a complete bipartite graph (illustrated in
figure 3.1(c)) where the two parts have m and n nodes respectively. Without loss of
generality, we can assume n ≥ m ≥ 2. Here the symmetry group is Sn × Sm: we
can arbitrarily permute each of the parts. By symmetry, we can assume that every
(non self-loop) edge has the same transition probability p, with 0 < p < 1/n. The
transition probability matrix is thus

P (p) =

[

(1 − np)Im p1m1T
n

p1n1T
m (1 − mp)In

]

,

i.e., we have only one scalar variable, p, the edge transition probability. This matrix
has at most four different eigenvalues, which are

1, 1 − mp, 1 − np, 1 − (m + n)p,

so the FMMC problem reduces to minimizing the maximum absolute value of the last
three expressions, over the choice of p. It is easy to verify that the optimal transition
probability is

p⋆ = min

{

1

n
,

2

n + 2m

}

,

and the associated fastest SLEM is

µ(P ⋆) = max

{

n − m

n
,

n

n + 2m

}

.

In addition to reducing the number of variables, exploiting symmetry can often
lead to a change of basis that make the matrix block diagonal, which reduces the size
of matrices in numerical SDP solution. For more details, see [10, 40].

7.2. Some bounds. The spectral gap (1−µ) for the max-degree, Metropolis and
fastest mixing Markov chains can be quite different. Mark Jerrum has suggested the
following example showing that the optimal chain can improve over the max-degree
chain by unbounded amounts. Let Kn denote the complete graph on n vertices. Let
Kn–Kn denote two disjoint copies of Kn joined by a single edge. Here dmax = n.
Analysis presented in [10] shows that 1 − µ(Pmd) = 2n−2 + O(n−3) while the fastest
mixing chain has 1 − µ⋆ ≥ (1/3)n−1 + O(n−2).

On the other hand, the fastest mixing Markov chain can only improve the spectral
gap to the second eigenvalue, i.e., (1−λ2), by a factor of dmax, the maximum degree.
Let P be any symmetric Markov chain on G, and Pmd be the maximum degree chain
defined in §1.2.1. Then we have the following inequality:

1 − λ2(P ) ≤ dmax

(

1 − λ2(P
md)

)

.(7.1)

Since this holds for any Markov chain on G, it holds for any optimal one in particular.

To show this, we use the variational characterization of eigenvalues (see, e.g., [26,
page 176] and [13, page 205])

1 − λ2(P ) = inf

{

EP,π(f, f)

Varπ(f)

∣

∣

∣

∣

∣

Varπ(f) 6= 0

}

,
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where the Dirichlet form EP,π(f, f) and variance Varπ(f) are defined as

EP,π(f, f) =
1

2

∑

i,j

(fi − fj)
2πiPij , Varπ(f) =

1

2

∑

i,j

(fi − fj)
2πiπj .

Here the equilibrium distribution π = 1/n. We use Pij ≤ 1, and compare the Dirichlet
forms of P and Pmd:

EP,π(f, f) =
1

2

∑

i,j

(fi − fj)
2Pij

1

n
≤ dmax

1

2

∑

i,j

(fi − fj)
2 1

dmaxn
= dmaxEPmd,π(f, f).

This implies the inequality (7.1).
Similar arguments can be used to show that

1 − λ2(P
md) ≤ 1 − λ2(P

mh) ≤ dmax

dmh

(

1 − λ2(P
md)

)

,

where

dmh = min
(i,j)∈E

max{di, dj}.

Thus the two heuristics, max-degree and Metropolis-Hastings, are roughly compara-
ble.

Of course, the negative eigenvalues can change the story for the spectral gap, in
particular if λn is very close to −1, since the spectral gap 1−µ = min{1−λ2, 1+λn}.
One thing to notice is that the two extreme eigenvalues, λ2 and λn, are both monotone
decreasing in the off-diagonal entries of P . In particular, since Pmh

ij ≥ Pmd
ij for all

i 6= j, we always have

λ2(P
mh) ≤ λ2(P

md), λn(Pmh) ≤ λn(Pmd).

This can be shown by similar arguments as above.
We mention here one more related result. Consider the following modification of

the max-degree chain. Let all the edge transition probabilities be equal to 1/(dmax+1),
and denote the corresponding transition probability matrix by Pmd+. Then it can be
shown, using arguments similar to the ones above, that

1 − µ(P ) ≤ (dmax + 1)
(

1 − µ(Pmd+)
)

,

for any symmetric transition probability matrix P defined on the graph. Thus, the
spectral gap of the optimal chain is no more than a factor dmax + 1 larger than the
spectral gap of the modified max-degree chain.

7.3. Optimizing log-Sobolev constants. We have used the spectral gap as a
measure of rapid mixing. The log-Sobolev constant (see, e.g., [22, 48, 18]) is another
important alternative measure of mixing rate. If (P, π) is a reversible Markov chain
on {1, 2, . . . , n}, the log-Sobolev constant α is defined by

α = inf

{

EP,π(f, f)

Lπ(f)

∣

∣

∣

∣

∣

Lπ(f) 6= 0

}

with the denominator defined as

Lπ(f) =
∑

i

|fi|2 log

( |fi|2
‖f‖2

)

πi.
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Note that Lπ(f) is nonnegative, with the definition ‖f‖2 =
∑

i |fi|2πi.
The constant α may be compared with the spectral gap associated with the

eigenvalue λ2,

1 − λ2 = inf

{

EP,π(f, f)

Varπ(f)

∣

∣

∣

∣

∣

Varπ(f) 6= 0

}

.

As one motivation for considering α, we consider Markov chains running in continuous
time. Let H(t) = e−t(I−P ), with Hij(t) being the probabilitiy of moving from i to j
after time t > 0. Starting at i, the total variation distance between the distribution
at time t and the stationary distribution π is bounded as

4‖Hi(t) − π‖2
tv ≤ 1

π∗

e−2(1−λ2)t

with π∗ = min πi. In [18, (1.8)] it is shown that

2‖Hi(t) − π‖2
tv ≤ log

(

1

π∗

)

e−2αt.

For large state spaces the 1/π∗ factors can be huge and the improvements to under-
standing convergence can be sizeable.

We can formulate the problem of finding the reversible Markov chain, with fixed
equilibrium distribution π, on a graph G, that has maximum log-Sobolev constant
as a convex optimization problem. We have already shown that R(G, π), the set of
π-reversible Markov chains compatible with G, is a convex set; we only need to show
that α : (G, π) → [0,∞) is a concave function on R(G, π). To do this, we note that
since EP,π and Lπ are homogeneous of degree two, we can express α as

α = inf{EP,π(f, f) | Lπ(f) = 1}.

For fixed f , the Dirichlet form EP,π(f, f) is an affine function of P . Thus α is a
pointwise minimum of affine functions and so is concave.

We hope to compare the chains obtained by optimizing α with those optimizing
µ in future work.
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Probabilités XVII, vol. 986 of Lecture Notes in Mathematics, Springer, New York, 1983,
pp. 243–297.

[2] F. Alizadeh, Interior point methods in semidefinite programming with applications to combi-
natorial optimization, SIAM Journal on Optimization, 5 (1995), pp. 13–51.

[3] F. Alizadeh, J.-P. A. Haeberly, M. V. Nayakkankuppam, M. L. Overton, and S. Schmi-

eta, SDPpack: A package for semidefinite-quadratic-linear programming, 1997.
[4] E. Behrends, Introduction to Markov Chains, with Special Emphasis on Rapid Mixing, Ad-

vanced Lectures in Mathematics, Vieweg, Germany, 2000.
[5] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization, Analysis, Algo-

rithms, and Engineering Applications, MPS/SIAM Series on Optimization, SIAM, 2001.

22



[6] S. Benson, Y. Ye, and X. Zhang, Solving large-scale sparse semidefinite programs for com-
binatorial optimization, SIAM Journal Optimization, 10 (2000), pp. 443–461.

[7] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, second ed., 1999.
[8] L. Billera and P. Diaconis, A geometric interpretation of the Metropolis-Hastings algorithm,

Statistical Science, 16 (2001), pp. 335–339.
[9] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization, Theory and

Examples, Canadian Mathematical Society Books in Mathematics, Springer-Verlag, New
York, 2000.

[10] S. Boyd, P. Diaconis, P. A. Parrilo, and L. Xiao, Symmetry analysis of
reversible Markov chains. Submitted to Internet Mathematics. Available at:
http://www.stanford.edu/~boyd/symmetry.html, December 2003.

[11] S. Boyd, P. Diaconis, J. Sun, and L. Xiao, Fastest mixing Markov chain on a
path. Accepted for publication in The American Mathematical Monthly. Available at:
http://www.stanford.edu/~boyd/fmmc_path.html, 2004.

[12] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2003.
Available at http://www.stanford.edu/~boyd/cvxbook.html.
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