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Abstract. We studysafety level coalitionsin competitive games. Given a nor-
mal form game, we define a correspondingcooperativegame with transferable
utility, where the value of each coalition is determined by the safety level payoff
it derives in the original—non-cooperative—game. We thus capture several key
features of agents’ behavior: (i) the possible monetary transfer among the coali-
tion members; (ii) the solidarity of the outsiders against the collaborators; (iii) the
need for the coalition to optimize its actions against the worst possible behavior
of those outside the coalition. We examine the concept of safety level coopera-
tion in congestion games, and focus on computing the value of coalitions, the core
and the Shapley value in the resulting safety level cooperative games. We provide
tractable algorithms foranonymouscooperative games and for safety level co-
operative games that correspond tosymmetriccongestion games with singleton
strategies. However, we show hardness of several problems such as computing
values in games with multi-resource strategies or asymmetric strategy spaces.

1 Introduction

Game theory analyzes interactions of selfish rational agents. An agent may not follow
a “prescribed” behavior if deviating from it improves its utility, sostableoutcomes
are central in game theory. Innon-cooperativegames, where agents take individual ac-
tions, the prominent stability concept is theNash equilibrium—a strategy profile where
no agent has a beneficial unilateral deviation. However, it does not take into account
collective deviations by groups of agents; Thestrong equilibrium[2]—a strategy pro-
file with no profitable agent subset deviations—extends Nash equilibrium to coalitions.
Cooperativegames consider how coalitions of agents cooperate, focusing on how the
utility is distributed among the agents. In a non-cooperative game, agents act indepen-
dently based on their individual interests. In many scenarios traditionally modeled as
non-cooperative games (e.g., auctions, network and congestion games), a coalition can
jointly decide on a collective action and make monetary transfers tosharethe gains. This
requires applying tools from cooperative game theory to such domains. Hayrapetyan et
al [10] modeled coalitions incongestion games. In a congestion game [15], a set of
agents shares a set of resources, and an agent’s strategy is to choose a subset of re-
sources to use to minimize the sum of congestion-dependent costs over its selected
resources. In [10], the authors assume that agents may collude to maximize their col-
lective welfare. Their model allows monetary transfers but uses a different perspective
than cooperative game theory, focusing on the negative effect of collusion on the social



welfare. Other papers examine coalition formation in multi-unit auctions [3], assuming
non-colluders bidtruthfully or fostering cooperation throughexternal subsidies[4, 14].

In contrast, we studysafety levelcoalitions in competitive games. As opposed to
standard cooperative games, the utility of a coalition depends not only on the action
the members take, but also on the actions taken by the non-members. In the worst case,
the outsiders may “punish” the coalition members and take actions that minimize the
collaborators’ utility. A coalition then may decide to maximize its total) utility under the
worst case action of the non-members—we call this ajoint safety levelstrategy. In our
model the collaborators are “good” to each other by coordinating actions and sharing
gains and the non-collaborators are “bad” adversaries who reduce the collaborators’
utility. If the collaborators adopt this view of non-collaborators as adversaries, they must
be “cautious” and prepare for the worst-case choice of the non-collaborators, using their
joint safety level strategy. To do this, they can agree on monetary transfers through an
enforceable contract for distributing the gains. Solution concepts such as the core [9]
and the Shapley value [18] can be used to predict what transfers would occur. Several
works [7, 8, 21, 5] consider computing the core and Shapley value in various domains.

We examine safety level cooperation in congestion games. These games where self-
ish agents choose from a common set of resources and derive individual utilities that
depend on the total congestion on each resource, are fundamental to many applica-
tions [13, 15, 16]. Such games have Nash equilibria in pure strategies [15], and some
restricted classes have strong equilibria in pure strategies [11, 17]. Recent work focuses
on specific subclasses that are computationally tractable [1, 12]. One subclass which we
also examine isresource selection games, where each agent chooses asingleresource.

We distinguish betweensymmetricsettings where agents choose strategies from a
common space, andasymmetricones where each agent has its own collection of strate-
gies. While in the non-cooperative context, both symmetric and asymmetric models are
anonymous, asymmetric models lose anonymity when monetary transfers are allowed.
For anonymous settings, we show that testing core emptiness, constructing a core im-
putation and testing whether an imputation is in the core are inP when the computation
of the coalitional values in the game is inP ; we also show that the Shapley value is in
the core if it is not empty, and can be computed in polynomial time. These results hold
for all anonymous cooperative games1—not only those based on safety level coalitions.
For congestion games, we show that computing a coalition’s value is inP for single-
ton strategies and NP-hard for multiple-resource strategies, while for non-anonymous
settings computing the value of even a singleton or the grand coalition are NP-hard.

1.1 Preliminaries

A non-cooperative game in normal formis given by an agent setN = {1, . . . , N}, and
for each agenti ∈ N, a strategy spaceSi of its pure strategies and a payoff function
Ui : ×i∈NSi → R specifying the reward an agent gets. Denote bySC the set of
partial strategy profiles of a subset of agentsC ⊆ N, and byS−C = SN\C the set

1 Not to be confused with theanonymity-proofsolutions [20] which are robust under “false
name” manipulations. We refer to games where the characteristic function is not “sensitive” to
the agents’ identities so equal size coalitions get equal values.



of strategy combinations of all the agents outsideC; for a single agenti ∈ N, denote
S−i = SN\{i}. A strategy profiles ∈ S is aNash equilibriumif for each agenti ∈ N
and for each its strategys′i ∈ Si the following holds:Ui(s) ≥ Ui(s−i, s

′
i). A strategy

profile is astrong Nash equilibriumif it is stable against deviations by coalitions: for
anyC ⊆ N ands′C ∈ SC , there existsi ∈ C such thatUi(s) ≥ Ui(s−i, s

′
i). Thesafety

level strategyfor agenti ∈ N, sSL
i , is the strategy maximizing itsguaranteedutility,

no matter what the other agents play:sSL
i ∈ arg maxsi∈Si

mins−i∈S−i
Ui(si, s−i).

Some utility functions ignore the identities of the agents, and only take into ac-
count the number of timeseach strategy is played. Settings where identities are irrel-
evant areanonymous. Given a set of strategiesS = {1, . . . , S}, a strategys ∈ S
and an agenti ∈ N, the utility of i playing s in an anonymous maps the set of par-

titions
{

(x1, . . . , xS) |xj ∈ {1, . . . , N},
∑S

j=1 xj = N − 1
}

to real numbers. A re-

lated important subclass issymmetric games, where the payoffs for playing a particular
strategy are the same for different agents and depend only on the other strategies em-
ployed, so one can change the identities of the agents without changing the payoffs
to the strategies. A game with strategy spacesS1 = . . . = SN = S is symmetric if
for any permutationπ over N and agenti ∈ N, we haveUi (s1, . . . , si, . . . , sN ) =
Uπ(i)

(
sπ(1), . . . , sπ(i), . . . , sπ(N )

)
, wheresj = sπ(j) for j = 1, . . . , N .

A transferable utility cooperative gamehas a setN of N agents, and a characteristic
functionv : 2N → R mapping any subset (coalition) of agents to a real value, indicating
the total utility these agents achieve together. We denote all agents excepti asN−i =
N \ {i}. A coalitional game ismonotoneif v(C ′) ≤ v(C) for anyC ′ ⊆ C.

The characteristic function only indicates the total gains a coalition can achieve, but
does not specify how these gains are distributed among the agents who formed it. An
imputation(p1, . . . , pN ) defines a division of the gains of the grand coalition among its
agents, wherepi ∈ R, such that

∑N
i=1 pi = v(N). We callpi the payoff of agenti, and

denote the payoff of a coalitionC asp(C) =
∑

i∈C pi. A basic requirement for a good
imputation isindividual rationality: for any agenti ∈ N, pi ≥ v({i}) (otherwise, this
agent is incentivized to work alone). Similarly, we say a coalitionB blocksimputation
(p1, . . . , pN ) if p(B) < v(B). If a blocked payoff vector is chosen, the coalition is
somewhat unstable. The most prominent solution concept based on suchstability is
the core [9]. Thecore is the set of all imputations(p1, . . . , pN ) not blocked by any
coalition, so that for any coalitionC ⊆ N holdsp(C) ≥ v(C).

Another solution concept is the Shapley value [18] which focuses onfairnessIt
fulfills several important fairness axioms [18] and has been used to fairly share gains
or costs. It depends on the agent’s marginal contribution to possible coalition permu-
tations. We denote byπ a permutation (ordering) of the agents, and byΠ the set
of all possible such permutations. Given a permutationπ = (i1, . . . , iN ) ∈ Π, the
marginal worth vector, mπ(v) ∈ RN , is defined bymπ

i1
= v ({i1}) andmπ

ik
(v) =

v ({i1, i2, . . . , ik})−v ({i1, i2, . . . , ik−1}) for k > 1. The convex hull of all the marginal
vectors is called theWeber Set, and contains the game’s core. TheShapley valueis the
centroid of the marginal vectors:φ(v) = 1

N !

∑
π∈Π mπ(v).

We analyze the core and the Shapley value of cooperative games that arise when
considering safety-level coalitions in a given non-cooperative setting, and demonstrate
this approach on congestion games. In acongestion game(CG) [15], every agent has



to choose from a finite set of resources. The utility of an agent from using a particular
resource depends on the number of agents using it, and its total utility is the sum of
utilities on its used resources. Formally, a congestion gameΓ =

(
N,R, (ur(·))r∈R

)
is described by the following components: a setN = {1, . . . , N} of agents; a setR =
{r1, . . . , rR} of resources; an assignmentur : {1, . . . , N} → R, r ∈ R, of resource
utility functions, where for any resourcer ∈ R, ur(k) is the resource utility (cost) forr
when the total number of users ofr isk. Each agenti is allowed to choose a (non-empty)
bundle of resourcesB ⊆ 2R, from a certain setSi = {Bi

1, . . . , B
i
Si
} of allowed bundles

(where eachBi
j ⊆ R). We denote bysi ∈ Si the strategy (set of resources) chosen by

agenti. EveryN -tuple of strategies—astrategy profile—s = (si)i∈N corresponds to
an R-dimensional congestion vectorh(s) = (hr(s))r∈R wherehr(s) is the number
of agents who select resourcer (we simply writehr when it’s clear what profile we
refer to). The utility ofi from s is: Ui(s) =

∑
e∈si

ur(hr(s)). A congestion game is
a resource selectiongame (RSG) if the strategy space of every agent corresponds to a
set of singletons. That is, agenti chooses a single resource from the given set, and its
payoff from a strategy profiles = (si)i∈N is given byUi(s) = usi

(hsi
(s)).

Remark 1.In a congestion game an agent’s utility only depends on the numbers of
agents choosing each resource but not on their identities, so congestion games are
anonymous. Since the utility from each resource is the same for each of its users, the
utility any agent gets from a particular strategy depends only on the other strategies
selected, but not on who has chosen them. Thus a congestion game is symmetric if (and
only if) all agents in the game have identical strategy spaces. We refer to symmetric
congestion and resource selection games as SCGs and SRSGs, respectively.

Congestion games always have a pure strategy Nash equilibrium [15]. Resource selec-
tion games with monotone utility functions also admit strong equilibria [11]. In fact, in
RSGs with decreasing utilities, any Nash equilibrium is strong. However, we show that
coalitional stability is no longer guaranteed if utility transfers are allowed.

2 Safety Level Cooperative Games

Let Γ =
(
N, (Si)i∈N , (Ui)i∈N

)
be a normal-form game, whereN is the agent set,

andSi andUi denote, respectively, strategy spaces and utility functions ofindividual
agents. We are interested in scenarios where it makes sense to the agents to form coali-
tions and coordinate their actions to optimize theircollectivegains and take asafety
levelapproach to analyzing gains of a coalition. We assume that the coalition members
attempt to maximize the minimal utility they would get under any strategy choices of
the non-members. We model coordination in the underlying normal-form game as a
coalitional game, where coalitional values are determined by the safety-level payoffs of
each coalition. We first extend the notion of a safety level to coalitional payoffs.

For coalitionC ⊆ N and strategy profiles = (si)i∈N, let UC(s) =
∑

i∈C Ui(s)
be the total utilityC achieves unders. The coalition’s utility depends not only on the
strategies chosen by its members, but also on the choices of the non-members. Let
B = N \C denote the set of non-members. A profiles can be written ass = (sB , sC),



wheresC = (si)i∈C andsB = (sj)j∈B are partial strategy profiles. Given the non-
members’ strategysB , the coalition could optimize for the total value it can achieve,
by choosings∗C ∈ arg maxsC∈SC

UC(sB , sC), whereSC = ×i∈CSi is the set of
coalitional strategies ofC. This choice maximizesC ’s utility for a specificstrategy
profile ofB. What should coalitionC do without knowing how the non-members would
behave? Staying on the “safe” side,C can optimize the utility guaranteed to it, no
matters what the outsiders do, by maximizing itssafety level, the worst case utility
the coalition obtains under all possible actions of the non-members. The safety level
of C when it choosessC is: USL

C (sC) = minsB∈SB
UC(sB , sC), and thesafety level

strategyof a coalitionC is the coalitional strategys∗C ∈ SC that maximizes the safety
level:

s∗C ∈ arg max
sC∈SC

USL
C (sC) = arg max

sC∈SC

(
min

sB∈SB

UC(sB , sC)

)
Thesafety level valueof C is its minimal utility when using its safety level strategy:

U∗
C = min

sB∈SB

UC(sB , s∗C) = max
sC∈SC

(
min

sB∈SB

UC(sB , sC)

)
A coalition’s safety level value is the utility it can guaranteeas a wholewhen its

members cooperate. A key challenge is determining how the members would share this
value. To answer this, we define asafety level cooperative game(SLC-game) forΓ :

Definition 1 (Safety Level Cooperative Game).Given a (normal-form) gameΓ =(
N, (Si)i∈N , (Ui)i∈N

)
with agent setN, strategy spaceSi and utility functionUi for

eachi ∈ N, the inducedsafety level cooperative game (SLC-game)is a cooperative
game over the same setN of agents, where the characteristic function is the safety level
value of coalitions inΓ : for eachC ⊆ N, v(C) = U∗

C .

We writeSLCΓ to indicate that an SLC-game is induced by a gameΓ . Regardless of
their underlying gamesΓ , all SLC-games have the following property:

Lemma 1. TheSLC-games are monotonically increasing.

Proof. We need to show that for anyC ′, C such thatC ′ ⊆ C we havev(C ′) ≤ v(C).
Intuitively, asC includes more agents thanC ′ and the agents inD = C\C ′ are coalition
members forC and outsiders forC ′, so they “help” the members ofC and “punish” the
members ofC ′. Hence, the safety level value of a larger coalition is greater then that of
a smaller one. Formally, denoteB = N \ C, soN \ C ′ = B ∪D. We have:

v(C′) = U∗
C′ = max

sC′∈SC′

(
min

sB∪D∈SB∪D

UC′(sB∪D, sC′)

)
≤ max

sC′∈SC′

(
min

sB∈SB

UC′(sB , sD, sC′)

)

≤ max
sC′∈SC′

(
min

sB∈SB

UC(sB , sD, sC′)

)
≤ max

sC∈SC

(
min

sB∈SB

UC(sB , sC)

)
= U∗

C′ = v(C)

2.1 Safety Level Coalitions in Congestion Games

We analyze safety level coalitions in congestion games and resource selection games.
We make a distinction between symmetric settings where agents derive strategies from
a common space, and asymmetric settings where each agent has its own collection



of strategies. While in the non-cooperative context both symmetric and asymmetric
models are anonymous, asymmetric models lose anonymity under monetary transfers.
We show anonymous and non-anonymous SLC-games differ computationally.

Consider a congestion game with agentsN and resourcesR with resource utility
functionsur(·) for r ∈ R, and a coalitionC ⊆ N. For any strategy profiles =
(si)i∈N, the congestion on each resource ish(s) = (hr(s))r∈R, and we can compute
the utility Ui(s) for each agenti. C ’s total utility unders is UC(s) =

∑
i∈C Ui(s) =∑

i∈C

∑
r∈si

ur (hr(s)). Denote the number ofC ’s members who use a resourcer at a
strategy profiles ashC

r (s) = |{i ∈ C|r ∈ si}|. We can write:UC(s) =
∑

r∈R hC
r (s) ·

ur (hr(s)). The coalitional value ofC in the corresponding SLC-game is:

v(C) = U∗
C = max

sC∈SC

(
min

sB∈SB

∑
r∈R

hC
r (s) · ur (hr(s))

)

Recall our notation of (S)CG and (S)RSG for (symmetric) congestion and resource
selection games. Note thatSRSGs ⊆ RSGs ⊆ CGs andSRSGs ⊆ SCGs ⊆ CGs.
Similar inclusions hold for the corresponding safety level game classes.

2.2 Anonymous cooperative games

We consider the properties of SLC-games induced by symmetric congestion games,
where all agents use a common set of strategies. We start with Lemma 2 showing that
these games satisfyanonymity. We say a cooperative game isanonymousif any two
agents are equivalent—i.e., for every two agentsi 6= j and any coalitionC such that
i /∈ C andj /∈ C we havev(C ∪ {i}) = v(C ∪ {j}).

Lemma 2. All SLCSCG-games are anonymous.

Proof. Consider a coalitionC that contains neitheri norj. Since bothi andj have iden-
tical strategy spaces, we get the same sets formin andmax operators when computing
coalitional safety level values ofC ∪ {i} andC ∪ {j}.

In anonymous games the Shapley value can be found in polynomial time and is in the
core when it’s not empty (proofs omitted for lack of space).

Lemma 3 (Core of Anonymous Games).Let v be an anonymous cooperative game
overN agentsN, with a non-empty core. Denoteq = v(N)

N . Then the symmetric payoff
distribution(q, q, . . . , q) is an imputation in the core.

Lemma 4 (Shapley Value of Anonymous Games).Let v be an anonymous coopera-
tive game overN agentsN. Denoteq = v(N)

N . Then the Shapley value is the symmetric
payoff distribution(q, q, . . . , q). If the core exists, then the Shapley value is in the core.

Lemmas 3 and 4 require the non-emptiness of the core. Some safety level games have
empty cores (see Examples 1 and 2 below). Empty cores can occur even among the
restricted class of SLC-games induced by symmetric, monotone resource selection
games, which always possess strong equilibria, highlighting the difference between the
cooperative safety level cooperative game’s core and strong equilibrium.



In an anonymous game all agents are equivalent so the value of a coalition only
depends on thenumberof agents in the coalition and not their identities. Thus, we can
write the characteristic functionv as a function mapping the size of a coalition to its
value, sov : {0, 1, . . . , N} → R. We use the standard convention thatv(0) = 0.

Example 1 (there areSLCCG-games with non-empty core).Consider aSLCSRSG-
game withN agents andR resources withidentical, constantresource utility functions
ur(k) = x ∈ R for anyr ∈ R, k = 1, . . . , N . This game has a non-empty core.

Proof. Note that the value of any coalition in this domain, no matter what the non-
members do, only depends on the size of the coalition, sov(k) = xk. Thus, the simple
payoff vectorp = (x, . . . , x) is in the core, since given any coalitionC of size|C| we
havep(C) = x|C| = v(C), and all the core conditions hold.

Example 2 (SLCSRSG-games may have empty core).Consider anSLCSRSG-game
with N = 3 agents and two resources{a, b} with identical resource utility functions
ur(1) = 2;ur(2) = ur(3) = 1 for r = a, b. The core of this game is empty.

Proof. We havev(0) = 0. Now computev(1), the safety level of asingleagent (out
of 3 agents). No matter which resource,a or b, the agent chooses, the worst case out-
come is when the other2 agents also choose the same resource, giving the agent a
utility of ur(3) = 1; thus, we havev(1) = 1. Now consider the safety level of2
agents. They can either choose to both use the same resource, or to each use a different
resource. If they both are on the same resource, the worst case action of the remain-
ing agent is to also join that resource, and the utility of the coalition is2ur(3) = 2.
If the collaborators choose different resources, any choice of the remaining agent re-
sults in having2 agents (one member and one non-member of the coalition) on one
resource and a single coalition member on the other resource, resulting in a utility
of ur(2) + ur(1) = 2 + 1 = 3 for the coalition. Thus, the safety level of any pair
of agents isv(2) = 3. A coalition of 3 agents is the grand coalition, whose best
choice is to assign2 agents on one resource, and1 agent on the other resource, and
so v(3) = ur(1) + 2ur(2) = 2 + 2 = 4. Thus, the characteristic function of this
SLC-game is given byv(0) = 0, v(1) = 1, v(2) = 3, v(3) = 4. Due to Lemma 3, if
the game has a non-empty core, the imputationp = ( 4

3 , 4
3 , 4

3 ) should be in the core.
However, under this imputation the payoff for any two agents is less than the value of a
coalition of the pair: i.e.,p({1, 2}) = 8

3 , butv({1, 2}) = v(2) = 3 > 8
3 = p({1, 2}),

which violates the core constraints. Hence, the core is empty.

Moreover, restricting or expanding the sets of the agents’ allowed strategies may cause
the core to change from being empty to being non-empty and vice versa:

Example 3 (Strategy Sets and the Core).Consider the game with3 agents and2 re-
sources{a, b} from the previous example, where the resource utility function is given
by ur(1) = 2;ur(2) = ur(3) = 1 for r = a, b. The core of this game is empty. Now
add a third resourcec with a constant utility ofuc(k) = 10 for k = 1, 2, 3, and expand
each agent’s strategy set to allow selecting{c}. The resulting game is anonymous, with
characteristic functionv(1) = 10, v(2) = 20, v(3) = 30, and its core is not empty: the
imputationp = (10, 10, 10) is in the core. On the other hand, if we take this new game,



and restrict each agent’s strategy set to allow selecting only{a} or {b}, we obtain the
original game with an empty core. Thus, extending strategy sets makes the core non-
empty, and restricting them may empty it. Now, consider the game with3 resources
{a, b, c}, where againur(1) = 2;ur(2) = ur(3) = 1 for r = a, b, butuc(k) = 0.1 for
k = 1, 2, 3. If the agents are restricted to choosing onlyc, i.e.S1 = S2 = S3 = {{c}},
we have an anonymous game wherev(1) = 0.1, v(2) = 0.2, v(3) = 0.3 which has a
non-empty core asp = (0.1, 0.1, 0.1) belongs to it. If we extend the strategy sets to
also includea andb, so thatS1 = S2 = S3 = {{a}, {b}, {c}}, we get the game where
v(1) = 1, v(2) = 3, v(3) = 3, whose core is empty. Thus, extending strategy sets may
make the core empty, and shrinking them makes it non-empty.

Remark 2.Based on the above examples, one can see that the non-cooperative and co-
operative concepts of coalitional stability are rather different. While strong Nash equi-
libria always exist for (monotone) resource selection games, the core of their corre-
sponding SLC-games may be empty. The reason for that is the following: while for any
coalition there could be no deviation guaranteeing a better payoff to any of the devi-
ators, there might exist a coalition that can improve its total welfare—that is, even if
some agents may obtain worse individual utilities after the deviation, this loss will be
covered by the gains their co-deviators get.

In light of the above observations, testing the (non-)emptiness of the core in safety level
cooperative games is an important issue. It follows from the next Theorem 1 regarding
anonymous cooperative games, that forSLCSCG-games this can be done efficiently
if the computation of coalitional values is easy; moreover, in this case, the construc-
tion of a core imputation and verification if a given imputation is in the core are also
computationally efficient:

Theorem 1 (Core Computation in Anonymous Games).In anonymous cooperative
games, if computing the value of any coalition can be performed in polynomial time,
then the following problems are inP : testing for core emptiness, constructing a core
imputation (if one exists) and testing if an imputationp is in the core.

Proof. In anonymous games the characteristic function is given asv : {0, 1, . . . , N} →
R—the function that maps the size of a coalition to its value. This representation is sim-
ply a table, containingN numbers: therefore, if computing the value of each coalition
can be performed in polynomial time, then finding the characteristic function is also so.

To fulfill the core constraints, the following must hold for an imputationp:
∑N

i=1 pi =
v(N) = v(N), and∀C, p(C) ≥ v(C). Consider testing whether an imputationp

satisfies this. It is easy to check if
∑N

i=1 pi = v(N) = v(N). However, testing the
condition∀C, p(C) ≥ v(C) seemingly requires2N similar tests. Order the agents ac-
cording to their payment, so thatpi1 ≤ pi2 ≤ . . . ≤ piN

. Denote byCk the coali-
tion C = {i1, i2, . . . , ik}. Note that if the core constraintp(C) ≥ v(C) holds for
Ck = {i1, i2, . . . , ik}, it must also hold for any coalition of sizek, asCk is the min-
imally paid coalition of sizek. Thus, to test ifp is a core imputation, it is enough to
test whetherp(Ck) ≥ v(Ck) for k ∈ {1, 2, . . . , N}. If the core constrains hold for
all C1, . . . , CN , they hold for any coalitionC, and if they do not, we have a violated
constraint. Since there are onlyN such checks, this can be done in polynomial time.



Now consider testing for core-emptiness and constructing a core imputation. Due to
Lemma 3, if the core is non-empty, the symmetric imputation(q, q, . . . , q) whereq =
v(N)

N must be in the core. Sinceq can be computed in polynomial time, this imputation
can also be computed in polynomial time. We can then test whether it is in the core. If
it is in the core, we have a core imputation, otherwise the core is empty.

The computation of coalition values in SLC-games, can be difficult as the safety level
strategies of the agents are not even robust to small changes of game parameters. For
instance, we show that even changing only the total number of agents can result in very
different safety level strategies, even in simple anonymous settings.

Example 4 (Number of Agents and Safety Level Strategies).Consider anSLCSRSG-
game with two resources{a, b} with resource utility functions given byua(k) = ε for
k = 1, . . . , 5 an a small positiveε, andub(k) = 1 ∀k = 1, . . . , 4, ub(5) = 0. Assume
there areN = 4 agents playing the game and compute the value of a coalitionC of
3 agents (out of4). Sinceub(·) is constant up to congestion of4, any agent inC who
chosesb is guaranteed a utility of1 on that resource. On the other hand, any agent in
C who choosesa only gets a utility ofε on that resource. Thusv(3) = 3 · 1 = 3,
and the safety level strategy ofC is to have all its agents choosing the resourceb.
Now, consider the same resources and resource utility functions when there areN = 5
agents, and consider again a coalitionC of 3 agents. IfC places all agents inb, a
possible strategy for the remaining2 agents is to both joinb, resulting in a total utility of
3ub(5) = 3 ·0 = 0 for the coalition. Alternatively, the coalition can have2 agents using
a and1 agent usingb. For this strategy inSC , any strategy inSN\C of the remaining
2 agents results in all agents ona getting a utility of ε and all those onb getting1,
resulting in a total coalitional utility of1 · ε + 2 · 1 = 2 + ε. This is the safety level
strategy for the coalitionC, sov(3) = 2 + ε.

However forSLCSRSG-games we can compute a coalition’s value in polynomial time:

Theorem 2. For SLCSRSG-games, computing safety level strategies is inP .

Proof. We provide a dynamic programming algorithm. Given anSLCSRSG-game with
R resources, for anyk = 1, . . . , R let vk denote thek-subgame, played on the firstk
resources: that is,vk is the restriction of the original game where the agents are only
allowed to select one of the firstk resources—i.e., for eachi ∈ N we haveSi =
{r1, r2, . . . , rk} ⊆ R. Note thatvk is also anSLCSRSG-game. We denote byvi,j,k the
value of a coalition ofi agents in thek-subgame withi+ j agents: to computevi,j,k we
must find a safety level strategy for a coalition ofi agents when there are additionalj
non-members, and the agents are only allowed to select one of the firstk resources. We
prove that the following recursive formula holds:

vi,j,k = max
p∈{1,2,...,i}

(
min

q∈{1,2,...,j}
(vi−p,j−q,k−1 + p · uk(p + q))

)
Consider a coalitionC of i agents who use the safety level strategy in the(k − 1)-

subgame with additionalj agents. The coalition assignscx agents to use resourcex
(wherex ≤ k− 1), so that

∑k−1
j=1 cx = i. The worst case response of the non-members

in this subgame is assigningbx resources to use resourcex, (wherex ≤ k − 1), so that



∑k−1
j=1 bx = j. We can describe a strategy forC in thek-subgame in terms ofmoving

somep agents from the firstk − 1 resources and assigning them to the resourcek. Any
strategy forC in thek-subgame can be described as havingp ≤ i coalition members
using resourcek, and a partition of thei−p remaining agents to the firstk−1 resources
(which is a strategy for a coalitionC ′ of i− p agents in thek − 1-subgame), for some
choice ofp ≤ i. Each such a partial strategy profilesC implies a response from the non-
membersN \ C which similarly can be described as a choice ofq ≤ j non-members
using resourcek and a partition of thej − q remaining non-members to the firstk − 1
resources (which corresponds to a strategy profile of a non-member agent setB′ of
j − q agents in thek− 1-subgame). The safety level strategy for a coalitionC in thek-
subgame is therefore a composition of the safely level strategy for a coalition of|C|−p
in thek − 1-subgame andp agents using resourcek for somep ≤ |C|.

By Theorems 1 and 2, forSLCSRSG-games we can efficiently test core non-emptiness,
construct a core imputation or check if an imputation is in the core. These results do not
extend to allSLC(S)CG-games. When agents are allowed multiple-resource strategies
(even if derived from a common set), computing coalitional values is hard.

Theorem 3. Computing the value of a coalition inSLCSCG-games is NP-hard.

Proof. We reduce from Exact-Cover-By-3-Sets (X3C). Consider an X3C instance, with
a setS = {1, 2, . . . , 3m} of 3m elements, and tripletsS1, . . . , Sn whereSi ⊂ S and
|Si| = 3. We are asked whether there is an exact cover ofS that uses exactlym (disjoint)
triplets. We construct anSLCSCG-game, where each elementr ∈ S corresponds to
a resourcer (that is,S corresponds toR), where each resourcer’s utility function
satisfiesur(1) = 1; ur(k) = 0 for k ≥ 2. TheSLCSCG-game hasN = m agents,
and an agent is allowed to choose any resource triplet,Sj , from the given collection of
triplets—that is, the strategy space of any agenti is given bySi = {S1, . . . , Sn}. This
is an anonymous game. Letv(N) be the value of the grand coalition. We show that if
the X3C is a “yes” instance,v(N) = 3m and if it is a “no” instance thenv(N) < 3m.
Suppose the X3C is a “yes” instance, and letSi1 , Si2 , . . . , Sim

be the triplets in the
exact cover. Let agentx choose the resources inSx (for x ∈ {1, . . . ,m}). SinceS is an
exact cover, each resourcer is selected exactly once, sov(N) = 3m. On the other hand,
if the X3C is a “no” instance, any choice ofm (or more) tripletsSi1 , . . . , Sim results in
choosing at least one of the resources,r, more than once. Thus, the congestion on this
resource results in a utility of 0 for all agents using it, sov(N) < 3m.

2.3 Non-anonymous settings

We now turn to consider general, asymmetric settings where agents may have differ-
ent strategy spaces. First, we observe that though these settings are anonymous in the
original—non-cooperative—context, their corresponding SLC-games are not such:

Lemma 5. TheSLCCG-games are, in general, non-anonymous.

Proof. To see this, consider a single agenti that has an exclusive right to use a special
resource rewarding its user with a very high utility,H. Any coalitionC that includesi
guarantees itself a utility of at leastH, regardless of what the rest of agents do, while
anyC \ {i} ∪ {j}, j ∈ N \ C, cannot achieve this value.



Next, we show that losing anonymity results in high complexity of computing safety
level values even for “degenerate” coalitions consisting of only a single agent:

Theorem 4. Computing values of singleton coalitions inSLCCG-games is coNP-hard.

Proof. We reduce from dominating-set (DS). In DS, we are given a graphG = 〈V,E〉,
and have to decide if there is a dominating vertex set of size at mostK. In a dominating
vertex setV ′ ⊂ V for every v ∈ V either v ∈ V ′ or (u, v) ∈ E for someu ∈
V ′. Denote|V | = m. We create anSLCCG-game instance as follows: The resources
correspond to the verticesV , and we add a resource,r∗ (so,R = m+1). The congestion
function for resourcesr ∈ V is given byur(1) = H whereH > 3m is a very high
value;ur(k) = 0 for k ≥ 2, and for the “special” resource we haveur∗(k) = 2m−k+1
for k = 1, . . . ,m + 1; ur∗(k) = 0 for k ≥ m + 2. For any vertex resourcer ∈ V we
define an agentav, who can choose any single resource which is a neighbour ofv or
resourcer∗, soSav

= {{u} |u ∈ V, (u, v) ∈ E} ∪ {{r∗}}. There is also additional
agent,a∗, whose only strategy is to select all the resources, soSa∗ = {R = {v | v ∈
V }∪{r∗}}. Sincea∗ must use its only strategy, the value it obtains depends only on the
choices of the other agents. If in a strategy profiles, a∗ there exists a vertex resourcer
so thata∗ is its only user, thena∗ obtains a value of at leastH from s. Thus, to minimize
a∗’s utility, each of the vertex resources must be used by some other agent. If there is no
dominating set of sizeK, this requires more thanK other agents, so at mostm−K−1
other agents can user∗ in such a profile, sov({a∗}) ≥ 2m−(m−K−1) = m+K+1.
If there is aK dominating set, theK outsiders can choose this dominating set, soa∗

obtains a utility of0 from the vertex resources, and havingm − K outsiders onr∗

results on the utility of2m− (m−K) = m+K for a∗ from r∗, sov({a∗}) = m+K.
Thus,v({a∗}) > m + K iff the DS instance is a “no” instance.

In non-anonymous settings even equal size coalitions may have different values. While
by Theorems 3 and 4 computing coalition values is hard, one may seek themaximal
value of coalitions of size (at most)k, where1 ≤ k ≤ N . We show this is also hard.

Theorem 5. Finding the value of the grand coalition inSLCCG-games is NP-hard.

Proof. We reduce from MAX-SAT, where given a Boolean formula we are asked to
find the maximum number of clauses that can be satisfied by any assignment. Given a
MAX-SAT instance, we construct aSLCCG-game. There is a resource for each clause,
and an agent for each variable. An agent for variablex can either choose all clauses
satisfied byx or all clauses satisfied by¬x (thus choosing an assignment for variable
x). The resource utility function isur(k) = 1

k , k = 1, . . . , N , for each resourcer.
Thus, ifk agents choose a clause, each of them gets the utility of1

k from the clause, and
all of them together get the total utility of1 from that clause. Thereby, given a strategy
profile, its value to the grand coalition is exactly the number of satisfied clauses.

3 Conclusions

We defined a safety level cooperative game induced by a normal form game, and ex-
amined this concept on the class of congestion games. A number of questions remain



open for future research. First, other solution concepts should be investigated in the
context of safety level cooperative games. Second, the application domain should be
extended to non-congestion scenarios, such as auctions. Finally, an important task is
finding tractable game classes, where the our hardness results do not hold. We intend to
examine games where computing Nash equilibria can be done in polynomial time, such
as matroid congestion games [1] and congestion-averse games [6, 19].
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