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Abstract. We studysafety level coalitionin competitive games. Given a nor-

mal form game, we define a correspondiow@pperativegame with transferable
utility, where the value of each coalition is determined by the safety level payoff
it derives in the original-ron-cooperative-game. We thus capture several key
features of agents’ behavior: (i) the possible monetary transfer among the coali-
tion members; (ii) the solidarity of the outsiders against the collaborators; (iii) the
need for the coalition to optimize its actions against the worst possible behavior
of those outside the coalition. We examine the concept of safety level coopera-
tion in congestion gameand focus on computing the value of coalitions, the core
and the Shapley value in the resulting safety level cooperative games. We provide
tractable algorithms foanonymousooperative games and for safety level co-
operative games that correspondsionmetriccongestion games with singleton
strategies. However, we show hardness of several problems such as computing
values in games with multi-resource strategies or asymmetric strategy spaces.

1 Introduction

Game theory analyzes interactions of selfish rational agents. An agent may not follow
a “prescribed” behavior if deviating from it improves its utility, stable outcomes

are central in game theory. on-cooperativgames, where agents take individual ac-
tions, the prominent stability concept is tNash equilibriura—a strategy profile where

no agent has a beneficial unilateral deviation. However, it does not take into account
collective deviations by groups of agents; ™teong equilibrium[2]—a strategy pro-

file with no profitable agent subset deviations—extends Nash equilibrium to coalitions.
Cooperativegames consider how coalitions of agents cooperate, focusing on how the
utility is distributed among the agents. In a non-cooperative game, agents act indepen-
dently based on their individual interests. In many scenarios traditionally modeled as
non-cooperative games (e.g., auctions, network and congestion games), a coalition can
jointly decide on a collective action and make monetary transfestsaiethe gains. This
requires applying tools from cooperative game theory to such domains. Hayrapetyan et
al [10] modeled coalitions irongestion gamedn a congestion game [15], a set of
agents shares a set of resources, and an agent’s strategy is to choose a subset of re-
sources to use to minimize the sum of congestion-dependent costs over its selected
resources. In [10], the authors assume that agents may collude to maximize their col-
lective welfare. Their model allows monetary transfers but uses a different perspective
than cooperative game theory, focusing on the negative effect of collusion on the social



welfare. Other papers examine coalition formation in multi-unit auctions [3], assuming
non-colluders bidruthfully or fostering cooperation througdxternal subsidiept, 14].

In contrast, we studgafety levekoalitions in competitive games. As opposed to
standard cooperative games, the utility of a coalition depends not only on the action
the members take, but also on the actions taken by the non-members. In the worst case,
the outsiders may “punish” the coalition members and take actions that minimize the
collaborators’ utility. A coalition then may decide to maximize its total) utility under the
worst case action of the non-members—we call thjmirat safety levebtrategy. In our
model the collaborators are “good” to each other by coordinating actions and sharing
gains and the non-collaborators are “bad” adversaries who reduce the collaborators’
utility. If the collaborators adopt this view of non-collaborators as adversaries, they must
be “cautious” and prepare for the worst-case choice of the non-collaborators, using their
joint safety level strategy. To do this, they can agree on monetary transfers through an
enforceable contract for distributing the gains. Solution concepts such as the core [9]
and the Shapley value [18] can be used to predict what transfers would occur. Several
works [7, 8, 21, 5] consider computing the core and Shapley value in various domains.

We examine safety level cooperation in congestion games. These games where self-
ish agents choose from a common set of resources and derive individual utilities that
depend on the total congestion on each resource, are fundamental to many applica-
tions [13, 15, 16]. Such games have Nash equilibria in pure strategies [15], and some
restricted classes have strong equilibria in pure strategies [11, 17]. Recent work focuses
on specific subclasses that are computationally tractable [1, 12]. One subclass which we
also examine isesource selection gameshere each agent choosesigleresource.

We distinguish betweesymmetricsettings where agents choose strategies from a
common space, arasymmetriones where each agent has its own collection of strate-
gies. While in the non-cooperative context, both symmetric and asymmetric models are
anonymous, asymmetric models lose anonymity when monetary transfers are allowed.
For anonymous settings, we show that testing core emptiness, constructing a core im-
putation and testing whether an imputation is in the core aféwhen the computation
of the coalitional values in the game is ity we also show that the Shapley value is in
the core if it is not empty, and can be computed in polynomial time. These results hold
for all anonymous cooperative gamesnot only those based on safety level coalitions.

For congestion games, we show that computing a coalition’s valuefisfor single-
ton strategies and NP-hard for multiple-resource strategies, while for non-anonymous
settings computing the value of even a singleton or the grand coalition are NP-hard.

1.1 Preliminaries

A non-cooperative game in normal folimgiven by an agent s& = {1,..., N}, and
for each agent € N, a strategy spac$; of its pure strategies and a payoff function
U; : X;enS; — R specifying the reward an agent gets. DenoteShy the set of
partial strategy profiles of a subset of age@itsC N, and byS_¢ = S\ ¢ the set

! Not to be confused with thanonymity-proofsolutions [20] which are robust under “false
name” manipulations. We refer to games where the characteristic function is not “sensitive” to
the agents’ identities so equal size coalitions get equal values.



of strategy combinations of all the agents outsi¢efor a single agent € N, denote
S_i = Sw\{i}- A strategy profiles € S is aNash equilibriumif for each agent € N
and for each its strategy, € S; the following holds:U;(s) > U;(s_;, s;). A strategy
profile is astrong Nash equilibriunif it is stable against deviations by coalitions: for
anyC C N andsg, € S¢, there exists € C such that;(s) > U;(s—,, s;). Thesafety
level strategyfor agenti € N, s7L, is the strategy maximizing itguaranteedutility,
no matter what the other agents play’ € arg max,,cs, ming_,es_, U;(s4,5_;)-

Some utility functions ignore the identities of the agents, and only take into ac-
countthe number of timesach strategy is played. Settings where identities are irrel-
evant areanonymous Given a set of strategie$ = {1,...,S5}, a strategys € S

and an agent € N, the utility of 7 playing s in an anonymous maps the set of par-
titions {(xl, ooxs) |z e{l,.. .,N},Zf:1 xz; = N —1; to real numbers. A re-
lated important subclass symmetric gamesvhere the payoffs for playing a particular

strategy are the same for different agents and depend only on the other strategies em-
ployed, so one can change the identities of the agents without changing the payoffs

to the strategies. A game with strategy spa8es= ... = Sy = S is symmetric if
for any permutationr over N and agent € N, we haveU; (s1,...,S8i,...,8n) =
Uﬂ.(i) (8.”(1), cees Su(i)s e SW(N)>, Wheresj = Sx(j) fij =1,...,N.

A transferable utility cooperative gantas a seN of N agents, and a characteristic
functionv : 2N — R mapping any subset (coalition) of agents to a real value, indicating
the total utility these agents achieve together. We denote all agents éxasNt ;, =
N\ {¢}. A coalitional game isnonotonef v(C") < v(C) foranyC’ C C.

The characteristic function only indicates the total gains a coalition can achieve, but
does not specify how these gains are distributed among the agents who formed it. An
imputation(py, ..., pn) defines a division of the gains of the grand coalition among its
agents, wherg; € R, such thatzij\;1 p; = v(N). We callp; the payoff of agent, and
denote the payoff of a coalitioff asp(C) = >, p:. A basic requirement for a good
imputation isindividual rationality: for any agent € N, p; > v({i}) (otherwise, this
agent is incentivized to work alone). Similarly, we say a coalitibblocksimputation
(p1,-..,pN) If p(B) < v(B). If a blocked payoff vector is chosen, the coalition is
somewhat unstable. The most prominent solution concept based orstsidlity is
the core [9]. Thecoreis the set of all imputationépy, ...,px) not blocked by any
coalition, so that for any coalitio6’ C N holdsp(C) > v(C).

Another solution concept is the Shapley value [18] which focusefanessit
fulfills several important fairness axioms [18] and has been used to fairly share gains
or costs. It depends on the agent’s marginal contribution to possible coalition permu-
tations. We denote by a permutation (ordering) of the agents, and lythe set

of all possible such permutations. Given a permutatios= (iq,...,iy) € II, the
marginal worth vectarm™(v) € RY, is defined byn] = v ({i1}) andm] (v) =
v ({i1,12,...,ik})—v ({i1,12,...,ik—1}) for k > 1. The convex hull of all the marginal

vectors is called th®Veber Setand contains the game’s core. TBeapley valués the
centroid of the marginal vectorg{v) = + > ., m™ (v).

We analyze the core and the Shapley value of cooperative games that arise when
considering safety-level coalitions in a given non-cooperative setting, and demonstrate
this approach on congestion games. looagestion gaméCG) [15], every agent has



to choose from a finite set of resources. The utility of an agent from using a particular
resource depends on the number of agents using it, and its total utility is the sum of
utilities on its used resources. Formally, a congestion game (N, R, (u,(-)), cr)

is described by the following components: aBet= {1,..., N} of agents; a sk =
{r1,...,rr} of resources; an assignment : {1,...,N} — R, r € R, of resource
utility functions, where for any resoureec R, u..(k) is the resource utility (cost) for

when the total number of userssois k. Each agentis allowed to choose a (non-empty)
bundle of resourceB C 2R, from a certain sef; = {Bi, ..., B } of allowed bundles
(where each;i C R). We denote by; € S, the strategy (set of resources) chosen by
agent:. Every N-tuple of strategies—atrategy profile—s = (s;);en corresponds to

an R-dimensional congestion vecté(s) = (h.(s)), g Whereh,(s) is the number

of agents who select resouregwe simply writeh,. when it's clear what profile we
refer to). The utility ofi from s is: U;(s) = >_ ., ur(h:(s)). A congestion game is
aresource selectiogame (RSG) if the strategy space of every agent corresponds to a
set of singletons. That is, agenthooses a single resource from the given set, and its
payoff from a strategy profile = (s;);en iS given byU,;(s) = us, (hs,(s)).

Remark 1.In a congestion game an agent’s utility only depends on the numbers of
agents choosing each resource but not on their identities, so congestion games are
anonymous. Since the utility from each resource is the same for each of its users, the
utility any agent gets from a particular strategy depends only on the other strategies
selected, but not on who has chosen them. Thus a congestion game is symmetric if (and
only if) all agents in the game have identical strategy spaces. We refer to symmetric
congestion and resource selection games as SCGs and SRSGs, respectively.

Congestion games always have a pure strategy Nash equilibrium [15]. Resource selec-
tion games with monotone utility functions also admit strong equilibria [11]. In fact, in
RSGs with decreasing utilities, any Nash equilibrium is strong. However, we show that
coalitional stability is no longer guaranteed if utility transfers are allowed.

2 Safety Level Cooperative Games

Let I' = (N, (Si);en » (Us);en) be a normal-form game, whei¥ is the agent set,
andS; andU,; denote, respectively, strategy spaces and utility functiorisdifidual
agents. We are interested in scenarios where it makes sense to the agents to form coali-
tions and coordinate their actions to optimize traotlectivegains and take aafety
levelapproach to analyzing gains of a coalition. We assume that the coalition members
attempt to maximize the minimal utility they would get under any strategy choices of
the non-members. We model coordination in the underlying normal-form game as a
coalitional game, where coalitional values are determined by the safety-level payoffs of
each coalition. We first extend the notion of a safety level to coalitional payoffs.

For coalitionC' C N and strategy profile = (s;)ien, letUc(s) = > .. Ui(s)
be the total utilityC' achieves undes. The coalition’s utility depends not only on the
strategies chosen by its members, but also on the choices of the non-members. Let
B = N\ C denote the set of non-members. A profilean be written as = (s, s¢),



wheresc = (s;),cc andsp = (s;);cp are partial strategy profiles. Given the non-
members’ strategy s, the coalition could optimize for the total value it can achieve,
by choosings}, € argmax,.cs, Uc(sr, sc), whereSc = x;ccS; is the set of
coalitional strategies of’. This choice maximize€’’s utility for a specificstrategy
profile of B. What should coalitiod' do without knowing how the non-members would
behave? Staying on the “safe” sid€, can optimize the utility guaranteed to it, no
matters what the outsiders do, by maximizing sefety levelthe worst case utility
the coalition obtains under all possible actions of the non-members. The safety level
of C when it choosesc is: USL (s¢) = ming,es, Uc(sp, sc), and thesafety level
strategyof a coalitionC'is the coalitional strategy;, € Sc that maximizes the safety
level:

SL .
s¢ € arg max UZ”(sc) =arg max | min Uc(sg,sc)
sc€Sc scE€Sc \sBESE

Thesafety level valuef C is its minimal utility when using its safety level strategy:

v = pig, Uelons ) = mag (_mip, Ue(em, o)
A coalition’s safety level value is the utility it can guarantee a wholewhen its
members cooperate. A key challenge is determining how the members would share this
value. To answer this, we definesafety level cooperative gani®LC-game) forl™:

Definition 1 (Safety Level Cooperative Game)Given a (normal-form) gamé’ =

(N, (Si)ien s (Ui)ieN) with agent selN, strategy spac&; and utility functionU; for
eachi € N, the inducedsafety level cooperative game (SLC-gansep cooperative
game over the same §tof agents, where the characteristic function is the safety level
value of coalitions inf™: for eachC C N, v(C) = U¢.

We write SLCT to indicate that an SLC-game is induced by a gdm&egardless of
their underlying game#§’, all SLC-games have the following property:

Lemma 1. TheSLC-games are monotonically increasing.

Proof. We need to show that for any’, C such thatC’ C C we havev(C’) < v(C).
Intuitively, asC includes more agents th& and the agents ib = C\C’ are coalition
members foC' and outsiders fof€”, so they “help” the members ¢f and “punish” the
members of2’. Hence, the safety level value of a larger coalition is greater then that of
a smaller one. Formally, denoie= N \ C, soN \ ¢’ = BU D. We have:

v(C') = U&= max ( min Ucl(SBuD,Scl)) < max < min Uc/(SB7SD,Sc/))

scr€Sgr \SBUDESBUD Sgr€Scr \SBESB

< max ( min Uc(sB,sD,sc/)) < max ( min Uc(SB,Sc)) =U¢& =v(0)

" scr€Sor \SBESB sSc€Sc \sBESp

2.1 Safety Level Coalitions in Congestion Games

We analyze safety level coalitions in congestion games and resource selection games.
We make a distinction between symmetric settings where agents derive strategies from
a common space, and asymmetric settings where each agent has its own collection



of strategies. While in the non-cooperative context both symmetric and asymmetric

models are anonymous, asymmetric models lose anonymity under monetary transfers.

We show anonymous and non-anonymous SLC-games differ computationally.
Consider a congestion game with ageMsand resourceR with resource utility

functionsw,.(-) for » € R, and a coalitionC C N. For any strategy profile =

(si)ien, the congestion on each resourcé.(s) = (h,(s)), g, and we can compute

the utility U;(s) for each agent. C’s total utility unders is Uc(s) = > ;.o Ui(s) =

Yicc 2ores, Ur (he(s)). Denote the number @’'s members who use a resourcat a

strategy profiles ash(s) = |{i € C|r € s;}|. We can writeUc(s) = >, cg h<(s) -

u, (hr(s)). The coalitional value of in the corresponding SLC-game is:

v(C)=Us = Jmax <S£n€igB he (s) - u, (hr(s)))
reR

Recall our notation of (S)CG and (S)RSG for (symmetric) congestion and resource

selection games. Note th8RSGs C RSGs C CGs andSRSGs C SCGs C CGs.

Similar inclusions hold for the corresponding safety level game classes.

2.2 Anonymous cooperative games

We consider the properties of SLC-games induced by symmetric congestion games,
where all agents use a common set of strategies. We start with Lemma 2 showing that
these games satisBnonymity We say a cooperative gameasonymousf any two
agents are equivalent—i.e., for every two agengs j and any coalitiorC' such that

i ¢ C andj ¢ C we havev(C U {i}) =v(C U {j}).

Lemma 2. All SLCS“%-games are anonymous.

Proof. Consider a coalitiod' that contains neithemor j. Since both and; have iden-
tical strategy spaces, we get the same setmfarandmax operators when computing
coalitional safety level values &f U {i} andC U {;}.

In anonymous games the Shapley value can be found in polynomial time and is in the
core when it's not empty (proofs omitted for lack of space).

Lemma 3 (Core of Anonymous Games)Let v be an anonymous cooperative game
over N agentsN, with a non-empty core. Denoge= @ Then the symmetric payoff
distribution(q, g, . . ., ¢) is an imputation in the core.

Lemma 4 (Shapley Value of Anonymous Games).etv be an anonymous coopera-
tive game ovelV agentsN. Denoteg = @ Then the Shapley value is the symmetric
payoff distribution(q, ¢, . . . , ¢). If the core exists, then the Shapley value is in the core.

Lemmas 3 and 4 require the non-emptiness of the core. Some safety level games have
empty cores (see Examples 1 and 2 below). Empty cores can occur even among the
restricted class of SLC-games induced by symmetric, monotone resource selection
games, which always possess strong equilibria, highlighting the difference between the
cooperative safety level cooperative game’s core and strong equilibrium.



In an anonymous game all agents are equivalent so the value of a coalition only
depends on theumberof agents in the coalition and not their identities. Thus, we can
write the characteristic function as a function mapping the size of a coalition to its
value, s : {0,1,..., N} — R. We use the standard convention théi) = 0.

Example 1 (there ar§LC““-games with non-empty corefonsider aSLCSRSG-
game withN agents and? resources witlidentical constantesource utility functions
ur.(k) =z € Rforanyr € R,k =1,..., N. This game has a non-empty core.

Proof. Note that the value of any coalition in this domain, no matter what the non-
members do, only depends on the size of the coalitiom{8p= xk. Thus, the simple
payoff vectorp = (z,...,x) is in the core, since given any coalitichof size|C| we
havep(C) = z|C| = v(C), and all the core conditions hold.

Example 2 §LCS%5¢-games may have empty cor€onsider anSLCS%5¢-game
with N = 3 agents and two resourcés, b} with identical resource utility functions
ur(1) = 2;u,(2) = ur(3) = 1 for r = a,b. The core of this game is empty.

Proof. We havev(0) = 0. Now computev(1), the safety level of @ingleagent (out

of 3 agents). No matter which resoureeor b, the agent chooses, the worst case out-
come is when the othe} agents also choose the same resource, giving the agent a
utility of u,.(3) = 1; thus, we havey(1) = 1. Now consider the safety level of
agents. They can either choose to both use the same resource, or to each use a different
resource. If they both are on the same resource, the worst case action of the remain-
ing agent is to also join that resource, and the utility of the coalitioc®uig3) = 2.

If the collaborators choose different resources, any choice of the remaining agent re-
sults in having2 agents (one member and one non-member of the coalition) on one
resource and a single coalition member on the other resource, resulting in a utility
of u,(2) + u,(1) = 2+ 1 = 3 for the coalition. Thus, the safety level of any pair

of agents isv(2) = 3. A coalition of 3 agents is the grand coalition, whose best
choice is to assig agents on one resource, ahégent on the other resource, and
sov(3) = u,.(1) + 2u,.(2) = 2+ 2 = 4. Thus, the characteristic function of this
SLC-game is given by(0) = 0,v(1) = 1,v(2) = 3,v(3) = 4. Due to Lemma 3, if

the game has a non-empty core, the imputatior (3, 3, 3) should be in the core.
However, under this imputation the payoff for any two agents is less than the value of a
coalition of the pair: i.e.p({1,2}) = &, butv({1,2}) = v(2) = 3 > § = p({1,2}),

which violates the core constraints. Hence, the core is empty.

Moreover, restricting or expanding the sets of the agents’ allowed strategies may cause
the core to change from being empty to being non-empty and vice versa:

Example 3 (Strategy Sets and the Co@pnsider the game with agents an@ re-
sources{a, b} from the previous example, where the resource utility function is given
by u,(1) = 2;u,(2) = u,(3) = 1 for r = a,b. The core of this game is empty. Now
add a third resourcewith a constant utility ofu.(k) = 10 for k = 1,2, 3, and expand
each agent’s strategy set to allow selecfng. The resulting game is anonymous, with
characteristic functiom(1) = 10, v(2) = 20, v(3) = 30, and its core is not empty: the
imputationp = (10, 10, 10) is in the core. On the other hand, if we take this new game,



and restrict each agent’s strategy set to allow selecting pnjyor {b}, we obtain the
original game with an empty core. Thus, extending strategy sets makes the core non-
empty, and restricting them may empty it. Now, consider the game 3vigsources

{a, b, c}, where again,- (1) = 2;u,(2) = u,(3) = 1 forr = a,b, butu.(k) = 0.1 for

k =1,2,3. If the agents are restricted to choosing onlye.S; = S, = S5 = {{c}},

we have an anonymous game whe(é) = 0.1,v(2) = 0.2,v(3) = 0.3 which has a
non-empty core ap = (0.1,0.1,0.1) belongs to it. If we extend the strategy sets to
also includex andb, so thatS; = S, = S3 = {{a}, {b}, {c}}, we get the game where

v(1) = 1,v(2) = 3,v(3) = 3, whose core is empty. Thus, extending strategy sets may
make the core empty, and shrinking them makes it non-empty.

Remark 2.Based on the above examples, one can see that the non-cooperative and co-
operative concepts of coalitional stability are rather different. While strong Nash equi-
libria always exist for (monotone) resource selection games, the core of their corre-
sponding SLC-games may be empty. The reason for that is the following: while for any
coalition there could be no deviation guaranteeing a better payoff to any of the devi-
ators, there might exist a coalition that can improve its total welfare—that is, even if
some agents may obtain worse individual utilities after the deviation, this loss will be
covered by the gains their co-deviators get.

In light of the above observations, testing the (non-)emptiness of the core in safety level
cooperative games is an important issue. It follows from the next Theorem 1 regarding
anonymous cooperative games, that $drC"°““-games this can be done efficiently

if the computation of coalitional values is easy; moreover, in this case, the construc-
tion of a core imputation and verification if a given imputation is in the core are also
computationally efficient:

Theorem 1 (Core Computation in Anonymous Games)ln anonymous cooperative
games, if computing the value of any coalition can be performed in polynomial time,
then the following problems are iR: testing for core emptiness, constructing a core
imputation (if one exists) and testing if an imputatjois in the core.

Proof. In anonymous games the characteristic function is given:a®, 1,..., N} —
R—the function that maps the size of a coalition to its value. This representation is sim-
ply a table, containingv numbers: therefore, if computing the value of each coalition
can be performed in polynomial time, then finding the characteristic function is also so.
To fulfill the core constraints, the following must hold for an imputa@o[il D =
v(N) = u(N), andVC,p(C) > v(C). Consider testing whether an imputatipn
satisfies this. It is easy to checkjﬁﬁilpi = v(N) = v(NV). However, testing the
conditionVC, p(C) > v(C) seemingly requireg8” similar tests. Order the agents ac-
cording to their payment, so that, < p,, < ... < p,,. Denote byC}, the coali-
tion C = {i1,42,...,ir}. Note that if the core constraip{ C) > v(C) holds for
Cy = {i1,42,...,1i}, it must also hold for any coalition of siZg asC}, is the min-
imally paid coalition of sizet. Thus, to test ifp is a core imputation, it is enough to
test whethep(Cy) > v(Cy) for k € {1,2,...,N}. If the core constrains hold for
all Cy,...,Cy, they hold for any coalitior”, and if they do not, we have a violated
constraint. Since there are only such checks, this can be done in polynomial time.



Now consider testing for core-emptiness and constructing a core imputation. Due to
Lemma 3, if the core is non-empty, the symmetric imputafigny, . . ., ¢) whereq =

@ must be in the core. Singecan be computed in polynomial time, this imputation
can also be computed in polynomial time. We can then test whether it is in the core. If

itis in the core, we have a core imputation, otherwise the core is empty.

The computation of coalition values in SLC-games, can be difficult as the safety level
strategies of the agents are not even robust to small changes of game parameters. For
instance, we show that even changing only the total number of agents can result in very
different safety level strategies, even in simple anonymous settings.

Example 4 (Number of Agents and Safety Level Strategiesjsider anSLCSRSC-
game with two resources:, b} with resource utility functions given by, (k) = € for
k =1,...,5an asmall positive, andu,(k) = 1 Vk = 1,...,4, us(5) = 0. Assume
there areN = 4 agents playing the game and compute the value of a coalitior
3 agents (out oft). Sinceu,(-) is constant up to congestion ¢f any agent irC who
choses is guaranteed a utility of on that resource. On the other hand, any agent in
C who chooses: only gets a utility ofe on that resource. Thus(3) = 3 -1 = 3,
and the safety level strategy ¢f is to have all its agents choosing the resouice
Now, consider the same resources and resource utility functions when thé¥e-are
agents, and consider again a coalitionof 3 agents. IfC' places all agents in, a
possible strategy for the remainid@gents is to both joih, resulting in a total utility of
3uy(5) = 3-0 = 0 for the coalition. Alternatively, the coalition can ha&agents using
a and1 agent using. For this strategy i8¢, any strategy ifSx ¢ of the remaining
2 agents results in all agents angetting a utility ofe and all those o getting 1,
resulting in a total coalitional utility of - ¢ + 2 -1 = 2 + €. This is the safety level
strategy for the coalitiod’, sov(3) = 2 + e.

However forS LCS9G-games we can compute a coalition’s value in polynomial time:
Theorem 2. For SLCSRSG-games, computing safety level strategies i®in

Proof. We provide a dynamic programming algorithm. GivenSanC' > %5 -game with

R resources, forang = 1,..., R let v;, denote thek-subgame, played on the firkt
resources: that igy is the restriction of the original game where the agents are only
allowed to select one of the firét resources—i.e., for each€ N we haveS; =
{r1,72,...,7} C R. Note that, is also anS LCFS%-game. We denote by; ; ;. the
value of a coalition o agents in thé:-subgame with + j agents: to compute; ; , we
must find a safety level strategy for a coalitioniaigents when there are additional
non-members, and the agents are only allowed to select one of theri@sburces. We
prove that the following recursive formula holds:

it = ey (et Oopamoir 00+ 0)
Consider a coalitiorC' of i agents who use the safety level strategy in (the- 1)-
subgame with additiongl agents. The coalition assigas agents to use resourae
(wherex < k —1), so thath;ll ¢ = i. The worst case response of the non-members
in this subgame is assignitbg resources to use resourcg(wherer < k — 1), so that



Z?;ll b, = j. We can describe a strategy forin the k-subgame in terms afoving
somep agents from the first — 1 resources and assigning them to the resokiréey
strategy forC' in the k-subgame can be described as haying ¢ coalition members
using resourcé, and a partition of the— p remaining agents to the firkt- 1 resources
(which is a strategy for a coalitiof’ of : — p agents in thé& — 1-subgame), for some
choice ofp < i. Each such a partial strategy profile implies a response from the non-
membersN \ C which similarly can be described as a choicejof j non-members
using resourcé and a partition of thg — ¢ remaining non-members to the first- 1
resources (which corresponds to a strategy profile of a non-member agdbit st
j — g agents in thé — 1-subgame). The safety level strategy for a coalitibm the -
subgame is therefore a composition of the safely level strategy for a coalitjéh efp

in thek — 1-subgame ang agents using resouréefor somep < |C.

By Theorems 1 and 2, fa§ LC1*5¢-games we can efficiently test core non-emptiness,
construct a core imputation or check if an imputation is in the core. These results do not
extend to allSLC($)C“-games. When agents are allowed multiple-resource strategies
(even if derived from a common set), computing coalitional values is hard.

Theorem 3. Computing the value of a coalition ifiILC°““-games is NP-hard.

Proof. We reduce from Exact-Cover-By-3-Sets (X3C). Consider an X3C instance, with
asetS = {1,2,...,3m} of 3m elements, and tripletSs, ..., S, whereS; C S and

|S;| = 3. We are asked whether there is an exact covértbit uses exacthy (disjoint)
triplets. We construct als LC*““-game, where each elementc S corresponds to

a resource- (that is, S corresponds td®R), where each resourees utility function
satisfiesu,. (1) = 1; u.(k) = 0 for k > 2. The SLC*““-game hasV = m agents,

and an agent is allowed to choose any resource triglefrom the given collection of
triplets—that is, the strategy space of any agastgiven byS, = {S1,...,S,}. This

is an anonymous game. Lef{N) be the value of the grand coalition. We show that if
the X3C is a “yes” instance;(IN) = 3m and if it is a “no” instance then(N) < 3m.
Suppose the X3C is a “yes” instance, and $¢t, S;,,...,S;,, be the triplets in the
exact cover. Let agentchoose the resources i (for z € {1,...,m}). SinceS is an
exact cover, each resourcés selected exactly once, sIN) = 3m. On the other hand,

if the X3C is a “no” instance, any choice of (or more) tripletssS;,, ..., .S;  resultsin
choosing at least one of the resouregsnore than once. Thus, the congestion on this
resource results in a utility of O for all agents using ita$N) < 3m.

2.3 Non-anonymous settings

We now turn to consider general, asymmetric settings where agents may have differ-
ent strategy spaces. First, we observe that though these settings are anonymous in the
original—non-cooperative—context, their corresponding SLC-games are not such:

Lemma 5. TheSLC“%-games are, in general, non-anonymous.

Proof. To see this, consider a single agemhat has an exclusive right to use a special
resource rewarding its user with a very high utilify, Any coalitionC that includes
guarantees itself a utility of at leasf, regardless of what the rest of agents do, while
anyC\ {i} U{j}, 7 € N\ C, cannot achieve this value.



Next, we show that losing anonymity results in high complexity of computing safety
level values even for “degenerate” coalitions consisting of only a single agent:

Theorem 4. Computing values of singleton coalitionsdi.C'““-games is coNP-hard.

Proof. We reduce from dominating-set (DS). In DS, we are given a géaph(V, E),
and have to decide if there is a dominating vertex set of size at Mot a dominating
vertex setV’ C V for everyv € V eitherv € V' or (u,v) € E for someu €

V'. Denote|V| = m. We create ar LC““-game instance as follows: The resources
correspond to the verticés, and we add a resource, (so, R = m+1). The congestion
function for resources € V is given byw,.(1) = H whereH > 3m is a very high
value;u, (k) = 0for k > 2, and for the “special”’ resource we have (k) = 2m—k+1
fork=1,...,m+ 1; u~ (k) = 0for k > m + 2. For any vertex resourcec V we
define an ageni,,, who can choose any single resource which is a neighbouroof
resourcer®, soS,, = {{u}|u €V, (u,v) € E} U {{r*}}. There is also additional
agent,a*, whose only strategy is to select all the resource§so= {R = {v|v €
V3u{r*}}. Sincea* must use its only strategy, the value it obtains depends only on the
choices of the other agents. If in a strategy profijle* there exists a vertex resource
so thata* is its only user, then* obtains a value of at leasf from s. Thus, to minimize
a*’s utility, each of the vertex resources must be used by some other agent. If there is no
dominating set of siz&, this requires more thalt other agents, so at most— K — 1
other agents can usé in such a profile, so({a*}) > 2m—(m—-K—1) = m+K+1.

If there is aK dominating set, thd( outsiders can choose this dominating setg50
obtains a utility of0 from the vertex resources, and having— K outsiders on*
results on the utility o2m — (m — K) = m+ K for a* fromr*, sov({a*}) = m+ K.
Thus,v({a*}) > m + K iff the DS instance is a “no” instance.

In non-anonymous settings even equal size coalitions may have different values. While
by Theorems 3 and 4 computing coalition values is hard, one may seekakienal
value of coalitions of size (at most) wherel < k£ < N. We show this is also hard.

Theorem 5. Finding the value of the grand coalition i$iLC““-games is NP-hard.

Proof. We reduce from MAX-SAT, where given a Boolean formula we are asked to
find the maximum number of clauses that can be satisfied by any assignment. Given a
MAX-SAT instance, we construct8LC““-game. There is a resource for each clause,
and an agent for each variable. An agent for variablean either choose all clauses
satisfied byx or all clauses satisfied byz (thus choosing an assignment for variable

z). The resource utility function iz, (k) = +, k = 1,..., N, for each resource.

Thus, ifk agents choose a clause, each of them gets the utili,%yfufm the clause, and

all of them together get the total utility affrom that clause. Thereby, given a strategy
profile, its value to the grand coalition is exactly the number of satisfied clauses.

3 Conclusions

We defined a safety level cooperative game induced by a normal form game, and ex-
amined this concept on the class of congestion games. A number of questions remain



open for future research. First, other solution concepts should be investigated in the

context of safety level cooperative games. Second, the application domain should be

extended to non-congestion scenarios, such as auctions. Finally, an important task is
finding tractable game classes, where the our hardness results do not hold. We intend to
examine games where computing Nash equilibria can be done in polynomial time, such

as matroid congestion games [1] and congestion-averse games [6, 19].
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