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Research Developments and Directions in

Speech Recognition and Understanding, Part 1

o advance research, it is

important to identify prom-

ising future research direc-

tions, especially those that

have not been adequately
pursued or funded in the past. The work-
ing group producing this article was
charged to elicit from the human lan-
guage technology (HLT) community a
set of well-considered directions or rich
areas for future research that could lead
to major paradigm shifts in the field of
automatic speech recognition (ASR) and
understanding. ASR has been an area of
great interest and activity to the signal
processing and HLT communities over
the past several decades. As a first step,
this group reviewed major developments
in the field and the circumstances that
led to their success and then focused on
areas it deemed especially fertile for
future research. Part 1 of this article will
focus on historically significant develop-
ments in the ASR area, including several
major research efforts that were guided
by different funding agencies, and sug-
gest general areas in which to focus
research. Part 2 (to appear in the next
issue) will explore in more detail several
new avenues holding promise for sub-
stantial improvements in ASR perfor-
mance. These entail cross-disciplinary
research and specific approaches to
address three-to-five-year grand chal-
lenges aimed at stimulating advanced
research by dealing with realistic tasks of
broad interest.

SIGNIFICANT DEVELOPMENTS

IN SPEECH RECOGNITION

AND UNDERSTANDING

The period since the mid-1970s has wit-
nessed the multidisciplinary field of ASR
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proceed from its infancy to its coming of
age and into a quickly growing number
of practical applications and commercial
markets. Despite its many achievements,
however, ASR still remains far from
being a solved problem. As in the past,
we expect that further research and
development will enable us to create
increasingly powerful systems, deploy-
able on a worldwide basis.

This section briefly reviews high-
lights of major developments in ASR in
five areas: infrastructure, knowledge
representation, models and algorithms,
search, and metadata. Broader and
deeper discussions of these areas can
be found in [12], [16], [19], [23], [24],
(271, [32], [33], [41], [42], and [47].
Readers can also consult the following
Web sites: the IEEE History Center’s
Automatic Speech Synthesis and
Recognition section and the Saras
Institute’s History of Speech and
Language Technology Project at http://
www.sarasinstitute.org.

INFRASTRUCTURE

Moore’s Law observes long-term progress
in computer development and predicts
doubling the amount of computation
achievable for a given cost every 12 to 18
months, as well as a comparably shrink-
ing cost of memory. These developments
have been instrumental in enabling ASR
researchers to run increasingly complex
algorithms in sufficiently short time
frames (e.g., meaningful experiments that
can be done in less than a day) to make
great progress since 1975.

The availability of common speech
corpora for speech training, develop-
ment, and evaluation has been critical,
allowing the creation of complex sys-
tems of ever increasing capabilities.
Speech is a highly variable signal,
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characterized by many parameters, and
thus large corpora are critical in model-
ing it well enough for automated sys-
tems to achieve proficiency. Over the
years, these corpora have been created,
annotated, and distributed to the world-
wide community by the National
Institute of Science and Technology
(NIST), the Linguistic Data Consortium
(LDC), and other organizations. The
character of the recorded speech has
progressed from limited, constrained
speech materials to huge amounts of
progressively more realistic, spontane-
ous speech. The development and adop-
tion of rigorous benchmark evaluations
and standards, nurtured by NIST and
others, have been critical in developing
increasingly powerful and capable sys-
tems. Many labs and researchers have
benefited from the availability of com-
mon research tools such as Carnegie-
Mellon University Language Model (CMU
LM) toolkit, Hidden Markov Model
Toolkit (HTK), Sphinx, and Stanford
Research Institute Language Modeling
(SRILM). Extensive research support
combined with workshops, task defini-
tions, and system evaluations sponsored
by the U.S. Department of Defense
Advanced Research Projects Agency
(DARPA) and others have been essential
to today’s system developments.

KNOWLEDGE REPRESENTATION

Major advances in speech signal represen-
tations have included perceptually moti-
vated mel-frequency cepstral coefficients
(MFCC) [10], [29] and perceptual linear
prediction (PLP) coefficients [21], as well
as normalizations via cepstral mean sub-
traction (CMS) [16], [44], relative spectral
(RASTA) filtering [20], and vocal tract
length normalization (VTLN) [13].
Architecturally, the most important
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development has been searchable unified
graph representations that allow multiple
sources of knowledge to be incorporated
into a common probabilistic framework.
Noncompositional methods include mul-
tiple speech streams, multiple probability
estimators, multiple recognition systems
combined at the hypothesis level (e.g.,
Recognition Output Voting Error
Reduction (ROVER) [15]), and multipass
systems with increasing constraints (big-
ram versus four-gram, within word depen-
dencies versus cross-word, and so on).
More recently, the use of multiple algo-
rithms, applied both in parallel and
sequentially, has proven fruitful, as have
feature-based transformations such as
heteroscedastic linear discriminant analy-
sis (HLDA) [31], feature-space minimum
phone error (fMPE) [40], and neural
net-based features [22].

MODELS AND ALGORITHMS
The most significant paradigm shift for
speech-recognition progress has been
the introduction of statistical methods,
especially stochastic processing with hid-
den Markov models (HMMs) [3], [25] in
the early 1970s [38]. More than 30 years
later, this methodology still predomi-
nates. A number of models and algo-
rithms have been efficiently incorporated
within this framework. The expectation-
maximization (EM) algorithm [11] and
the forward-backward or Baum-Welch
algorithm [4] have been the principal
means by which the HMMs are trained
from data. Despite their simplicity,
N-gram language models have proved
remarkably powerful and resilient.
Decision trees [8] have been widely used
to categorize sets of features, such as
pronunciations from training data.
Statistical discriminative training tech-
niques are typically based on utilizing
maximum mutual information (MMI)
and the minimum-error model parame-
ters. Deterministic approaches include
corrective training [1] and some neural
network techniques [5], [35].

Adaptation is vital to accommodating
a wide range of variable conditions for
the channel, environment, speaker,
vocabulary, topic domain, and so on.
Popular techniques include maximum a

posteriori probability (MAP) estimation
[17], [38], [51], maximum likelihood lin-
ear regression (MLLR) [34], and eigen-
voices [30]. Training can take place on
the basis of small amounts of data from
new tasks or domains that provide addi-
tional training material, as well as “one-
shot” learning or “unsupervised” training
at test time.

SEARCH

Key decoding or search strategies, origi-
nally developed in nonspeech applica-
tions, have focused on stack decoding (A*
search) [26] and Viterbi or N-best search
[50]. Derived from communications and
information theory, stack decoding was
subsequently applied to speech-recogni-
tion systems [25], [37]. Viterbi search,
broadly applied to search alternative
hypotheses, derives from dynamic pro-
gramming in the 1950s [6] and was sub-
sequently used in speech applications
from the 1960s to the 1980s and beyond,
from Russia and Japan to the United
States and Europe [3], [7], [9], [36], [45],
[46], (48], [49].

METADATA

Automatic determination for sentence
and speaker segmentation as well as
punctuation has become a key feature in
some processing systems. Starting in the
early 1990s, audio indexing and mining
have enabled high-performance auto-
matic topic detection and tracking, as
well as applications for language and
speaker identification [18].

GRAND CHALLENGES:

MAJOR POTENTIAL

PROGRAMS OF RESEARCH

Grand challenges are what our group calls
ambitious but achievable three-to five-
year research program initiatives that will
significantly advance the state of the art in
speech recognition and understanding.
Previous grand challenges sponsored by
national and international initiatives,
agencies, and other groups have largely
been responsible for today’s substantial
achievements in ASR and its application
capabilities. Six such potential programs
are described below. Each proposed pro-
gram has defined, measurable goals and

comprises a complex of important capa-
bilities that should substantially advance
the field and enable significant applica-
tions. These are rich task domains that
could enable progress in several promis-
ing research areas at a variety of levels. As
noted below, each of these program initia-
tives could also benefit from, or provide
benefit to, multidisciplinary or cross-area
research approaches.

EVERYDAY AUDIO

This is a term that represents a wide
range of speech, speaker, channel, and
environmental conditions that people
typically encounter and routinely adapt
to in responding and recognizing speech
signals. Currently, ASR systems deliver
significantly degraded performance when
they encounter audio signals that differ
from the limited conditions under which
they were originally developed and
trained. This is true in many cases even
if the differences are slight.

This focused research area would
concentrate on creating and developing
systems that would be much more
robust against variability and shifts in
acoustic environments, reverberation,
external noise sources, communication
channels (e.g., far-field microphones,
cellular phones), speaker characteristics
(e.g., speaking style, nonnative accents,
emotional state), and language charac-
teristics (e.g., formal/informal styles,
dialects, vocabulary, topic domain). New
techniques and architectures are pro-
posed to enable exploring these critical
issues in environments as diverse as
meeting-room presentations and
unstructured conversations. A primary
focus would be exploring alternatives for
automatically adapting to changing con-
ditions in multiple dimensions, even
simultaneously. The goal is to deliver
accurate and useful speech transcripts
automatically under many more envi-
ronments and diverse circumstances
than is now possible, thereby enabling
many more applications. This challeng-
ing problem can productively draw on
expertise and knowledge from related
disciplines, including natural-language
processing, information retrieval, and
cognitive science.
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RAPID PORTABILITY TO

EMERGING LANGUAGES

Today’s state-of-the-art ASR systems
deliver top performance by building
complex acoustic and language models
using a large collection of domain-
specific speech and text examples. For
many languages, this set of language
resources is often not readily avail-
able. The goal of this research pro-
gram is to create spoken-language
technologies that are rapidly portable.
To prepare for rapid development of
such spoken-language systems, a new
paradigm is needed to study speech
and acoustic units that are more lan-
guage-universal than language-specific
phones. Three specific research issues
need to be addressed: 1) cross-lan-
guage acoustic modeling of speech
and acoustic units for a new target
language, 2) cross-lingual lexical mod-
eling of word pronunciations for new
language, and 3) cross-lingual lan-
guage modeling. By exploring correla-
tion between these emerging
languages and well-studied languages,
cross-language features, such as lan-
guage clustering and universal acous-
tic modeling, could be utilized to
facilitate rapid adaptation of acoustic
and language models. Bootstrapping
techniques are also keys to building
preliminary systems from a small
amount of labeled utterances first,
using these systems to label more
utterance examples in an unsupervised
manner, incorporating new labeled
data into the label set, and iterating to
improve the systems until they reach
a performance level comparable with
today’s high-accuracy systems.

Many of the research results here
could be extended to designing
machine translation, natural-language
processing, and information-retrieval
systems for emerging languages. To
anticipate this growing need, some lan-
guage resources and infrastructures
need to be established to enable rapid
portability exercises. Research is also
needed to study the minimum amount
of supervised label information
required to create a reasonable system
for bootstrapping purposes.

SELF-ADAPTIVE

LANGUAGE CAPABILITIES
State-of-the-art systems for speech tran-
scription, speaker verification, and lan-
guage identification are all based on
statistical models estimated from labeled
training data, such as transcribed speech,
and from human-supplied knowledge,
such as pronunciation dictionaries. Such
built-in knowledge often becomes obso-
lete fairly quickly after a system is
deployed in a real-world application, and
significant and recurring human inter-
vention in the form of retraining is need-
ed to sustain the utility of the system.
This is in sharp contrast with the speech
facility in humans, which is constantly
updated over a lifetime, routinely acquir-
ing new vocabulary items and idiomatic
expressions, as well as deftly handling
previously unseen nonnative accents and
regional dialects of a language. In partic-
ular, humans exhibit a remarkable apti-
tude for learning the sublanguage of a
new domain or application without
explicit supervision.

The goal of this research program is
to create self-adaptive (or self-learning)
speech technology. There is a need for
learning at all levels of speech and lan-
guage processing to cope with changing
environments, nonspeech sounds, speak-
ers, pronunciations, dialects, accents,
words, meanings, and topics, to name but
a few sources of variation over the life-
time of a deployed system. Like its human
counterpart, the system would engage in
automatic pattern discovery, active learn-
ing, and adaptation. Research in this area
must address both the learning of new
models and the integration of such mod-
els into preexisting knowledge sources.
Thus, an important aspect of learning is
being able to discern when something
has been learned and how to apply the
result. Learning from multiple concur-
rent modalities, e.g., new text and video,
may also be necessary. For instance, an
ASR system may encounter a new proper
noun in its input speech and may need to
examine contemporaneous text with
matching context to determine the spell-
ing of the name. Exploitation of unla-
beled or partially labeled data would be
necessary for such learning.

A motivation for investing in such
research is the growing activity in the
allied field of machine learning. Success
in this endeavor would extend the life-
time of deployed systems and directly
advance our ability to develop speech
systems in new languages and domains
without the onerous demands of labeled
speech, essentially by creating systems
that automatically learn and improve
over time. This research would benefit
from cross-fertilization with the fields of
natural-language processing, informa-
tion retrieval, and cognitive science.

DETECTION OF RARE, KEY EVENTS
Current ASR systems have difficulty in
handling unexpected—and thus often
the most information-rich—Iexical
items. This is especially problematic in
speech that contains interjections or
foreign or out-of-vocabulary words and
in languages for which there is relative-
ly little data with which to build the sys-
tem’s vocabulary and pronunciation
lexicon. A common outcome in this sit-
uation is that high-value terms are
overconfidently misrecognized as some
other common and similar-sounding
word. Yet such spoken events are cru-
cial to tasks such as spoken term detec-
tion and information extraction from
speech. Their accurate registration is
therefore of vital importance.

The goal of this program is to create
systems that reliably detect when they do
not know a valid word. A clue to the
occurrence of such error events is the
mismatch between an analysis of a purely
sensory signal unencumbered by prior
knowledge, such as unconstrained phone
recognition, and a word- or phrase-level
hypothesis based on higher-level knowl-
edge, often encoded in a language model.
A key component of this research would
therefore be the development of novel
confidence measures and accurate mod-
els of uncertainty based on the discrep-
ancy between sensory evidence and a
priori beliefs. A natural sequel to detec-
tion of such events would be to tran-
scribe them phonetically when the
system is confident that its word hypoth-
esis is unreliable and to devise error-
correction schemes.
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One immediate application that such
detection would enable is subword (e.g.,
phonetic) indexing and search of speech
regions where the system suspects the
presence of errors. Phonetic transcrip-
tion of the error-prone regions would
also enable the development of the next
generation of self-learning speech sys-
tems: the system may then be able to
examine new texts to determine the
identity of the unknown word. This
research has natural synergy with natu-
ral-language processing and informa-
tion-retrieval research.

COGNITION-DERIVED SPEECH
AND LANGUAGE SYSTEMS
A key human cognitive characteristic is
the ability to learn and adapt to new pat-
terns and stimuli. The focus of this proj-
ect would be to understand and emulate
relevant human capabilities and to incor-
porate these strategies into automatic
speech systems. Since it is not possible to
predict and collect separate data for any
and all types of speech, topic domains,
and so on, it is important to enable auto-
matic systems to learn and generalize
even from single instances (episodic
learning) or limited samples of data, so
that new or changed signals (e.g., accent-
ed speech, noise adaptation) could be
correctly understood. It has been well
demonstrated that adaptation in auto-
matic speech systems is very beneficial.
An additional impetus for looking
now at how the brain processes speech
and language is provided by the dramatic
improvements made over the last several
years in the field of brain and cognitive
science, especially with regard to the
cortical imaging of speech and language
processing. It is now possible to follow
instantaneously the different paths and
courses of cortical excitation as a func-
tion of differing speech and language
stimuli. A major goal here is to under-
stand how significant cortical informa-
tion processing capabilities beyond signal
processing are achieved and to leverage
that knowledge in our automated speech
and language systems. The ramifications
of such an understanding could be very
far-reaching. This research area would
draw on the related disciplines of brain

and cognitive science, natural-language
processing, and information retrieval.

SPOKEN-LANGUAGE
COMPREHENSION (MIMICKING
AVERAGE LANGUAGE SKILLS AT A
FIRST-TO-THIRD-GRADE LEVEL)
Today’s state-of-the-art systems are
designed to transcribe spoken utter-
ances. To achieve a broad level of
speech-understanding capabilities, it is
essential that the speech research com-
munity explore building language-
comprehension systems that could be
improved by the gradual accumulation
of knowledge and language skills. An
interesting approach would be to com-
pare an ASR system with the speech
performance of children less than ten
years of age in listening-comprehen-
sion skill. Just like a child learning a
new subject, a system could be exposed
to a wide range of study materials in a
learning phase. In a testing stage, the
system and the children would be given
written questions first to get some idea
what kind of information to look for in
the test passages. Comprehension tests
could be in oral and written forms.

The goal of this research program is
to help develop technologies that enable
language comprehension. It is clear
such evaluations would emphasize the
accurate detection of information-bear-
ing elements in speech rather than
basic word error rate. Natural-language
understanding of some limited domain
knowledge would be needed. Four key
research topics need to be explored: 1)
partial understanding of spoken and
written materials, with a focused atten-
tion on information-bearing compo-
nents; 2) sentence segmentation and
name entry extraction from given test
passages; 3) information retrieval from
the knowledge sources acquired in the
learning phase; and 4) representation
and database organization of knowledge
sources. Collaboration between speech
and language processing communities
is a key element to the potential success
of such a program. The outcomes of
this research could provide a paradigm
shift for building domain-specific
language understanding systems and

significantly affect the education and
learning communities.

IMPROVING INFRASTRUCTURE
FOR FUTURE ASR RESEARCH

CREATION OF HIGH-QUALITY
ANNOTATED CORPORA
The single simplest, best way for current
state-of-the-art recognition systems to
improve performance on a given task is
to increase the amount of task-relevant
training data from which its models are
constructed. System capabilities have
progressed directly along with the
amount of speech corpora available to
capture the tremendous variability
inherent in speech. Despite all the
speech databases that have been exploit-
ed so far, system performance consis-
tently improves when more relevant data
are available. This situation clearly indi-
cates that more data are needed to cap-
ture crucial information in the speech
signal. This is especially important in
increasing the facility with which we can
learn, understand, and subsequently
automatically recognize a wide variety of
languages. This capability will be a criti-
cal component in improving perfor-
mance not only for transcription within
any given language but also for spoken-
language machine translation, cross-lan-
guage information retrieval, and so on.
If we want our systems to be more
powerful and to understand the nature of
speech itself, we must collect and label
more of it. Well-labeled speech corpora
have been the cornerstone on which
today’s systems have been developed and
evolved. The availability of common
speech corpora has been and continues
to be the sine qua non for rigorous com-
parative system evaluations and competi-
tive analyses conducted by the U.S. NIST
and others. Labeling for most speech
databases is typically at the word level.
However, some annotation at a finer level
(e.g., syllables, phones, features, and so
on) is important to understand and inter-
pret speech successfully. Indeed, the sin-
gle most popular speech database
available from the Linguistic Data
Consortium (LDC) is TIMIT, a very com-
pact acoustic-phonetic database created by
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MIT and Texas Instruments, where the
speech is associated with a subword (pho-
netic) transcription. Over the years, many
significant speech corpora, such as Call
Home, Switchboard, Wall Street Journal,
and, more recently, Buckeye, have been
made widely available with varying degrees
and types of annotation. These corpora
and others have fundamentally driven
much of our current understanding and
growing capabilities in speech recogni-
tion, transcription, topic spotting and
tracking, and so on. There is a serious
need today to understand the basic ele-
ments of speech with much larger repre-
sentative sets of speech corpora, both in
English and other languages.

In order to explore important phe-
nomena “above the word level,” databas-
es need to be labeled to indicate aspects
of emotion, dialog acts, and semantics
(e.g., Framenet [14] and Propbank [28]).
Human speech understanding is predi-
cated on these factors. For systems to be
able to recognize these important char-
acteristics, there must be suitably
labeled speech data with which to train
them. It is also likely that some new
research may be required to explore and
determine consistent conventions and
practices for labeling itself and for
future development and evaluation
methodologies to accommodate at least
minor differences in labeling techniques
and practices. We must design ASR sys-
tems that are tolerant of labeling errors.

NOVEL HIGH-VOLUME

DATA SOURCES

Thanks in large part to the Internet,
there are now large quantities of every-
day speech that are readily accessible,
reflecting a variety of materials and
environments only recently available.
Some of it is of quite variable and often
poor quality, such as user-posted mate-
rial from YouTube. Better-quality audio
materials are reflected in the diverse
oral histories recorded by organizations
such as StoryCorps (available at www.
storycorps.net). University course lec-
tures, seminars, and similar material
make up another rich source, one that
is being placed online in a steady
stream. These materials all reflect a less

formal, more spontaneous, and natural
form of speech than present-day systems
have typically been developed to recog-
nize. “Weak” transcripts (such as closed-
captioning and subtitles) are available
for some of these audio materials. The
benefit of working with materials such
as this is that systems will become more
capable as a consequence—an impor-
tant development in increasing robust-
ness and expanding the range of
materials that can be accurately tran-
scribed under a wide range of condi-
tions. Much of what is learned here is
also likely to be of benefit in transcrib-
ing casual everyday speech in languages
other than English.

TOOLS FOR COLLECTING
AND PROCESSING LARGE
QUANTITIES OF SPEECH DATA
Over the years, the availability of both
open-source (e.g., Carnegie Mellon
University’s CMU Sphinx) and commer-
cial speech tools (e.g., Entropic Systems
and Cambridge University’s HTK) has
been very effective in quickly bringing
good-quality speech processing capabili-
ties to many labs and researchers. New
Web-based tools could be made available
to collect, annotate, and then process
substantial quantities of speech very cost-
effectively in many languages. Mustering
the assistance of interested individuals on
the World Wide Web (in the manner of
open-source software and Wikipedia)
could generate substantial quantities of
language resources very efficiently and at
little cost. This could be especially valu-
able in creating significant new capabili-
ties for resource-impoverished languages.
New initiatives, though seriously
underfunded at present, include digital
library technology aiming to scan huge
amounts of text (e.g., the Million Book
Project [44]) and the creation of large-
scale speech corpora (e.g., the Million
Hour Speech Corpus [2]) aiming to col-
lect many hours of speech in many
world languages. If successful, these
projects will significantly advance the
state of the art in the automation of
world language speech understanding
and proficiency. They will also provide
rich resources for strong research into

the fundamental nature of speech and
language itself.
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