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‘ dsp EDUCATION

Updated MINDS Report on Speech
Recognition and Understanding, Part 2

his article is the second part

of an updated version of the

“MINDS 2006-2007 Report

of the Speech Understanding

Working Group,” one of five
reports emanating from two workshops
entitled “Meeting of the MINDS: Future
Directions for Human Language
Technology,” sponsored by the U.S.
Disruptive Technology Office (DTO).
(MINDS is an acronym for “machine
translation, information retrieval,
natural-language processing, data
resources, and speech understanding.”)
For further information, please see
http://www.itl.nist.gov/iaui/894.02/
minds.html.

KNOWLEDGE REPRESENTATION

FUNDAMENTAL SCIENCE OF
HUMAN SPEECH PERCEPTION

AND PRODUCTION

For long-term research, a principal
knowledge source that we can exploit to
improve automatic speech recognition
(ASR) lies in the area of human speech
perception, understanding, and cogni-
tion. This rich area has its basis in psy-
chological and physiological processes in
humans. The physiological aspects of
human speech perception that are of
most interest include cortical processing
in the auditory area and the associated
motor area of the brain. One important
principle of auditory perception is its
modular organization, and recent
advances in functional neuroimaging
technologies provide a driving force
motivating new studies geared to devel-
oping integrated knowledge of the mod-
ularly organized auditory process in
an end-to-end manner. The relevant
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psychological aspects of human speech
perception include the essential psychoa-
coustic properties that underlie auditory
masking and attention. Such key proper-
ties equip human listeners with the
remarkable capability to cope with “cock-
tail party” effects that no current ASR
techniques can successfully handle.
Intensive studies are needed in order for
ASR applications to reach a new level,
delivering performance comparable to
that of humans.

Specific issues to be resolved in the
study of how the human brain processes
spoken (as well as written) language are
the way human listeners adapt to non-
native accents and the time course over
which human listeners reacquaint
themselves with a language known to
them. Humans have amazing capabili-
ties to adapt to nonnative accents.
Current ASR systems are extremely poor
in this regard, and improvement is
expected only after we have sufficient
understanding of human speech
processing mechanisms.

One specific issue related to human
speech perception (and linked to human
speech production) is the temporal
span over which speech signals are repre-
sented and modeled. One prominent weak-
ness in current hidden Markov models
(HMMs) is inadequacy in representing
long-span temporal dependency in the
acoustic feature sequence of speech, which
is an essential property of speech dynam-
ics in both perception and production. The
main cause of this handicap is the condi-
tional independence assumptions inherent
in the HMM formalism. The HMM frame-
work also assumes that speech can be
described as a sequence of discrete units,
usually phones or phonemes. In this sym-
bolic, invariant approach, the focus is on
the linguistic/phonetic information, and
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the incoming speech signal is normalized
during preprocessing in an attempt to
remove most of the paralinguistic infor-
mation. However, human speech percep-
tion experiments have shown that such
paralinguistic information plays a crucial
role in human speech perception.
Numerous approaches have been taken
over the past dozen years to address the
weaknesses of HMMs described above [2],
(4], [17], [19], [26], [46], [51], [64], [65].
These approaches can be broadly grouped
into two categories. The first, a paramet-
ric, structure-based approach, establishes
mathematical models for stochastic trajec-
tories/segments of speech utterances using
various forms of parametric characteriza-
tion [17], [19], [22], [51]. The essence of
such an approach is that it exploits knowl-
edge and mechanisms of human speech
perception and production so as to provide
the structure of the multitiered stochastic
process models. These parametric models
account for the observed speech trajectory
data based on the underlying mechanisms
of speech coarticulation and reduction
directly relevant to human speech percep-
tion and on the relationship between
speaking-rate variations and the corre-
sponding changes in the acoustic features.
The second, nonparametric and
template-based approach to overcoming
the weaknesses of HMMs involves direct
exploitation of speech feature trajectories
(i.e., “templates”) in the training data
without any modeling assumptions [2],
[4], [64], [65]. This newer approach is
based on episodic learning as seen in many
recent human speech perception and rec-
ognition experiments [28], [43]. Due to
the recent dramatic increase of speech
databases and computer storage capacity
available for training as well as exponen-
tially expanded computational power, non-
parametric methods and episodic learning
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provide rich areas for future research [43],
[61], [64], [65]. The essence of the tem-
plate-based approach is that it captures
strong dynamic segmental information
about speech feature sequences in a way
complementary to the parametric, struc-
ture-based approach. The recent Sound-
to-Sense project in Europe has been
devoted to this area of research.

FROM TRANSCRIPTION

TO MEANING EXTRACTION

Another rich area for future research is to
develop machine representations of
“meaning” that capture the communica-
tive intent of a spoken utterance. This
would be a complement to “word error
rate,” the most prevalent criterion for ASR
performance. Machine representations are
unlikely to achieve universal representa-
tions of “meaning,” but for specific
domains of speech understanding, they
should be defined in a way that is consis-
tent with human judgment of meaning in
spoken utterances. This new performance
measure could provide “feedback” to the
low-level components of future ASR sys-
tems. For example, if ASR systems are
designed with a component that repre-
sents articulation effort, then the degree to
which the correct meaning is recognized
should correlate with the tolerance of a
range of the articulation effort. Greater
accuracy of meaning understanding or
more success in communicating the
intent from the speaker to the listener
should allow the recognizer to tolerate a
wider range of speaking efforts on the part
of speaker and hence a greater degree of
acoustic variability. This meaning repre-
sentation may also become the output of
the speech system for downstream pro-
cessing in some applications, such as
speech translation, in which a verbatim
transcript preserving every acoustic detail
is neither necessary nor desirable.

UNDERSTANDING HOW

CORTICAL SPEECH/LANGUAGE
PROCESSING WORKS

Major advances in high-resolution
imaging technologies are now enabling
brain scientists to track the spatial and
temporal characteristics of how the brain
processes speech and language [10], [15],

[25], [44], [45]. A combination of direct
and EEG recordings with neuroimaging
studies using functional MRI (fMRI),
positron emission tomography (PET),
and magnetoencephalography (MEG)
has revealed substantial information
about cortical processing of speech and
language. In the near term, we can hope
to gain significant insights into how the
human brain processes this information
and try to use that knowledge to improve
ASR models, processing, and technology.
Many phenomena can now be directly
and quantifiably observed, such as the
time course and details of adaptation and
facilitation, semantic dissonance, and so
on. A scientific understanding of cortical
processing and adaptation could help us
understand how our automated systems
should adapt to new acoustic environ-
ments or to accented speech as well as
the role that episodic learning plays
in human speech perception and
word recognition.

Insights from recent linguistic, pho-
netic, and psychological research should
be used to understand the interaction of
the prior structure of speech (as the
knowledge source) with the acoustic
measurement of speech (data) and to
inform and construct ASR models
beyond the current flat-structured HMMs
in ASR. Newly constructed models may
need to exhibit similar behavior to that
of humans when listening and respond-
ing to their native languages (accented
and unaccented) and foreign languages.
Here, accented speech or foreign lan-
guages represent situations where the
knowledge source is weak on the part of
the listener. The counterpart situation—
where the information about the data or
signal becomes weak—is when the lis-
teners perform ASR under adverse acous-
tic environments.

Understanding of the interplay
between these contrasting situations in
human speech perception would provide
a wealth of information enabling the
construction of better models (better
than HMMs) that reflect particular attri-
butes of human auditory processing and
the linguistic units used in human
speech recognition. For example, to what
extent may human listeners use mixed

word or phrase “templates” and the con-
stituent phonetic/phonological units in
their memory to achieve relatively high
performance in speech recognition for
accented speech or foreign languages
(weak knowledge) and for acoustically
distorted speech (weak observation)?
How do human listeners use episodic
learning (e.g., direct memory access) and
parametric learning related to smaller
phonetic units (analogous to what we are
currently using for HMMs in machines)
in speech recognition and understand-
ing? Answers to these questions would
benefit the design of next-generation
machine speech recognition models and
algorithms.

HETEROGENEOUS KNOWLEDGE
SOURCES FOR AUTOMATIC
SPEECH RECOGNITION
Heterogeneous parallelism in both ASR
algorithms and computational structure
will be important for research in the next
decade. While the incorporation of new
types of multiple knowledge sources has
been on the research agenda for decades,
particularly for ASR, we are entering a
period in which the resources will be
available to support this strategy in a
much more significant way. For instance,
it is now possible to incorporate both
larger sound units than the typical phone
or subphone elements, even for large
vocabulary recognition, while still pre-
serving the advantage of the smaller units
[67]; additionally, more fundamental
units such as articulatory features can be
considered [23], [62]. At the level of the
signal processing “front end” of ASR, we
no longer need to settle on the single
best representation, as multiple represen-
tations (differentiated by differing tie
scales or decompositions of the time-
frequency plane) have been shown to
be helpful [7], [46]. At the other end of
the process, the incorporation of syntactic
and semantic cues into the recognition
process is still in its infancy. It is possible
that deeper semantic representations like
Propbank [38] and Framenet [21] could
become important in disambiguating
similar-sounding recognition hypotheses.
The incorporation of multiple knowl-
edge sources is a key part of what could
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‘ dsp EDUCATION  continued

also be called multistream analysis. In
the cases referred to above, streams cor-
respond to information in quite hetero-
geneous forms. However, the streams
can consist of more homogeneous ele-
ments, such as the signals from multiple
sensors (e.g., microphone arrays) [20].
On the other hand, the streams can be
even more heterogeneous, for instance
coming from different modalities (bone-
conducted vibration, cameras, or low-
power radar) [48]. In all of these cases,
architectures are required that can
aggregate all of the modules’ responses.
Various approaches for this have been
tried for some time, but we are only now
beginning to tackle the task of integrat-
ing so many different kinds of sources,
due to the emerging availability of the
kinds of resources required to learn how
best to do the integration.

FOCUSING ON INFORMATION-
BEARING ELEMENTS

OF THE SPEECH SIGNAL

While speech recognition is often viewed
as a classification task, any real system
must contend with input that does not
correspond to any of the desired classes.
These unexpected inputs can take the
form of complete words that are not in
the recognition vocabulary (including
words in a foreign language), word frag-
ments, environmental noises, or nonver-
bal vocal output (such as laughter).
Thus, in addition to the closed-set classi-
fication task, speech recognition systems
must also reject sounds that do not cor-
respond to members of the desired set.
Equivalently, we need to know when ASR
may be strongly confident that a word is
known, and we must also know when
there is low confidence in an ASR result
[34]. In many applications, “knowing
when we don’t know” could be as or even
more important than merely having a
low word-error rate. Additionally, ASR
tends to have poor performance for
words within the system vocabulary for
which there are few training examples.
However, such low-frequency words
often contain critical information (for
instance, if it is a named entity).
Learning how to deal more effectively
with both interfering sounds and

information-bearing sounds that are
poorly represented in our training is a
critical area for future research [37].

NOVEL COMPUTATIONAL
ARCHITECTURES FOR
KNOWLEDGE-RICH

SPEECH RECOGNITION

For decades, Moore’s law has been a
dependable indicator of the increasing
capability for calculation and storage in
our computational systems. The result-
ing effects on systems for speech recog-
nition and understanding have been
enormous, permitting the use of ever
larger training databases and recognition
systems and the incorporation of increas-
ingly detailed models of spoken lan-
guage. Many of the projections for future
research implicitly depend on a contin-
ued advance in computational capabili-
ties, an assumption that certainly seems
justified given recent history. However,
the fundamentals of this progression
have recently changed [3], [49]. As Intel
and others have noted recently, the
power density on microprocessors has
increased to the point that higher clock
rates would begin to melt the silicon die.
Consequently, at this point industry
development is focused on implementing
microprocessors on multiple cores. Dual-
core CPUs are now very common, and
four- and eight-processor systems are
coming out. The new road maps for the
semiconductor industry reflect this
trend, and future speed increases will
come more from parallelism than from
having faster individual computing ele-
ments. For the most part, algorithm
designers for speech systems have
ignored the investigation of such paral-
lelism, since the advance of scalar capa-
bilities has been so reliable.

Future progress in many of the
directions we discuss here will require
significantly more computation;
consequently, researchers concerned
with implementation will need to con-
sider parallelism explicitly in their
designs. This will be a significant
change from the status quo. In particu-
lar, tasks such as decoding, for which
extremely clever schemes to speed up
single-processor performance have been

developed, will require a complete
rethinking of the algorithms [31].

MODELS, ALGORITHMS,
AND SEARCH

ADAPTATION AND SELF-LEARNING
IN SPEECH RECOGNITION SYSTEMS
Learning Speech recognition has tradi-
tionally been cast as a task in which
spoken input is classified into a sequence
of predefined categories, such as words
[33], [55]. ASR development typically
proceeds via a heavily supervised training
phase that makes use of annotated cor-
pora, followed by a deployment (testing)
phase during which model parameters
may be adapted to the environment,
speaker, topic, and so on while the over-
all structure remains static. In other
words, ASR systems typically do not
learn; they undergo supervised training
and are relatively static thereafter.

Such an approach stands in stark
contrast to human processing of speech
and language, where learning is an
intrinsic capability [6], [11], [42].
Humans can integrate large amounts of
unlabeled (or, at best, lightly annotated)
speech [14], [27], [35]. From these data
we can learn, among other things, the
phonetic inventories of a language and
word boundaries, and we can use these
abilities to acquire new words and mean-
ings [36], [54], [59]. (In humans, learn-
ing and the application of learned
knowledge are not separated—they are
intertwined.) However, for the most part,
speech recognizers are not inherently
designed to learn from the data they are
meant to classify.

There are many degrees of learning,
ranging from “one shot” methods to
learning from small amounts of data to
learning from partially or poorly labeled
or even unannotated, data [53]. Research
in this latter area would enable systems
to benefit from the enormous quantities
of data becoming available online and
could reduce the expense and delay asso-
ciated with our current dependency on
high-quality annotations for training.
This is especially true for languages for
which there are few or no existing large
annotated corpora. Finally, research
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directed towards self-learning, such as
unsupervised pattern-discovery methods,
could ultimately prove useful for the
general problem of language acquisi-
tion—a long-standing “grand challenge”
problem in the research community.

GENERALIZATION

Over the past three decades, the speech
research community has developed and
refined an experimental methodology that
has helped to foster steady improvements
in speech technology. The approach that
has worked well, and has been adopted in
other research communities, is to develop
shared corpora, software tools, and guide-
lines that can be used to reduce differ-
ences between experimental setups down
to the basic algorithms, so that it becomes
easier to quantify fundamental improve-
ments. Typically, these corpora are
focused on a particular task. As speech
technology has become more sophisti-
cated, the scope and difficulty of these
tasks have continually increased: from
isolated words to continuous speech,
from speaker-dependent to speaker-
independent, from read to spontaneous,
from clean to noisy, from utterance to
content-based, and so on.

Although the complexity of such cor-
pora has continually increased, one com-
mon property of such tasks is that they
typically have a training portion that is
quite similar in nature to the test data.
Indeed, obtaining large quantities of
training data that is closely matched to
the test is perhaps the single most reli-
able method for improving ASR perfor-
mance. This strategy is quite different
from the human experience, however.
Over our entire lifetimes, we are exposed
to all kinds of speech data from uncon-
trolled environments, speakers, and
topics (i.e., “everyday” speech). Despite
this great variation in our own personal
training data, we are all able to create
internal models of speech and language
that are remarkably adept at dealing with
variations in the speech chain. This abil-
ity to generalize is a key aspect of human
speech processing that has not yet found
its way into modern speech recognizers.
Research on this topic should produce
technology that will operate more

effectively in novel circumstances and
that can generalize better from smaller
amounts of data. Examples include mov-
ing from one acoustic environment to
another and among different tasks and
languages. One way to support research
in this area would be to create a large
corpus of “everyday” speech and a variety
of test sets drawn from different condi-
tions. Another research area could
explore how well information gleaned
from large resource languages and/or
domains generalizes to smaller resource
languages and domains.

MACHINE LEARNING

This is an exciting time in the machine
learning community. Many new algo-
rithms are being explored and are achiev-
ing impressive results on a wide variety
of tasks. Recent examples include graphi-
cal models, conditional random fields,
partially observable Markov decision pro-
cesses, reinforcement-based learning, and
discriminative methods such as large-
margin or log-linear (maximum entropy)
models. Recent developments in effective
training of these models make them wor-
thy of further exploration. The speech
community would do well to explore
common ground with the machine
learning community in these areas.

LANGUAGE ACQUISITION

The acquisition of spoken language capa-
bility by machine through unsupervised
or lightly supervised human intervention
remains one of the “grand challenges” of
artificial intelligence. While the amount
of innate language ability possessed by
humans is open to debate [6], [10], [42],
the degree of variation in languages
across different cultures indicates that
linguistic knowledge itself is acquired
through interaction with and exposure
to spoken language [36], [54], [59].
Although there has been some research
in unsupervised acquisition of phones,
words, and grammars [8], [9], [12], [16],
[40], [52], [60], [63], there remains
much opportunity for research in pat-
tern discovery, generalization, and active
learning. A research program in lan-
guage acquisition could have many
quantifiable components, based on either

speech- or text-based inputs. Particular
opportunities exist where natural parallel
(e.g., multilingual) or multimodal (e.g.,
audiovisual) corpora exist, since alterna-
tive communication channels provide
additional sources of constraint [58].

ROBUSTNESS AND
CONTEXT-AWARENESS IN
ACOUSTIC MODELS FOR

SPEECH RECOGNITION

Probabilistic models, with parameters
estimated from sample speech data, per-
vade state-of-the-art speech technology,
including ASR, language identification
(LID) and speaker verification [32], [50],
[68]. The models seek to recover linguis-
tic information, such as the words
uttered, the language spoken, or the
identity of the speaker, from the received
signal. Many factors unrelated to the
information being sought by the models
also significantly influence the signal
presented to the system.

SPEAKER’S ACOUSTIC
ENVIRONMENT AND THE SPEECH
ACQUISITION CHANNEL

The acoustic environment in which
speech is captured (e.g., background
noise, reverberation, overlapping speech)
and the communication channel
through which speech is transmitted
prior to its processing (e.g., cellular,
land-line telephone, or VoIP connection,
along with call-to-call variability) repre-
sent significant causes of harmful vari-
ability responsible for drastic degradation
of system performance. Existing tech-
niques such as Wiener filtering and ceps-
tral mean subtraction [57] remove
variability caused by additive noise or
linear distortions, while methods such as
RASTA [29] compensate for slowly
varying linear channels. However, more
complex channel distortions such as
reverberation or variable noise (along
with the Lombard effect) present a
significant challenge.

SPEAKER CHARACTERISTICS

AND STYLE

It is well known that speech characteris-
tics (e.g., age, nonnative accent) vary
widely among speakers due to many
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‘ dsp EDUCATION  continued

factors, including speaker physiology,
speaker style (e.g., speech rate, spontane-
ity of speech, emotional state of the
speaker), and accents (both regional and
nonnative). The primary method cur-
rently used for making ASR systems
more robust to variations in speaker
characteristics is to include a wide range
of speakers in the training. Speaker adap-
tation mildly alleviates problems with
new speakers within the “span” of known
speaker and speech types but usually
fails for new types.

Current ASR systems assume a pro-
nunciation lexicon that models native
speakers of a language. Furthermore,
they train on large amounts of speech
data from various native speakers of the
language. A number of modeling
approaches have been explored in model-
ing accented speech, including explicit
modeling of accented speech, adaptation
of native acoustic models via accented
speech data [24], [41] and hybrid systems
that combine these two approaches [66].
Pronunciation variants have also been
tried in the lexicon to accommodate
accented speech [30]. Except for small
gains, the problem is largely unsolved.

Similarly, some progress has been
made for automatically detecting speak-
ing rate from the speech signal [47], but
such knowledge is not exploited in ASR
systems, mainly due to the lack of any
explicit mechanism to model speaking
rate in the recognition process.

LANGUAGE CHARACTERISTICS:

DIALECT, VOCABULARY, GENRE

Many important aspects of speaker vari-
ability derive from nonstandard dialects.
Dialectal differences in a language can
occur in all linguistic aspects: lexicon,
grammar (syntax and morphology), and
phonology. This is particularly damaging
in languages where spoken dialects differ
dramatically from the standard form, e.g.,
Arabic [39]. The vocabulary and language
use in an ASR task change significantly
from task to task, necessitating estimation
of new language models for each case. A
primary reason language models in
current ASR systems are not portable
across tasks even within the same lan-
guage or dialect is that they lack linguistic

sophistication: they cannot consistently
distinguish meaningful sentences from
meaningless ones, nor grammatical from
ungrammatical ones. Discourse structure
is also rarely considered—merely the local
collocation of words.

Another reason why language model
adaptation to new domains and genres is
very data-intensive is the “nonparamet-
ric” nature of the current models. When
the genre changes, each vocabulary-sized
conditional probability distribution in
the model must be reestimated,
essentially independently of all the oth-
ers. Several contexts may share a “back-
ing off” or lower-order distribution, but
even those in turn need to be reesti-
mated independently, and so on.

With a few exceptions, such as vocal
tract length normalization (VTLN) [13]
and cepstral mean subtraction (CMS)
[57], models used in today’s speech sys-
tems have few explicit mechanisms for
accommodating most of the uninforma-
tive causes of variability listed above. The
stochastic components of the model,
usually Gaussian mixtures, are instead
burdened with implicitly modeling the
variability in a frame-by-frame manner.
Consequently, when the speech pre-
sented to a system deviates along one of
these axes from the speech used for
parameter estimation, predictions by the
models become highly suspect. The per-
formance of the technology degrades
catastrophically, even when the devia-
tions are such that the intended human
listener exhibits little or no difficulty in
extracting the same information.

TOWARDS ROBUST SPEECH
RECOGNITION IN EVERYDAY
ENVIRONMENTS

Developing robust ASR requires going
away from the matched training and test
paradigm along one or more of the axes
mentioned above. To do so, a thorough
understanding of the underlying causes
of variability in speech and, subsequently,
accurate and parsimonious parameter-
ization of such understanding in the
models will be needed. The following
issues, however, transcend specific meth-
odologies and will play a key role in any
solution in the future.

A large corpus of diverse speech
will have to be compiled, containing
speech that carries information of the
kind targeted for extraction by the
technology and exhibits large (but
calibrated) extraneous deviations of
the kind against which robustness is
sought, such as a diverse speaker pop-
ulation with varying degrees of non-
native accents or different local
dialects, widely varying channels and
acoustic environments, diverse
genres, and so on. Such a corpus will
be needed to construct several train-
ing and test partitions such that
unseen conditions of various kinds
are represented.

Multistream and multiple-module
strategies will have to be developed.
Any robust method will have to iden-
tify reliable elements of the speech
spectrum in a data-driven manner by
employing an ensemble of analyses
and using the analysis that is most
reliable in that instance. A multiple-
module approach will also entail a
new search strategy that treats the
reliability of a module or stream in
any instance as another hidden vari-
able over which to optimize and seeks
the most likely hypothesis over all con-
figurations of these hidden variables.

New, robust training methods for
estimating models from diverse
(labeled) data will be required. To ade-
quately train a model from diverse
data, either the data will have to be
normalized to reduce extraneous vari-
ability or training-condition-adaptive
transformations will have to be
estimated jointly with a condition-
independent model, e.g., speaker-
adaptive training (SAT) [1] of acoustic
models in ASR.

Detailed, unsupervised adaptation
will become even more important in
unseen test conditions than it is today.
In case of adaptive model transforma-
tions, a hierarchical parameterization
of the transforms will have to be
developed, e.g., from parsimonious
ones like VTLN or CMS through mul-
ticlass maximum likelihood linear
regression (MLLR) to a detailed trans-
formation of every Gaussian density,
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in order to permit both robust trans-
form estimation during training and
unsupervised transform estimation
from test data.

Exploitation of unlabeled or par-
tially labeled data will be necessary to
train the models and to automatically
select parts of the unlabeled data for
manual labeling in a way that maxi-
mizes its utility. This need is partly
related to the above-mentioned com-
pilation of diverse training data. The
range of possible combinations of
channel, speaker, environment, speak-
ing style, and domain is so large that it
is unrealistic to expect transcribed or
labeled speech in every configuration
of conditions for training the models.
However, it is feasible to simply collect
raw speech in all conditions of inter-
est. Another important reason for
unsupervised training will be that the
systems, like their human “baseline,”
will have to undergo lifelong learning,
adjusting to evolving vocabulary,
channels, language use, and so on.

Substantial linguistic knowledge
will need to be injected into structur-
al design and parameterization of the
systems, particularly the statistical
language models. There are numer-
ous studies indicating that short
segments of speech are locally ambig-
uous even to human listeners,
permitting multiple plausible inter-
pretations. Linguistically guided reso-
lution of ambiguity using cues from a
very wide context will be needed to
arrive at the “correct” interpretation.
Some form of semantics, or represen-
tation of meaning, in addition to
syntactic structure will have to be
used in the system.

All available metadata and
context-dependent priors will have
to be exploited by the systems. In a
telephony application, for instance,
geospatial information about the
origin and destination of the call,
known priors about the calling and
called parties, and knowledge of
world events that influence the lan-
guage, vocabulary, or topic of con-
versation will have to be used by
the system.

Discriminative criteria [5] for
parameter estimation throughout the
system and multipass recognition
strategies, both being pursued today,
will also be vital. The former yield
more robust models by focusing on
categorization rather than descrip-
tion of the training data, while the
latter lead to more robust search by
quickly eliminating implausible
regions of the search space and apply-
ing detailed models to a small set of
hypotheses likely to contain the cor-
rect answer [56].

Language-universal speech tech-
nology is a significant research chal-
lenge in its own right, with obvious
rewards for “resource-impoverished”
languages, and exploiting language
universals could yield additional
robustness even in resource-rich
languages.

Human performance on actual
test data will have to be measured
and used (1) for evaluation of robust-
ness, giving systems greater latitude
where there is genuine ambiguity
and insisting on meeting the “gold
standard” where there is no ambigui-
ty and (2) for gaining insights from
specific instances in which humans
are robust and those in which they
are not, leading eventually to new
technological solutions.

A research program that emphasizes
the accurate transcription of “everyday
speech”—by which we mean speech
acquired in realistic everyday situations
with commonly used microphones from
native and nonnative speakers in various
speaking styles on a diversity of topics
and tasks—will advance the robustness
of speech recognition systems along one
or more of the axes of variability men-
tioned above.

NOVEL SEARCH PROCEDURES

FOR KNOWLEDGE-RICH

SPEECH RECOGNITION

As noted above, search methods that
explicitly exploit parallelism may be an
important research direction for speech
understanding systems. Additionally, as
innovative recognition algorithms are
added, there will be an impact on the

search component. For instance, rather
than the left-to-right (and sometimes
right-to-left) recognition passes that are
used today, there could be advantages
to either identifying islands of reliability
or islands of uncertainty and relying on
alternate knowledge sources only
“locally” in the search process. The
incorporation of multiple tiers of units
(such as articulatory feature, subphone
state, phone, syllable, word, and multi-
word phrase) could have consequences
for the search process. Finally, so-called
“episodic” approaches to ASR are being
investigated [64]. These rely on exam-
ples of phrases, words, or other units
directly, as opposed to statistical models
of speech. While this seems to be a
throwback to the days before the promi-
nence of HMMs, the idea is gaining new
prominence due to the availability of
larger and larger speech databases and
thus more and more examples for each
modeled speech unit. It could well be
that an important future direction
would be to learn how best to incorpo-
rate these approaches into a search that
also uses statistical models, which have
already proven their worth.

CONCLUSIONS

We have surveyed historically significant
events in speech recognition and under-
standing that have enabled this technol-
ogy to become progressively more
capable and cost-effective in a growing
number of everyday applications. With
additional research and development,
significantly more valuable applications
are within reach.

A set of six ambitious, achievable,
and testable “grand challenge” tasks
has been proposed. Successful achieve-
ment of these would lay the ground-
work for bringing a number of
high-utility applications to reality. Each
of these challenge tasks should benefit
and be benefited by collaboration and
cross-fertilization with related human-
language technologies, especially
machine translation, information
retrieval, and natural-language process-
ing, as well as brain and cognitive sci-
ence. Research achievements in speech
recognition and understanding have
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demonstrably led to major advances in
related human-language technologies
as well as more general areas such as
pattern recognition.

To enable and implement these
grand challenges, a number of espe-
cially promising research directions
were outlined and supported. Though
these have been largely unfunded so far,
the pursuit of these initiatives would
contribute to a substantial increase in
the core technology on which robust
future applications depend.
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