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ABSTRACT

This paper presents a maximum likelihood (ML) framework for multi-
microphone sound source localization (SSL). Besides deriving the
framework, we focus on making the connection and contrast be-
tween the ML-based algorithm and popular steered response power
(SRP) SSL algorithms such as phase transform (SRP-PHAT). We
also show under our ML framework how challenging conditions
such as directional microphone arrays and reverberations can be han-
dled. The computational cost of our method is low – similar to SRP-
PHAT. The effectiveness of the proposed method is shown on a large
dataset with 99 real-world audio sequences recorded by directional
circular microphone arrays in over 50 different meeting rooms.

Index Terms— Sound source localization, maximum likelihood,
directional circular microphone arrays

1. INTRODUCTION

Sound source localization (SSL) using microphone arrays has been
an active research topic since the early 1990’s [1]. It has found many
important applications such as human-computer interaction [2, 3]
and intelligent rooms [4, 5]. A large number of SSL algorithms have
been proposed in literature, with varying degrees of accuracy and
computational complexity.

For broadband acoustic source localization applications such as
teleconferencing, a number of SSL techniques are popular, includ-
ing steered-beamformer (SB) based, high-resolution spectral estima-
tion based, time delay of arrival (TDOA) based [1], and learning
based [6]. Among them, the TDOA based approaches have received
extensive investigation [1, 4, 7, 8, 9, 10]. In this paper, we derive
a TDOA based maximum likelihood (ML) framework for multi-
microphone sound source localization. While this is not the first
time ML estimation is applied for SSL [11, 12, 13, 14], our deriva-
tion allows us to build a connection between the ML based SSL and
the popular SRP based SSL algorithms, which are known to work
extremely well in practical environments [15, 4, 16] and have very
low computational cost. We demonstrate within the ML framework
how reverberation can be treated by introducing an additional term
during noise modeling, and how the different gains of microphones
(e.g., when directional microphones are used in the array) can be
compensated from the received signal and the noise model. The ef-
fectiveness of the proposed method is shown on a real-world dataset
containing 99 audio sequences recorded by directional circular mi-
crophone arrays in over 50 meeting rooms.

The rest of the paper is organized as follows. We review a num-
ber of popular SSL approaches in Section 2. The ML framework is
derived in Section 3. Relationship between the ML SSL algorithm
and various existing approaches is discussed in Section 4. Experi-
ments and conclusions are given in Section 5 and 6, respectively.

2. REVIEW OF EXISTING APPROACHES

Consider an array of P microphones. Given a source signal s(t), the
signals received at these microphones can be modeled as [9, 16]:

xi(t) = αis(t− τi) + hi(t)⊗ s(t) + ni(t), (1)

where i = 1, · · · , P is the index of the microphones, τi is the time
of propagation from the source location to the ith microphone; αi is a
gain factor that includes the propagation energy decay of the signal,
the gain of the corresponding microphone, the directionality of the
source and the microphone, etc; ni(t) is the noise sensed by the ith

microphone; hi(t)⊗s(t) represents the convolution between the en-
vironmental response function and the source signal, often referred
as the reverberation. In many existing SSL approaches [17, 1, 8, 10],
the reverberation term was ignored for simplicity. In the frequency
domain, we can rewrite the above model as:

Xi(ω) = αi(ω)S(ω)e−jωτi + Hi(ω)S(ω) + Ni(ω), (2)

where we also allow the αi to vary with frequency.
The most straightforward SSL algorithm, is to take each pair of

the microphones and compute their cross-correlation function. For
instance, the correlation between the signals received at microphone
i and k can be computed in the frequency domain as:

Rik(τ) =

Z
Xi(ω)X∗

k(ω)ejωτdω, (3)

where ∗ represents complex conjugate. The τ that maximizes the
above correlation is the estimated time delay between the two sig-
nals. When more than two microphones are considered, one can
sum over all possible pairs of microphones and have:

R(s) =

PX
i=1

PX

k=1

Z
Xi(ω)X∗

k(ω)ejω(τi−τk)dω, (4)

=

Z ˛̨
˛

PX
i=1

Xi(ω)ejωτi

˛̨
˛
2

dω, (5)

The common practice is to maximize the above correlation through
hypothesis testing, where s is the hypothesized source location, which
determines the τi’s on the right. Eq. (5) is also known as the steered
response power (SRP) of the microphone array.

To address the reverberation and noise that may affect the SSL
accuracy, researchers found that adding a weighting function in front
of the correlation can greatly help. Eq. (4) is thus rewritten as:

R(s) =

PX
i=1

PX

k=1

Z
Ψik(ω)Xi(ω)X∗

k(ω)ejω(τi−τk)dω, (6)



A number of weighting functions have been investigated in litera-
ture [17]. Among them, the heuristic-based PHAT weighting [17]
defined as:

Ψik(ω) =
1

|Xi(ω)X∗
k(ω)| =

1

|Xi(ω)||Xk(ω)| (7)

has been found to perform very well under realistic acoustical con-
ditions [4, 16]. Inserting Eq. (7) into Eq. (6), one gets:

R(s) =

Z ˛̨
˛

PX
i=1

Xi(ω)ejωτi

|Xi(ω)|
˛̨
˛
2

dω, (8)

This algorithm is called SRP-PHAT [15]. Note SRP-PHAT is very
efficient to compute, because the number of weighting and summa-
tions drops from P 2 in Eq. (6) to P .

A more theoretically-sound weighting function is the maximum
likelihood (ML) formulation given by Brandstein et al [1], assum-
ing high signal to noise ratio and no reverberation. The weighting
function of a microphone pair is defined as:

Ψij(ω) =
|Xi(ω)||Xj(ω)|

|Ni(ω)|2|Xj(ω)|2 + |Nj(ω)|2|Xi(ω)|2 . (9)

Eq. (9) can be inserted into Eq. (6) to obtain a ML based algorithm.
This algorithm is known to be robust to noises, but its performance
in real-world applications is relatively poor, because reverberation is
not modeled during its derivation. In [16], Rui and Florêncio im-
proved the algorithm by treating the reverberation as another type of
noise, same as [4]:

|Nc
i (ω)|2 = γ|Xi(ω)|2 + (1− γ)|Ni(ω)|2, (10)

where Nc
i (ω) is the combined noise or total noise. Eq. (10) is then

plugged into Eq. (9) (replacing Ni(ω) with Nc
i (ω)) to obtain the new

weighting function. Their follow-up work [18] used some further
approximation and gave:

R(s) =

Z ˛̨
˛

PX
i=1

Xi(ω)ejωτi

γ|Xi(ω)|+ (1− γ)|Ni(ω)|
˛̨
˛
2

dω, (11)

whose computational efficiency is close to SRP-PHAT.
Note, however, that algorithms derived from Eq. (9) are not true

ML algorithms for multiple microphones. This is because the opti-
mal weight in Eq. (9) was derived only for two microphones. When
more than 2 microphones are used, the adoption of Eq. (6) assumes
that pairs of microphones are independent and their likelihood can
be multiplied together, which is questionable. In the next section, a
true ML algorithm will be developed for the case of multiple micro-
phones. And we will show the connection between the ML algorithm
and the existing algorithms in Section 4.

3. THE PROPOSED FRAMEWORK

Let us start by rewriting Eq. (2) into a vector form:

X(ω) = S(ω)G(ω) + S(ω)H(ω) + N(ω), (12)

where

X(ω) = [X1(ω), · · · , XP (ω)]T ,

G(ω) = [α1(ω)e−jωτ1 , · · · , αP (ω)e−jωτP ]T ,

H(ω) = [H1(ω), · · · , HP (ω)]T ,

N(ω) = [N1(ω), · · · , NP (ω)]T .

Among the variables, X(ω) represents the received signals, hence
it is known. G(ω) can be estimated or hypothesized during the
SSL process, which will be detailed later. The reverberation term
S(ω)H(ω) is unknown, and we will treat it as another type of noise.

To make the above model mathematically tractable, we assume
the combined total noise,

Nc(ω) = S(ω)H(ω) + N(ω), (13)

follows a zero-mean, independent between frequencies, joint Gaus-
sian distribution, i.e.,

p(Nc(ω)) = ρ exp
n
− 1

2
[Nc(ω)]HQ−1(ω)Nc(ω)

o
, (14)

where ρ is some constant; superscript H represents Hermitian trans-
pose, Q(ω) is the covariance matrix, which can be estimated by:

Q(ω) = E{Nc(ω)[Nc(ω)]H}
= E{N(ω)NH(ω)}+ |S(ω)|2E{H(ω)HH(ω)}(15)

Here we assume the noise and the reverberation are uncorrelated.
The first term in Eq. (15) can be directly estimated from the silence
periods of the acoustical signals:

E(Ni(ω)N∗
j (ω)) = lim

K→∞
1

K

KX

k=1

Nik(ω)N∗
jk(ω), (16)

where k is the index of audio frames that are silent. Note the back-
ground noises received at different microphones may be correlated,
such as the ones generated by computer fans in the room. If we be-
lieve the noises are independent at different microphones, we can
simplify the first term of Eq. (15) further as a diagonal matrix:

E{N(ω)NH(ω)} = diag(E{|N1(ω)|2}, · · · , E{|NP (ω)|2}).
(17)

The second term in Eq. (15) is related to reverberation. It is
generally unknown. As an approximation, we assume it is diagonal:

|S(ω)|2E{H(ω)HH(ω)} ≈ diag(λ1, · · · , λP ), (18)

with the ith diagonal element as:

λi = E{|Hi(ω)|2|S(ω)|2}
≈ γ(|Xi(ω)|2 − E{|Ni(ω)|2}) (19)

where 0 < γ < 1 is an empirical parameter. Eq. (19) assumes
that the reverberation energy is a portion of the difference between
the total received signal energy and the environmental noise energy.
The same assumption was used in Eq. (10) [4, 16]. Note again that
Eq. (18) is an approximation, because normally the reverberation
signals received at different microphones are correlated, and the ma-
trix should have non-zero off-diagonal elements. Unfortunately, it
is generally very difficult to estimate the actual reverberation signals
or these off-diagonal elements in practice. In the following analysis,
we will use Q(ω) to represent the noise covariance matrix, hence
the derivation is applicable even when it does contain non-zero off-
diagonal elements.

When the covariance matrix Q(ω) can be estimated from known
signals, the likelihood of the received signals can be written as:

p(X|S,G,Q) =
Y
ω

p(X(ω)|S(ω),G(ω),Q(ω)), (20)



where

p(X(ω)|S(ω),G(ω),Q(ω)) = ρ exp
˘− J(ω)/2

¯
, (21)

J(ω) = [X(ω)− S(ω)G(ω)]HQ−1(ω)[X(ω)− S(ω)G(ω)].
(22)

The goal of the proposed sound source localization is thus to max-
imize the above likelihood, given the observations X(ω), gain ma-
trix G(ω) and noise covariance matrix Q(ω). Note the gain ma-
trix G(ω) requires information about where the sound source comes
from, hence the optimization is usually solved through hypothesis
testing. That is, hypotheses are made about the source source lo-
cation, which gives G(ω). The likelihood are then measured. The
hypothesis that results in the highest likelihood is determined to be
the output of the SSL algorithm.

Instead of maximizing the likelihood in Eq. (20), we minimize
the following negative log-likelihood:

J =

Z

ω

J(ω)dω. (23)

Since we assume the probabilities over the frequencies are indepen-
dent to each other, we may minimize each J(ω) separately by vary-
ing the unknown variable S(ω). Given Q−1(ω) is a Hermitian sym-
metric matrix, Q−1(ω) = Q−H(ω), if we take derivative of J(ω)
over S(ω), and set it to zero, we get:

S(ω) =
GH(ω)Q−1(ω)X(ω)

GH(ω)Q−1(ω)G(ω)
(24)

Insert the above S(ω) to J(ω), we get:

J(ω) = J1(ω)− J2(ω) (25)

J1(ω) = XH(ω)Q−1(ω)X(ω) (26)

J2(ω) =
[GH(ω)Q−1(ω)X(ω)]HGH(ω)Q−1(ω)X(ω)

GH(ω)Q−1(ω)G(ω)

(27)

Note J1(ω) is unrelated to the hypothesized locations during hypoth-
esis testing. Hence, the ML based SSL algorithm shall maximize:

J2 =

Z

ω

[GH(ω)Q−1(ω)X(ω)]HGH(ω)Q−1(ω)X(ω)

GH(ω)Q−1(ω)G(ω)
dω

(28)

4. DISCUSSION

In order to compare the proposed algorithm with the existing ap-
proaches, let us first perform some simplifications on Eq. (28). Let
us assume that the noises in the microphones are independent, thus
Q(ω) is a diagonal matrix:

Q(ω) = diag(κ1, · · · , κP ), (29)

with the ith diagonal element as:

κi = λi + E{|Ni(ω)|2}
= γ|Xi(ω)|2 + (1− γ)E{|Ni(ω)|2} (30)

Eq. (28) can thus be written as:

J2 =

Z

ω

1PP
i=1 |αi(ω)|2/κi

˛̨
˛

PX
i=1

α∗i (ω)

κi
Xi(ω)ejωτi

˛̨
˛
2

dω (31)

(b)(a)

Fig. 1. RoundTable device and its captured images. (a) The
RoundTable device. (b) The captured panoramic images.

The gain factor αi(ω) can be accurately measured in some applica-
tions. For applications where it is unknown, we may assume it as a
positive real number and estimate it as follows:

|αi(ω)|2|S(ω)|2 ≈ |Xi(ω)|2 − κi, (32)

where both sides represent the power of the signal received at mi-
crophone i without the combined noise (noise and reverberation).
Therefore,

αi(ω) =
p

(1− γ)(|Xi(ω)|2 − E{|Ni(ω)|2})‹|S(ω)|, (33)

Insert Eq. (33) to Eq. (31), we get:

J2 =

Z

ω

˛̨
˛PP

i=1
1
κi

p
|Xi(ω)|2 − E{|Ni(ω)|2}Xi(ω)ejωτi

˛̨
˛
2

PP
i=1

1
κi
|Xi(ω)|2 − E{|Ni(ω)|2 dω

(34)
In the cases that the signal to noise ratio (SNR) is very high, we have
|Xi(ω)|2 À E{|Ni(ω)|2}. It is easy to verify that Eq. (34) can be
simplified to the SRP-PHAT algorithm, Eq. (8).

The connection between the proposed ML algorithm and the ML
algorithm in Eq. (9) is not straightforward. Recall in their original
derivation, Brandstein et al. [1] gave the variance of the estimated
phase for a particular frequency as:

V ar[θi(ω)] = E{|Ni(ω)|2}‹|Xi(ω)|2. (35)

If we ignore reverberation, i.e., set γ = 0, and assume noise is rel-
atively small compared with the signal (the same assumptions were
made in [1]), Eq. (34) can be written as:

J2 =

Z

ω

˛̨
˛PP

i=1
eθi(ω)ejωτi

E{|Ni(ω)|2}/|Xi(ω)|2
˛̨
˛
2

PP
i=1 |Xi(ω)|2/E{|Ni(ω)|2}dω. (36)

Therefore, the phase term of each microphone eθi(ω)ejωτi is indeed
weighted by the inverse of the phase variance (Eq. (35)). Hence the
previous ML algorithm is conceptually similar to the proposed algo-
rithm. On the other hand, the proposed algorithm differs from the
previous method in the additional frequency-dependent weighting
(denominator in Eq. (36)). It also has a more rigorous derivation and
is a true ML algorithm for multiple microphones.

The ML SSL framework presented in [13] is closely related to
ours. There the goal is to estimate not only the sound source location,
but also its directionality. They used a similar model as Eq. (12),
but without the reverberation term. The noise covariance matrix is
assumed as diagonal, Q(ω) = σI, where σ is independent of the
microphone index and frequency, which led to a simplified target
function as:

J2 =

Z

ω

˛̨ PX
i=1

α∗(ω)Xi(ω)ejωτi
˛̨2

dω. (37)

It is not difficult to verify that with all their assumptions, Eq. (37)
can be easily obtained from Eq. (31).
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Fig. 2. Experimental results of SSL accuracy on the real-world dataset. Cells with bold fonts indicate best performance in the group.

5. EXPERIMENTAL RESULTS

We test the performance of the proposed SSL algorithm, in particu-
lar, Eq. (34), on both synthetic and real-world datasets. Due to page
limits, we report the results on real-world dataset only, and refer the
reader to [19] for more detailed results.

The two benchmark algorithms we use to compare with the pro-
posed method are SRP-PHAT (Eq. (8)) and its improved version
from [18] (Eq. (11)). Hereafter the second benchmark algorithm
is referred as SRP-RUI. Note SRP-PHAT is a special case of SRP-
RUI when γ = 1.0, while SRP-RUI is a special case of the proposed
ML-based SSL algorithm when αi(ω) ≡ α(ω), i = 1, · · · , P , and
the frequency weightings are ignored.

We test the three SSL algorithms on 99 real-world meetings cap-
tured by the RoundTable device. Fig. 1 shows the device as well
as two example panoramic images of the meeting rooms. SSL is
used in RoundTable to help frame the speaker in a high-resolution
video output. One difficulty of SSL for the RoundTable device is
the directional microphones deployed to capture better audio. For
microphones facing away from the speaker, the phase may not be
very reliable. In [18], the authors combated the issue by selecting
a subset of the microphones for SSL. In this paper, we will still use
all the microphones, since the ML-based SSL should have weighted
different microphones based on their SNR automatically. We will
compare our results with [18].

The meetings are 4 minutes each, captured in about 50 different
meeting rooms in order to test the robustness of the SSL algorithms
in different environments. The noise levels of the rooms and the dis-
tances from the speakers to the devices vary significantly, causing
the input SNR to range from 5 dB to 25 dB. The speaker locations
of 6706 audio frames are labeled manually based on the correspond-
ing face locations in the panoramic image. We report the results on
the percentage of frames that are within 6◦ and 14◦ of the ground
truth azimuth angle. This is good enough for the purpose of speaker
pointing in RoundTable.

The experimental results are shown in Fig. 2. It can be seen
that the proposed ML-based SSL performs the best on this challeng-
ing dataset. The improvement of ML-based SSL over SRP-PHAT
is about 2%. After examining the sequences, we found for many
high SNR sequences the two algorithms perform almost the same.
However, ML-based SSL achieves significant improvement on those
noisy sequences. The algorithm in [18] is more efficient than SRP-
PHAT, however the performance is slightly worse. This may be due
to the limited data available at that time.

6. CONCLUSION

We have shown a ML-based SSL algorithm that is efficient to com-
pute (Eq. (34)) yet works very well in practice. One future work we
are working on is to extend the current framework to multi-source
scenarios, which happens surprisingly often during daily meetings.
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