
Electronic copy available at: http://ssrn.com/abstract=2066175

A

Repeated Auctions under Budget Constraints:
Optimal bidding strategies and Equilibria

Ramakrishna GUMMADI, Stanford University
Peter KEY, Microsoft Research
Alexandre PROUTIERE, KTH Royal Institute of Technology

How should agents bid in repeated sequential auctions when they are budget constrained? A motivating
example is that of sponsored search auctions, where advertisers bid in a sequence of generalized second
price (GSP) auctions. These auctions, specifically in the context of sponsored search, have many idiosyncratic
features that distinguish them from other models of sequential auctions: First, each bidder competes in a
large number of auctions, where each auction is worth very little. Second, the total bidder population is
often large, which means it is unrealistic to assume that the bidders could possibly optimize their strategy
by modeling specific opponents. Third, the presence of a virtually unlimited supply of these auctions means
bidders are necessarily expense constrained.

Motivated by these three factors, we first frame the generic problem as a discounted Markov Decision
Process for which the environment is independent and identically distributed over time. We also allow the
agents to receive income to augment their budget at a constant rate. We first provide a structural character-
ization of the associated value function and the optimal bidding strategy, which specifies the extent to which
agents underbid from their true valuation due to long term budget constraints. We then provide an explicit
characterization of the optimal bid shading factor in the limiting regime where the discount rate tends to
zero, by identifying the limit of the value function in terms of the solution to a differential equation that can
be solved efficiently. Finally, we proved the existence of Mean Field Equilibria for both the repeated second
price and GSP auctions with a large number of bidders.

1. INTRODUCTION
In sponsored search auctions, such as those run by Google (AdWords) or Bing (ad-
Center), a query to a search engine triggers an auction for positions on the page re-
turned by the query. Advertisers bid for positions or slots, and successful bids result
in ads being displayed alongside “organic” results to the query. The slots are ordered,
where higher slots are more valuable. Under a Generalized Second Price (GSP) auc-
tion mechansim for slots, an agent places a single bid, bids are ranked by weight and
ranked bids determine the slot allocation. If an advert displayed in a slot is clicked,
then the advertiser pays the price to be in the current slot (i.e. the weighted bid of the
advertiser in the slot immediately below), a Pay-Per-Click payment model.

In addition, budgets constrain advertisers, who can specify a periodic budget limit,
typically for a day, month, or for a campaign. Budgets are important to both advertis-
ers and the auctioneer, but alter the dynamics of auctions: in consequence, how should
an advertiser bid “optimally” in a sequence of repeated auctions when budget con-
strained? We shall address this question, and also the related question: what happens
if all the advertisers bid optimally? Do they reach an equilibrium?

We shall use ad-auctions as a real-life exemplar of repeated auctions, where the
same good or similar goods (slots or slot-keyword pairs) is repeatedly auctioned over
time, and bidders (advertisers) repeatedly bid for these goods. In such auctions first,
budgets are typically large compared to the price of an action, at least 100 times large
than the price; for example bids may be in cents and budgets in dollars. Second, the
auctions are rarely “homogeneous”: apart from the disparity between the market prices
for different keywords, there can be significant variability between successive auctions
for the same keyword. The latter happens because the weights (CTR — click through
rates) are variable (since they are estimated and depend on the searcher [Athey and
Nekipelov 2010]), because of targeting, which affects the effective bid in an auction,
and because of budget constraints, variable weights and searcher dependent effects
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that cause the number of bidders for a particular keyword to vary over time, [Pin and
Key 2011].

Guided by this setting, we model a generic repeated auction where

— there are a large number of potential bidders (the market is thick),
— bidders are price takers,
— bidders are constrained by budgets that are large compared to the price paid in an

individual auction,
— in any one auction, a bidder faces i.i.d (independent and identically distributed)

bids, and where the bids faced are as if independent across auctions,
— bidders attempt to bid optimally, to optimize their net return over time given the

auction design.

The assumption of i.i.d. bidders may seem strong, but it has some support from
experimental evidence [Pin and Key 2011]. It can also be theoretically justified using
Mean Field asymptotics. We use a model similar to that developed in [Iyer et al. 2011]
for repeated auctions with learning where at each step of the auction, a small number
of participants are randomly selected from a large population to compete. Under this
model, the i.i.d. assumption can be formally justified. There are other ways to validate
this assumption, see e.g. [Adlakha et al. 2011].

The fact that budgets are typically large compared to the price of an auction means
that a bidder needs to participate to a large number of auctions to spend her bud-
get. We shall exploit this observation to work with deterministic fluid approximations,
which in turn will help us characterize optimal bidding strategies.

Our Contribution. The main contribution of our paper is twofold in nature: we char-
acterize optimal bidding strategies for a general Online Budgeting Problem, and then
prove existence of Mean Field Equilibria (MFE).

The simplest case of the our online Budgeting Problem is that of a repeated second
price auction, where an agent competes against opponents whose highest bids at each
time step are i.i.d.. We formulate this problem as a Markov Decision Process (MDP),
and provide, for any arbitrary discount factor e−β , the linkage between the value func-
tion and the optimal bidding strategy (Theorem 2.1), which in turn gives a fixed point
equation for the value function.

The general Online Budgeting Problem is described in Section 3.1: we assume that
a single agent plays repeatedly against a partially observable environment whose evo-
lution is i.i.d. over time. The agent takes actions based on the observable part of the
environment, whilst respecting her own resource or budget constraint, and seeks to
maximize her discounted return, where time is discounted at rate e−β . Actions result
in a potential utility gain g to the agent, and potentially incur a cost c, which depletes
the budget of the agent. Both g and c can be arbitrary bounded functions that depend
upon both the actions of agents taken and the environment. We also allow the budget
to be increased at a constant rate a. By scaling the value function and taking the limit
as β → 0, we are able to explicitly characterize both the value function, and the opti-
mal control. The main result of the paper, stated in Theorem 3.1, gives a differential
equation that the limiting value function satisfies, and describes the optimal control
in terms of the derivative of limiting value function, V .

We demonstrate the power of this theorem by applying it to two examples: our re-
peated second price auction exemplar, and a repeated GSP. In both examples, the envi-
ronment at each step or auction includes the valuation of the object sold in this auction
to the agent, and the bids of the opponents. The valuation may be observed or not: in
the case of second-price auctions, it makes sense to assume that the agent observes the
valuation before choosing an appropriate bid, whereas in the case of sponsored search
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GSP auctions, the valuation depends on whether the displayed advert is clicked, which
cannot be observed before bidding. For repeated second-price auctions, we show that
the optimal bid u∗ when the observed valuation is v and scaled budget B is given by

u∗(v,B) =
v

1 + V ′(B)
.

In other words, 1/(1 + V ′(B)) is a bid shading factor. This same factor is involved
in the corresponding optimal bidding strategy for the GSP. The value function and
hence the optimal bid can be explicitly computed. Both depend on the opponent’s bid
distribution. As a consequence, the knowledge of the opponent’s bid distribution gives
a shading factor that reacts to opponent’s bids. This contrasts with the results derived
in [Zhou et al. 2008] for repeated auctions with budget constraints in an adversarial
environment. In such adversarial setting, the shading factor, proposed in [Zhou et al.
2008], is just a generic function, and does not take advantage of the knowledge of
opponent’s bid statistics, which potentially yields a much smaller utility.

Note also that we have a shading factor, whereas in the learning problem considered
by [Iyer et al. 2011], exploration necessary to determine the agent’s unknown valuation
requires overbidding. Also notice that the overbidding progressively disappears as the
agent learns her valuation with increased accuracy. On the contrary, in the case of
budget constraints, the shading factor has a persistent effect. It actually increases
with time, as the balance drops. Further, our results go a step beyond merely providing
structural insight by giving an explicit characterization to compute the optimal bid
shading factor.

The second feature of our work is the specification of a Mean Field game. In this
game, we assume that the number of competing agents is large, and that for each auc-
tion, a finite number of agents is randomly selected (as in [Iyer et al. 2011]). Each
agent has a random life-time, which is exponentially distributed with unit mean, and
optimizes her utility over their life-time (As we shall explain in Section 4, the agent’s
optimal bidding strategy corresponds to the strategy maximizing her discounted utility
with discount factor very close to 1). At the end of their life-time, agents are replaced by
new agents whose initial budget, valuation distribution and income is sampled accord-
ing to some probability measure. We prove that our Mean Field game always admits
equilibria (Theorem 4.2), which are potentially easy to compute. We also give, in Sec-
tion 5, corresponding theorems for both characterizations of the optimal control and
Mean Field equilibrium existence for finite time-horizon without a discount factor.

Related Work. The imposition of financial constraints is known to alter the properties
of even simple standard auctions. Che and Gale, [Che and Gale 1998] discuss some of
the implications of constraints for first price and second price auctions. There is some
literature on sequential auctions with budget constraints (see [Pitchik 2009] and refer-
ences therein), however the three critical modeling issues we motivate in the abstract
do not apply to existing body of work.

We have given a high level, simplified description of a GSP auction mechanism,
and in practice, different providers adapt this basic model, through the use of reserve
prices ([Ostrovsky and Schwarz 2011]), quality scores affecting the weights and so on.
The application of GSP to sponsored search auctions is described in more detail in,
for example, [Jansen and Mullen 2008], [Edelman et al. 2007], [Varian 2007]. There
is also an intermediary step between the query and the auction: advertisers bid on a
keywords, and the keywords in the query trigger the choice of advertisers that match
the query. The recent work on budget constrained bidding in auctions, termed bid op-
timization, has looked at how to bid across different keywords (different goods, in our
terminology). For example, Borgs et al. [Borgs et al. 2007] consider how to bid across
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keywords when users want to maximize their ROI (return on investment). [Feldman
et al. 2007] show that a simple randomized algorithm has a good competitive ratio.
[Even-Dar et al. 2009] discuss the complexity of this bid optimization, and the hard-
ness associated with broadmatch queries.

The literature on learning or strategies in repeated games has links with our work.
In the context of auctions [Cary et al. 2007] discuss a greedy (balanced bidding) strat-
egy for playing against the same set of players, and [Vorobeychik and Reeves 2007] look
at the evolution of best response dynamics. [Athey and Nekipelov 2010] and [Gomes
and Sweeney 2009] consider Bayes-Nash equilibria in a single round: This has some
interesting connections with our work. In particular, they show that a symmetric Nash
Equilibrium may not exist under certain circumstances, whereas by introducing both
budgets and asynchronous regeneration, we show that equilibria do exist. Our frame-
work includes the online stochastic knapsack problem as a special case. The connection
between the knapsack and sponsored search has been remarked on by several authors
(e.g. [Zhou et al. 2008],[Zhou and Naroditskiy 2008] and references therein).

2. THE OPTIMAL BIDDING STRATEGY IN REPEATED SECOND PRICE AUCTIONS
In the absence of budget constraints, repeated second price auctions from a bidder’s
perspective are effectively independent, where truthful bidding is a dominant strategy.
With budget constraints, truthful bidding may not be sustainable indefinitely, since the
bidder could eventually run out of money. In optimizing her bidding strategy over a se-
quence of auctions, there are two obvious competing factors, whose balance determines
the optimal bidding strategy:

— Option Value: Winning the auction at any price below the true valuation clearly
generates positive utility. However, by not winning the auction at a certain price,
the bidder creates a future opportunity to win an equivalent auction at a lower
price. This reduces the amount that a strategic bidder is willing to pay for winning
at a value below the true valuation, which we call the bid shading effect.

— Limited Patience: We assume that bidders have a preference for present utility
over future utility. However, bid shading postpones possible present utility to the
future. Therefore, a limited patience on part of the bidder moderates the extent of
underbidding that she finds to be optimal.

In order to formally characterize the above effects, we consider a budget constrained
bidder’s optimization problem over repeated second-price auctions with i.i.d. compet-
ing bid distribution, with a discounted utility. We formulate the problem as a Markov
Decision Process (MDP), and derive an explicit expression for the optimal bid as a
function of the balance.

2.1. Model
Time is discrete and indexed by i = 0, 1, 2, . . .. The bidder’s initial budget is b. At each
time period, this budget is increased by a fixed income a ≥ 0. At time period i, the bid-
der participates in a second-price auction. Denote by b(i) her budget at the beginning
of time period i. She observes the valuation v(i) of the object sold in that auction, and
bids accordingly. The highest bid of her opponents in auction i is b′(i). The instanta-
neous reward or utility for auction i when bidding u(i), is (v(i) − b′(i))1{b(i)≥u(i)>b′(i)},
and the corresponding cost is b′(i)1{b(i)≥u(i)>b′(i)}. Then the agent’s budget evolves as
follows:

b(i+ 1) = b(i) + a− b′(i)1{b(i)≥u(i)>b′(i)}. (1)
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Assume that valuations and highest opponent bids are i.i.d. over time with distribu-
tions, v(i) ∼ v and b′(i) ∼ b′1 for some generic random variables v and b′. The agent
chooses a bid u(i) for auction i after observing the valuation v(i), subject to the budget
constraint at all times. Her objective is to maximize her long-term discounted utility
defined as:

∞∑
i=0

e−βiE[(v(i)− b′(i))1{b(i)≥u(i)>b′(i)}].

This resulting MDP has a state at time i defined by (b(i), v(i)). The set of actions cor-
responds to the set of feasible bids, and the state transitions are dictated by Equation
(1). We assume that an agent needs to bid strictly more than all opponents to win an
auction, for simplicity. However, this can be relaxed to include any other tie breaking
rule without loss of generality.

2.2. The value function and the optimal bidding strategy
Let vβ(b) be the value function of the above MDP, i.e., it is the supremum, over all
possible bidding strategies, of the expectation of the discounted utility starting from
an initial budget b. The dynamic programming principle implies that2:

vβ(b) = Ev

[
max
u≤b

Eb′
[
1{u>b′}T1 + 1{u≤b′}T2

]]
(2)

where T1 = v − b′ + e−βvβ(b + a − b′) represents the expected utility obtained if the
agent wins the auction with valuation v against a highest opponent bid of b′, and T2 =
e−βvβ(b+a) is the expected utility when the auction is lost. Note that the optimization
over the bid is performed inside the expectation operator Ev, which captures the fact
that the valuation is known to the bidder before bidding. Rewriting, we can express
the optimal bid as a function of b, v, and a as:

u?β(b, v, a) = arg max
u≤b

Eb′
[
1{b≥u>b′}

(
v − λ(b′, b)

)]
, (3)

where the function λ is defined by:

λ(b′, b) = b′ + e−β(vβ(b+ a)− vβ(b+ a− b′)) (4)

The following theorem gives explicit compact expressions for the optimal bid and the
value function.

THEOREM 2.1. For any v and b, let λ−1(v, b) be the unique x that satisfies λ(x, b) = v.
λ−1 is well defined and the optimal bidding strategy is characterized as:

u?β(b, v, a) = min(λ−1(v, b), b).

Assume without loss of generality that the support for valuations and the maximum
opponent bid is in [0, 1]. Then the value function satisfies the following fixed-point equa-
tion, for all b ≥ 1:

vβ(b) = e−βvβ(b+ a) + E
[
v − λ(b′, b)

]+
. (5)

Remark 2.2. From Equation (4), λ(., b) may be interpreted as the magnification
function of the highest opponent’s bid as seen by the agent at a current budget b.

1a ∼ b means that a and b are identically distributed.
2Ex denotes the expectation w.r.t. the distribution of r.v. x.
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In other words, for each possible value of the opponent’s bid b′, the agent’s optimal
bid is obtained by mapping the current auction to a stand alone second price auc-
tion, where the opponent’s bid is mapped to λ(b′, b). The two terms in λ(b′, b) repre-
sent the following two costs which are subtracted from the valuation v to optimize the
agent’s bid. (1) The first term, b′ is the instantaneous cost of having to pay the price b′,
equal to the opponent’s bid, if the agent were to win the auction. (2) The second term,
e−β(vβ(b+ a)− vβ(b+ a− b′)), represents the opportunity cost involved in winning the
current auction at price b′, with respect to extracting utility from bidding the same
amount over the future auctions, if the agent were to lose the current auction.

In the next Section, the issue of computing the value function and the associated
optimal bidding strategy is explored in further detail. A key result is the identification
of value function in a limiting scenario of practical interest for ad auctions.

3. COMPUTATION OF THE VALUE FUNCTION AND THE OPTIMAL BID
Section 2 provides a structural characterization of the optimal bid. For practical ap-
plications, it is of interest to be able to explicitly identify the value function and the
associated optimal bid as a function of the remaining balance for any given opponent
bid distribution, which will be the focus of this section. Theorem 2.1 suggests the fol-
lowing iterative procedure to numerically estimate vβ . Define v0

β(b) = 0, ∀b ∈ R+ and
recursively compute vt+1

β , for t = 1, 2, . . . as follows. Let bmax be an upper bound for the
bid support. For all b ≥ bmax,

vt+1
β (b) = e−βvtβ(b+ a) + E[v − (b′ + e−β(vtβ(b+ a)− vtβ(b+ a− b′)))]+.

In ad auctions, there are two important factors that motivate the scaling behavior
considered in this section. These are: (1) bidders typically participate in a large num-
ber of auctions, i.e. the optimization horizon is large. (2) The transaction amounts in
each auction are miniscule (cents or a few dollars) in comparison to the magnitudes
of budgets and utilities generated over the long run (which could be several hundreds
or thousands of dollars). Even though the factors (1) and (2) might seem unrelated,
scaling by a single parameter, β turns out to be sufficient to characterize the limiting
behavior motivated by considering both these constraints simultaneously. More pre-
cisely, (1) implies that it is of interest to model a discount rate that is close to zero, i.e.
β ≈ 0. (2) implies that the arguments of interest for the value function vβ(.) involve
ranges much larger than a, b′. Furthermore, the magnitude of the value function itself
is much larger than a, b′, which is consistent with β ≈ 0, since the utility is effectively
aggregated over a large time horizon for small discount rates. This regime makes it
inefficient to use value iteration for estimating vβ , since both vβ(.) and the argument
range over which vβ has to be approximated need to be large. This is illustrated in
the appendix, where the convergence of the value iteration procedure is graphically
represented for various discount factors.

The following scaling of value function models both (1) and (2) simultaneously:

Vβ(B) , βvβ(B/β)

Theorem 3.1 shows that Vβ(.) has a well defined limit when β → 0, and explicitly
identifies its limit, V (.). In fact, this limiting characterization applies to a more general
class of online budget problems, of which repeated auctions is one specific instance.
Other instances of this framework in the context of broadcast scheduling may also be
found in [Gummadi 2011].

Practical Implications: Besides the theoretical interest in characterizing the
limit, Theorem 3.1 is also useful as a practical tool for approximately computing the op-
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timal bidding strategy under scenarios where (1) and (2) discussed above apply. To find
the optimal bidding strategy, the limiting value function is first computed using the-
orem 3.1 by modeling the opponent bid distribution and the income parameter. Since
the scaling parameter β → 0 has two complementary interpretations, either could be
used in practice to fix its value. One method is to interpret it directly as the discount
factor, by perhaps using an estimate for the probability that the bidder participates in
a fixed large number of auctions. The other method is to estimate the asymptotic value
function vβ(b) as b→∞, which can be interpreted as the maximum utility that the bid-
der could obtain if she were to participate repeatedly without any budget constraints.
β can then be fixed to be the ratio of V (∞)/vβ(∞), from the scaling definition used.
Having modeled β appropriately, at any current balance, b, the bidder can estimate
her optimal bid shading factor using the derivative of the limiting value function, V (.)
at the scaled argument, βb. Note that under assumption (2), b could be large, but βb
remains finite since β is small.

3.1. A General Online Budgeting Problem
We now describe a general model of stochastic online budget optimization that includes
both the repeated second price auctions considered in Section 2, and the Generalized
Second Price Auctions. The model consists of an agent taking actions repeatedly in a
random environment, generating utilites that require payments subject to a budget
constraint.

Random environment. A random environment that is i.i.d. over time affects the util-
ities and payments. For time period i, the environment is described by the random
variable ξ(i), taking values in RN . ξ(i), i = 0, 1, . . . are independent and identically
distributed, with ξ(i) ∼ ξ, where ξ denotes a generic independent copy. Let F(i) be
the σ-algebra generated by ξ(i). ξ is partially observable, and F0(i) ⊂ F(i) denotes a
σ-algebra that represents the observable part of the environment for time period i.

Actions. At the beginning of time period i, the agent chooses an action from a com-
pact set U based on the observable part of the environment. Formally, this action is
represented by a F0(i)-measurable random variable u(i).

Utility. The utility obtained in a time period depends on the action and the random
environment, and is given by a bounded function g : U ×RN → R. The agent’s objective
function is her expected infinite horizon discounted utility,

∑∞
i=0 e

−βiE[g(u(i), ξ(i))].
Resource constraint and feasible strategy. The agent’s resources are limited, and in-

volve a consumption or payment at each time. The payment made by the agent in a
time period depends on the action and the random environment, denoted by a positive
and bounded function c : U × RN → R+. We assume that there exists an action which
consumes no resource and provides no utility, i.e. ∃0 ∈ U such that c(0, ξ) = 0 = g(0, ξ),
for all ξ. A fixed income a is also added to the resource at each time period. Let b(i)
denote the amount of resources or budget available at the beginning of time period i.
The agent’s budget evolves as follows:

b(i+ 1) = b(i) + a− c(u(i), ξ(i)), b(0) = b, (6)
where b is the initial budget. The agent is forbidden from taking any sequence of ac-
tions that could lead to a negative balance. More precisely, given an initial budget b,
the set Ub of feasible policies is the set of all sequences of actions u(i) ∈ F0(i) for all i
such that almost surely, b(i) ≥ 0 for all i.

Value Function. The resulting discrete time constrained MDP has the following
value function:

vβ(b) = sup
u∈Ub

(
E
∞∑
i=0

e−βig(u(i), ξ(i))

)
. (7)
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3.2. Examples of Auctions
3.2.1. The second-price auction. Following section 2, the agent is a bidder participat-

ing in a sequence of second-price auctions who wishes to maximize the infinite hori-
zon discounted surplus utility. The random environment in time period i is given by
ξ(i) = (v(i), b′(i)), where v(i) is the agent’s valuation of the object sold in the corre-
sponding auction, assumed to be observable, and b′(i) is the highest opponent’s bid.
The agent’s action, represented by u, denotes the bid. The utility and payment func-
tions are: g(u, ξ) = 1u>b′(v − b′) and c(u, ξ) = 1u>b′b′, for all u ∈ R+ and all ξ = (v, b′).

3.2.2. The Generalized Second Price auction (GSP). In a GSP auction, the agent is an
advertiser competing for one of L ad-slots, in decreasing order of preference, for ev-
ery auction. Let b′(i) = (b′1(i), . . . , b′L(i)) the random vector of bid thresholds required
to win the corresponding slot. Upon being displayed, the advertiser may or may not
receive a click, which has a valuation v(i). Let χl(i) denote the indicator variable
for a click in slot l, with χ(i) = (χ1(i), . . . , χL(i)). The random environment for auc-
tion i is ξ(i) = (v(i), b′(i), χ(i)). Let u(i) denote the bid. The utility and payment are:
g(u, ξ) =

∑L
l=1 1{b′l−1<u≤b

′
l}χl(v− b

′
l) and c(u, ξ) =

∑L
l=1 1{b′l−1≤u<b

′
l}χlb

′
l−1, for all u ∈ R+

and all ξ = (v, b′, χ) ∈ R+ × RL+ × {0, 1}L.

3.3. Limiting Value Function and Optimal Control
The following theorem provides a method for approximating the value function and the
associated optimal control when the discount factor e−β is close to 1. This represents
a situation where the discount factor is effective only over a large number of time
slots. An alternative view is that this describes a scenario where the magnitude of
transactions in individual time slots is miniscule in comparison to the infinite horizon
valuations. Consider the scaling described below:

Vβ(B) = βvβ(b) = βvβ(B/β),

vβ(b) is defined in (7) as the value function of the initial MDP. An easy way to re-
member the above notation is to note that a capital letter variable is related to its
corresponding small letter version, scaled down by a factor of β.

Let ξ be a generic copy of ξ(i), and F0 be the σ-algebra corresponding to its observable
part. For u ∈ F0, the expectations of the utility and payments are denoted as: ḡ(u) =
E[g(u, ξ)] and c̄(u) = E[c(u, ξ)], respectively.

THEOREM 3.1. Let φ : R+ 7→ R be defined as:

φ(x) = ax+ sup
u∈F0

(ḡ(u)− c̄(u)x), (8)

then φ is a convex and Lipschitz function with a minimum denoted η? = minx≥0 φ(x).
Let φ−1 : R 7→ R+ be an inverse to φ defined as: φ−1(y) = min{x ≥ 0 : φ(x) = y}. Then,
for all B ≥ 0, V (B) = limβ→0 βvβ(B/β) is well defined, and satisfies the ODE:

dV

dB
= φ−1(V ), V (0) = η?. (9)

Furthermore, when the scaled budget is B, an optimal control solves supu∈F0
(ḡ(u) −

c̄(u)V ′(B)).

The proof involves relating the discrete time problem being considered to that of a
continuous time version, which can be solved using the HJB equation. To do this, a
parametrized version of the discrete time problem is considered, where the agent re-
ceives a fixed terminal utility (the parameter) upon exhausting the balance. The value

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



Repeated Auctions under Budget Constraints A:9

function of this variant is shown to converge to the value function of an analogous con-
tinuous time MDP using the limit theorems of [Kushner 1990]. The primary technical
difficulty involves showing that the limit of Vβ matches the limit of the value function
of the parametrized variant, for an appropriate value of the terminal utility.

3.3.1. Application to the repeated second-price auction. Consider the repeated second-price
auction, defined in Subsection 3.2.1. To apply Theorem 3.1, we first need to compute
the function φ corresponding to this problem. We have:

φ(x) = ax+ sup
u∈σ(v)

E
[
1{u>b′}(v − b′(1 + x))

]
(10)

= ax+ (1 + x) sup
u∈σ(v)

E

[
1{u>b′}

(
v

1 + x
− b′

)]
. (11)

Note that the above supremum is achieved using the smallest possible bid greater
(or equal) than v/(1 + x). When the set of possible bids U is continuous, i.e., is R+,
then the supremum is achieved for bid u = v/(1 + x). When the set of bids is finite,
U = {u1 = 0, . . . , uK} (the set is ordered, uk+1 > uk), then the supremum is achieved
for u = min{b ∈ U : b ≥ v/(1 + x)}. We have (in both cases, either continuous or finite
possible bids):

φ(x) = ax+ E
[
(v − b′(1 + x))+

]
. (12)

V (B) is now computed using Theorem 3.1. Finally, when the (scaled) budget is B,
the optimal bid solves:

sup
u∈σ(v)

E
[
1{u>b′}(v − b′(1 + V ′(B)))

]
.

In the case of a continuous set of bids, the optimal bid is a function of the valuation
v and the (scaled) budget B, and is:

u?(v,B) =
v

1 + V ′(B)
. (13)

This bid may be interpreted as the optimal bid in a second-price auction in which the
bidder has a shaded valuation v

1+V ′(B) .
Similarly, in the case of a finite set of bids (as defined above), the optimal bid (at

scaled budget B) is:

u?(v,B) = min{b ∈ U : b ≥ v

1 + V ′(B)
}. (14)

Numerical example. In Figures 1-4, we illustrate the analytical results obtained in
the case of repeated second-price auctions. The agent may use any bid in R+. The high-
est opponent bid is distributed over {1, 2, . . . , 10} with probability vector proportional
to {1, 2, 3, 1, 1, 1, 2, 3, 2, 1} and the self valuation has a distribution supported on {4, 5, 6}
with probabilities {0.2, 0.6, 0.2}. Plots are obtained for different values of the income a.

3.3.2. Application to the repeated GSP auction. We now apply Theorem 3.1 to repeated
GSP auctions as described in Subsection 3.2.2. In what follows we just consider a con-
tinuous set of feasible bids, although the analysis can be readily extended to the case
of a discrete set of bids. We first construct the corresponding function φ:
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Fig. 1. Value functions V (B) plotted for different income rates a.
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Fig. 2. Plots of φ(x) (used to define the ODE that specifies the value function) for different income rates a.

φ(x) = ax+ sup
u∈R+

E

[
L∑
l=1

1{b′l−1<u≤b
′
l}χl(v − b

′
l−1(1 + x))

]
(15)

= ax+ (1 + x) sup
u∈R+

E

[
L∑
l=1

1{b′l−1<u≤b
′
l}χl

(
v

1 + x
− b′l−1

)]
. (16)
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Fig. 3. The optimal bid shading factor, 1
1+V ′(B)

as a function of the budget B for different income rates a.

The scaled value function V (B) is then computed using the inverse of function φ as
before. Now the optimal bid depends on the (scaled) budget only, and one can easily
check that:

u?(B) = arg max
u∈R+

E

[
L∑
l=1

1{b′l−1<u≤b
′
l}χl(

v

1 + V ′(B)
− b′l−1)

]
.

Let u?GSP (v) denote the optimal bid maximizing the expected utility in a stand-alone
GSP auction with the given opponent bid distribution. Then, once the above value
function has been computed, we can express the optimal bid in terms of optimal bid in
a stand-alone GSP auction at current balance B:

u?(B) = u?GSP

(
v

1 + V ′(B)

)
(17)

Although the GSP was described assuming that v is unobservable, the above char-
acterization also holds even if v was observable. In this case, u?(B, v), the optimal bid
at current budget B and for an observed valuation v, is given by (17). Therefore, both
repeated second-price and GSP auctions under budget constraints share the property
that the optimal bidding strategy corresponds to the optimal bid in a corresponding
single (stand-alone) auction where the valuation is shaded by a factor that depends on
the current budget.

4. MEAN FIELD EQUILIBRIA
In this section, we introduce a Mean Field game for a repeated second price auction.
The analysis and result presented below can be readily extended to the case of repeated
GSP auctions. The game is played by a very large population of bidders with different
valuations, initial budgets, and incomes. We assume that the set of bids and valuations
are finite: U = {u1 = 0, . . . , uK} and the set of valuations is V = {v1, . . . , vJ}. Let W
denote a probability measure on ∆J × R2

+ that defines the valuation distribution, the
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initial (scaled) budget, and income of a bidder sampled uniformly at random; where
for any integer m, ∆m denotes the m− 1 simplex ∆m = {x ∈ [0, 1]m :

∑m
j=1 xj = 1}.

The discount factor e−β used in previous sections to compute the value function
of a bidder may be interpreted as follows. After each auction, the bidder leaves the
system with probability 1 − e−β , and remains active with probability e−β . Optimizing
the discounted utility over an infinite time-horizon is then equivalent to optimizing
the un-discounted utility over the time the bidder remains active, i.e., over her life-
time. We use this interpretation to define our game. We consider the limiting regime
where β tends to 0, and by renormalizing time, the bidder life-time is exponentially
distributed with unit mean. During her life-time, the bidder is involved in a large
number of auctions. At the end of her life-time, the bidder disappears and is replaced
by a new bidder whose valuation distribution, initial budget, and income is drawn
according to probability measure W .

The game proceeds as follows. For each auction, α active bidders are selected uni-
formly at random3, and compete. The random selection of bidders is made so that each
active bidder is selected (in the limiting regime) at a positive rate γ over her life-time.
Each bidder then aims at maximizing the average utility over her life-time. In sum-
mary, the game is defined through the probability measure W and parameter γ.

To interpret the Mean Field game as a limit of a sequence of games with finite popu-
lation of bidders, we may consider repeated second-price auctions played by N bidders,
where for each auction, a given bidder is selected with probability α/N . To get the ap-
propriate limiting games when N →∞, we require that the time-horizon of any bidder
scales as h(N) where limN→∞ h(N)/N =∞. The convergence of the sequence of games
with finite bidder population to the corresponding Mean Field game can be analyzed
using classical Mean Field asymptotics techniques, and is out of the scope of this paper.

Assume now that in the Mean Field game, when selected a bidder faces an i.i.d.
highest opponent bid distribution p. She would then apply the corresponding optimal
bidding strategy as described in the previous section. Let us consider a bidder with
valuation distribution f , initial budget B, income a, and life-time T . In response to
the i.i.d. highest bid distribution p, this bidder applies an optimal bidding strategy as
characterized in the previous section, and the resulting empirical distribution of her
bid over her life-time is denoted by ψ(p, f,B, a, γT ). Note that the life-time is reduced
by a factor γ to account for the fact that each bidder is selected to compete at rate γ only.
This distribution characterizes the proportions of time the bidder selects the various
possible bids during her life-time (e.g., ψ(p, f,B, a, γT )k is the proportion of time the
bidder uses bid uk during her life-time). Further define the long-term empirical bid
distribution of a bidder characterized by f,B, a) as:

ψ̄(p, f,B, a) =

∫ ∞
0

ψ(p, f,B, a, γT )e−T dT.

Denote by X(p, f,B, a) a random variable with distribution ψ̄(p, f,B, a). Finally define
the mapping Γ : ∆K → ∆K where Γ(p) is the distribution of the highest bid of α −
1 bidders sampled uniformly at random (their valuation distribution, initial budget
and income have distribution W ) when they apply the optimal bidding strategy when
facing the highest bid distribution p. In other words, Γ(p) is the distribution of the
following random variable:

max (X1, . . . , Xα−1)) ,

3This assumption is not essential, and the selection of bidders could be biased, e.g. towards bidders with
higher budget or valuations.
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where the random variables (X1, . . . , Xα−1) are i.i.d. copies of random variable
X(p, f,B, a) and where (f,B, a) has distribution W . We are now able to define the no-
tion of a Mean Field equilibrium. In such equilibrium, each bidder faces i.i.d. highest
opponent bids, and has no incentive to change her bidding strategy.

Definition 4.1. A Mean Field equilibrium is defined as a bid distribution p, such
that

Γ(p) = p.

THEOREM 4.2. The repeated second-price auction Mean Field games admit at least
one equilibrium.

The above theorem is proved in appendix. The theorem follows from Brouwer’s the-
orem provided that the mapping Γ is continuous. We obtain the required continuity
by showing that p 7→ ψ̄(p, f,B, a) is continuous for all (f,B, a). By conditioning on the
bidder life-time, the continuity of ψ̄ results from the continuity of p 7→ ψ(p, f,B, a, γT ).
To prove the latter continuity, we use some structural properties of the optimal bidding
strategy. More precisely, it can be easily shown that this optimal bidding strategy is
defined through a finite sequence of switching points t1, . . . , tm where at time tj the
agent changes her bid, and actually decreases her bid. The continuity of ψ in p is ob-
tained by showing that the switching points are continuous with respect to p. This
results from observing that the function φ in Theorem 3.1, the value function V and
its derivative V ′ are continuous in p. In view of the construction of the optimal bidding
strategy through V ′, the continuity of V ′ in p implies that of the bid switching points,
and finally that of p 7→ ψ(p, f,B, a, γT ).

As mentioned at the beginning of this section, the above theorem is also valid in case
of repeated GSP auctions.

5. FINITE TIME HORIZON
Finally, we investigate the case where agents maximize their (un-discounted) utility
over a finite time-horizon. We first characterize the asymptotically optimal strategy
assuming that an agent faces an i.i.d. environment and that the time horizon t is
large. We then study the corresponding Mean Field equilibria.

5.1. Model and asymptotically optimal bidding strategy
5.1.1. Model. Let us first consider a single agent wishing to maximize her un-

discounted utility over a finite time horizon. The model is similar to that described
in Subsection 3.1. The only difference is that the value function is un-discounted and
computed over a finite time-horizon t:

v(b, t) = sup
u∈Ub

t−1∑
i=0

E[g(u(i), ξ(i)].

In the present model, there is no income, i.e., a = 0. Hence, when action u(i) is selected
for time period i, the budget evolves according to:

b(i+ 1) = b(i)− c(u(i), ξ(i)).

The initial budget is b(0) = b.

5.1.2. Asymptotically optimal strategy. Characterizing the value function is also difficult
here, and to progress we consider scenarios with a large time-horizon. More precisely,
we scale the time-horizon and initial budget by a factor 1/β, and define:

Vβ(B, T ) = βv(B/β, bT/βc).
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Now when β tends to 0, the limiting value function is characterized as follows.

THEOREM 5.1. For all B, T ≥ 0, V (B, T ) = limβ→0 βv(B/β, bT/βc) is well defined,
and satisfies the PDE:

∂V

∂B
= φ−1(

∂V

∂T
), V (0, T ) = 0, V (B, 0) = 0. (18)

The theorem is proved (see [Kushner 1990]) by observing that V (B, T ) is the value
function of the following continuous time control problem:

V (B, T ) = sup
u∈Ū

(∫ τ∧T

0

ḡ(u(t))dt

)
,

where Ū is the set of mappings from [0, T ] to F0, τ = inf{t ≥ 0 : B(t) = 0}, and

dB(t)

dt
= −c̄(u(t)),∀t ≥ 0, B(0) = B.

In general, this problem is easier to solve than its discounted counter-part studied
earlier in the paper.

We now characterize its solutions explicitly in the cases of repeated second-price and
GSP auctions.

5.1.3. Repeated second-price auctions. To simplify the exposition, we restrict our atten-
tion to second-price auctions with a finite set of bids. The set of bids is U = {u1 =
0, . . . , uK} and is ordered (uk < uk+1). Valuations also take a finite set V = {v1, . . . , vJ}
of values. We assume that if the agent places the same bid as the highest opponent bid,
she loses the auction. Identifying the optimal bidding strategy is similar to solving a
classical relaxed Knapsack (KP) problem [Lueker 1995]. Indeed, the auction taking
place in time period i, with valuation v(i) and opponent highest bid b′(i), corresponds
to an item in a KP problem. Accepting the item in the KP problem means that the
agent wins the corresponding auction, in which case her pay-off and cost are v(i)−b′(i)
and b′(i), respectively. Now the agent simply has to determine which auctions she
should win (depending on the corresponding valuation and highest opponent bid). It is
well known [Lueker 1995] that the following greedy algorithm provides the solution of
the relaxed KP problem. The algorithm specifies the probability with which the agent
should win an auction where the valuation is vj and the highest opponent bid is uk, for
any couple (j, k). Denote by pk (resp. fj) the probability that the highest opponent bid
is uk (resp. that the valuation is vj).

We start by ordering the auctions characterized by the couple (vj , uk) in decreasing
payoff density defined as (vj−uk)/uk. For any bijection π : {1, . . . , J×K} → {1, . . . , J}×
{1, . . . , J}, we denote π(l) = (π1(l), π2(l)) for all l ∈ {1, . . . , J × K}. We construct a
bijection π such that for all l < J×K, (vπ1(l)−uπ2(l))/uπ2(l) ≤ (vπ1(l+1)−uπ2(l+1))/uπ2(l+1).

Greedy algorithm.
l← 0, V ← 0, and b← B.
While (b ≥ Tfπ1(l)pπ2(l)uπ2(l)) and (l < J ×K), do

win auctions π(l) with probability 1;
b← b− Tfπ1(l)pπ2(l)uπ2(l);
V ← V + Tfπ1(l)pπ2(l)(vπ1(l) − uπ2(l)).

Win auctions π(l) with probability B/(Tfπ1(l)pπ2(l)uπ2(l)).
Loose auctions π(l′) for all l′ > l with probability 1.

In other words the optimal strategy is to consider winning auctions in decreasing
order of their pay-off density until the budget is exhausted, or until no auction is left
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(if the decision maker has a sufficient budget to win all possible auctions). In turn,
the above algorithm characterizes an optimal bidding strategy. Indeed, it provides a
mapping from the set of valuations to a distribution of bids supported by at most two
consecutive bids. For example, if for valuation vj , the algorithm tells us that the agent
should win the auction when the opponent bid is up to uk with probability 1, then the
decision maker just bids uk+1 with probability 1. Similarly, if for valuation vj , the agent
should win auctions with opponent bid uk−1 with probability 1, and uk with probability
c, then she should bid uk with probability (1− c) and uk+1 with probability c. Note that
there exists at most one auction such that the corresponding distribution of bids has
positive mass on two bids.

It is worth remarking that the optimal bidding strategy does not depend on the
remaining budget, and hence does not depend on time. Indeed as mentioned above, for
a given auction, an optimal strategy maps the observed valuation to a bid distribution.
The agent plays the same strategy over time until her budget reaches 0, or until the
end of the time-horizon is reached.

5.1.4. Repeated GSP auctions. Again we restrict our attention to finite sets of feasible
bids and valuations. As it turns out, the problem of identifying the optimal bidding
strategy is equivalent to solving a relaxed multi-dimensional Knapsack problem. This
is due to the fact that the expected utility only depends upon the proportions of time
for which the various bids are used; we define αk to be the proportion of time the
agent uses bid uk. We also let ḡk and c̄k denote the expected utility and cost per time
unit respectively when the agent bids uk. The optimal bidding strategy then solves the
following relaxed multi-dimensional KP problem:

max

K∑
k=1

Tαkḡk,

s.t.
K∑
k=1

Tαk c̄k = B,

K∑
k=1

Tαk = 1.

It is known [Kellerer et al. 2004] that the solution of the above problem has at most
two non-binary components. This implies that either there exists a bid uk such that
αk = 1, and αk′ = 0 for all k′ 6= k, or there exist two bids uk, uk′ such that αkαk′ > 0,
and αk” = 0 for all k” 6= k, k′. Unfortunately, we were not able to identify additional
structural properties of the problem to help us characterize the optimal bidding strat-
egy. For example, it might well be that the bid corresponding to the highest pay-off
density, defined for bid uk as ḡk/c̄k, is not selected in the optimal strategy. It is also
possible that the two optimal bids are not consecutive (the optimal bids are not neces-
sarily uk, uk+1 for some k). This is illustrated in the simple following example. Assume
that there are three possible bids with respective expected utility and cost equal to
(10, δ), (g, 1), and (12, 3), where g ∈ (10, 12) and δ < 1. The initial budget is equal to
2, so that the third bid has to be used to exhaust the budget. Now if δ = 11, it can be
checked that the optimal strategy consists in using the second and third bids, whereas
when g = 10 + δ, then using the first and third bids is optimal for all δ. Nevertheless,
the fact that the optimal bidding strategy concentrates on two bids only makes it easy
to identify.

5.2. Mean Field equilibria
We now define a Mean field game for repeated second-price auctions (we could define
a similar game for repeated GSP auctions). The game is played by a very large pop-
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ulation of bidders with different valuations, initial budgets and finite time-horizons.
We assume that the set of bids and valuations are finite, see §5.1.3. Let W denote
a probability measure on ∆J × R2

+ that defines the valuation distribution, the initial
(scaled) budget, and time-horizon of a bidder sampled uniformly at random. A bidder
with budget B and time-horizon T reinitializes her budget periodically every T time
units, i.e., at times t+ kT for all k ∈ N (for some fixed time t), her budget is set to B.

The game proceeds as follows. For each auction, α bidders are selected uniformly
at random, and compete. We consider the following limiting regime: each bidder, say
with time-horizon T , is selected to compete for a large number of auctions during any
periods of length T . Equivalently, the rate at which any bidder is selected to compete
is γ > 0 per time unit. In summary, the Mean Field game is defined through the
probability measure W and parameter γ.

Assume now that when selected in the Mean Field game, a bidder faces a i.i.d. high-
est opponent bid distribution p . She would then apply the corresponding optimal bid-
ding strategy as described in the previous subsection (remember that this strategy
is stationary, i.e., it does not depend on time). Define by φ(p, v, f, B, γT ) the optimal
bid distribution of a bidder with valuation distribution f , initial budget B, and time-
horizon γT , when the realization of her valuation is v. Note that the time-horizon is
γT because each bidder is assumed to be selected at rate γ. Now the empirical bid
distribution of such bidder over time will be:

φ̄(p, f,B, γT ) =

J∑
j=1

fjφ(p, vj , f, B, γT ).

Denote by X(p, f,B, T ) a random variable with distribution φ̄(p, f,B, γT ). Finally de-
fine the mapping Γ : ∆K → ∆K where Γ(p) is the distribution of the highest bid of α−1
bidders sampled uniformly at random (their valuation distribution, initial budget and
time-horizon have distribution W ) when they apply the optimal bid strategy when fac-
ing highest bid distribution p. In other words, Γ(p) is the distribution of the following
random variable:

max (X1, . . . , Xα−1)) ,

where the random variables (X1, . . . , Xα−1) are i.i.d. copies of X(p, f,B, γT ) where
(f,B, T ) has distribution W . We are now able to define the notion of Mean Field equi-
librium. In such equilibrium, each bidder faces i.i.d. highest opponent bids, and does
not have any incentive to change her bidding strategy.

Definition 5.2. A Mean Field equilibrium is defined as a bid distribution p, such
that

Γ(p) = p.

THEOREM 5.3. (Mean Field Equilibrium - Finite time-horizon)
The repeated second-price auction Mean Field games admit at least one equilibrium.

Proof. Observe that by construction of the optimal bidding strategy via the Greedy
algorithm, the mappings φ̄(p, f,B, γT ) are continuous w.r.t. p. Now we deduce that Γ is
continuous, and the theorem follows from Brouwer fixed point theorem. 2

6. CONCLUSION AND FUTURE WORK
We have studied a general model of a repeated auction, and described the optimal bid-
ding strategy for an agent who is constrained by her budget. Starting from a discrete
time model, discounting rewards over time, and then taking the limit as the discount
rate tends to 1 enables us to prove that the limiting scaled value function V (B) at bud-
get B satisfies a particular differential equation. The optimal bidding strategy in then
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simply related to the derivative of limiting value function. The form of this optimal
strategy is particularly simple in the case of a repeated second-price or GSP auctions:
bid as if bidding in an (unconstrained) single shot auction (SP or GSP respectively),
but shading the true value by a factor 1/(1 + V ′(B)).

The limiting regime requires scaling the budgets appropriately (by 1/β) as β → 0.
It is an appropriate regime when there are a large number of auctions but the gain in
each auction is small. For ad-auctions in thick markets this is an appealing scaling.
In other settings, the limiting behavior can be used as an approximation for when the
discount factor is close to 1.

When there are not only a large number of auctions, but also a large number of
potentially competing agents, we have described a corresponding Mean Field game,
and proved existence of Mean Field Equilibria (MFE). The equilibria appear relatively
simple to calculate. The implications are that given a distribution of valuations and/or
initial budgets, the resulting MFE will give a stationary distribution of bids, and hence
a straightforward calculation of shading factors that only depend upon the budget.

Of course we have assumed that the distributions of budgets and valuations are
known. In the case of a single agent, she would have to infer these distributions, or
simply attempt to learn the opponent’s bid distribution and then react to that distri-
bution. The challenge then is to show that asynchronous best response learning con-
verges to a MFE. The auctioneer is in a position to calculate bid distributions, and by
inferring valuations, could use the information to smooth the budgets of bidders as a
way of increasing social welfare.
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A. APPENDIX
A.1. Proof of Theorem 2.1
First note that for any b, λ(b′, b) is strictly increasing in the argument b′ (since −vβ(b+
a − b′) is non decreasing in b′ and there is an additional term that increases strictly
with b′). This implies that

1b≥u>b′ = 1λ(b,b)≥λ(u,b)>λ(b′,b),

and hence
u∗β(b, v, a) , arg max

u∈R+

Eb′
[
1λ(b,b)≥λ(u,b)>λ(b′,b)

(
v − λ(b′, b)

)]
. (19)

Now the optimum bid in a static second price auction with valuation v and budget
constraint b is min (v, b) and hence for any v ∈ R+:

arg max
u∈R+

Eb′
[
1b≥u>b′

(
v − b′)

]
= min (v, b). (20)

Rewriting (20) with b, b′ replaced by λ(b, b), λ(b′, b) respectively, gives:

arg max
u∈R+

Eb′
[
1λ(b,b)≥u>λ(b′,b)

(
v − λ(b′, b)

)]
= min(v, λ(b, b)).

By replacing the bid b by the function λ(., b) we have:

arg max
u∈R+

Eb′
[
1λ(b,b)≥λ(u,b)>λ(b′,b)

(
v − λ(b′, b)

)]
= x,

where x is the unique solution to λ(x, b) = min(v, λ(b, b)). Since λ is a one to one strictly
increasing map, we have x = min(λ−1(v, b), b). From (19), this implies that:

u?β(b, v, a) = min(λ−1(v, b), b).

Clearly, u?β(b, v, a) is non-decreasing in (b, v, a) if λ−1(v, b) is non-decreasing in (b, v, a).
Without loss of generality, let us assume that the maximum bid or valuation amount

in a single auction is 1.
Now assume that the current balance, b ≥ 1 . Under this assumption:

vβ(b)−e−βvβ(b+a) = Ev

[
max
u∈R+

Eb′
[
1u>b′

(
v− (b′+e−β(vβ(b+a)−vβ(b+a−b′)))

)]]
(21)

Note that λ(x, b) ≥ x and since v ≤ 1, this implies that λ−1(v, b) ≤ 1 ≤ b. Therefore:

u?β(b, v, a) = min(λ−1(v, b), b) = λ−1(v, b).

This implies for any fixed v, a, b:

max
u∈R+

Eb′
[
1u>b′

(
v − (b′ + e−β(vβ(b+ a)− vβ(b+ a− b′)))

)]
= Eb′

[
1u?β(b,v,a)>b′

(
v − λ(b′, b)

)]
= Eb′

[
1λ−1(v,b)>b′

(
v − λ(b′, b)

)]
= Eb′

[
1v>λ(b′,b)

(
v − λ(b′, b)

)]
= Eb′

[
v − λ(b′, b)

]+ where [.]+ , max(., 0)

(21) now becomes:

vβ(b) = e−βvβ(b+ a) + E
[
v − λ(b′, b)

]+
, (22)

which concludes the proof.
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A.2. Value iteration convergence
We illustrate the convergence rate of the value iteration procedure to compute the
value function for different values of β. We consider an example where the competing
opponent bid is distributed over {1, 2, . . . , 10} with probability vector proportional to
{1, 2, 3, 1, 1, 1, 2, 3, 2, 1} and where the bidder’s valuation has a distribution supported
on {4, 5, 6} with probabilities {0.2, 0.6, 0.2}. In this example, we set a = 0. The conver-
gence of value iteration is graphically depicted in the following three figures, Figures
5 to 7 for β = 0.1, 0.05, 0.01, respectively. Note that in these figures, the x and y axes
are scaled by factor 1/β. We clearly observe that the number of iterations required to
obtain convergence significantly grows as β decreases to 0.
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Fig. 4. vt0.1(b) plotted every 10 iterations

A.3. Proof of Theorem 3.1
The proof consists of the following steps. First we decompose the MDP into two sub-
problems: a first sub-problem where the exit-payoff or exit-utility is fixed (the time
horizon corresponds to the time when the budget reaches 0, and at this time the agent
receives an exit-utility), and a second sub-problem where the exit-utility is identified.

A.3.1. Solution of the problem with exit pay-off. For proof purposes, it is useful to introduce
a variant of the initial MDP, with identical state transitions, but without the budget
constraint. Instead, the variant is parametrized with an exit payoff, η, which defines
the final utility obtained when the balance reaches a value less than or equal to zero for
the first time. More precisely, let U ′ represent the collection of all admissible Markov
policies. Therefore, U ′ represents all sequences of actions, defined by random variables
u(i) ∈ F0, which can be chosen after observing the corresponding states, b(i) (but with-
out the additional restriction on actions that could lead to b(i + 1) < 0). Let κ denote
the following stopping time:

κ = inf{i ≥ 0 : b(i) ≤ 0}
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Fig. 5. vt0.05(b) plotted every 10 iterations
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Fig. 6. vt0.01(b) plotted every 10 iterations

The value function of this modified MDP is given by:

jβ(b, η) , sup
u∈U ′

(
κ∑
i=0

e−βiḡ(u(i)) + e−κβη

)
.

Following prior convention, the scaled version of the value function is given by:

Jβ(B, η) = βjβ(B/β, η/β).
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To illustrate the convergence of the above problem to its continuous time version,
consider the following change of variables/notation: ti , βi,∆ti , ti+1 − ti = β, B(ti) ,
βb(i), τ , βκ and u(ti) , u(i), ∀i. Using this change of notation:

Jβ(B, η) = sup
u∈U ′

(
Eb

τ∑
ti=0

e−ti ḡ(u(ti))∆ti + e−τη

)
(23)

where τ = inf{ti ≥ 0 : B(ti) ≤ 0}. The state transitions can be expressed as:

∆B(ti) , B(ti+1)−B(ti) = (a− c̄(u(ti)))∆t

From standard results on convergence of discrete to continuous time control problems
[Kushner 1990], the scaled value function Jβ converges to the value function of the
following continuous time control problem:

Ū , {u : u(t) ∈ F0, ∀ t ≥ 0},

V (B, η) = sup
u∈Ū

(∫ τ

0

e−tḡ(u(t)) dt+ e−τη

)
(24)

where τ = inf{t ≥ 0 : B(t) = 0}, with state evolution:

dB(t)

dt
= a− c̄(u(t)),∀t ≥ 0, B(0) = B.

This is a deterministic continuous time optimal control problem, whose value func-
tion can be characterized by the corresponding Hamilton-Jacobi-Bellman (HJB) equa-
tion [Bertsekas 2007], i.e., by an ODE with a boundary condition. The boundary con-
dition is V (0, η) = η, while the ODE is specified by simplifying the following dynamic
programming relation: for a small ∆t,

V (B) ≥ sup
u∈F0

(
ḡ(u)∆t+ e−∆t (V (B) + ∆t(a− c̄(u))V ′(B))

)
This gives

V (B) = aV ′(B) + sup
u∈F0

(ḡ(u)− c̄(u)V ′(B)) = φ(V ′(B)).

φ is convex because it is defined as the supremum of a family of linear functions. From
the definition of η? and the convexity of φ, it follows that φ is strictly decreasing on
[0, φ−1(η?)]. From Lemma A.8, presented at the end of this proof, φ is continuous,4

implying that φ−1 is well defined and continuous on [η?, η0] where η0 , φ(0).5 Therefore,
the ODE, dV

dB = φ−1(V ), V (0) = η, has a continuously differentiable solution. And
from HJB sufficient condition, it is equal to V (B, η), the value function corresponding
to the continuous time problem defined in (24).

To summarize the analysis so far, we have:

LEMMA A.1. Let η ∈ [η?, η0]. Then, limβ→0 Jβ(B, η) = V (B, η), which satisfies the
ODE: dVdB = φ−1(V ), with initial condition, V (0) = η.

4In fact, φ is Lipschitz though this fact is not necessary for the proof.
5φ−1 is also Lipschitz on [η, η0], ∀η ∈ (η?, η0].
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A.4. Characterizing the Exit Pay-off
Theorem 3.1 states that limβ→0 Vβ(B) = V (B, η?). Combining Lemma A.3 and Lemma
A.6, we prove that limβ→0 Vβ(0) = η?. This implies that: ∀ B ≥ 0, limβ→0 Vβ(B) =
limβ→0 Jβ(B, η?) = V (B, η?), proving the theorem.

LEMMA A.2. ∀η, h > 0, B ≥ 0, Jβ(B + h, η) ≥ Vβ(B)

Proof. Any optimal policy for Vβ(B) provides a lower bound for Jβ(B+h, η), since such
policy is feasible for the control problem with exit pay-off η and initial budget B + h.
Since the state transitions are identical in both variants, the stopping time is∞ in the
exit time variant, which implies that Vβ(B) is an achievable utility in the exit time
variant starting from initial balance B + h for any h > 0. 2

LEMMA A.3.

lim sup
β→0

Vβ(0) ≤ η?

Proof. Lemma A.1, Lemma A.2 and the fact that V (B, η) is continuous in B for any
η ∈ [η∗, η0] together imply Lemma A.3. Specifically, letting B = 0, η = η∗ in Lemma A.2
and letting β → 0, we get ∀h > 0, limβ→0 Jβ(h, η∗) ≥ lim supβ→0 Vβ(0). From Lemma
A.1, we have limβ→0 Jβ(h, η∗) = V (h, η∗), implying ∀h > 0, lim supβ→0 Vβ(0) ≤ V (h, η∗),
which implies the lemma due to continuity of V . 2

Before stating and proving Lemma A.6, we need the following preliminary anal-
ysis.

Definition A.4. [ε-subdifferential] For ε ≥ 0, c ∈ R is called an ε-subdifferential to
a function f at x0 if f(x) + ε ≥ f(x0) + c(x − x0), ∀ x. A ‘subdifferential’ refers to a
0-subdifferential.

LEMMA A.5. For any ε > 0, ∃ u? ∈ F0 such that ḡ(u?) > η? − ε and c̄(u?) ≤ a.

Proof. Let x? = sup{x ≥ 0 : φ(x) = η?} and x? = inf{x ≥ 0 : φ(x) = η?} (both of which
are finite if a > 0, and when a = 0, we have η? = 0, in which case the result is trivially
true by choosing u? = 0). We first consider the case where x? = x?. For any h > 0,
any subdifferential of φ at x? + h is strictly positive because φ(x? + h) > φ(x?). Let us
choose θ(h) > 0 be small enough so that any θ-subdifferential is also strictly positive
for θ < θ(h) (see Proposition A.7). Let θ = min(ε/2, θ(h)). Let ψ(u, x) , ḡ(u)+(a− c̄(u))x.
Choose u?+ ∈ F0 such that ψ(u?+, x

? + h) > φ(x? + h) − θ(h). Then, for any x, φ(x) ≥
ψ(u?+, x) = ψ(u?+, x

?+h)+(a−c̄(u?+))(x−x?−h) > φ(x?+h)+(a−c̄(u?+))(x−x?−h)−θ(h),
implying that a − c̄(u?+) is a θ(h)-subdifferential of φ at x? + h. Therefore, c̄(u?+) ≤ a.
Furthermore, since η? < φ(x? + h) < θ(h) + ψ(u?+, x

? + h), we have:

η? < θ + ḡ(u?+) + (a− c̄(u?+))(x? + h). (25)

Analogously, we can pick u?− ∈ F0 such that c̄(u?−) ≥ a and

η? < θ + ḡ(u?−) + (a− c̄(u?−))(x? − h). (26)

Now we can choose u? = δu?− + (1− δ)u?+ where6

δ =

1 with probability α =
a−c̄(u?+)

c̄(u?−)−c̄(u?+)

0 with probability 1− α =
c̄(u?−)−a

c̄(u?−)−c̄(u?+)

6if c̄(u?+) = c̄(u?−) = a, then we can pick any α ∈ [0, 1].
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so that: c̄(u?) = a. Using this, inequality (25)× (1− α) + (26)× α gives η? < ḡ(u?) + θ+
2(a+ C)h. Now choose any h < ε

4(a+C) and since θ < ε/2, we have: η? < ḡ(u?) + ε.
It remains to argue for the case x? < x?. For given h > 0, we may pick u?+ exactly

as before because the subdifferential at x? + h is again strictly positive. However, in
this case, the only subdifferential for any x0 ∈ (x?, x

?) is zero. Therefore, for any h > 0,
∃ θ(h) > 0 such that any θ−subdifferential at x? − h has to lie in (−h, h). As before
we can pick u?− ∈ F0 such that Equation (26) holds and a − c̄(u?−) is a subdifferential
at x? − h, implying that a − c̄(u?−) ∈ (−h, h) (where we chose θ = min(ε/2, θ(h))). If
a ≤ c̄(u?−), we can go through the same construction as before to obtain u? for which
c̄(u?) = a and η? < ḡ(u?) + ε. Now suppose a > c̄(u?−). From Equation (26), we get
η? < θ + ḡ(u?−) + h(x? − h) > ḡ(u?−) + ε if we pick h < ε

2x? . Therefore, in this case, for
u? = u?−, we have c̄(u?) < a and ḡ(u?) > η? − ε, as required. 2

LEMMA A.6.

lim inf
β→0

Vβ(0) ≥ η?

Proof. It is sufficient to show that there exists a feasible policy that can achieve a
scaled infinite horizon discounted utility with a lower bound that is arbitrarily close to
η?. Let u? ∈ F0 with ḡ(u?) = η? and a = c̄(u?). Consider a policy in which the decision
maker chooses the random variable u? in every time slot, i.e.:

U? , {u?, u?, . . .}.
Therefore, the state transitions are defined by b(i+1) = b(i)+w(i), where w(1), w(2), . . .

are i.i.d. copies of their generic version, w , a − c(u?, ξ), which is bounded by |w| ≤ 1
without loss of generality, and has zero drift: E[w] = 0. Therefore, b(i) represents a
random walk with zero drift, which has a positive probability of falling below zero.
This random walk has a strictly positive probability of going below zero. Therefore,
U? is not feasible. Consider a modified walk, for which, whenever b(i) ≤ 1, we set
u′(j) = 0, ∀j = i, i+ 1, . . . i+ M

a , where M is a constant that will be fixed later on. For
all other j, u′(j) = u?. Clearly, the modified policy is feasible for the original problem.
Let x denote the utility achieved by this policy starting from b(0) = M . Let τM ,
min{i ≥ 0 :

∑i
j=0 w(i) ≤ −M + 1}. We have:

x = E

[
τ∑
i=0

g(u?, ξ) + e−β(τ+M
a )x

]
This can be simplified to give:

x =

(
η?

1− e−β

)(
1− E[e−β(τM+1)]

1− E[e−β(τM+M)]

)
which implies:

Vβ(0) ≥ βe−βMa x = η?e
−βMa

(
β

1− e−β

)(
1− E[e−β(τM+1)]

1− E[e−β(τM+M)]

)
For any fixed M , as β → 0, the lower bound above becomes arbitrarily close to

η?
E[τM ]+1

E[τM ]+M . For large M , the expected hitting time for the asymmetric random walk
with maximum step size equal to one is at most (stochastically bounded by) the ex-
pected hitting time of a symmetric random walk with step size equal to one, which
scales as E[τM ] = Ω(M2). Therefore, the lower bound is arbitrarily close to η?, proving
the lemma. 2
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PROPOSITION A.7. Suppose all subdifferentials of a convex function, f , at x belong
to [dl, dh]. Then, for any δ > 0, ∃ ε > 0 small enough, such that any ε-subdifferential of
f at x belongs to (dl − δ, dh + δ).

PROOF. Draw two lines, L1 and L2 with slopes dl− δ, dh + δ at x. Clearly, there exist
xl < x and xh > x such that L1 strictly dominates f in (xl, x) and L2 strictly dominates
f in (x, xh). Choose:

ε∗ = min (sup{L1(x)− f(x) : x ∈ (xl, x)}, sup{L2(x)− f(x) : x ∈ (x, xh)})
Then ε∗ > 0 and for any ε < ε∗, neither dl − δ nor dh + δ can be ε-subdifferentials, and
therefore any ε-subdifferential of f has to lie in (dl − δ, dh + δ).

LEMMA A.8. φ is Lipschitz.

Proof. Let ψ(u, x) , ḡ(u)+(a−c̄(u))x, so that φ(x) = supu∈F0
ψ(u, x). Let |x−y| < δ. Let

u?(x), u?(y) ∈ F0 such that ψ(u?(x), x) ∈ (φ(x)− δ, φ(x)] and ψ(u?(y), y) ∈ (φ(y)− δ, φ(y)]
and assume ψ(u?(x), x) ≥ ψ(u?(y), y) without loss of generality. Then, |φ(x) − φ(y)| ≤
δ+ψ(u?(x), x)−ψ(u?(y), y). Note that ψ(u?(y), y) > φ(y)−δ ≥ ḡ(u?(x))+(a− c̄(u?(x))) y−
δ ≥ ψ(u?(x), x) − (1 + |a − C|)δ, where C is the bound on the consumption function.
Therefore, |φ(x)− φ(y)| < Mδ, where M = 2 + |a− C| is the Lipschitz constant. 2

A.5. A remark on the rate of convergence as β → 0

Theorem 3.1 shows that if β is small enough, the approximation error involved in using
V (B), to compute βvβ(B/β) is arbitrarily small. We now provide a simple argument to
estimate the rate of this convergence. We consider the specific case where the budget
constraints are not effective, i.e., B → ∞. Denote by g? the maximum expected utility
that the agent may receive in a single time period. When the balance is unlimited, we
have the following limit for the value function:

lim
B→∞

vβ(B/β) =

∞∑
i=0

e−βig? =
g?

1− e−β
.

This implies that the convergence when β → 0 of βvβ(B/β) towards V (B) is as fast as
that of β

1−e−β to 1, at least when the budget B is very large.

A.6. Proof of Theorem 4.2
We show p 7→ ψ̄(p, f,B, a) is continuous for all (f,B, a). To do so, we condition on the
bidder left-time T , and prove the continuity of p 7→ ψ(p, f,B, a, γT ). The proof relies on
first studying the function φ involved in Theorem 3.1.

φ(x) = ax+ E
[
(v − b′(1 + x))+

]
.

In the case of finite sets of bids and valuations, we have:

E
[
(v − b′(1 + x))+

]
=
∑
j,k

fjpk(vj − uk(1 + x))1{x≤ vj−ukuk
}.

Hence φ is a continuous piece-wise linear function whose slopes are linear in the com-
ponents of distribution p, and that changes slopes at most K × J switching points,
xj,k =

vj−uk
uk

, for any j, k. Its pseudo-inverse φ−1 has the same property: it is piece-wise
linear and continuous, and its slopes and switching points depend continuously on p.
We simply deduce by integrating φ−1 that the value function V (B) and its derivative
V ′(B) at scaled budget B are continuous in p. Now observe (see Section 3) that the op-
timal bidding strategy consists in changing bids only when the value of V ′(B) reaches
some thresholds, and from the continuity of V ′(B) in p, we conclude that the times at
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which the optimal strategy switches bids are also continuous in p. Finally, the empiri-
cal distribution ψ(p, f,B, a, γT ) that characterizes the proportions of time the various
bids are used before time T is continuous in p.

We proved that p 7→ ψ̄(p, f,B, a) is continuous for all (f,B, a). Thus Γ is continuous,
and the theorem follows from Brouwer fixed point theorem.
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