Unified Expectation Maximization

Rajhans Samdani
University of Illinois
rsamdan2 @illinois.edu

Abstract

We present a general framework containing a
graded spectrum of Expectation Maximization
(EM) algorithms called Unified Expectation
Maximization (UEM.) UEM is parameterized
by a single parameter and covers existing al-
gorithms like standard EM and hard EM, con-
strained versions of EM such as Constraint-
Driven Learning (Chang et al., 2007) and Pos-
terior Regularization (Ganchev et al., 2010),
along with a range of new EM algorithms.
For the constrained inference step in UEM we
present an efficient dual projected gradient as-
cent algorithm which generalizes several dual
decomposition and Lagrange relaxation algo-
rithms popularized recently in the NLP litera-
ture (Ganchev et al., 2008; Koo et al., 2010;
Rush and Collins, 2011). UEM is as efficient
and easy to implement as standard EM. Fur-
thermore, experiments on POS tagging, infor-
mation extraction, and word-alignment show
that often the best performing algorithm in the
UEM family is a new algorithm that wasn’t
available earlier, exhibiting the benefits of the
UEM framework.

1 Introduction

Expectation Maximization (EM) (Dempster et al.,
1977) is inarguably the most widely used algo-
rithm for unsupervised and semi-supervised learn-
ing. Many successful applications of unsupervised
and semi-supervised learning in NLP use EM in-
cluding text classification (McCallum et al., 1998;
Nigam et al., 2000), machine translation (Brown et
al., 1993), and parsing (Klein and Manning, 2004).
Recently, EM algorithms which incorporate con-
straints on structured output spaces have been pro-
posed (Chang et al., 2007; Ganchev et al., 2010).
Several variations of EM (e.g. hard EM) exist in
the literature and choosing a suitable variation is of-

Ming-Wei Chang
Microsoft Research
minchang @microsoft.com

Dan Roth
University of Illinois
danr @illinois.edu

ten very task-specific. Some works have shown that
for certain tasks, hard EM is more suitable than reg-
ular EM (Spitkovsky et al., 2010). The same issue
continues in the presence of constraints where Poste-
rior Regularization (PR) (Ganchev et al., 2010) cor-
responds to EM while Constraint-Driven Learning
(CoDL)! (Chang et al., 2007) corresponds to hard
EM. The problem of choosing between EM and hard
EM (or between PR and CoDL) remains elusive,
along with the possibility of simple and better alter-
natives, to practitioners. Unfortunately, little study
has been done to understand the relationships be-
tween these variations in the NLP community.

In this paper, we approach various EM-based
techniques from a novel perspective. We believe that
“EM or Hard-EM?” and “PR or CoDL?” are not the
right questions to ask. Instead, we present a unified
framework for EM, Unified EM (UEM), that covers
many EM variations including the constrained cases
along with a continuum of new ones. UEM allows us
to compare and investigate the properties of EM in a
systematic way and helps find better alternatives.

The contributions of this paper are as follows:

1. We propose a general framework called Uni-
fied Expectation Maximization (UEM) that
presents a continuous spectrum of EM algo-
rithms parameterized by a simple temperature-
like tuning parameter. The framework covers
both constrained and unconstrained EM algo-
rithms. UEM thus connects EM, hard EM, PR,
and CoDL so that the relation between differ-
ent algorithms can be better understood. It also
enables us to find new EM algorithms.

2. To solve UEM (with constraints), we propose

'To be more precise, (Chang et al., 2007) mentioned using
hard constraints as well as soft constraints in EM. In this paper,
we refer to CoDL only as the EM framework with hard con-
straints.

a dual projected subgradient ascent algorithm
that generalizes several dual decomposition
and Lagrange relaxation algorithms (Bertsekas,
1999) introduced recently in NLP (Ganchev et
al., 2008; Rush and Collins, 2011).

3. We provide a way to implement a family of
EM algorithms and choose the appropriate one,
given the data and problem setting, rather than
a single EM variation. We conduct experi-
ments on unsupervised POS tagging, unsuper-
vised word-alignment, and semi-supervised in-
formation extraction and show that choosing
the right UEM variation outperforms existing
EM algorithms by a significant margin.

2 Preliminaries

Let x denote an input or observed features and h be
a discrete output variable to be predicted from a fi-
nite set of possible outputs H(x). Let Py(x, h) be
a probability distribution over (x, h) parameterized
by 6. Let Py(h|x) refer to the conditional probabil-
ity of h given x. For instance, in part-of-speech tag-
ging, x is a sentence, h the corresponding POS tags,
and 6 could be an HMM model; in word-alignment,
x can be an English-French sentence pair, h the
word alignment between the sentences, and 6 the
probabilistic alignment model. Let 5(h = h’) be
the Kronecker-Delta distribution centered at h', i.e.,
it puts a probability of 1 at h” and 0 elsewhere.

In the rest of this section, we review EM and
constraints-based learning with EM.

2.1 EM Algorithm

To obtain the parameter 6 in an unsupervised way,
one maximizes log-likelihood of the observed data:

L(0) = log Py(x) = log Z Py(x,h) . (1)
heH (x)

EM (Dempster et al., 1977) is the most common
technique for learning #, which maximizes a tight
lower bound on £(#). While there are a few different
styles of expressing EM, following the style of (Neal
and Hinton, 1998), we define

F(0,q) = L(0) = KL(q, Bp(h[x)), (2)

where ¢ is a posterior distribution over H(x) and
K L(p1,p2) is the KL divergence between two dis-
tributions p; and p». Given this formulation, EM can

be shown to maximize F’ via block coordinate ascent
alternating over ¢ (E-step) and 6 (M-step) (Neal and
Hinton, 1998). In particular, the E-step for EM can
be written as

q = argmin KL(¢', Py(h|x)) , €)
q€Q

where Q is the space of all distributions. While EM
produces a distribution in the E-step, hard EM is
thought of as producing a single output given by
h* = arg max Py(h|x) . 4)
het(x)

However, one can also think of hard EM as pro-

ducing a distribution given by ¢ = §(h = h*). In
this paper, we pursue this distributional view of both
EM and hard EM and show its benefits.
EM for Discriminative Models EM-like algo-
rithms can also be used in discriminative set-
tings (Bellare et al., 2009; Ganchev et al., 2010)
specifically for semi-supervised learning (SSL.)
Given some labeled and unlabeled data, such algo-
rithms maximize a modified F'(, ¢) function:

F(0,q) = Le(0) — c1||0]* — c2K L(q, Po(h[x)) , (5)

where, g, as before, is a probability distribution over
H(x), L.(0) is the conditional log-likelihood of the
labels given the features for the labeled data, and ¢;
and ¢y are constants specified by the user; the KL
divergence is measured only over the unlabeled data.

The EM algorithm in this case has the same E-step
as unsupervised EM, but the M-step is different. The
M-step is similar to supervised learning as it finds 6
by maximizing a regularized conditional likelihood
of the data w.r.t. the labels — true labels are used for
labeled data and ““soft” pseudo labels based on ¢ are
used for unlabeled data.

2.2 Constraints in EM

It has become a common practice in the NLP com-
munity to use constraints on output variables to
guide inference. Few of many examples include
type constraints between relations and entities (Roth
and Yih, 2004), sentential and modifier constraints
during sentence compression (Clarke and Lapata,
2006), and agreement constraints between word-
alignment directions (Ganchev et al., 2008) or var-
ious parsing models (Koo et al., 2010). In the con-

text of EM, constraints can be imposed on the pos-
terior probabilities, ¢, to guide the learning proce-
dure (Chang et al., 2007; Gancheyv et al., 2010).

In this paper, we focus on linear constraints over
h (potentially non-linear over x.) This is a very gen-
eral formulation as it is known that all Boolean con-
straints can be transformed into sets of linear con-
straints over binary variables (Roth and Yih, 2007).
Assume that we have m linear constraints on out-
puts where the k™ constraint can be written as

ukTh < bk .

Defining a matrix U as Ul = [ulT umT]
and a vector bas b” = [by, ..., by,], we write down
the set of all feasible* structures as

{h|heHx),Uh<b} .

Constraint-Driven Learning (CoDL) (Chang et
al., 2007) augments the E-step of hard EM (4) by
imposing these constraints on the outputs.

Constraints on structures can be relaxed to expec-
tation constraints by requiring the distribution ¢ to
satisfy them only in expectation. Define expecta-
tion w.r.t. a distribution ¢ over H(x) as E,[Uh| =
> hen(x) 4(h)Uh. In the expectation constraints
setting, ¢ is required to satisfy:

E,[Uh <b .

The space of distributions Q can be modified as:

Q={q|q(h) > 0,E,[Un <b, > q(h)=
heH (x)

Augmenting these constraints into the E-step of
EM (3), gives the Posterior Regularization (PR)
framework (Ganchev et al., 2010). In this paper, we
adopt the expectation constraint setting. Later, we
show that UEM naturally includes and generalizes
both PR and CoDL.

3 Unified Expectation Maximization

We now present the Unified Expectation Maximiza-
tion (UEM) framework which captures a continuum
of (constrained and unconstrained) EM algorithms

“Note that this set is a finite set of discrete variables not to
be confused with a polytope. Polytopes are also specified as
{z|Az < d} but are over real variables whereas h is discrete.

1.

Algorithm 1 The UEM algorithm for both the genera-
tive (G) and discriminative (D) cases.

Initialize 6°
fort=0,...,Tdo

UEM E-step:

¢!« argmin, . o K L(q, Py (h|x);7)

UEM M-step:

G: 6" = argmaxy Ei+1 [log Py(x, h)]

D: 6'! = argmaxy Egi+1 [log Py (h|x)] — ¢1]/60]]2
end for

including EM and hard EM by modulating the en-
tropy of the posterior. A key observation underlying
the development of UEM is that hard EM (or CoDL)
finds a distribution with zero entropy while EM (or
PR) finds a distribution with the same entropy as Py
(or close to it). Specifically, we modify the objective
of the E-step of EM (3) as

q = argmin KL(q', Py(h[x);7) ,
q'eQ
where K L(q, p;~y) is a modified KL divergence:

KL(g,p;7) = > ~a(h)logg(h)—g(h)logp(h). (7)
het(x)

(6)

In other words, UEM projects Py(h|x) on the
space of feasible distributions Q w.r.t. a metric?
K L(-,-;~y) to obtain the posterior q. By simply vary-
ing v, UEM changes the metric of projection and ob-
tains different variations of EM including EM (PR,
in the presence of constraints) and hard EM (CoDL.)
The M-step for UEM is exactly the same as EM (or
discriminative EM.)

The UEM Algorithm: Alg. 1 shows the UEM al-
gorithm for both the generative (G) and the discrimi-
native (D) case. We refer to the UEM algorithm with
parameter v as UEM,.

3.1 Relationship between UEM and Other EM
Algorithms

The relation between unconstrained versions of EM
has been mentioned before (Ueda and Nakano,
1998; Smith and Eisner, 2004). We show that the
relationship takes novel aspects in the presence of
constraints. In order to better understand different
UEM variations, we write the UEM E-step (6) ex-
plicitly as an optimization problem:

*The term ‘metric’ is used very loosely. K L(-,-;y) does
not satisfy the mathematical properties of a metric.

Framework ¥ =—00 v=0 ~v € (0,1) vy=1 y=00—1
Unconstrained Hard EM Hard EM (NEW) UEM,, Standard EM Deterministic
Annealing EM
Constrained CoDL (Chang et | (NEW) EM | (NEW) constrained | PR (Ganchev et al.,
al., 2007) with Lin. Prog. | UEM, 2010)

Table 1: Summary of different UEM algorithms. The entries marked with “(NEW)” have not been proposed before.
Eq. (8) is the objective function for all the EM frameworks listed in this table. Note that, in the absence of constraints,
v € (—00, 0] corresponds to hard EM (Sec. 3.1.1.) Please see Sec. 3.1 for a detailed explanation.

min > vg(h)logg(h) — q(h)log Fy(h[x)®)
9 heH(x)

s.t. E,[Uh] <b,
q(h) > 0,Vh € H(x),
Phenx) 4(h) =1 .

We discuss below, both the constrained and the
unconstrained cases. Tab. 1 summarizes different
EM algorithms in the UEM family.

3.1.1 UEM Without Constraints

The E-step in this case, computes a g obeying
only the simplex constraints: ZheH(x) qgh) = 1.
For v = 1, UEM minimizes K L(q, Py(h|x);1)
which is the same as minimizing K L(q, Py(h|x))
as in the standard EM (3). For v = 0, UEM
is solving argmingc g > ey (x) —¢(h) log Py(h|x)
which is a linear programming (LP) problem. Due to
the unimodularity of the simplex constraints (Schri-
jver, 1986), this LP outputs an integral ¢ =
) (h = arg maXpeyy(x) Lo (h|:c)) which is the same
as hard EM (4). It has already been noted in the liter-
ature (Kearns et al., 1997; Smith and Eisner, 2004,
Hofmann, 2001) that this formulation (correspond-
ing to our v = 0) is the same as hard EM. In fact,
for v < 0, UEM stays the same as hard EM be-
cause of negative penalty on the entropy. The range
~v € (0,1) has not been discussed in the literature,
to the best of our knowledge. In Sec. 5, we show
the impact of using UEM,for v € {0,1}. Lastly,
the range of from oo to 1 has been used in deter-
ministic annealing for EM (Rose, 1998; Ueda and
Nakano, 1998; Hofmann, 2001). However, the focus
of deterministic annealing is solely to solve the stan-
dard EM while avoiding local maxima problems.

3.1.2 UEM With Constraints

UEM and Posterior Regularization (v = 1) For
v = 1, UEM solves argmin, o KL (g, Py(h[x))

which is the same as
tion (Ganchey et al., 2010).

Posterior Regulariza-

UEM and CoDL (v = —o0) When v - —©
then due to an infinite penalty on the entropy of the
posterior, the entropy must become zero. Thus, now
the E-step, as expressed by Eq. (8), can be written as
g = d(h = h*) where h* is obtained as

argmax log Py(h|x))
he#H(x)
st. Uh<b,

which is the same as CoDL. This combinatorial
maximization can be solved using the Viterbi algo-
rithm in some cases or, in general, using Integer Lin-
ear Programming (ILP.)

3.2 UEM with~ € [0, 1]

Tab. 1 lists different EM variations and their associ-
ated values ~. This paper focuses on values of v be-
tween 0 and 1 for the following reasons. First, the E-
step (8) is non-convex for v < 0 and hence compu-
tationally expensive; e.g., hard EM (i.e. v = —o0)
requires ILP inference. For v > 0, (8) is a convex
optimization problem which can be solved exactly
and efficiently. Second, for v = 0, the E-step solves

max > hen(x) 4(h) log Py(h|x)
s.t. E,[Uh] <b,
g(h) > 0,Vh € H(x),
Dnenx 4(h) =1,
which is an LP-relaxation of hard EM (Eq. (4)
and (9)). LP relaxations often provide a decent

proxy to ILP (Roth and Yih, 2004; Martins et al.,
2009). Third, v € [0, 1] covers standard EM/PR.

(10)

3.2.1 Discussion: Role of

The modified KL divergence can be related to
standard KL divergence as K L(q, Py(h|x);v) =

KL(q, Py(ylx)) + (1 — ¥)H(g) — UEM (6) mini-
mizes the former during the E-step, while Standard
EM (3) minimizes the latter. The additional term
(1 — y)H (q) is essentially an entropic prior on the
posterior distribution ¢ which can be used to regu-
larize the entropy as desired.

For v < 1, the regularization term penalizes the
entropy of the posterior thus reducing the probability
mass on the tail of the distribution. This is signifi-
cant, for instance, in unsupervised structured predic-
tion where the tail can carry a substantial amount of
probability mass as the output space is massive. This
notion aligns with the observation of (Spitkovsky
et al.,, 2010) who criticize EM for frittering away
too much probability mass on unimportant outputs
while showing that hard EM does much better in
PCFG parsing. In particular, they empirically show
that when initialized with a “good” set of parame-
ters obtained by supervised learning, EM drifts away
(thus losing accuracy) much farther than hard-EM.

4 Solving Constrained E-step with
Lagrangian Dual

In this section, we discuss how to solve the E-
step (8) for UEM. It is a non-convex problem for
v < 0; however, for v = —oo (CoDL) one can use
ILP solvers. We focus here on solving the E-step for
~ > 0 for which it is a convex optimization problem,
and use a Lagrange relaxation algorithm (Bertsekas,
1999). Our contributions are two fold:

e We describe an algorithm for UEM with con-
straints that is as easy to implement as PR or
CoDL. Existing code for constrained EM (PR
or CoDL) can be easily extended to run UEM.

e We solve the E-step (8) using a Lagrangian
dual-based algorithm which performs projected
subgradient-ascent on dual variables. Our al-
gorithm covers Lagrange relaxation and dual
decomposition techniques (Bertsekas, 1999)
which were recently popularized in NLP (Rush
and Collins, 2011; Rush et al., 2010; Koo et al.,
2010). Not only do we extend the algorithmic
framework to a continuum of algorithms, we
also allow, unlike the aforementioned works,
general inequality constraints over the output
variables. Furthermore, we establish new and

interesting connections between existing con-
strained inference techniques.

4.1 Projected Subgradient Ascent with
Lagrangian Dual

We provide below a high-level view of our algo-
rithm, omitting the technical derivations due to lack
of space. To solve the E-step (8), we introduce dual
variables A — one for each expectation constraint in
Q. The subgradient VA of the dual of Eq. (8) w.r.t.
A is given by

VA EUh] - b . (11)

For v > 0, the primal variable ¢ can be written in
terms of A as
1 ATun
q(h) « Py (h|x)7e” (12)
For v = 0, the ¢ above is not well defined and so
we take the limit v — 0 in (12) and since [, norm
approaches the max-norm as p — oo, this yields

g(h) = §(h = argmax Py(h'[x)e > I*). (13)
h'eH (x)

We combine both the ideas by setting g(h) =
G(h, Py (-]x), \TU, v) where

1 _vh
Y Y
P(h) ei — v >0 7
Eh’ P(h')7e el

G(h,P,v,y) =

§(h=argmax P(h')e "®) ~=0 .
h/eH(x)
(14)

Alg. 2 shows the overall optimization scheme.
The dual variables for inequality constraints are re-
stricted to be positive and hence after a gradient up-
date, negative dual variables are projected to 0.

Note that for v = 0, our algorithm is a Lagrange
relaxation algorithm for approximately solving the
E-step for CoDL (which uses exact arg max infer-
ence). Lagrange relaxation has been recently shown
to provide exact and optimal results in a large num-
ber of cases (Rush and Collins, 2011). This shows
that our range of algorithms is very broad — it in-
cludes PR and a good approximation to CoDL.

Overall, the required optimization (8) can be
solved efficiently if the expected value computation
in the dual gradient (Eq. (11)) w.r.t. the posterior ¢
in the primal (Eq (14)) can be performed efficiently.
In cases where we can enumerate the possible out-
puts h efficiently, e.g. multi-class classification, we

Algorithm 2 Solving E-step of UEM,, for v > 0.

1: Initialize and normalize ¢; initialize A = 0.
2: fort =0,..., R or until convergence do

3 A< max (A +n (Eq[Uh] —b),0)

4: Q(h) = G(h’P0t<'|X)7>‘TUa’Y)

5: end for

can compute the posterior probability g explicitly
using the dual variables. In cases where the out-
put space is structured and exponential in size, e.g.
word alignment, we can optimize (8) efficiently if
the constraints and the model Py(h|x) decompose
in the same way. To elucidate, we give a more con-
crete example in the next section.

4.2 Projected Subgradient based Dual
Decomposition Algorithm

Solving the inference (8) using Lagrangian dual can
often help us decompose the problem into compo-
nents and handle complex constraints in the dual
space as we show in this section. Suppose our
task is to predict two output variables h! and h?
coupled via linear constraints. Specifically, they
obey Uch! = Uch? (agreement constraints) and
U;h! < Ujh? (inequality constraints)* for given
matrices Ug and Uj. Let their respective probabilis-
tic models be Pel1 and P922. The E-step (8) can be
written as

arg min Alq1,q2;7) (15)

q1,92
sit. B, [Ush!] = E,,[Uch?]
E(h [Uihl] < Eq2 [Uih2])

where A(q1, g2;7) = KL(qi1(h'), Py (h'[x);7) +
K L(g2(h?), P, (h?[x); 7).

The application of Alg. 2 results in a dual decom-
position scheme which is described in Alg. 3.

Note that in the absence of inequality constraints
and for v = 0, our algorithm reduces to a simpler
dual decomposition algorithm with agreement con-
straints described in (Rush et al., 2010; Koo et al.,
2010). For v = 1 with agreement constraints, our
algorithm specializes to an earlier proposed tech-
nique by (Ganchev et al., 2008). Thus our algo-
rithm puts these dual decomposition techniques with

“The analysis remains the same for a more general formu-
lation with a constant offset vector on the R.H.S. and different
matrices for h' and h?.

Algorithm 3 Projected Subgradient-based Lagrange
Relaxation Algorithm that optimizes Eq. (15)

1: Input: Two distributions P; and Pg,.

2: Qutput: Output distributions ¢; and g5 in (15)
3: Define AT = [A\,7 A7]and UT = [U." U;"]
4: A+ 0

5: fort =0, ..., R or until convergence do

6 qu(h!) < G(h!, P} (x),ATU,7)

7 go(h?) « G(h2, P ([x), ~ATU,)

8 e < e+ mi(—FE, [Ueh!] + E,, [Uch?))
9: i + A\ +m(—E,, [Ush!] + B, [U;h?))
10: A\ « max(\;, 0) {Projection step}

11: end for

12: return (q1, g2)

agreement constraints on the same spectrum. More-
over, dual-decomposition is just a special case of
Lagrangian dual-based techniques. Hence Alg. 2
is more broadly applicable (see Sec. 5). Lines 6-9
show that the required computation is decomposed
over each sub-component.

Thus if computing the posterior and expected val-
ues of linear functions over each subcomponent is
easy, then the algorithm works efficiently. Con-
sider the case when constraints decompose linearly
over h and each component is modeled as an HMM
with 6 as the initial state distribution, 6 as em-
mision probabilities, and 67 as transition probabil-
ities. An instance of this is word alignment over
language pair (.S,7") modeled using an HMM aug-
mented with agreement constraints which constrain
alignment probabilities in one direction (Fp,: from
S to T) to agree with the alignment probabilities in
the other direction (Fy,: from 7" to S.) The agree-
ment constraints are linear over the alignments, h.

Now, the HMM probability is given by
Py(hlx) = Os(ho) []; 0 (xi|hi)07 (hiy1|hy)
where v; denotes the i component of a vector v.
For v > 0, the resulting ¢ (14) can be expressed
using a vector y =+/-AT U (see lines 6-7) as

1

q(h) (95(h0) HGE(xi|hi)9T(hi+1hi)> ’ e

2inribg
5

X Hes(ho)% (HE(X”hi)thi)? OT(hi+1|hi)% .

The dual variables-based term can be folded into
the emission probabilities, 8. Now, the resulting ¢
can be expressed as an HMM by raising 6g, 6, and

07 to the power 1/~ and normalizing. For v = 0, ¢
can be computed as the most probable output. The
required computations in lines 6-9 can be performed
using the forward-backward algorithm or the Viterbi
algorithm. Note that we can efficiently compute ev-
ery step because the linear constraints decompose
nicely along the probability model.

5 Experiments

Our experiments are designed to explore tuning -y
in the UEM framework as a way to obtain gains
over EM and hard EM in the constrained and uncon-
strained cases. We conduct experiments on POS-
tagging, word-alignment, and information extrac-
tion; we inject constraints in the latter two. In all the
cases we use our unified inference step to implement
general UEM and the special cases of existing EM
algorithms. Since both of our constrained problems
involve large scale constrained inference during the
E-step, we use UEM (with a Lagrange relaxation
based E-step) as a proxy for ILP-based CoDL .

As we vary 7 over [0, 1], we circumvent much of
the debate over EM vs hard EM (Spitkovsky et al.,
2010) by exploring the space of EM algorithms in a
“continuous” way. Furthermore, we also study the
relation between quality of model initialization and
the value of + in the case of POS tagging. This is
inspired by a general “research wisdom” that hard
EM is a better choice than EM with a good initial-
ization point whereas the opposite is true with an
“uninformed” initialization.

Unsupervised POS Tagging We conduct exper-
iments on unsupervised POS learning experiment
with the tagging dictionary assumption. We use a
standard subset of Penn Treebank containing 24,115
tokens (Ravi and Knight, 2009) with the tagging dic-
tionary derived from the entire Penn Treebank. We
run UEM with a first order (bigram) HMM model®.
We consider initialization points of varying quality
and observe the performance for y € [0, 1].
Different initialization points are constructed as
follows. The “posterior uniform” initialization is
created by spreading the probability uniformly over
all possible tags for each token. Our EM model on

5(Ravi and Knight, 2009) showed that a first order HMM
model performs much better than a second order HMM model
on unsupervised POS tagging

005 | G)

1)

-0.05

0.1 F uniform posterior initializer —+—

5 labeled examples initializer
10 labeled examples initializer -
20 labeled examples initializer -}
40 labeled examples initializer
-0.15 -) 80 labeled examples initializer --@--

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
Gamma

Relative performance to EM (Gamma:

Figure 1: POS Experiments showing the relation between
initial model parameters and v. We report the relative per-
formance compared to EM (see Eq. (16)). The posterior
uniform initialization does not use any labeled examples.
As the no. of labeled examples used to create the initial
HMM model increases, the quality of the initial model
improves. The results show that the value of the best 7 is
sensitive to the initialization point and EM (v = 1) and
hard EM (v = 0) are often not the best choice.

this dataset obtains 84.9% accuracy on all tokens
and 72.3% accuracy on ambiguous tokens, which
is competitive with results reported in (Ravi and
Knight, 2009). To construct better initialization
points, we train a supervised HMM tagger on hold-
out labeled data. The quality of the initialization
points is varied by varying the size of the labeled
data over {5,10,20,40,80}. Those initialization
points are then fed into different UEM algorithms.

Results For a particular v, we report the perfor-
mance of UEM, w.r.t. EM (y = 1.0) as given by
Acc(UEM,) — Acc(UEM
Tel('y) — ('Y) (7:1.0)
Acc(UEM,_, ;)

(16)

where Acc represents the accuracy as evaluated on
the ambiguous words of the given data. Note that
rel(vy) = 0, implies performance better or worse
than EM. The results are summarized in Figure 1.
Note that when we use the “posterior uniform”
initialization, EM wins by a significant margin. Sur-
prisingly, with the initialization point constructed
with merely 5 or 10 examples, EM is not the best
algorithm anymore. The best result for most cases is
obtained at v somewhere between 0 (hard EM) and 1
(EM). Furthermore, the results not only indicate that
a measure of “hardness” of EM i.e. the best value

of ~, is closely related to the quality of the ini-
tialization point but also elicit a more fine-grained
relationship between initialization and UEM.

This experiment agrees with (Merialdo, 1994),
which shows that EM performs poorly in the semi-
supervised setting. In (Spitkovsky et al., 2010), the
authors show that hard EM (Viterbi EM) works bet-
ter than standard EM. We extend these results by
showing that this issue can be overcome with the
UEM framework by picking appropriate v based on
the amount of available labeled data.

Semi-Supervised Entity-Relation Extraction
We conduct semi-supervised learning (SSL) ex-
periments on entity and relation type prediction
assuming that we are given mention boundaries.
We borrow the data and the setting from (Roth and
Yih, 2004). The dataset has 1437 sentences; four
entity types: PER, ORG, LOC, OTHERS and;
five relation types LIVE IN, KILL, ORG BASED IN,
WORKS FOR, LOCATED IN. We consider relations
between all within-sentence pairs of entities. We
add a relation type NONE indicating no relation
exists between a given pair of entities.

We train two log linear models for entity type and
relation type prediction, respectively via discrimina-
tive UEM. We work in a discriminative setting in
order to use several informative features which we
borrow from (Roth and Small, 2009). Using these
features, we obtain 56% average F1 for relations and
88% average F1 for entities in a fully supervised set-
ting with an 80-20 split which is competitive with
the reported results on this data (Roth and Yih, 2004;
Roth and Small, 2009). For our SSL experiments,
we use 20% of data for testing, a small amount, k%,
as labeled training data (we vary), and the remain-
ing as unlabeled training data. We initialize with a
classifier trained on the given labeled data.

We use the following constraints on the posterior.
1) Type constraints: For two entities e; and eg, the
relation type p(e1, e2) between them dictates a par-
ticular entity type (or in general, a set of entity types)
for both e; and es. These type constraints can be
expressed as simple logical rules which can be con-
verted into linear constraints. E.g. if the pair (ej, e2)
has relation type LOCATED IN then e must have en-
tity type Loc. This yields a logical rule which is
converted into a linear constraint as

[Sup. Bas. MPR

CoDL B UEM

Avg. F1 for relations

5 10 20
% of labeled data

Figure 2: Average F1 for relation prediction for varying
sizes of labeled data comparing the supervised baseline,
PR, CoDL, and UEM. UEM is statistically significantly
better than supervised baseline and PR in all the cases.

(p(e1,e2) == LOCATED IN) — (eg == LOC)
= ¢ (LOCATED IN;e1,e2) < ¢ (LOC;e2)

Refer to (Roth and Yih, 2004) for more statistics on
this data and a list of all the type constraints used.
2) Expected count constraints: Since most entity
pairs are not covered by the given relation types, the
presence of a large number of NONE relations can
overwhelm SSL. To guide learning in the right direc-
tion, we use corpus-wide expected count constraints
for each non-NONE relation type. These constraints
are very similar to the label regularization technique
mentioned in (Mann and McCallum, 2010). Let D,
be the set of entity pairs as candidate relations in the
entire corpus. For each non-NONE relation type p,
we impose the constraints

2.

(e1,e2)€D,

Lp < q<pa 61762) < Up)

where L, and U, are lower and upper bound on the
expected number of p relations in the entire corpus.
Assuming that the labeled and the unlabeled data are
drawn from the same distribution, we obtain these
bounds using the fractional counts of p over the la-
beled data and then perturbing it by +/- 20%.

Results We use Alg. 2 for solving the constrained
E-step. We report results averaged over 10 random
splits of the data and measure statistical significance
using paired t-test with p = 0.05. The results for
relation prediction are shown in Fig. 2. For each
trial, we split the labeled data into half to tune the
value of 7. For k = 5%, 10%, and 20%, the average

value of gamma is 0.52, 0.6, and 0.57, respectively;
the median values are 0.5, 0.6, and 0.5, respectively.
For relation extraction, UEM is always statistically
significantly better than the baseline and PR. The
difference between UEM and CoDL is small which
is not very surprising because hard EM approaches
like CoDL are known to work very well for discrim-
inative SSL. We omit the graph for entity predic-
tion because EM-based approaches do not outper-
form the supervised baseline there. However, no-
tably, for entities, for k = 10%, UEM outperforms
CoDL and PR and for 20%, the supervised baseline
outperforms PR statistically significantly.

Word Alignment Statistical word alignment is a
well known structured output application of unsu-
pervised learning and is a key step towards ma-
chine translation from a source language S to a tar-
get language T'. We experiment with two language-
pairs: English-French and English-Spanish. We
use Hansards corpus for French-English trans-
lation (Och and Ney, 2000) and Europarl cor-
pus (Koehn, 2002) for Spanish-English translation
with EPPS (Lambert et al., 2005) annotation.

We use an HMM-based model for word-
alignment (Vogel et al., 1996) and add agreement
constraints (Liang et al., 2008; Ganchev et al., 2008)
to constrain alignment probabilities in one direction
(Pp,: from S to T') to agree with the alignment prob-
abilities in the other direction (F,: from 7" to S.)
We use a small development set of size 50 to tune
the model. Note that the amount of labeled data we
use is much smaller than the supervised approaches
reported in (Taskar et al., 2005; Moore et al., 2006)
and unsupervised approaches mentioned in (Liang et
al., 2008; Ganchev et al., 2008) and hence our results
are not directly comparable. For the E-step, we use
Alg. 3 with R=5 and pick from {0.0,0.1,...,1.0},
tuning it over the development set.

During testing, instead of running HMM mod-
els for each direction separately, we obtain posterior
probabilities by performing agreement constraints-
based inference as in Alg. 3. This results in a
posterior probability distribution over all possible
alignments. To obtain final alignments, follow-
ing (Ganchev et al., 2008) we use minimum Bayes
risk decoding: we align all word pairs with poste-
rior marginal alignment probability above a certain

Size | EM PR CoDL UEM | EM PR CoDL UEM
En-Fr Fr-En

10k | 23.54 10.63 1476 9.10 | 19.63 10.71 14.68 9.21

50k | 18.02 830 10.08 734 | 16.17 840 10.09 7.40

100k | 16.31 8.16 9.17 7.05 | 15.03 8.09 8.93 6.87
En-Es Es-En

10k | 33.92 22.24 28.19 20.80 | 31.94 22.00 28.13 20.83

50k | 25.31 19.84 2299 18.93 | 2446 20.08 23.01 18.95

100k | 24.48 1949 21.62 18.75 | 23.78 19.70 21.60 18.64

Table 2: AER (Alignment Error Rate) comparisons
for French-English (above) and Spanish-English (below)
alignment for various data sizes. For French-English set-
ting, tuned y for all data-sizes is either 0.5 or 0.6. For
Spanish-English, tuned ~ for all data-sizes is 0.7.

threshold, tuned over the development set.

Results We compare UEM with EM, PR, and
CoDL on the basis of Alignment Error Rate (AER)
for different sizes of unlabeled data (See Tab. 2.)
See (Och and Ney, 2003) for the definition of AER.
UEM consistently outperforms EM, PR, and CoDL
with a wide margin.

6 Conclusion

We proposed a continuum of EM algorithms
parameterized by a single parameter. Our frame-
work naturally incorporates constraints on output
variables and generalizes existing constrained and
unconstrained EM algorithms like standard and
hard EM, PR, and CoDL. We provided an efficient
Lagrange relaxation algorithm for inference with
constraints in the E-step and empirically showed
how important it is to choose the right EM version.
Our technique is amenable to be combined with
many existing variations of EM (Berg-Kirkpatrick
et al., 2010). We leave this as future work.

Acknowledgments: We thank Jodo Graga for provid-
ing the code and data for alignment with agreement. This
research is sponsored by the Army Research Laboratory
(ARL) under agreement W911NF-09-2-0053, Defense
Advanced Research Projects Agency (DARPA) Machine
Reading Program under Air Force Research Laboratory
(AFRL) prime contract no. FA8750-09-C-018, and an
ONR Award on Guiding Learning and Decision Making
in the Presence of Multiple Forms of Information. Any
opinions, findings, conclusions or recommendations are
those of the authors and do not necessarily reflect the
views of the funding agencies.

References

K. Bellare, G. Druck, and A. McCallum. 2009. Alter-
nating projections for learning with expectation con-
straints. In UAL

T. Berg-Kirkpatrick, A. Bouchard-Coté, J. DeNero, and
D. Klein. 2010. Painless unsupervised learning with
features. In ACL, HLT ’10.

D. P. Bertsekas. 1999. Nonlinear Programming. Athena
Scientific, 2nd edition.

P. Brown, S. D. Pietra, V. D. Pietra, and R. Mercer. 1993.
The mathematics of statistical machine translation: pa-
rameter estimation. Computational Linguistics.

M. Chang, L. Ratinov, and D. Roth. 2007. Guiding semi-
supervision with constraint-driven learning. In ACL.

J. Clarke and M. Lapata. 2006. Constraint-based
sentence compression: An integer programming ap-
proach. In ACL.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society.

K. Ganchey, J. Graca, and B. Taskar. 2008. Better align-
ments = better translations. In ACL.

K. Ganchev, J. Graga, J. Gillenwater, and B. Taskar.
2010. Posterior regularization for structured latent
variable models. Journal of Machine Learning Re-
search.

T. Hofmann. 2001. Unsupervised learning by probabilis-
tic latent semantic analysis. MlJ.

M. Kearns, Y. Mansour, and A. Y. Ng. 1997. An
information-theoretic analysis of hard and soft assign-
ment methods for clustering. In ICML.

D. Klein and C. D. Manning. 2004. Corpus-based induc-
tion of syntactic structure: models of dependency and
constituency. In ACL.

P. Koehn. 2002. Europarl: A multilingual corpus for
evaluation of machine translation.

T. Koo, A. M. Rush, M. Collins, T. Jaakkola, and D. Son-
tag. 2010. Dual decomposition for parsing with non-
projective head automata. In EMNLP.

P. Lambert, A. De Gispert, R. Banchs, and J. Marino.
2005. Guidelines for word alignment evaluation and
manual alignment. Language Resources and Evalua-
tion.

P. Liang, D. Klein, and M. L. Jordan. 2008. Agreement-
based learning. In NIPS.

G. S. Mann and A. McCallum. 2010. Generalized
expectation criteria for semi-supervised learning with
weakly labeled data. JMLR, 11.

A. Martins, N. A. Smith, and E. Xing. 2009. Concise
integer linear programming formulations for depen-
dency parsing. In ACL.

A. K. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y.
Ng. 1998. Improving text classification by shrinkage
in a hierarchy of classes. In ICML.

B. Merialdo. 1994. Tagging text with a probabilistic
model. Computational Linguistics.

R. C. Moore, W. Yih, and A. Bode. 2006. Improved
discriminative bilingual word alignment. In ACL.

R. M. Neal and G. E. Hinton. 1998. A new view of
the EM algorithm that justifies incremental, sparse and
other variants. In M. 1. Jordan, editor, Learning in
Graphical Models.

K. Nigam, A. K. Mccallum, S. Thrun, and T. Mitchell.
2000. Text classification from labeled and unlabeled
documents using EM. Machine Learning.

F. J. Och and H. Ney. 2000. Improved statistical align-
ment models. In ACL.

F.J. Och and H. Ney. 2003. A systematic comparison of
various statistical alignment models. CL, 29.

S. Ravi and K. Knight. 2009. Minimized models for
unsupervised part-of-speech tagging. ACL, 1(August).

K. Rose. 1998. Deterministic annealing for clustering,
compression, classification, regression, and related op-
timization problems. In /JEEE, pages 2210-2239.

D. Roth and K. Small. 2009. Interactive feature space
construction using semantic information. In Proc.
of the Annual Conference on Computational Natural
Language Learning (CoNLL).

D. Roth and W. Yih. 2004. A linear programming formu-
lation for global inference in natural language tasks. In
H. T. Ng and E. Riloff, editors, CoNLL.

D. Roth and W. Yih. 2007. Global inference for entity
and relation identification via a linear programming
formulation. In L. Getoor and B. Taskar, editors, In-
troduction to Statistical Relational Learning.

A. M. Rush and M. Collins. 2011. Exact decoding of
syntactic translation models through lagrangian relax-
ation. In ACL.

A. M. Rush, D. Sontag, M. Collins, and T. Jaakkola.
2010. On dual decomposition and linear program-
ming relaxations for natural language processing. In
EMNLP.

A. Schrijver. 1986. Theory of linear and integer pro-
gramming. John Wiley & Sons, Inc.

N. A. Smith and J. Eisner. 2004. Annealing techniques
for unsupervised statistical language learning. In ACL.

V. L. Spitkovsky, H. Alshawi, D. Jurafsky, and C. D. Man-
ning. 2010. Viterbi training improves unsupervised
dependency parsing. In CoNLL.

B. Taskar, S. Lacoste-Julien, and D. Klein. 2005. A dis-
criminative matching approach to word alignment. In
HLT-EMNLP.

N. Ueda and R. Nakano. 1998. Deterministic annealing
em algorithm. Neural Network.

S. Vogel, H. Ney, and C. Tillmann. 1996. Hmm-based
word alignment in statistical translation. In COLING.

