
Breaking our password hash habit
Why the sharing of users’ password choices for defensive analysis is an
underprovisioned social good, and what we can do to encourage it.

Cormac Herley
Microsoft Research
cormac@microsoft.com

Stuart Schechter
Microsoft Research
stus@microsoft.com

Abstract

Attackers only get better at guessing the passwords users will create under a given set of password-
composition constraints. They learn more about users’ password-selection behaviors each time they
compromise a passsword, regardless of whether they obtain the password by breaching a password
database, installing a key logger, phishing, or by guessing.

Defensive analysis of user-chosen passwords could similarly identify predictable password-selection
behaviors and help us to prevent users from choosing predictable passwords. Alas, attempts to perform
such analysis have been stunted by requirements to encrypt passwords irreversibly and by the indignation
shown for those who would try to analyze the passwords their users choose.

We argue that encrypting passwords irreversibly has done more harm than good, providing a minimal
short-term reduction in risk as opposed to reversible encryption, but imposing a severe cost on our
ability to improve password defenses for the long term. As encrypting passwords is of little value if
users continue to choose passwords that are easily guessed, our collective choice to blind ourselves to
our users’ passwords has made us collectively less secure. We argue that passwords should be encrypted
so as to allow for offline defensive analysis.

While we believe there’s a strong case to be made that the social benefits of defensive password
analysis outweigh the risks, the individual cost/benefit tradeoff discourages users and firms from con-
tributing passwords for defensive analysis. When choosing a password, an individual may benefit from
analyses based on others’ prior contributions, but does not benefit from contributing the password she
chooses. However, she bears the risk should the password she has chosen is compromised as a result of
contributing. This makes making free-riding on others’ password contributions the security-optimizing
strategy for her as an individual. To solve this free rider problem, we propose that systems that help to
prevent users from choosing weak passwords (informed by prior users’ passwords choices), require that
those using the system contribute their newly-chosen passwords in return.

1 Introduction

Passwords are the dominant form of authentication for online accounts and services, and our reliance on
passwords has grown as we use online accounts to work, communicate, interact with financial services, and
even conduct our social lives. While the “death of passwords” has been predicted many times, a more
realistic view suggests that the barriers to their replacement are profound and they are likely to be with
us in great numbers for the foreseeable future [7]. The scale of our reliance on passwords makes it essential
to understand and mitigate their vulnerabilities.

All forms of authentication have vulnerabilities, but the ubiquity of passwords has ensured that the
public is aware of many of their shortcomings: attackers may observe a user entering a password either
visually or electronically (e.g., via a keylogger), trick the user into revealing the password (e.g., by ‘phish-
ing’), capture the password in transit from the user to the server, or capture information stored about the
password on the server. Alternatively, attackers may simply guess passwords until identifying the correct
one.

1

Guessing attacks exploit the existence of common password-selection behaviors that result in common
passwords. Some users choose uncommon passwords that are hard to guess, rendering their passwords
prohibitively expensive to guess even if individually targeted by an attacker. However, a significant fraction
of users choose passwords using predictable words or strategies that result in passwords that are themselves
too easily predicted by attackers. An attacker seeking any single account within an organization to leverage
for further attacks (a beachhead), or who sees value in obtaining and exploiting a subset of a services’
accounts, can target all accounts at once in order to compromise the subset with weak passwords. For
example, an attacker may try to login to all accounts using a statistical guessing attack: first using the
password suspected to be most likely, followed by the next-most-likely password, and so on. For the
purposes of defending against a beachhead attack, an organization is only as safe as its weakest password.

Some common password-selection behaviors are already well-known. One is to use a variant on the
word password or phrases that connote a request for access (e.g., letmein and opensesame). Advice given to
users on how to construct passwords can have the unintended effect of stimulating common user behaviors,
as can imposing requirements on how users choose passwords. For example, rules requiring the use digits
and symbols and advice on using substitutions such as @ in place of a may result in the common use of
P@ssw0rd.

Unfortunately, attackers’ knowledge of users’ more predictable password-selection behaviors may be
growing faster than ours, and far faster than our ability to discourage or prevent the selection of easily
guessable passwords. Attackers can learn from users’ password-selection habits each time they succeed in
obtaining passwords through key logging, phishing, and by compromising password databases. While some
attackers have publicly shared password databases from online services with minimal password-composition
requirements (e.g., RockYou), attackers who infiltrate corporations using stricter requirements have been
less generous about sharing their findings. For example, we have many datasets from organizations that
had relatively loose password policies (e.g., six characters unrestricted) but no large sets from ones with
restrictive policies (e.g., eight characters, including upper, lower-case and special characters). It would be
dangerous to assume that attackers share our ignorance regarding the common passwords chosen under
the stricter password-generation requirements commonly in use.

So long as attackers may have knowledge used to predict users’ password choices that we do not, there
can be no such thing as a strong user-chosen password; there are only passwords that have no known
weaknesses. A password may appear strong to us if it is derived from a concept, idea, or via a mechanism
that is unknown to us, yet it may be predictable to an attacker who does not share our ignorance.

The analysis required to identify and understand common password-creation behaviors requires plain-
text passwords, and faces two hurdles as a result. First, system designers are encouraged to store passwords
using irreversible encryption, so that plaintext recovery can only be achieved for those passwords that can
already be guessed. This prevents the identification of passwords that might be easy to guess once the
behavior that caused them had been recognized, but that could not be guessed with existing knowledge.
The use of encryption to prevent offensive analysis comes at the cost of also preventing defensive analysis.
Second, while password sharing for defensive analysis is a social good, individuals and organizations obtain
the greatest security by free riding on the analysis of others’ passwords without contributing their own.
Our goal is to tackle this free-rider problem so as to raise the overall security of all users of passwords.

Roadmap

This paper present an argument leading to a simple conclusion: data to study common password habits is
a social good that poorly-telling users-aligned incentives prevent us from reaching. We begin, in Section 2,
by presenting background on research in user-selected passwords and the adoption of password-storage
practices that have hindered this research. We also explain why password-construction requirements fail
to prevent weak passwords. In Section 3, we discuss three misconceptions about password-guessing attacks
that have been hindered our progress in developing defenses against them. In Section 4, we explain why
weak passwords cannot be prevented by suggestions or composition rules. Rather weak-password prevention
systems must detect predictable behaviors and alert users to the presence of the weak behavior so that it

2

does not lead to the creation of a weak password. In Section 5, we explain defensive analysis requires a
large number of passwords. In Section 6, we detail the free-rider problem faced by systems designed to
prevent weak passwords in the long term, and offer a proposal to solve this dilemma in Section 7.

2 Password research: a bursty, checkered history

The practice of encrypting passwords with a user-specific irreversible function dates back at least to 1974 [4],
and quickly became a recommended community-standard for the storage of passwords. Encrypting pass-
words was an important innovation because password databases need to be stored online so that they
can be accessed to verify users’ passwords during authentication. This availability requirement exposes
password databases to compromise. Whereas the compromise of a plaintext password file results in the
exposure of all users’ passwords, the compromise of irreversibly-encrypted passwords does not. Attackers
can guess passwords by computing the irreversible function on each guess, but this incurs a computational
cost. When users choose passwords that are hard to guess, the computation required to crack them may
delay the revelation of the password or even make cracking prohibitively expensive. Alas, if a user chooses
a password that attackers are likely to guess fairly quickly, encryption provides little value.

The use of an irreversible (a.k.a. one-way) encryption function was preferred to symmetric encryption,
as the symmetric key would need to be stored online; attackers who breached the system could recover
the key along with the password database, decrypt the password database, and obtain the plaintext pass-
words. While the arrival of public-key cryptography in 1978 (starting with Rivest, Shamir, and Adleman’s
scheme [13]) made it possible to encrypt passwords with a public key kept online, but only decrypt them
for analysis with a private key stored safely offline, this option does not appear to have been adopted.

In 1979, Morris and Thompson illustrated the incredible insight that can be obtained by analyzing such
password data sets, showing that the great majority of passwords available to them were either dangerously
short or consisted only of a word found in the dictionary [11]. To prevent users from future weak-password
choices, Morris and Thompson created what may have been the first password-composition rules.

The password entry program was modified so as to urge the user to use more obscure
passwords. If the user enters an alphabetic password (all upper-case or all lower-case) shorter
than six characters, or a password from a larger character set shorter than five characters, then
the program asks him to enter a longer password. This further reduces the efficacy of key
search.

2.1 The Dark Ages

While Morris and Thompson concluded that their password composition rules “make it exceedingly difficult
to find any individual password” [11], there has been little evidence to support the claim. Similarly, a NIST
standard [2], motivated by concerns that users “left to choose their own passwords will choose passwords
that are easily guessed,” proposes password-composition guidance and heuristics for estimating the strength
of a password created under a given set of requirements. Neither the standard, nor subsequent research,
has provided data to support these requirements or strength estimates.

In the decades that followed Morris and Thompson’s work, there was relatively little detailed research
into user password habits. Rather, academic research and industry have generated a bounty of numerous
alternatives and proposals to replace password, none of which have made a dent in the ubiquity of password
authentication [7]. As the number of computer users has grown by orders of magnitude, and the number of
accounts requiring a password for each user has grown as well, there has been little growth in our knowledge
of how users choose passwords or how to prevent them from making predictable choices.

The small collection of academic literature on password choice in the coming decades relied on small
data sets which allowed only the most limited analyses. This has been the result of economic limitations
and the availability of data. In 1999, Yan et al. [8] performed an experiment on first-year college students

3

which limited them to roughly one hundred participants. In studying a similar knowledge-based authen-
ticator (secret questions) [14], we recruited over one hundred participants at a cost of over a hundred
dollars per participant. Even studies that can be fully automated and use participants recruited through
crowd-sourcing platforms face practical constraints that limit the potential sample sizes to the thousands
(for example, see the recent contributions out of Carnegie Mellon University from Kelley et al. [9], Koman-
duri et al. [10], Shay et al. [17], and Ur et al. [18].)

2.2 The Renaissance

A recent renaissance in password research, spurred by releases of compromised passwords, gives further
reasons to be suspicious of the password-composition rules and strength heuristics on which we’ve relied
since the 1970s.

This renaissance began in 2006, when a collection of 34,000 myspace passwords (purportedly the result
of phishing attacks) was leaked and widely distributed to the point of becoming effectively public. This
appears to have been the first widely-publicized leak of a password collection large enough to permit
meaningful statistical analysis. These analyses revealed that some popular choices, such as password and
abcdef, were indeed very common [16]. Some of the common behaviors revealed appeared to have developed
in response to composition rules, such as adding a trailing digit or special character to the end of a password
(e.g., password1 or password! instead of password). The analysis also revealed common password-selection
behaviors that would likely have gone undetected without data. For example, blink182, the name of a
popular band which happens to satisfy the requirement of containing digits, was one of the most popular
myspace passwords. There were several medium-sized (i.e., tens of thousands or so) leaks of password sets
in the next few years.

In 2007, Florêncio and Herley [5] examined password habits of half a million toolbar users. While they
documented several interesting features such as length, character composition, and frequency of re-use they
did not have access to plaintext; thus, they did not study how common passwords are, and what strategies
people use to create them.

Zhang et al. [22] tried guessing new passwords following password-resets by using variants of the previous
passwords. They succeeded 41% of the time in an offline attack, and 17% of the time using an online attack.
Clearly, in many cases, new passwords are created by making minor modifications to the old ones. This
reveals that a policy (i.e., mandatory password changes at fixed intervals) that has been in widespread use
for many years is falling far short of achieving its design goals.

The renaissance’s momentum was provided a rapid, if unintended, acceleration in December 2009, when
hackers breached the servers of RockYou and published the database of plaintext passwords for the site’s
32 million users. This corpus of user-chosen passwords was three orders of magnitude larger than that
leaked from myspace. Weir et al. [21] were among the first to publish academic analyses of the data set and
its implications for password security. They found that the NIST heuristics for approximating entropy [2]
grossly overestimate the difficulty of guessing the weakest passwords created with password-composition
rules.

For example, the most common password in the RockYou dataset, 123456 accounts for about 0.9% of
all accounts. This is very weak, indicating that an attacker gets almost one account in a hundred with
one guess each. Yet, among the subset of RockYou passwords that are at least 8 characters long and have
upper, lower-case, special characters and digits the most common password, P@ssw0rd, accounts for 0.88%
of accounts. Thus, it’s arguable that forcing users to comply with onerous composition policies does not
improve the resistance to a beachhead attack.

Two years later, Bonneau published an analysis of a corpus of 70 million Yahoo!-account passwords,
more than twice the size of the RockYou data set [1]. Unlike prior analyses as this scale, this work was
performed with the consent of the site from which the passwords originated. Bonneau was permitted to
install code that briefly analyzed a password when it was available as plaintext to servers during login,
but did not store the plaintext password for later study. Rather, the code recorded characteristics about
the password (e.g., length and the types of characters present), a one-way hash of the password that was

4

consistent across users so as to determine if two users had chosen the identical password, and demographic
information about the user. Thus, Bonneau was able to study patterns of frequency, and proposed a
measure of strength that correlates better with attacker success than any of the other known measures.
Even though the one-way encryption did not identify actual passwords, the histograms of hashes would give
a prospective attacker significant insight into the likely success of online guessing attacks. The willingness of
Yahoo! to allow such a study represents an important shift in prioritizing long-term defensive understanding
over short-term efforts to minimize user risk.

3 Misconceptions muddy thinking about password-guessing defenses

Discussions of defense against password-guessing are plagued by three common misconceptions: (1) that
the problem can be modeled as one of making passwords ‘stronger’; (2) that the best way to defend against
attackers who would compromise the password database, is to store passwords via a one-way function and
enforce the selection of passwords ‘strong’ enough to resist offline-guessing attacks on that function; and
(3) that we can rely on data released from breaches to teach us how to detect and prevent weak passwords.

3.1 Password security is measured by ‘strength’

The problem of preventing password-guessing attacks is often reduced to discussions of “increasing password
strength,” where ‘strength’ implies resilience to guessing. This conceptualization may be responsible for
many ill-conceived metrics of users’ collective vulnerability to guessing attacks and defenses against guessing
attacks.

One resulting misconception is that password strength is measurable and that a user-chosen password
can be measurably strong. In fact, a password that appears strong to one observer may be predictable
to an attacker who is more familiar with the mindset or dialect of the user who chose it. We can at best
measure and detect whether passwords exhibit known weaknesses.

Another ‘strength’-related misconception is that increasing the average password strength (decreasing
the average prevalence of weakness) has a meaningful impact on security. Consider an organization with
ten user accounts. If the organization were to require the user who already had the best password to add
100 random characters to it, an estimate of mean strength would show that the organization had just
become orders-of-magnitude more safe. In fact, the organization would likely become much more safe by
adding a single random character to the weakest password.

Metrics of average password strength or weakness also confuse analysis of attacks that target a single
high-value user, or some subset of these users. Users with low-value accounts may skew the average by
putting correspondingly lower investments into choosing good passwords.

The most restrictive password policies are often imposed on employees of companies, governments, and
other organizations by their IT departments. These organizations have much to fear as the compromise
of a single employee’s password can provide attackers with a beachhead into the organization from which
to launch further attacks. Such an attack requires the compromise of only a single employee account, and
so defending against it is a weakest link problem [19]. The only way to increase security against such
an attack is to replace the weakest password with one that is not known to be unacceptably weak, and
continue doing so until no password is known to be unacceptably weak. A very successful security strategy
need not necessarily result in any change in median ‘strength’ (or weakness) and may have a very small
change on mean ‘strength’ (or weakness).

Not all users will have to change their password to protect against a beachhead attack. In fact, there’s
reason to believe most users already choose passwords that do not exhibit dangerous levels of weaknesses.
Of the 32, 603, 388 user accounts whose RockYou passwords were compromised, 36.45% (11, 884, 632 users)
of accounts had a unique password and 65.89% (21, 478, 750 users) had a password that occurred with
frequency less than one in a million (32 occurrences or fewer). One could presumably expect users to
choose even better passwords on sites they believed to be security-critical or that required more than

5

six characters. One common misconception about ‘strengthening’ passwords is that any effort to enforce
stronger passwords will result in a proportional increase in users forgetting their passwords. If those who
are already choosing passwords that aren’t classified as dangerously weak do not need to change what they
are doing, the usability cost of removing weak passwords need not be so great.

3.2 The best defense against password-file breaches is a strong hashed password

Even if the weakest passwords were orders of magnitude harder to guess than they are today, encrypting
with a one-way function and user-specific salt could not prevent an attacker with access to the password
database from guessing some fraction of these passwords.

Consider if were were to take radical password-strength and hashing measures to try to protect ourselves
in the event of a password database breach. We might choose a hash function that incurs a tenth of a
second of latency on a dedicated processor core. While this would increase login latency in a manner that
is at the edge of being perceivable by users, and expose authentication services to greater risk of denial-of-
service attacks, it would at best limit attackers to issuing ten a guesses per core per second. Let’s further
assume that, through great strides in weak-password prevention, we are able to ensure that the weakest
passwords require a billion guesses to crack. This is equivalent to enforcing a unique password requirement
on a billion users. Even with these measures in place, an attacker with a million machine botnet (with an
average of our four cores per machine) could issue over 2 billion guesses per minute and expect to crack a
password every twenty-five seconds.

Alas, the above analysis is actually an optimistic one, as few defenders go to such extreme measures
to protect password databases. While it is possible to use increase the computation required by hash
functions over time to keep up with advances in hardware (see Provos and Mazières [12]), many fail to
make the effort to do so. Those services that still rely on Windows NTLM-hashed passwords (against
Microsoft’s recommendations [3]) could see all eight-character passwords cracked within six hours by a
cluster of only five GPU-enhanced servers [6]. While the password database from LinkedIn was hashed
(though not salted), hackers cracked more than 60% of passwords [20].

The importance the security community places on hashing, paired with the limit protection it offers
against password-database compromise, might lead one to believe that the only explanation for the preva-
lence of this solution is the lack of better alternatives. In fact, there are better alternatives.

There already exist hardware security modules (HSMs) that perform cryptographic operations on keys
stored within the hardware and that do not provide functionality to read (extract) these keys.1 These
HSMs allow keys to be written, but not read, and are already used for such purposes as key management
(storing master keys that sign other keys) and SSL acceleration. Using this hardware, the hash function
could be paired with a firm-specific private salt (a key) that cannot be extracted via a compromise of the
system in which the hardware is installed. The resulting hash function would not only be one-way, but
could only be calculated with the hardware. For distributed authentication systems, multiple copies of the
hardware have the same firm-specific salt inserted into them before they are put online. Since the hardware
does not provide functionality for reading (extracting) the firm-specific salt, an attacker who compromises
the password file will only be able to crack passwords by issuing guesses remotely to the hardware at
whatever rate the hardware permits. Once the compromise is discovered and the attacker loses access to
the hardware, he can no longer issues guesses.

The same hardware technique can be used to protect passwords stored using public-key encryption to
allow for defensive analysis. Before encrypting the plaintext password with the public key, the hardware
appends to it the hash of the password calculated using the firm-specific private salt.

Unlike attempts to strengthen passwords, hardware security modules can be deployed without imposing
a burden on end users. However, they cannot protect against online guessing attacks. Thus, the goal

1See, for example: http://www.thales-esecurity.com/products-and-services/products-and-services/

hardware-security-modules and http://www.safenet-inc.com/data-protection/hardware-security-modules/

ssl-accelerators/

6

http://www.thales-esecurity.com/products-and-services/products-and-services/hardware-security-modules
http://www.thales-esecurity.com/products-and-services/products-and-services/hardware-security-modules
http://www.safenet-inc.com/data-protection/hardware-security-modules/ssl-accelerators/
http://www.safenet-inc.com/data-protection/hardware-security-modules/ssl-accelerators/

of weak-password prevention should be to protect against online guessing attacks, whereas better (less
burdensome) options are available to protect against offline guessing attacks.

3.3 We can rely on the kindness of thieves to help us prevent weak passwords

The recent flow of breaches has caused the public release of password databases from tianya, stratfor,
Gawker, IEEE, LinkedIn and RenRen. Ironically, the thieves who have compromised large databases of
user passwords may have produced a greater net social benefit than law-abiding academic research teams
whose work was constrained by the need to protect users. Research teams such as Florêncio and Herley
[5], Zhang et al. [22], and Bonneau [1] could examine only those hypotheses that could be anticipated
in advance and that could be tested with minimal risk. They also could not publish the data used in
their analyses. In contrast, the criminals who breached RockYou and other sites provided the research
community with public data sets with which researchers could test a wide range of previously-unanticipated
hypotheses and replicate others’ results.

Prior to the release of passwords from myspace, RockYou, and the stream of breaches since, defenders’
self-imposed security restrictions ensured they had less insight into users’ passwords choices than many
attackers likely had. Attackers who obtained plaintext password databases may have long known what the
research community discovered only recently. Other attackers may have come to the same knowledge by
harvesting passwords through phishing, keylogging, by trying to login to online accounts with guessed pass-
words (a.k.a. online dictionary attacks), or guessing candidate passwords against compromised encrypted
password databases (a.k.a. offline dictionary attacks).

Asymmetric information about users’ password-selection behaviors allows attackers to guess the most
common passwords that we don’t yet know how to prevent. It would be foolish to assume that the
thieves who steal passwords will continue to share their bounty with the research community and give
up the advantage that comes from asymmetric information. It would also be foolish to assume that
the information we’ve learned from past disclosures now puts the research community on equal footing
with attackers. Publicly-disclosed password lists have come primarily from websites that users may not
have considered worthy of a strong password and that have relatively relaxed password-composition rules.
RockYou, for example, accepted six character passwords such as abcdef and 123456. Some users will re-use
passwords from sites with password-composition rules at these laissez-faire sites, but they are a minority
and those that engage in this practice may not provide a representative sample.

There has not, as yet, been a large published dataset from a site that requires more stringent password-
composition rules, or that forces periodic password changes. Thus, we know that users respond to password-
composition policies using such predictable passwords as P@$$w0rd, but we do not know which choices are
the most common or just how common they are. Furthermore, we do not know the impact of other password
constraints placed on users. Since each constraint is likely to stimulate common strategies among users
who required to satisfy it, attackers who compromise passwords generated under these constraints will
know about weak passwords that defenders without access to similar data cannot know about.

4 Detecting weak passwords is the only way to prevent them

The dominant means of preventing weak passwords has been to employ proactive interventions that pre-
scribe desired behaviors. For example, rules or guidance specify in advance that passwords should be at
least a certain length, use different character sets (uppercase, lowercase, digits, and punctuation), and even
dictate that using certain types of characters appear in certain positions.

4.1 Why proactive interventions fail

These proactive prescriptive interventions may prevent users from choosing the subset of common passwords
that fail to meet the prescribed requirements, but they may also stimulate common behaviors as users react
to them. Some common passwords may be prevented by requiring the presence of digits (e.g., changeme)

7

and a password length of at least eight characters (e.g., 123456), but others may increase in prevalence as
users find common ways to satisfy these requirements (e.g., changeme1 and 12345678). Similarly, requiring
special characters may eliminate other common passwords, but cause users to respond by looking at their
available character choices cluster around concepts they associate them. For example, users who fixate on
the ‘@’ symbol may cluster around words or phrases that contain the sound ‘at’ (e.g., thec@&theh@); the
dollar symbol may suggest concepts of money (e.g., otherpeople’s$); and the exclamation point may only
increase the already-common propensity to employ profanities in passwords.

Even when not required, well-intentioned guidance that suggests techniques for creating passwords
can unintentionally suggest common behaviors that weaken passwords instead of strengthening them. For
example, the suggestion to substitute similar-looking characters into words (e.g., use ‘$’ in place of ‘s’) may
inspire a subset of users who think they are clever to choose a password that both uses substitution and
contains the word substitution: $u8$717u710n. Such a password is an unintended consequence of guidance,
and would not likely be popular without such guidance.

Proactive proscriptive interventions, which tell users what behaviors to avoid before they choose a
password, are both impractical and potentially counterproductive. Even with our limited knowledge of
user behavior today, we cannot expect users to take the time to read and understand the sample set of
dangerously-common behaviors we already know about. Even the most common behaviors are popular
with a small fraction of users (e.g., roughly 1% would use password) and so, for any given user, almost every
proscription would discourage a behaviors she had not previously considered engaging in. It’s even possible
that more users will be inspired to try a variant of a proscribed behavior than would have considered doing
so if they were left unaware that such a behavior existed. For example, a proactive prescription on password

might inspire some fraction of users who had previously had no plans to use a variant on the word to choose
drowssap (password spelled backwards).

4.2 Reactive proscriptive intervention

Reactive proscriptive intervention is presented only upon detecting predictable (and therefore weak) behav-
ior. The intervention is proscriptive in that its goal is to cause users to abort this behavior. One well-known
reactive proscriptive intervention is to search for dictionary words within a password and forbid their use.

A proscriptive approach need not forbid all common behaviors outright. Rather, the intervention need
only ensure that predictable behaviors do not result in predictable passwords. If a password contains a
substring that is hard to guess, it will not be harmed by the addition of more password material even if
those characters are easy to guess. For example, a password may not be made much stronger by appending
the predictable string password to it, but it will not be made weaker either.

Furthermore, behaviors that are unacceptably predictable on their own may be acceptable when used
multiple times or in composition with each other. Choosing a dictionary word at random may not result
in a password that is sufficiently hard to guess, but choosing three dictionary words at random may result
in a password that is quite hard to guess.

We previously proposed the reactive intervention of checking to see if a newly-chosen password is
already common among existing users, and proscribing the use of those passwords that proved predictably
popular [15]. This simple approach relies on safety in numbers, and to ensure that the number of expected
guesses to obtain access to the account with the weakest password is n, the system must have at least 2n
accounts. This approach fails to prevent predictable user-specific behaviors that may not always result in
common passwords, such as using a variant of one’s username as a password.

A popularity-based weak-password prevention mechanism may also fail to protect against attacks that
exploit language common only to a local dialects. Dialects are not just geographical, but can be specific
to subcultures and organizations. Organizational dialects may include acronyms, project code names,
and other words that are predictably popular within the organization but would not be popular among
the general population. Attackers who know a local dialect could exploit that knowledge to guess likely
passwords among this small subset of users.

8

Figure 1: Telepathwords is a prototype of a reactive proscriptive system to deter users from choosing weak
passwords. The system provides feedback to inform users if they are about to type a predictable character,
or have already done so. Administrators can require passwords to have a minimum number of hard-to-guess
characters.

When it is not possible to evaluate weakness purely on the popularity of a password in a large data
set, defenders can instead try to identify and prevent predictable behaviors and substrings. An example of
such a system is a prototype we have been developing in collaboration with Saranga Komanduri of CMU.
The system is called telepathwords, as it illustrates the presence of suspected-weak behaviors by displaying
predictions for the next character the user intends to type (but has not yet shared with the system).
The system only counts those characters it could not predict when assessing a user’s progress towards a
minimum-length requirement. Thus, the telepathwords prototype does not prevent weak behaviors, but
instead seeks to ensure the password contains a sufficient number of characters that do not appear to be
the result of predictable behaviors.

While not measuring Shannon entropy, a metric commonly referred to in discussions of password
strength, the approach uses the similar observation that the best way to determine the contribution of
an additional character is to determine how likely it could be guessed if the characters before it were
already known. The prototype makes predictions using a dictionary of passwords revealed in public com-
promises, a language model of common words and phrases (n-grams), and a list of common character
transforms (e.g., ‘a’ to ‘@’). It also recognize common behaviors such as interleaving two predictable
strings (p1a2s3s4w5o6r7d8), moving a finger over adjacent characters (asdfghjkl;), and repeating charac-
ters (******** and fourfourfourfour). Future versions could allow local dialects to be integrated into the
set of common words and phrases. Figure 4.2 shows the prototype in action.

The limitation of reactive weak-password prevention systems like telepathwords is that they cannot
detect or proscribe unanticipated weak behaviors that go undiscovered. Furthermore, we cannot discount
the possibility that a system like telepathwords will stimulate common responses leading to new categories
of predictable behaviors. For any reactive system to work, we must be able to continue to identify common
behaviors that evolve after the system is deployed. (Our prior popularity-based weak-password prevention
scheme [15] automatically recognizes passwords that may evolve from users exposure to it, but it cannot
recognize the more general underlying behaviors that inspire users to choose them.)

5 Weak-password prevention requires analyzing many passwords

Given that some password-selection behaviors can only be recognized by examining the passwords that
users choose in response, defensive analysis of plaintext passwords will be essential to the efficacy of any
behavior-based weak-password prevention system.

5.1 Common behaviors revealed through identical passwords

The most straightforward way to detect common behaviors is to examine popular passwords, starting from
the most common password and proceeding to successively less common passwords. Our ability to detect

9

any common behavior with this method is limited by the likely prevalence of passwords resulting from that
behavior.

The selection of identical passwords for two user accounts does not necessarily mean their behavior is
truly common among the larger population. The two accounts may actually belong to the same user or
users who have deliberately shared a password. Other such ‘collisions’ may occur simply due to chance;
even if users choose passwords uniformly and at random from a space of size n, the birthday paradox will
cause chance collisions to occur after roughly

√
n passwords have been observed.

To illustrate the difficulty of gathering sufficient data to identify common behaviors through common
passwords, consider a password has probability p of being chosen by any individual user. The probability
that a corpus with N users will see it twice or more is 1.0− binocdf(1, N, p). To be concrete, if a password
is chosen with probability p it will appear twice or more with probability 26% in a corpus of N = 1/p
and 99.9% in a corpus of N = 10/p users. Thus, patterns that are common enough to be very useful to
an attacker (e.g., p = 10−4, indicating one in ten thousand) may not be common enough to be visible to
the defenders. This is especially true if the attacker observes the success rate of a password across many
different sites, while the defender observes it across one (if he examines the histogram of user passwords)
or none (if he stores the passwords in encrypted form).

To achieve the promise of passwords resilient to a million guesses, as NIST guidance [2] would have
lead us to believe possible using password-composition rules, we will likely need to analyze tens of millions
of passwords.

5.2 Common behaviors revealed by common password substrings

Fortunately, plaintext analysis also allows us to identify common passwords by looking for common sub-
strings. Additional commonalities can be identified by performing canonicalization in advance of this
search, such as by turning uppercase letters into lowercase and treating similar looking characters as if
they were equivalent.

While it is harder to formally bound the effectiveness of such an analysis, large data sets are still
required.

6 Building a password corpus is a free-rider problem

The question of whether to allow defensive analysis is one of costs and benefits. Let us call the benefits of
having a corpus of n passwords available for defensive analysis B(n).

Contributing a password is not without cost. There exists the small possibility that the decryption key
used to analyze passwords (which should be stored offline and well guarded) could be compromised, that
those charged with defensive analysis of the passwords might fail to protect them, or that the attackers
will benefit from learning about common behaviors by examining the weak-password detection systems.
We represent the cost of collecting and storing a corpus of n real passwords as a function C(n).

The expected marginal benefit of each additional password is smaller than the last, as it is likely
to reveal behaviors that are statistically less common. In other words, the second derivative of B(n) is
negative. In contrast, to a first approximation, each additional password contributed puts an additional
account at risk, and so C(n) grows roughly linearly.

The net total benefit of contributing n passwords can be written as:

T (n) = B(n)− C(n)

The net marginal benefit to the participants of contributing the nth password in the corpus is the first
derivative of T (n). Approximating T

′
(n) by a discrete function:

T
′
(n) = [B(n)−B(n− 1)]− [C(n)− C(n− 1)]

10

The social welfare is increased by the contribution of passwords for defensive analysis until the size of
the corpus reaches some threshold nt such that the marginal net benefit of the contribution to society is
zero: T

′
(nt) = 0.

We have argued that some password-selection behaviors are common enough to be worth discovering
and preventing, but not so common as to be discoverable with only a small password corpus. In other
words, if contributed passwords can be secured well-enough to keep the risk low, nt is likely in the millions,
tens of millions, or even higher.

Alas, regardless of the value of nt that maximizes social benefit, contributions of passwords for collective
analysis are likely to be underprovisioned because the choice to contribute a password for defensive analysis
may not be attractive to the individual making the contribution. The problem is that while everyone
benefits from a contribution, the individual contributor sees only a negligible fraction of that contribution’s
benefits but incurs its full cost.

In other words, society benefits when the security benefits of the contribution, which benefits everyone,
outweigh the costs:

B(n)−B(n− 1) > C(n)− C(n− 1)

but the individual only comes out ahead when his tiny share of the security benefits outweigh his full share
of the cost (security risk)

B(n)−B(n− 1)

n
> C(n)− C(n− 1)

More generally, an organization that could contribute a passwords to bring the total size of the corpus
to n only comes out ahead when:

a

n
[B(n)−B(n− a)] > C(n)− C(n− a)

Alas, even if we are able to overcome the conventional wisdom that passwords can be sufficiently
strengthened via composition rules, that passwords must be stored using an encryption algorithm that
cannot be reversed, and that the benefits of allowing defensive analysis outweigh the costs, we cannot
expect organizations and individuals to volunteer to contribute their passwords for analysis. As with
voting in a large democracy, the act of contributing cannot be justified by one’s chance of having an
impact on the outcome, let alone benefiting personally.

7 Overcoming freeloading requires trust and the right incentives

The perceived risk of contributing a password for defensive analysis depends on how much the prospective
contributor trusts those charged with protecting the passwords, performing the analysis, and integrating
findings into weak-password prevention systems. The added risk of contributing may be smaller if the
prospective contributor is already trusting the provider of the weak-password prevention with the secure
operation of the larger authentication system or the operating system. The organization that obtains these
passwords and performs defensive analysis can further reduce perceived cost by being transparent about
the process through which it protects passwords in storage and during analysis (e.g., separating passwords
from the identity of the users who created them and the services they were created to authenticate to),
about who it grants access to perform analysis, and about how it handles requests from governments that
may want to access these data.

Classical economics would suggest that the positive externality of contributing a password could be
internalized through a payment to the contributor, presumably proportional to (but smaller than) the
expected social benefit. In practice, there are many reasons to suspect that this would not result in the
behavior predicted by a model of utility-maximizing rational economic behavior. First, humans do not
easily convert the currency of risk to dollars. Second, the officers charged with making security risk decisions
(e.g., CISOs) are unlikely to be rewarded for the incoming cash flows and might fear being punished for
introducing a new security risk—even if that expected dollar cost of that risk is small relative to the

11

payment. Finally, firms could not expect investors or customers to accept the justification of economic
rationality for taking a new security risk. Rather, a rational cost-benefit analysis is more likely when the
cost (a potential increase of security risk) is more than offset by a benefit of the same currency—a larger
decrease in security risk.

For both password-popularity and behavior-based weak-password prevention schemes, we propose that
the best way to prevent free riding is to make the contribution of a user’s new password the price of
using the weak-password prevention system. This would change the organization’s decision function for
contributing a additional passwords to the corpus to (since B(0) = 0):

a

n
B(n) > C(n)− C(n− a)

Assuming a linear cost function for which each additional password incurs a cost c:

a

n
B(n) > ac (1)

B(n)

n
> c (2)

(3)

This approach is fair to each contributor in that each password contributed receives an equal propor-
tional share of the social benefit and cost.

For firms that already trust their security to the provider of the weak-password prevention system –
relying on it to provide safe code and services – the orders-of-magnitude reduction in the weakness of firms’
weakest passwords will more than offset the added risk.

One way to further increase the risk/benefit trade-off, and further encourage firms to contribute pass-
words for analysis, would be to bundle the weak-password prevention system with a hardware security
module (as discussed in Section 3.2) to reduce the risk of password database compromises. This additional
benefit of participating of protecting a password with an HSM (BHSM) so as to reduce the risk of offline
dictionary attacks may further offset any risk of participating, changing the decision function to.

B(n)

n
+ BHSM > c (4)

(5)

No matter what incentives are provided, some prospective users of the weak-password prevention system
may still not have enough trust in the system to be willing to contribute their passwords. One way to
accommodate such users is to allow them to opt-out of contributing by paying a fee at or above the social
value of their forgone contribution. This fee could be used to fund the development of the system or
distributed to the systems’ other users to help address the reduction in fairness. Alas, in addition to any
real or perceived reductions in fairness which may discourage others from contribution, allowing users to
opt out of contribution reduces the system’s potential efficacy. The firm that opts out will likely see the
greatest reduction in efficacy, as the weak-password prevention system will be blind to any firm-specific
behaviors or dialects that could only be detected through defensive password analysis. Similarities among
the types of entities that might be most tempted to opt out (security firms, intelligence agencies, and so
on) might amplify this effect.

Another approach to accommodating those wary of contributing passwords would be to instead collect
newly-expired passwords when newly-created passwords replace them. This would introduce delays into
weakness discovery, especially as it relates to terms and phrases that result from fast-moving trends. Users
who are not required to change their passwords periodically might never contribute one. Finally, given
the frequent correlation between expired and new passwords, collecting newly-expired passwords is not
significantly less risky than collecting current passwords.

12

8 Conclusion

We have argued that overestimates of the benefits of password-composition policies and irreversible hashing,
paired with a corresponding underestimates of the benefits of defensively analyzing plaintext passwords,
have stunted improvements in password security. Rather, preventing weak passwords requires an approach
that is both reactive and proscriptive, and relies on our ability to detect dangerously-common passwords and
password-construction behaviors by analayzing a large representative corpus of plaintext passwords. While
contributing passwords for defensive analysis by weak-password prevention systems is a social good, users
are individually best served by using the weak-password prevention systems while free riding on analyses
of passwords contributed by others. If we do not correct for this free-rider problem, our knowledge of
users’ password-selection habits will continue to trail that of attackers and become less accurate each time
we iterate our systems in an attempt to eliminate the common behaviors we do know about. All users
will suffer as weak-password prevention systems fail to keep up with attackers’ growing knowledge of how
users choose passwords. We have shown that requiring users to contribute their newly-chosen passwords in
return for receiving assistance from a weak-password prevention system addresses the free-rider problem
in manner that achieves an important form of fairness, in which as the proportion of the passwords a
contributor protects (its share of the benefits) are are proportional to its contributions (its share of the
passwords placed at risk).

References

[1] Joseph Bonneau. The science of guessing: analyzing an anonymized corpus of 70 million passwords. In
Proceedings of the 20012 IEEE Symposium on Security and Privacy, Washington, DC, USA, May 20–
23 2012. IEEE Computer Society.

[2] William E. Burr, Donna F. Dodson, and W. Timothy Polk. Electronic Authentication Guideline. In
NIST Special Publication 800-63, 2006. http://csrc.nist.gov/publications/nistpubs/800-63/

SP800-63V1_0_2.pdf.

[3] Microsoft Corporation. http://msdn.microsoft.com/en-us/library/cc236715.aspx.

[4] Arthur Evans Jr., William Kantrowitz, and Edwin Weiss. A user authentication scheme not requiring
secrecy in the computer. Communications of the ACM, 17(8):437–442, 1974.

[5] D. Florêncio and C. Herley. A Large-Scale Study of Web Password Habits. WWW 2007, Banff.

[6] Dan Goodin. 25-gpu cluster cracks every standard windows password in < 6
hours. Ars Technica, December 9 2012. http://arstechnica.com/security/2012/12/

25-gpu-cluster-cracks-every-standard-windows-password-in-6-hours/.

[7] C. Herley and P.C. van Oorschot. A Research Agenda Acknowledging the Persistence of Passwords.
IEEE Security & Privacy Magazine. Jan. 2012.

[8] J. Yan and A. Blackwell and R. Anderson and A. Grant. Password Memorability and Security:
Empirical Results. IEEE Security & Privacy, 2004.

[9] Patrick Gage Kelley, Saranga Komanduri, Michelle L. Mazurek, Richard Shay, Timothy Vidas, Lujo
Bauer, Nicolas Christin, Lorrie Faith Cranor, and Julio López. Guess again (and again and again):
Measuring password strength by simulating password-cracking algorithms. IEEE Symposium on Se-
curity and Privacy, 0:523–537, 2012.

[10] Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L. Mazurek, Lujo Bauer, Nicolas
Christin, Lorrie Faith Cranor, and Serge Egelman. Of passwords and people: measuring the effect

13

http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf
http://msdn.microsoft.com/en-us/library/cc236715.aspx
http://arstechnica.com/security/2012/12/25-gpu-cluster-cracks-every-standard-windows-password-in-6-hours/
http://arstechnica.com/security/2012/12/25-gpu-cluster-cracks-every-standard-windows-password-in-6-hours/

of password-composition policies. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’11, pages 2595–2604, New York, NY, USA, 2011. ACM.

[11] Robert Morris and Ken Thompson. Password security: A case history. Communications of the ACM,
22(11):594–597, 1979.

[12] Niels Provos and David Mazières. A future-adaptive password scheme. In Proceedings of the annual
conference on USENIX Annual Technical Conference, USENIX ATC 1999, pages 32–32, Berkeley,
CA, USA, 1999. USENIX Association.

[13] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.

[14] Stuart Schechter, A. J. Bernheim Brush, and Serge Egelman. It’s no secret: Measuring the security
and reliability of authentication via ‘secret’ questions. In Proceedings of the 2009 IEEE Symposium
on Security and Privacy, Washington, DC, USA, May 17–20 2009. IEEE Computer Society.

[15] Stuart Schechter, Cormac Herley, and Michael Mitzenmacher. Popularity is everything: A new ap-
proach to protecting passwords from statistical-guessing attacks. In The 5th USENIX Workshop on
Hot Topics in Security (HotSec), August 10 2010.

[16] Bruce Schneier. Schneier on security: Real-world passwords. December 14 2006. http://www.

schneier.com/blog/archives/2006/12/realworld_passw.html.

[17] Richard Shay, Patrick Gage Kelley, Saranga Komanduri, Michelle L. Mazurek, Blase Ur, Timothy
Vidas, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. Correct horse battery staple: exploring
the usability of system-assigned passphrases. In Proceedings of the Eighth Symposium on Usable
Privacy and Security, SOUPS ’12, pages 7:1–7:20, New York, NY, USA, 2012. ACM.

[18] Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass, Michelle L. Mazurek,
Timothy Passaro, Richard Shay, Timothy Vidas, Lujo Bauer, Nicolas Christin, and Lorrie Faith
Cranor. How does your password measure up? the effect of strength meters on password creation. In
Proceedings of the 21st USENIX Security Symposium, August 8–10 2012.

[19] Hal R. Varian. Sytem reliability and free riding. In The First Workshop on the Economics of Infor-
mation Security, May 2002.

[20] Jaikumar Vijayan. Hackers crack more than 60 ComputerWorld, June 7 2012. http:

//www.computerworld.com/s/article/9227869/Hackers_crack_more_than_60_of_breached_

LinkedIn_passwords.

[21] Matt Weir, Sudhir Aggarwal, Michael Collins, and Henry Stern. Testing metrics for password creation
policies by attacking large sets of revealed passwords. In Proceedings of the 17th ACM conference on
Computer and communications security, CCS ’10, pages 162–175, New York, NY, USA, 2010. ACM.

[22] Y. Zhang, F. Monrose and M. K. Reiter. The security of modern password expiration: An algorithmic
framework and empirical analysis. In Proc. CCS, 2010.

14

http://www.schneier.com/blog/archives/2006/12/realworld_passw.html
http://www.schneier.com/blog/archives/2006/12/realworld_passw.html
http://www.computerworld.com/s/article/9227869/Hackers_crack_more_than_60_of_breached_LinkedIn_passwords
http://www.computerworld.com/s/article/9227869/Hackers_crack_more_than_60_of_breached_LinkedIn_passwords
http://www.computerworld.com/s/article/9227869/Hackers_crack_more_than_60_of_breached_LinkedIn_passwords

	Introduction
	Password research: a bursty, checkered history
	The Dark Ages
	The Renaissance

	Misconceptions muddy thinking about password-guessing defenses
	Password security is measured by `strength'
	The best defense against password-file breaches is a strong hashed password
	We can rely on the kindness of thieves to help us prevent weak passwords

	Detecting weak passwords is the only way to prevent them
	Why proactive interventions fail
	Reactive proscriptive intervention

	Weak-password prevention requires analyzing many passwords
	Common behaviors revealed through identical passwords
	Common behaviors revealed by common password substrings

	Building a password corpus is a free-rider problem
	Overcoming freeloading requires trust and the right incentives
	Conclusion

