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ABSTRACT
In a traditional threat model it is necessary and suffi-
cient to protect against all attacks. While simple, and
appropriate in high-assurance settings, we show that
this model does not scale and is entirely inappropri-
ate to the financially-motivated cyber-crime that tar-
gets two billion Internet users. The attackers who prey
on Internet users are very constrained. The have finite
gains, non-zero costs, and must make profit in expecta-
tion. Above all their techniques must scale. This means
that they must have attacks with scalable costs or ef-
ficient ways of finding viable targets in a large popula-
tion. We show that many technically possible attacks
are economically infeasible. We show that incorporat-
ing target selection and monetization in addition to an
attacker’s technical constraints offers new directions on
how defense tradeoffs can be made.

1. INTRODUCTION
A traditional threat model, which has been with us

since before the dawn of the Internet, is illustrated in
Figure 1. Alice seeks to protect her resources from Mal-
lory, who has a suite of attacks, k = 0, 1, · · · , Q−1. For
the moment let’s just assume (unrealistically) that Q is
finite and all of the attacks are known to both parties.

What must Alice do to prevent Mallory gaining ac-
cess? Clearly, it is sufficient for Alice to block all Q
possible attacks. If she does this, there is no risk. Fur-
ther, assuming that Mallory will keep trying until he
exhausts his attacks (or succeeds), it is also necessary.
That is, against a sufficiently motivated attacker, it is
both necessary and sufficient that Alice defend against
all possible attacks. For many this is a starting point,
e.g., Schneider states [14] “a secure system must defend
against all possible attacks – including those unknown
to the defender.” A popular textbook [13], calls it the
Principle of Easiest Penetration: “An intruder must be
expected to use any available means of penetration.”
An often-repeated quip from Schneier “the only secure
computer in the world is unplugged, encased in con-
crete, and buried underground” reinforces the view.

1.1 How did Mallory meet Alice?
How does this scale? That is, how does this model

fare if we use it for an Internet scale population, where,
instead of a single Alice, we have many? We might be
tempted to say, by extension, that unless each Alice(i)
blocks all Q attacks then some attacker gains access.
However, a moment’s reflection shows that this can-
not always be true. If there are two billion users, it is
numerically impossible that each faces the “sufficiently
motivated” persistent attacker that was our starting as-
sumption: there simply aren’t two billion attackers, or
anything close to it. Indeed, if there were two mil-
lion rather than two billion attackers (making cyber-
criminals about a third as plentiful as software devel-
opers worldwide) users would still outnumber attackers
1000-to-1. Clearly, the threat model shown in Figure 1
doesn’t scale.

1.2 Sufficient 6= Necessary-and-Sufficient
Thus, the threat model applies to some users and tar-

gets, but cannot apply to all. When we try to apply it
to all we confuse sufficient and necessary-and-sufficient.
This might appear a quibble, but the logical difference
is enormous and it leads to absurdities and contradic-
tions when applied at scale.

First, if defending against all attacks is necessary-and-
sufficient, then failure to do everything is equivalent to
doing nothing. Thus, the marginal benefit of almost
all security measures is zero. Lampson expresses the
problem succinctly [12]: “There’s no resting place on
the road to perfection.”

Second, in a regime where everything is necessary,
tradeoffs are not possible. We have no firm basis on
which to make sensible claims, such as that keylogging is
a bigger threat than shoulder surfing. Those who adhere
to a binary model of security are unable to participate
constructively in tradeoff decisions.

Third, the assumption that there is only a finite num-
ber of known attacks is clearly favorable to the defender.
In general it is not possible to enumerate all possible at-
tacks, the number grows constantly and there are very
likely to be attacks unknown to the defenders. If failing
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Figure 1: In a traditional threat model a single
user faces a single attacker. Given a sufficiently
motivated attacker it is necessary and sufficient to
block all attacks.

to do everything is the same as doing nothing (and Al-
ice can’t possibly do everything) the situation appears
hopeless.

Finally, the logical inconsistencies are joined by ob-
servations that clearly contradict what the model says is
necessary. The fact that most users ignore most security
precautions and yet escape regular harm is irreconcil-
able with the threat model of Figure 1. If the model
applies to everyone, it is hard to explain why everyone
isn’t hacked every day.

1.3 Modifying the threat model
The threat model of Figure 1 might appear a straw

man. After all, nobody seriously believes that all ef-
fort short of perfection is wasted. It’s doubtful that
anyone (especially those quoted above) adheres to a
strictly binary view of security. Rather than insist that
the threat model always applies many use it as a start-
ing point that’s appropriate for some situations, but is
overkill for others. Thus, some modification is gener-
ally offered. The popular textbook mentioned earlier
[13], for example, codifies this as the Principle of Ade-
quate Protection “[computer items] must be protected
to a degree consistent with their value.” Thus, a more
realistic view is that we start with some variant of the
traditional threat model, e.g., “it is necessary and suf-
ficient to defend against all attacks” but then modify it
in some way, e.g., “defense effort should be appropriate
to the assets.”

However, while the first statement is absolute, and
has a clear call-to-action, the qualifier is vague and im-
precise. Of course we can’t defend against everything,
but on what basis should we decide what to neglect?
It helps little to say that the traditional threat model
doesn’t always apply unless we specify when it does,
and what should be used in its place when it does not.
A qualifier that is just a partial and imprecise walk-
back of the previous claim clarifies nothing. Thus, our
problem is not that anyone insists on rigid adherence to
the traditional threat model, so much as that we lack
clarity on when to abandon it and what to take up in

Financial Non-Financial

Scalable Non-Scalable

Cybercrime

Figure 2: Dividing attacks into financial and
non-financial attacks. We further divide finan-
cial attacks into scalable and non-scalable.

its place when we do. Failure to be clear on this point
is an unhandled exception in our logic.

We argue that this matters. A main reason for ele-
vated interest in computer security is the scale of the
population with security needs. A main question for
that population is how to get best protection for least
effort. It is of the first importance to understand accu-
rately the threats that two billion users face and how
they should respond. All models may, as it is said,
be wrong, but failure to scale, demands of unbounded
effort and inability to handle tradeoffs are not tolera-
ble flaws in one that seeks to address the question of
Internet threats. The rest of this paper explores modi-
fications of the traditional threat model.

2. FINANCIALLY-MOTIVATED CYBER-CRIME
The threat model of Figure 1 tried to abstract all

context away. There is no reference to the value of the
resource, the cost of the attack, or how Mallory came to
focus his attention on Alice. The model doesn’t distin-
guish between finite and infinite gain nor between zero
and non-zero cost. Abstraction like this is, of course,
useful. It is far more powerful if we can solve the general
problem without resorting to specifics. Unfortunately,
this attempt breaks down at scale: the binary view of
security must be qualified.

When money is the goal it seems reasonable to as-
sume that Mallory is “sufficiently motivated” when the
expected gain from an attack exceeds the cost. We
now examine whether focusing on the sub-problem of
financially-motivated cybercrime will allow progress on
the questions of exactly when and how to deviate from
the binary model. We propose a bifurcation of attacks
(shown in the top branch of Figure 2) into those that
are financially motivated and those that are not.

2.1 Profit at scale
A main reason for the concern with cybercrime is the

scale of the problem. We might be less concerned if it
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were a series of one-off or isolated attacks rather than
an ongoing problem. Only when the one-time costs can
be amortized over many attacks does it become a sus-
tained phenomenon that affects the large online popu-
lation. To be sustainable there must first be a supply
of profitable targets and a way to find them. Hence,
the attacker must then do three things: he must decide
who and what to attack, he must successfully attack
(i.e., get access to a resource) and he must monetize
that access.

Clearly, a particular target isn’t worthwhile if gain mi-
nus cost isn’t positive: G− C > 0. Thus, when attacks
are financially-motivated, the average gain for each at-
tacker, E{G}, must be greater than the cost, C:

E{G} − C > 0. (1)

C must include all costs, including that of finding vi-
able victims and of monetizing access to whatever re-
source he targets. The gain must be averaged across all
attacks, not merely successful ones. Clearly, if either
E{G} → ∞ or C = 0 then (1) represents no constraint
at all. When this happens we can revert to the tra-
ditional threat model with no need to limit its scope:
Alice can neglect no defense if the asset is infinitely
valuable, or attacks have no cost.

That gain is never infinite needs no demonstration.
While it should be equally clear that cost is never pre-
cisely zero, it is common to treat cybercrime costs as be-
ing small enough to neglect. Against this view we offer
the following arguments. First, if any attack has zero
cost then all targets should be attacked continuously,
and all profitable opportunities should be exhausted as
soon as they appear. Instead of “why is there so much
spam” we would ask “why is there so little?” as it would
overwhelm all other traffic. Second, while a script may
deliver victims at very low cost, the setup and infras-
tructure are not free. Even if we grant that a script
finds dozens of victims in one day (the Internet is big
after all) why should the same script find dozens more
the next day, and again the day after? Why should it
do so at a sustained rate? Finally, as we discuss in Sec-
tion 3.3, while scripts might achieve access to resources
at low cost, the task of monetizing access is generally
very hard. Thus, we argue that, not only is attacker
cost greater than zero, but it is the principal brake on
attacker effort.

2.2 Attacks that scale
While we’ve argued that C > 0, it is clear that the

majority of users are regularly attacked by attacks that
have very low cost per attacked user. We’ll find it useful
to segment attacks by how their costs grow. Scalable
attacks are one-to-many attacks which have the prop-
erty that cost (per attacked user) grows slower than
linearly. For example, doubling the number of users

attacked, increases the cost very little [8]:

C(2N)� 2 · C(N). (2)

Many of the attacks most commonly seen on the Inter-
net are of this type. Phishing and all attacks for which
spam is the spread vector are obvious examples. Viruses
and worms that spread wherever they find opportunity
are others. Drive-by download attacks (where web-page
visitors are attacked via browser vulnerabilities) are yet
more. Non-scalable attacks are everything else. In con-
trast to (2) they have costs that are proportional to the
number attacked: C(N) ∝ N. We add the bifurcation,
into scalable and non-scalable attacks, to Figure 2.

3. CONSTRAINTS ON FINANCIALLY MO-
TIVATED ATTACKERS

A financially-motivated attacker must decide who and
what to attack, attack successfully and then monetize
access. The better he can scale these activities the
greater the threat that he represents to the online pop-
ulation. We now examine, some of the difficulties and
constraints in scalable answers to these questions.

3.1 Scalable attacks (attack everybody)
An alternative to solving the problem of deciding who

to attack is to attack everyone. Scalable attacks have
inherent advantages over non-scalable ones. They reach
large masses at very low cost and techniques can be
propagated easily. These advantages come with severe
constraints however. Scalable attacks are very visible:
in reaching millions it is hard to go un-noticed. Their
broadcast nature gives an alert, both to defenders and
other would-be attackers. This attracts competition
and increases defense effort.

Scalable attacks are a minority of attack types. It
is the exception rather than the rule that costs have
only weak dependence on the number attacked. Any-
thing that can’t be completely automated, or involves
per-target effort is thus non-scalable as this cost violates
the constraint (2). Physical side-channel attacks (which
require proximity) are out, as getting close to a million
users costs a lot more than getting close to one. Labor-
intensive social engineering attacks (such as those de-
scribed by Mitnick [10]) and the “Stuck in London”
scam are non-scalable. After an initial scalable spam
campaign the Nigerian 419 scam, and variants, devolves
into a non-scalable effort in manipulation. Equally,
spear-phishing attacks that make use of information
about the target are non-scalable. While the success
rate on well-researched spear-phishing attacks may be
much higher than the scatter-shot (e.g., “Dear Paypal
customer”) approaches they are non-scalable. Attacks
that involve knowledge of the target are usually non-
scalable. For example, guessing passwords based on
knowledge of the user’s dog’s name, favorite sports team
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or cartoon character involves significant non-scalable
effort. Equally, attacks on the backup authentication
questions that involve researching where a user went to
highschool, etc, are non-scalable.

Thus, while all of us see the evidence of scalable at-
tacks every day, it is actually a minority of of attack
types that are scalable.

3.2 Finding viable targets
Non-scalable attacks resemble the one-on-one attacks

of the traditional threat model. However, rather than
an attacker who is sufficiently motivated to persist no
matter what, we have one who obeys a profit constraint
(1). The problem (for Mallory) is that profitability is
not directly observable. It is not obvious who will suc-
cumb to most attacks, and who will prove profitable.
Since C > 0, the cost of false positives (unprofitable
targets) can entirely consume the gain from true pos-
itives. When this happens attacks that are perfectly
feasible from a technical standpoint become impossible
to run profitably. The cost and difficulty of deciding
who to attack is almost unstudied in the security liter-
ature, however no audit of Mallory’s accounts can be
complete without it. Unless he has a cost-effective way
of identifying targets in a large population non-scalable
attacks are of little use to Mallory.

Assume that Mallory can estimate a probability, or
likelihood, of profit given everything he observes about
a potential target. This is the probability that the
target succumbs AND access can be monetized (for
greater than the average cost). Call this P{viable|obs.}.
The observables might be address, zip code, occupation
and any other factors likely to indicate the profitability.
Without loss of generality, these can be wrapped into a
single one-dimensional sufficient statistic [15]. We’ll as-
sume that the cost of gathering the observables is small
relative to the cost of the attack. This makes the prob-
lem a binary classification [9], so that Receiver Operator
Characteristic (ROC) curves are the natural analysis
tool. The ROC curve is the graph of true positive rate,
tp, vs. false positive rate, fp, an example is shown in
Figure 3.

Let’s examine how the binary classification constrains
Mallory. Suppose, in a population of size N, a fraction
P{viable} = d of targets are viable. From Bayes’ theo-
rem (when d is small):

P{viable | obs.} =
d

d +
P{obs. | non-viable}
P{obs. | viable}

· (1− d)

≈ d · P{obs. | viable}
P{obs. | non-viable}

. (3)

Clearly, P{viable|obs.} is proportional to density; so,
the hardness of finding a viable target gets worse as d
falls. A set of observables that gives a 90% chance of

Figure 3: Example ROC curve. A line of slope
T/d = 20 is shown. Only operating points to
the left of this line satisfy (5) and yield profit.
Clearly, as T/d increases the true positive rate
falls and fewer viable targets are attacked. For
example, with this classifier when T/d = 104

fewer than 1% of viable targets will be attacked.

finding a viable target when d = 0.01 gives only a 0.09%
chance when d = 10−5. So, observables that promised
a near “sure thing” at one density offer a worse than
thousand-to-one long-shot at another.

Mallory presumably decides to attack depending on
whether or not P{viable|obs.} is above or below some
threshold, T . The threshold, T, will generally be set by
a budget, for example if an attacker needs one attack in
every 1/T (e.g., 1-in-20, 1-in-100, etc) to be profitable.
Then, from (3) he must have:

P{obs. | viable} ≥
(
T

d

)
· P{obs. | non-viable}. (4)

This constraint says that the observables must be a fac-
tor of T/d more common among viable targets than
non-viable. If 1-in-10,000 is viable and Mallory needs
one attack in 20 to succeed he must identify observable
features which are T/d = 500× more common in the
viable population than in the non-viable.

The ROC curve gives a geometric interpretation. Mal-
lory finds dtpN viable targets in dtpN + (1 − d)fpN
attacks. To satisfy the budget constraint, the ratio of
successes to attacks must be greater than T, so we get
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(when d is small):

tp
fp
≥ T

d
. (5)

Thus, only points (fp, tp) on the ROC curve to the left
of a line with slope T/d will satisfy Mallory’s profit
constraint. To illustrate a line of slope 20 is shown on
Figure 3.

Since the slope of the ROC curve is monotonic [15],
as we retreat to the left tp/fp increases. Thus, (5) can
almost always be satisfied for some points no matter
how good or bad the classifier. However, as we retreat
leftward tp decreases, so that a smaller and smaller frac-
tion of the true positives (i.e., viable targets) are at-
tacked. For example, for the classifier in Figure 3 when
T = 1/10 (i.e., we need one attack in ten to succeed)
and d = 10−5 (i.e., 1-in-100,000 is viable) we require
tp/fp ≥ 104 which happens only for values tp < 0.01,
(meaning that less than 1% of the viable population is
observably profitable). As d decreases Mallory ends up
with a shrinking fraction of a pool that is itself shrinking
[9]. Thus, without a very good classifier (which has tp
high while keeping fp low), most viable victims escape
harm.

It is easy to underestimate the difficulty of building
good classifiers. Real-world examples from other do-
mains illustrate that this is non-trivial. For example,
the false positive rate for mammograms is tp ≈ 0.94 at
fp ≈ 0.065 (so tp/fp ≈ 14.5) [4]. For appendectomies it
is tp ≈ 0.814 at fp ≈ 0.105 (so tp/fp ≈ 7.8) [7]. Thus,
even with the benefits of decades of effort, and millions
of examples of both true and false positives, buliding a
classifier is often extremely hard. This is especially true
when the base-rate of sought items is low. When d is
small Mallory faces a seemingly intractable Catch-22:
he must find victims in order to figure out how they
can be found. To determine how viable and non-viable
can be distinguished requires a large collection of viable
targets.

3.3 Monetization: Access 6= Dollars:
In many forms of non-financial cyber-crime the at-

tacker succeeds once he gains access. Often getting the
celebrity’s password, control of the web-server, or the
file of customer records is the end: once he’s in he’s
done. A few screenshots, a decorated web-page or ex-
truded files suffice if the attacker merely wants acknowl-
edgement. However, for financially-motivated attacks
things are different. The attacker isn’t after passwords,
or files, or access to secure servers as ends in themselves.
He wants money, and is interested in these things only
to the degree that they lead to money. Turning access
into money is a lot harder than it looks.

For concreteness, let’s consider the assets that the In-
ternet’s two billion users protect. Consider bank pass-
words first. It might seem that once an attacker gets

a bank password that money quickly follows. However,
several factors indicate that this is not the case. First,
most transactions in the banking system are reversible:
once fraud is discovered they are rolled back [5]. It is for
this reason that many bank fraud requires money mules,
who (often unwittingly) accept reversible transfers from
a compromised account, and send on irreversible trans-
fers (e.g., by Western Union). A money mule can be
used no more than once or twice before transactions
start to bounce. Thus, while stealing passwords may be
easy, and scalable, the limiting factor on the password-
stealing business is mule recruitment [5]. This view also
explains anecdotal accounts that the asking price for
stolen credentials on underground markets is fractions
of a penny on the dollar.

The situation with other account types is typically
even worse. Attempts to monetize access to social net-
working passwords generally involve the, by now well-
known, labor-intensive “Stuck in London” scam. Email
accounts often receive password reset links for other ac-
counts. However, even when a bank password can be
reset, this is simply an indirect path to a resource that
we already found problematic.

Other consumer assets also seem challenging. It may
be possible to compromise a user’s machine by getting
her to click on a malicious link. However, even with
arbitrary code running on the machine, monetization
is far from simple. All passwords on the machine can
be harvested, but we’ve seen that only a minority of
stolen bank passwords can be monetized and most non-
bank passwords are worthless. The machine can be used
to send spam, but the returns on spam-based advertis-
ing campaigns are low [11]. A botnet responsible for
a third of the world’s spam in 2010 apparently earned
it’s owners $2.7 million [1]. The machine can be used
to host malicious content. However, as an argument for
monetization this is circular: it suggests how yet more
machines can be infected, rather than how the original,
or subsequent machines can be monetized. Scareware,
or fake Anti-Virus appears one of the better prospects.
Successfully compromised boxes can be sold: a pay-per-
install market apparently pays on the order of $100 to
$180 per thousand machines in developed markets [3].
Ransomware offers another possible strategy, but works
best against those who do not practice good backup
regimes. In summary, for a financially motivated at-
tacker, bank passwords seem the best of the consumer-
controlled assets, and that best is not very good.

Popular press accounts often paint a picture of easy
billions to be made in cybercrime. However, a growing
body of work contradicts this view. Widely circulated
estimates of cybercrime losses turn out to be based on
bad statistics and are off by orders of magnitude [6].
The most detailed examination of spam puts the global
revenue earned by all spammers at tens of millions of
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dollars per year [11]. In a meta-analysis of available
data Anderson et al. [1] estimate global revenues from
the stranded traveler and fake Anti-Virus scams at $10
million and $97 million respectively. The scarcity of
monetization strategies is illustrated by the fact that
porn-dialers (which incur high long-distance charges),
which were popular in the days of dial-up modem access
have resurfaced in mobile phone malware. It would be
wrong to conclude that there is no money in cybercrime.
It appears to be a profitable endeavor for some, but the
pool of money to be shared seems much smaller than is
often assumed. It is likely that those who specialize in
infrastructure, and sell services on to those downstream
capture much of the value.

The difficulty of monetization appears not to be clearly
understood. The idea that attacks that resulted in non-
financial harm might easily have been worse is quite
common. The journalist Matt Honan, whose digital life
was erased, but who suffered no direct financial loss,
states: “Yet still I was actually quite fortunate. They
could have used my e-mail accounts to gain access to
my online banking, or financial services.” This is almost
certainly wrong. His attackers, after several hours of ef-
fort, gained access to a Twitter and an iTunes account
and wiped several devices. While exceedingly inconve-
nient for the victim, anyone who attempts to monetize
these accomplishments would likely be disappointed.

4. DISCUSSION

4.1 Scalability is not a “nice-to-have” feature
The widespread interest in computer security seems

a result of scale. Scale offers several things that work
in the attacker’s favor. A potential victim pool that
could not be imagined by the criminals of 1990 is now
available. Further, a huge online population means that
even attacks with very low success rates will have signif-
icant pools of victims (if only one in a million believes
an offer of easy money from a Nigerian Prince, there
are still 2,000 in the online population).

However, a large pool helps only if there is some way
to attack it. Scalable attacks can reach vast popula-
tions, but, as we saw, they fall into a few limited cat-
egories. Non-scalable attacks face a different problem.
While the number of viable victims for even a niche op-
portunity may be large, the hardness of finding them is
related to their relative frequency not the absolute num-
ber. In this case, while the attack itself is non-scalable,
Mallory still needs a low-cost way of accurately identi-
fying the good prospects in a vast population.

4.2 Tradeoffs are not optional
When resources are finite, the question is not whether

tradeoffs will be made but how. For defenders, a main
problem with the traditional threat model is that it of-

fers no guidance whatever on how this can be done.
Most acknowledge that defending against everything is
neither possible nor appropriate. Yet, without a way to
decide which attacks to neglect defensive effort will be
assigned haphazardly.

We are unlikely to be able to defeat unconstrained
attackers who [13] “can (and will) use any means they
can” with bounded effort. Recall, however, that most
assets escape exploitation not because they are impreg-
nable, but because they are not targeted. This happens
not at random, but predictably when the expected mon-
etization value is less than the cost of the attack. We
propose that understanding target selection and mone-
tization constraints is necessary if we are to make the
unavoidable tradeoffs in a systematic way.

4.3 Which attacks can we neglect?
As before, we concentrate on attacks that are finan-

cially motivated: expected gain is greater than cost.
Scalable attacks represent an easy case. Their ability to
reach vast populations means that no-one is unaffected.
They leave a large footprint, so they are not hard to de-
tect and there is seldom much mystery as to whether an
attack is scalable or not. In the question of tradeoffs it
is hard to make the case that scalable attacks are good
candidates to be ignored. Fortunately they fall into a
small number of types and have serious restrictions, as
we saw in Section 3.1. Everyone needs to defend against
them.

Non-scalable attacks thus present our opportunity: it
is here that we must look for candidates to ignore.
Cyber-criminals probably do most damage with attacks
that they can repeat, and for which they can reliably
find and monetize targets. We suggest probable harm
to the population as a basis for prioritizing attacks.

First, attacks where viable and non-viable targets
cannot be distinguished pose least economic threat. If
viability is entirely unobservable then Mallory can do no
better than attack at random. Second, when the den-
sity of viable victims is very small T/d becomes very
large and the fraction of the viable population that is
attacked shrinks to nothing (i.e., tp → 0). This sug-
gests that non-scalable attacks with low densities are
smaller threats than those where it is high. Finally, the
harder an attack is to monetize the smaller the threat
it poses.

Examples of attacks with low densities might be phys-
ical side-channel attacks which allow an attacker in close
proximity to the target to shoulder surf, spy on the out-
put on a screen or printer, the input to a keyboard, and
so on. The viable target density would be the fraction of
all LCD screens, printers, keyboards, etc, whose output
(or input) can be successfully attacked and monetized
for greater than the cost of the attack. It seems safe
to say that this fraction should be very small (perhaps
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d = 10−5 or so). It is also unclear how they might be
identified. Hence, an attacker who needs one success in
every 20 attacks must operate to the left of a line with
slope T/d = 5, 000 on the ROC curve. Those who can
accomplish this might consider abandoning cybercrime
and trying Information Retrieval and Machine Learn-
ing. Examples of resources that are hard to monetize
are low-value assets such as email and social-networking
accounts, etc; while these occasionally lead to gain, the
average value appears quite low.

Analysis of the observability, density and monetiza-
tion of attacks won’t ever be perfect. To some degree
judgements must be retroactive. That errors will be
made seems unavoidable; however, since we can’t defend
against everything, attacks for which the evidence of
success is clear must take priority over those for which it
is not. When categories of targets (e.g., small businesses
in the US) or categories of attacks (e.g., spear phishing
emails) are clearly being profitably exploited then ad-
ditional counter-measures are certainly warranted.

4.4 What should we do differently?
There are also possible directions for research. The

hardness of the binary classification problem suggests
unexplored defense mechanisms. Any linear cost com-
ponent will make it impossible to satisfy (2). Imposing
a small charge has been suggested as a means to com-
batting spam [2], and it is worth considering whether
it might be applicable to other scalable attacks. Ad-
dress Space Layout Randomization (ASLR) similarly
converts scalable attacks into non-scalable.

Relatively unexplored is the question of making the
classification problem even harder. That is, Mallory has
a great sensitivity to the density of viable targets. By
creating phantom targets that look plausibly viable, but
which in fact are not, we make his problem even harder.
For example, phantom online banking accounts that do
nothing but consume attacker effort, might reduce the
profitability of brute-forcing. When non-viable targets
reply to scam emails it reduces return and makes it
harder to make a profit [9].

We have repeatedly stressed that an attacker must
choose targets, successfully attack and then monetize
his success. The second of these problems has domi-
nated research effort. However, if the admonition to
“think like an attacker” is not to be empty we should
pay equal attention to how attackers can select targets
and monetize resources. We’ve pointed out the theoret-
ical difficulty of the binary classification problem that
target selection represents. Yet, for a profit-seeking at-
tacker the problem is not abstract. It’s not enough to
hopefully suggest that some zip-codes, or employers, or
professions might be indicative of greater viability than
others. The attacker needs concrete observable features
which he uses to estimate viability. If he doesn’t get

it right often enough, i.e. doesn’t satisfy (4), he makes
a loss. What is observable to attackers about the pop-
ulation is also observable to us. The problem of how
viable niches for a particular attack can be identified is
worth serious research. If they can be identified, mem-
bers of these niches (rather than the whole population)
are those who must invest extra in the defense. If they
cannot it is hard to justify spending on defense. We
reiterate that we have focused on financially-motivated
attacks. An interesting research question would be to
explore which types of target are most at risk of non-
financial attacks.

5. CONCLUSION
When we ignore attacker constraints, we make things

harder than they need be for defenders. This is a lux-
ury we cannot afford. The view of the world where
every target must block every attack is clearly wasteful
and most of us understand that it is neither possible nor
necessary. Yet, acknowledging this fact is helpful only if
we are clear about which attacks can be neglected. The
contradiction between the traditional model, which says
that tradeoffs aren’t possible, and reality, which says
they are necessary, must be resolved. We propose that
the difficulties of profitably finding targets and mone-
tizing them are under-utilized tools in the effort to help
users avoid harm.
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Rainer Böhme, Joe Bonneau, Shuo Chen, Alain Forget,
Rob Reeder, Adam Shostack and the anonymous re-
viewers for comments that greatly improved the paper.

6. REFERENCES
[1] Anderson, Ross and Barton, Chris and Böhme,
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