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ABSTRACT 

The Hidden Dynamic Model (HDM) has been an attractive acous- 
tic modeling approach because it provides a computational model 
for coarticulation and the dynamics of human speech. However, 
the lack of a direct decoding algorithm has been a harrier to re- 
search progress on HDM. 

We have developed a new HDM-based acoustic model, the Hid- 
den-Trajectory HMM (HTHMM), which combines the statdmix- 
ture topology of a traditional monophone HMM with a target-di- 
rected hidden-trajectory model (a special form of HDM) for CO%- 

ticulation modeling. Because the classical Viterbi algorithm is not 
admissible, we have developed a novel MAP decoding algorithm 
for HTHMM that correctly takes the hidden continuous trajectory 
into account. 

This paper introduces our new HTHMM decoder that allows for 
the first time to evaluate an HDM-type model by direct decoding 
instead of N-best rescoring. Using direct decoding, we demon- 
strate that the coarticulatory mechanism of our HTHMM matches 
traditional contextdependent modeling (enumeration of model pa- 
rameters): The conlexr-independent HTHMM has slightly better 
accuracy than a crossword-triphone HMM on the Aurora2 task. 

The decoder also enables us to include state-boundary optimiza- 
tion into the HDMIHTHMM training procedure. This paper pre- 
sents the detailed decoding algorithm and evaluation results. while 
in  [ l]  we present the HTHMM model itself and parameter training. 

1. INTRODUCTION 

Speech recognition technology has achieved significant progress 
with the introduction of the Hidden Markov Model (HMM). How- 
ever, satisfactory accuracies are not yet achieved for spontaneous 
speech, due to poor modeling of coarticulation, especially for 
highly varying speaking rates. To overcome the current limita- 
tions, we believe it is necessary to incorporate knowledge of stmc- 
tural properties of human speech dynamics into the mathemati- 
cal representation, in particular the basic target-directed dynamic 
properties of speech production. 

The hasis of this paper is our novel Hidden-Trajectory HMM (HT- 
HMM) [I]. HTHMM draws heavily on previous work on Hidden 
Dynamic Models (HDM) 12, 31, but drops the segmental aspects 
in favor of a multi-state/frame-based mixture HMM architecture. 

A serious issue of previous HDM work has been the lack o f a  direct 
decoding algorithm. Most HDM work used rescoring of HMM-ge- 

nerated N-best lists (N=5 or N=100). Although N-hest rescoring 
is resonable in some degree, it uses a reduced search space pro- 
duced by another modeling mechanism - We get no evidence what 
would happen without the “help” of that other model (ROVER ef- 
fect). We doubt that this approach can assess the modeling ability 
of an HDM (or HTHMM) independently of the HMM’. 

Although the focus of this paper is on the decoding algorithm, we 
have realized that the decoder has been a key factor during model 
development. The direct-decoding results have provided the best 
evidence on how to improve the model, leading to the HTHMM in 
its present form. 

In brief, the HTHMM, which we describe in detail in 111, uses 
a target-directed trajectory function to represent hidden dynamic 
variables, characterized by a deterministic dynamic system (con- 
trasting the usual stochastic dynamic system, e.g. [21). Continuity 
constraints across adjacent phonemes model long-span coarticu- 
lation effects. Piece-wise linear mapping is used to modify the 
HMM means depending on the context-dependent hidden trajec- 
tory. Other than in [Z], mixture components are independent across 
frames. This results in  a two-layer model StNClUre containing two 
kinds of hidden states: the discrete HMM state and the continuous 
hidden dynamics variable. 
Our new decoder has served the main goal of this initial study: 
to compare the HTHMMs capability of modeling coarticulation 
- using only context-independent (CI) phoneme units - with that 
of a traditional context-dependent (CD) HMM. This first study was 
done on a small-vocabulary task (Aurora2 TI-Digits) to keep train- 
ing times low and eliminate dependence on the language model. 

This paper is organized as follows. Section 2 briefly describes the 
HTHMM structure, while section 3 presents our novel HTHMM 
decoding algorithm. Section 4 describes the experimental setup 
and results. Section 5 concludes the paper. 

2. HIDDEN-TRAJECTORY HMM (HTHMM) 

The coaniculation model underlying our new HTHMM makes two 
model assumptions: First, speech is assumed to be target-directed. 
Each phoneme has an associated target articulator position, but the 
target is usually not reached (phonetic reduction). Secondly, we 
assume articulators succumb to physiological constraints that can 
be described by a linear filter applied to articulator-position related 
parameters, in our case the vocal-tract resonances (VTR) [21. 

‘Often, even the language model used in N-kst  generation is omitted 
in HDM rescoring, adding to the ROVER effect. 
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Fig. 1. HTHMM dependency network. HMM state s ( t )  controls 
the development oftrajectory state G ( t )  (that depends on its previ- 
ous value and includes trajectory value g ( t ) )  and predicts the mix- 
ture component m(t). Observation vector o( t )  depends on both. 

Our new HTHMM realizes this coarticulation model as a hid- 
den trajectory model (a panicular form of HDM) embedded in 
an HMM. It exposes the hidden VTR parameters underlying the 
speech-production process; imposes constraints on their trajecto- 
ries through the rrajecrory stare equation; and provides a con- 
textltime-dependent dynamic correction r e m  for modifying the 
HMM mixture means. Hence, we call our model Hidden-Trajecro- 
ry HMM (HTHMM). Fig. I illustrates the stochastic dependences. 

2.1. Trajectory State Equation 

The predicted trajectory, named g( t ) ,  is described as a second- 
order discrete-time critically-damped unity-gain low-pass filter: 

d t )  = 27a(t)g(t-1) - TS(tlg(t-2) + (l-Ys(t))’Tsit) (1) 

which can be rewritten in canonical form: 

G(t)  = *$( t )  G( t  - 1) + U a i t )  (2) 

(4) 

where G(t)  is the (augmented) continuous state, s ( t )  the HMM 
state at time t ,  T,,,, the target vector associated with the corre- 
sponding phoneme, and 

The predicted trajectory g ( t )  contains several inaccuracies and de- 
viates from the “true” trajectory called z ( t ) .  z ( t )  is modeled by a 
Gaussian distribution with mean g ( t )  and covariance matrix Q: 

d z l g )  = N ( z ; g ; Q )  (6) 

the system-dynamics parameter. 

2.2. Dynamic Mean-Correction Term 

The non-linear relationship between the trajectory value z and the 
mixture means is developed into a Taylor series w.r.t. mixture m’s 
expected trajectory value Z, and cut off after the first-order term. 
This yields a state emission PDF of the following form: 

p(ols,g) = x P ( m l S ) / N ( o ; P m + H m  -(z-%);Rm) 
m 

. N ’ ( z ; g ; Q )  dz (7)  

= x P ( m l s )  .N(o;Pm+Hm. (g-t,);R;) ( 8 )  
m 

with pm being the context-independent HMM mixture mean that 
is modified by the context-dependent trajectory value 2 through 
H,. Silence, whose model parameters do not depend on z ,  is 
implemented by setting Ifm = 0 (model degenerates to an HMM). 

3. MAP DECODING WITH HDM 

A MAP decoding algorithm for an HDM-type model like the 
HTHMM must correctly takes the hidden trajectory state variable 
G ( t )  into account. The traditional Viterbidecoder is not applicable 
because G ( t )  is continuous. Our solution is to discretize G ( t )  to 
make dynamic programming applicable again. The resulting new 
decoding algorithm is described in the following. 

As usual, we state the decoding problem as finding the word se- 
quence ar that most likely generated our acoustic observation 0 
(maximum-a-posteriori decoder)‘: 

B = argmaxP(WI0) = argmaxp(o1W). P(W)  
w W 

’c axgmaxargmaxp(O1S). P ( S ( W ) .  P ( W )  (9) 

where S denotes an HMM state sequence (path), p ( 0 l S )  the 
acoustic model, P(SIW) the path’s state-transition probability, 
and P ( W )  the language model (LM) or grammar. 

W S 

As usual, we assume independence of individual frames for 
p(0IS): 

P ( W )  = n P ( o ( t ) l s ( t ) ,  g ( t ) )  (10) 
f = l  

This expression differs from the traditional HMM by the presence 
of the additional dependence on g( t ) ,  which is fully determined by 
the smte sequence s ( t )  and Eq. (I) .  

P ( S ( W )  and P ( W )  are the same as for the traditional HMM. We 
represent both by weighted finite-state transducers3 [41: 

For the LM P ( W ) ,  the quantity h shall denote the LM state. A 
word sequence W corresponds to a sequence of LM states in the 
LM transducer. P ( W )  is computed as the product of transition 
probabilities P(hlh’) along this state sequence. For example, in 
the simplest case of an M-gram language model, h would repre- 
sent sequences of M-1 words, while a more compact network can 
be achieved by exploiting pruning and backing-off properties. LM 
state h = 0 denotes the sentence beginning, and he,, the end. 

The lexicon - usually organized as a tree - is represented by 
P(SIW), which is composed of state transition probabilities 
P(s1s’) from lexicon states’ to state S. States = 0 shall represent 
the non-emitting start state (root of the tree) and sh the terminal 
state of the last word associated with LM state h. 

’Although in this paper we only apply the decoder to a small- 
vocabulary task. we will formulate the decoding equations for the general 
case of large-vocabulary recognition with a language model. 

31n our algorithm. the transducers for P(SIW)  and P(W) are com- 
posed on the fly during decoding. Currently, the composition is subopti- 
mal: no optimization is performed after composition (especially determi- 
nization. which has the important effect of language-model factorization. 
Unigram factorization can, however, easily be integrated in P(S1W)). 
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3.1. Recursive formulation of MAP criterion 

The total search space is a composition of the HMM, LM, and 
(continuous) trajectory state spaces. Every partial-path hypothe- 
sis at time t depends on the joint state ( s ( t ) , h ( t ) ,G( t ) ) .  In a 
dynamic-programming formulation, only partial-path hypotheses 
with the same joint state can be recombined, in order to guarantee 
finding the globally optimal path. 

Extending the notation in [SI, we define the following quantities: 

Q ~ , h ( t ,  s )  :=probability of best path up to timet that ends 
in state s of the lexical tree with the trajectory state G and 
the LM state h. 
HG(h; t )  := probability that the acoustic observation vcc- 
tors o(1) ... o ( t )  are generated by a wordlstate sequence that 
ends with the trajectory state G and in LM state h at timet. 

It can be shown that with these, the MAP criterion in Eq. (9) can 
be rewritten in a recursive dynamic-programming like form: 

with t > 0, s 7 0, and h > 0. The word-level recombination 
equations (16-18) do not differ from the traditional HMM except 
for the additional dependence on G. 

3.2. Linear complexity through quantization of G 

The above formulation is guaranteed to find the most likely path 
given the HTHMM model. However, because in general different 
state sequences lead to different trajectory states G, recombination 
is unlikely. Being a continuous vanable. G is ”too precise” - even 
a tiny difference of G will prevent recombination. although it may 
have no practical impact on the decision for the best path. With 
this, computational complexity grows exponentially in time. 

To achieve complexity linear in time as for the traditional Viterbi 
HMM decoder, G needs to he replaced by a discrete variable. We 
introduce the heuristic of quantizing G w.r.t. recombination. The 
idea is that if the trajectory state is similar, the scores of succeeding 
paths we also likely to be similar due to the target-directed nature 
of speech, and that a local decision, although sub-optimal, would 
not affect the global decision for the word sequence. 

Although based on the same idea, our quantization approach is dif- 
ferent from the stack-based path-merging strategy presented in [61, 
where paths are recombined if their two expected trajectory values 
z differ by less than a threshold. That method is less efficient be- 
cause it involves searching the stack for the most similar hypothe- 
sis (including computing distances of trajectory values), the results 
are somewhat unpredictable in that they depend on order of pro- 
cessing the hypotheses, and an absolute per-state stack-size limit 
is used to control recombination, rather than path likelihoods. 

We define the discrete quantity c(G) which denotes the class of 
trajectory states that are equal after quantization. With this, the 
above equations are modified by replacing Qc,h by Q c ( q , h ,  HG 
by Hc(G), and the &,y expressions by &(,,,,,,), to yield the final 
decoding equations. 

3.3. Generalizing to similar types of models 

The formalism above can be generalized to similar types of mod- 
els. E.g., we have modified it for segmental models by modifying 
Eq. ( IO) and redefining G as (g(t,), t , )  with segment start time t, 
(resembling a time-conditioned structure 151). Additional layers of 
hidden variables can be incorporated by extending G. 

4. EVALUATION ON SMALL VOCABULARY 

In this initial study, we have evaluated our system on the small- 
vocabulary task of digit-string recognition: the clean portion of the 
Aurora2/TI-DIGITs database (training set: 4h; test set: 2hj. The 
system is gender independent and uses the standard HTK feature 
configuration from the Aurora2 distribution. As for the default Au- 
rora2 setup, the whole-word baseline uses word models with 16 
emitting states. The monophone, triphone, and HTHMM systems 
use a 20-phoneme subset of the SAMPA phone set (3 states each). 

The dictionary consists of twelve entries including OH (transcribed 
as /oU/) and (except for the whole-word system) contained two 
transcriptions of ZERO (/zIro/ and /zIrou/). The latter was 
necessary because otherwise ZERO pronounced the latter way 
would regularly be recognized as ZERO OH generating a large 
number of insenions which dominated the error rates. The lan- 
guage model is a simple word-loop grammar with word-insertion 
penalty hand-tuned w.r.1. test-set word error rate. 

4.1. HMM Baseline 

The HMM baseline was built using HTK 3.0. CART decision-tree 
based clustering was used for state tying and crossword-tnphone 
generalization. We found that for the digit-recognition task, the 
CART threshold had to be reoptimized. The final crossword- 
triphone system had 188 tied states. 

4.2. HTHMM li-aining 

We used the HTHMM Viterhi training described in 111. Forced 
alignment was done with our decoder. The HTHMM has the same 
topology as the HMM, which allowed us to initialize the model pa- 
rameters from the baseline HMM monophone models: HMM mix- 
ture means, variances, and weights were copied into the HTHMM. 
transSorm matrices H were set to 0. The dynamics parameters T~ 
and T, were initialized by values used in previous work [3] .  and a 
meaningful initial value of Q, which we found to be not critical, 
was guessed. The initial EM iterations used a state-level segmen- 
tation that was also generated using the HMM models. 
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Table 1. Comparison of traditional HMM system with HTHMM. 

1 Id I Svstem I WER 1%1 I rel. I 

B1 
B2 

monophone 0.87 0.69 0.61 0.52 ref 
trinhone 0.56 0.49 0.40 0.42 23% 

MI baseline mapping 0.52 0.43 0.37 0.40 
M2 Ag in mapping 0.43 0.36 0.35 0.36 

4.3. HTHMM Decoding 

Decoding was done using the algorithm described in section 3. For 
c(G), we used a simple discretization of G by quantizing each of 
the six components of G linearly into several bits. Because of the 
low error rates and small search space, we have not yet evaluated 
the relationship between accuracy and G quantization. 

4.4. Results 

The goal of this study was to achieve the error rates of an HMM 
crossword-triphone system with an HTHMM using only context- 
independent models. Models with 8, 16, 32, and 64 mixture com- 
ponents per state were compared w.r.t. word error rate (WER). Be- 
cause different models have different parameter numbers, the in- 
tention is to compare the systems by their "best-possible" result, 
i.e. for the mixture number that yields the respective lowest error 
rate. Except for the monophone setup, the table shows that all 
models have reached saturation at 32 mixtures. 

The baseline monophone HMM system (experiment BI )  has a bent 
WER of 0.52% for 64 mixture components per state. Triphone 
HMMs are 23% relatively better (0.40%, B2). The whole-word 
baseline B3 reaches 0.32%. but whole-word models do not gen- 
eralize to phoneme-based large-vocabulary systems (our ultimate 
target), so we do not aim at reaching their performance with our 
HTHMM system. For comparison, one of the best WERs for a 
whole-word based systems (0.24%) is reported in [7]. 

The HTHMM model (experiment M1) achieves slightly better 
WERs than the HMM triphone system (0.37% vs. 0.40%). This 
has been achieved by using only context-independent units: con- 
text dependence was modeled entirely through the trajectorybased 
mean-correction term The model is about 20% smaller than a tn- 
phone system with the same mixture number. 

Experiment M2 shows the results for a variation of our model in 
which we incorporate the first-order derivative of g ( t )  into the 

mapping. This was done by replacing g ( t )  by (::;i,) (and z ( t )  
accordingly) in Eqs. (6, 8). The number of columns of H, dou- 
bles (roughly 1.6-times overall parameter increase). We observe 
an obvious improvement for both 8 and 16 mixtures, but the im- 
provement of the best WER is small. 

To our knowledge, this is the world's first HDM-based speech rec- 
ognizer that reaches (slightly outperforms) HMM triphone accu- 
racy with context-independent units only, using direct one-pass 
decoding rather than rescoring of HMM-generated N-best lists. 

In experiment HI,  we wanted to know the meaning of the context- 

29% 
33% 

independent mixture means &,. We used the models trained 
for MI ,  but set all H transforms to 0 (without further EM iter- 
ations). One can see that the system still works reasonably well 
and nearly achieves the WER of the HMM monophone base- 
line. This confirms experimentally our characterization of the 
HTHMM as a monophone HMM with an HDM-based comec- 
tion term. Most important, this experiment, together with the fact 
that the HTHMM reaches crossword-triphone performance with 
context-independent units, demonstrates that the correction term 
indeed fulfills its intended purpose of modeling coarticulation. 

5. CONCLUSIONS AND FUTURE WORK 

We have developed a novel MAP decoding algorithm to evaluate 
our new HTHMM model that provides a computational model of 
coarticulation and dynamics of human speech. The ability of di- 
rect decoding rather than N-best rescoring allowed us to obtain 
results free of bias from another model and was a key factor in the 
HTHMM model development. 

With the C1 HTHMM (a compact model with no CD parameters), 
we obtained performance improvement over the CD HMM (cross- 
word triphone system). This provides evidence that the coarticula- 
tory mechanism represented by the HTHMM via the model struc- 
ture matches the traditional context-dependent modeling approach 
based on enumeration of model parameters. 

To our knowledge, this is the first study to evaluate an HDM-based 
model using one-pass direct decoding, and we hope to remove a 
major obstacle in the research of HDM-based acoustic models. We 
are currently working on large-vocabulary tasks, including model- 
ing. training, and analysis and optimization of search-space, and 
hope to demonstrate that equally excellent performance of the new 
HTHMM approach can be established despite the weaker phono- 
tactic constraints and more confusable acoustic space. 
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