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Abstract 
We investigate the use of selective classi-

fiers for part-of-speech tagging (POS). 

The idea is to allow classifiers to abstain 

on hard instances, passing them to down-

stream classifiers that may have more 

context available. In this report we focus 

on just the first stage of such a cascade, 

and ask whether selective classifiers attain 

the accuracies needed on those instances 

they accept, given that such instances will 

not be revisited by downstream pro-

cessing. We show that a selective classi-

fier that is constructed as an abstaining 

committee of two off-the-shelf POS tag-

gers can indeed achieve very high accura-

cies with modest drops in coverage. We 

also compute the overall accuracy when 

all instances are voted on by applying ma-

jority vote to the abstentions, and we find 

that this results in state of the art accura-

cies, robustly. 

 

1   Introduction 

 
There is a substantial amount of work on propa-

gating uncertainty through the NLP pipeline.  For 

example, Finkel et al. (2006) model the NLP pipe-

line as a Bayesian network and propose a simple 

and effective sampling technique to perform ap-

proximate joint inference. Auli and Lopez (2011) 

investigate using both loopy belief propagation 

and dual decomposition to combine supertagging 

and parsing (replacing their use in a pipeline) for 

a Combinatory Categorial Grammar parser.  How-

ever, in general, approaches that rely on loopy 

graphical models are limited by the need to avoid 

the intractability of inference in such models 

(Koller and Friedman, 2009).  If instead we take 

the view that such a pipeline consists of modules 

where more context becomes available as the pro-

cessing  moves downstream, the question natu-

rally arises as to whether the problem could be ap-

proached by modeling the decisions using a se-

quence of finite state machines, rather than treat-

ing the problem as a single inference problem.  In 

this report we investigate a preliminary step to-

wards a simple method for building modular text 

processing systems, where module outputs can be 

updated easily based on feedback from down-

stream modules for which more textual context is 

available. We use Selective Classifiers (El-Yaniv 

and Wiener, 2010).  A selective binary classifier 

is simply a classifier with three outputs: the hy-

pothesized class {±1}, and abstain, denoted by 

‘∗’ below.  The central question addressed in this 

work is: if we apply selective classifiers to a fun-

damental natural language problem such as part of 

speech (POS) tagging, can accuracy rates on the 

accepted instances, together with coverage (the 

fraction of accepted instances), be made high 

enough that  applying such methods to solve the 

feedback problem is even feasible?  In addition, 

we demonstrate a simple combination technique 

using selective classifiers that robustly gives state 

of the art results on POS tagging, which gives 

some indication that this approach may be worth 

pursuing. 

We emphasize that selective classifiers have 

further advantages beyond the main focus of this 

study, namely: if such classifiers are linked in a 

cascade in such a way that the bulk of the data is 

classified by the first few classifiers in the cas-

cade, then models that would be prohibitively 

slow to use on all the data can be applied to small, 

targeted subsets that are abstained on by the up-

stream, simpler classifiers.  Similar ideas have 

been investigated for object detection in images 



 

 

(Viola and Jones , 2001). Second, by breaking the 

problem into components, the overall system can 

be made more interpretable, since errors made by 

classifiers that are specialized to specific tasks are 

often easier to understand than errors made by a 

single general purpose classifier.  Finally, the 

compartmentalization would also makes the over-

all system more correctable (that is, its overall de-

cision surface is more stable when adding training 

data to correct errors), since only the classifier 

making the error need be corrected.  However, we 

are getting ahead of ourselves: in this paper, we 

focus on just the first stage of such a cascade, and 

we ask the preliminary question of whether or not 

the accuracy/coverage tradeoff there will be good 

enough to support such a model. 
 

2   The Data 

 
We used the standard benchmark set for POS 

tagging, namely the Wall Street Journal (WSJ) 

data from the Penn TreeBank v3 (Marcus et al., 

1993), sections 0-18 for training and 22-24 for 

testing (we did not use the development set, sec-

tions 19-21). The WSJ data has noisy labels.  For 

example, on the training set, for the phrase 

“Chief Executive Officer”, the token “Executive” 

is labeled as either a noun or an adjective in 

roughly equal numbers.  In order for our simple 

selective classification scheme to be useful, it is 

important that error rates on the accepted in-

stances be very low, since such errors are not re-

visited. To attain a clearer picture of the value of 

this approach we thus needed a dataset with more 

reliable labels.  To this end, we used MC160, a 

set of 160 short stories gathered using 

crowdsourcing (Richardson et al., 2013).  We 

chose this data because the vocabulary is limited 

to that of a typical seven year old,  thus limiting 

the occurrence of labeling ambiguities, yet the 

data is also open domain. We labeled all tokens 

as either noun, or not noun, using the Oxford 

English Dictionary as arbiter, with one excep-

tion: we noticed that the OED labels indefinite 

pronouns as pronouns, whereas they are consist-

ently labeled as nouns in the WSJ corpus; for 

overall consistency we therefore labeled all in-

definite pronouns (namely, someone, somebody, 

something, anyone, anybody, anything, everyone, 

everybody, everything) as nouns.    For this data, 

we used the first 100 stories as the training set 

and the remaining 60 as the test set. 1 

                                                 
1 These labels will be made available at http://re-

search.microsoft.com/mct. 

 

3   Related Work 

 
The state of the art for POS tagging accuracies (all 

tokens) on the WSJ data is between 97.0% and 

97.5%. The ACL Wiki on the POS tagging state-

of-the-art lists 12 systems whose accuracies lie in 

this range (ACL Wiki, 2014). 

 

3.1   Selective Classifiers 
 

El-Yaniv and Wiener (2010) analyze the proper-

ties of selected classifiers in the noise-free case, 

that is, the case where the data is separable. A se-

lective classifier is a pair 𝑓, 𝑔 with 𝑓: 𝑥 → {±1} 

and 𝑔: 𝑥 → [0,1] such that 

(𝑓, 𝑔)(𝑥) ↦ {
reject w.p.  1 − 𝑔(𝑥)

𝑓(𝑥) otherwise.
 

The risk is then defined as the expected loss on the 

accepted samples, and the coverage as 𝔼[𝑔(𝑋)]. 
As motivation for our work, note that in the case 

in which the function class is both finite, and con-

tains the target function 𝑓∗, zero risk can in fact 

be achieved with guaranteed finite coverage using 

the Consistent Selective Strategy (CSS), in which 

case the coverage is bounded below by 

1 −
1

𝑚
𝑂 (|ℱ| + ln (

1

𝛿
)) 

with probability 1 − 𝛿.  Here, 𝑚 is the number of 

IID training samples and |ℱ| the size of the func-

tion class.  CSS is very simply implemented by 

using the training data to select that subset of 

functions that predict it perfectly; by assumption, 

𝑓∗ is in that set; and a given test point is accepted 

only if all such functions agree on it, otherwise 

CSS abstains, guaranteeing that the assigned class 

is also that assigned by 𝑓∗  (El-Yaniv and Wiener, 

2010). 

 

3.1.1   Cascades of Selective Classifiers 

 
One can build a cascade out of a sequence of se-

lective classifiers, such that the second stage 

classifier attempts to classify all samples on 

which the first stage classifier abstains, the third 

does the same with the second’s abstentions, and 

so on.  Although in this paper we only consider a 

single stage, our hope is to help lay the ground-

work for using cascades for text processing, and 

so we note here a simple generalization bound 

for such cascades.  Throughout the paper, we 



 

 

will only consider the simple case where 𝑔 is de-

terministic, i.e. 𝑔: 𝑥 → {0,1}. Let 𝑥 ∈ 𝑋 and let 𝜇 

denote the measure on 𝑋 × {±1}. We define an 

𝜖, 𝜌 selective classifier 𝑐: 𝑋 → {±1,∗} to be one 

for which 𝑃𝑥,𝑦~𝜇(𝑐(𝑥) ∈ {±1}) ≥ 𝜌 and 

𝑃𝑥,𝑦~𝜇(𝑐(𝑥) ≠ 𝑦|𝑐(𝑥) ∈ {±1}) ≤ 𝜖, that is, 

whose coverage is at least 𝜌 and whose risk is at 

most 𝜖.  Then the following 

 

Algorithm: Repeatedly train new 𝜖,  𝜌 selective 

classifiers on the set of examples for which all 

previous classifiers abstained, until the probabil-

ity mass of the remaining abstentions is ≤ 𝜖 

 

satisfies the following 

 

Theorem: The resulting hypothesis has generali-

zation error ≤ 2𝜖, and the algorithm will run in 

at most 
log 𝜖

log(1−𝜌)
 iterations. 

 

Proof:  Label the regions on which each classi-

fier outputs {±1} as 𝑋1, … 𝑋𝑛, and let 𝑋𝑛+1 de-

note the final abstention region.  Then  

𝑃(error) = ∑ 𝑃(error|𝑋𝑖)𝑃(𝑋𝑖)𝑛+1
𝑖=1 ≤

∑ 𝜖𝜌𝑖
𝑛
𝑖=1 + 𝜌𝑛+1. 1 ≤ 2𝜖 since ∑ 𝜌𝑖

𝑛+1
𝑖=1 = 1 and 

𝜌𝑛+1 ≤ 𝜖.  Also after the 𝑖th iteration, the absten-

tion mass is at most (1 − 𝜌)𝑖; hence we stop for 

that 𝑖 for which (1 − 𝜌)𝑖 ≤ 𝜖  or  𝑖 ≥
log 𝜖

log(1−𝜌)
. 

□  
 

4   The Abstaining Committee 

 
Our (first stage) model, which we call an Ab-

staining Committee, is built using two “black 

box” component models: SPLAT and NLPLib. 

SPLAT is a publicly available language analysis 

toolkit (Quirk et al., 2012).  We used SPLAT’s 

POS tagger and constituency tree parser to pro-

vide two sources for POS hypotheses. SPLAT’s 

POS tagger is a maximum entropy Markov 

model trained on POS tags from the Penn Tree-

Bank (Marcus  et  al.,  1993).  Its constituency 

parser is trained on the Wall Street Journal por-

tion of the Penn TreeBank. 

    NLPLib (Chen, 2012) is an NLP toolkit  that 

uses the averaged perceptron algorithm (Collins, 

2002) trained on the POS and constituency tree 

tags and data in OntoNotes Release 4.0 

(Weischedel et al., 2010).  As for SPLAT, we 

used the NLPLib POS tagger and constituency 

tree outputs to provide two sources for POS hy-

potheses.  In the following, we refer to these four 

POS taggers as the base taggers. 

    Using these four component models, we built a 

composite model as follows. First, the base tag-

gers were run on the data, mapping each token to 

a 4-vector with components indexed by the four 

POS taggers, and containing either a POS tag or 

“abstain”.  Then, a “voting table” is formed 

where each row corresponds to one particular 4-

vector.  Thus, for example, if one row corre-

sponds to the vector [𝑁𝑁, 𝑁𝑁, 𝐽𝐽,∗], then two of 

the base taggers voted noun, singular or mass, 

one voted adjective, and one abstained. In the 

worst possible case, the number of rows would 

be 𝑛𝑚𝑎𝑥 = 434, since there are 42 different tags 

in the Penn TreeBank.  However if all base tag-

gers agreed and none abstained, then the total 

number of rows would be the number of different 

parts of speech encountered in the text, which is 

at most 42. Indeed, the number of rows is typi-

cally much smaller than 𝑛max since the disagree-

ments are rare and tend to occur in patterns. At 

this stage abstentions only occur when SPLAT 

and NLPLib disagree on the tokenization (we 

used the SPLAT tokenization, so the SPLAT 

base taggers never abstain, and the NLPLib base 

taggers abstain only when they encounter a token 

that does not occur in NLPLib’s tokenization).  

Finally, two more columns are added to the table 

as follows: the first contains the fraction of the 

training set that is correctly classified, for which-

ever POS is correctly classified the most, and the 

second contains that POS tag.  For example, if 

whenever the base classifiers vote 
[𝑁𝑁, 𝑁𝑁, 𝐽𝐽,∗], the measured frequency of 𝑁𝑁 

being the correct tag is 𝑋, similarly 𝑌 for 𝐽𝐽, and 

𝑍 for, say, VB, so that 𝑋 + 𝑌 + 𝑍 = 1, and if 

𝑋 = max(𝑋, 𝑌, 𝑍), then the fifth column in the 

table would be 𝑋, and the sixth, NN.  Finally, we 

also introduce an accuracy threshold 𝜃, the only 

parameter in our model. Denoting the voting ta-

ble by 𝑇, then for a given 𝜃, whenever 𝑇𝑖5 ≥ 𝜃, 

then the abstaining committee outputs 𝑇𝑖6, else it 

abstains.  In this way we are guaranteed that for 

those instances for which the combined classifier 

does not abstain, the accuracy on the training set 

is bounded below by 𝜃. 
 

5   Results 

 
The first four rows of Tables 1 and 2 show the 

accuracies of the base classifiers on the WSJ and 

MC160 test data sets, respectively. The fifth row 

of Table 1 shows the results of a majority vote 



 

 

(type I) where ties are broken by taking the high-

est frequency POS in the training set; thus, for 

example, if the 4-vector were [NN, NN, JJ, JJ], 

and more tokens were labeled NN than were la-

beled JJ in the entire training set, then the output 

hypothesis would be NN. The fifth row in Table 

2 is the analog for nouns only (i.e. the vote is 

“not noun”, since the majority of tokens in the 

train set are not labeled as nouns). The sixth row 

of both tables shows the results of an alternative 

majority vote (type II) where the hypothesis of 

that base tagger with the highest accuracy on the 

training set is used.  The seventh row shows the 

result of choosing 𝜃, the minimum accuracy on 

the training set, to be 0.98. Thus, by abstaining 

on 6.5% of the WSJ data, we are able to achieve 

99.2% accuracy on the accepted data.  The final 

rows shows the results of forcing the abstaining 

committee to commit by simply performing ma-

jority vote on the abstentions, using each type of 

majority vote.  Note that on the WSJ data, the 

NLPLib POS tagger performs quite poorly, but 

we nevertheless find that combining these four 

systems into an abstaining committee gives state 

of the art results, which suggests that abstaining 

committees are quite robust. It is also striking 

that this strategy does considerably better than 

simply performing majority vote I on all in-

stances, showing further robustness to the kind of 

majority voting used on abstentions.  The 

MC160 test data shows that, in the case where 

the labels are clean and the problem simpler, the 

abstaining committee achieves close to 100% ac-

curacy on the accepts: by dropping the coverage 

from 100% to 97.1%, the accuracy improves by 

75% relative (from 99.2% to 99.8%).  The sim-

plicity of the MC160 noun detection task as com-

pared to the WSJ POS task is also indicated by 

the number of rows in their corresponding voting 

tables, which are 17 and 2,712 respectively. 

    Figure 1 shows the dependency of the train 

and test accuracies, and the coverage, on 𝜃, for 

the WSJ test data.  Figures 2, 3 and 4 show the 

same for accuracy, precision and recall for the 

MC160 data. It is striking that the performances 

consistently exceed that of the best single system 

(the best single system performance, and worst 

single system performance, are denoted by hori-

zontal lines in the figures), demonstrating a “wis-

dom of the crowd” effect. The left y axis uses log 

base 10 so that, for example, 99.99% accuracy 

maps to 3, 99.9% to 2, and so on. The right y axis 

applies only to the two coverage curves.  

 

 

 

 

 

 

 

System Accuracy/% 

SPLAT POS 96.4 

SPLAT constituency 

tree 

96.7 

NLPLib POS 85.0 

NLPLib constituency 

tree 

94.5 

Majority vote I 96.0 

Majority vote II 97.5 

Component model, 𝜃 

=0.98, 93.5% coverage 

99.2 

Component model with 

majority vote I  𝜃 = 0.98 

97.5 

Component model with 

majority vote II 𝜃 = 0.98 

97.5 

Table 1: Results on the WSJ test Data 
 

 

System Accuracy/% 

SPLAT POS 98.4 

SPLAT constituency 

tree 

98.7 

NLPLib 98.6 

NLPLib constituency 

tree 

99.1 

Majority vote I 99.2 

Majority vote II 99.1 

Component model, 𝜃 = 

0.98, 97.1% coverage 

99.8  

Component model with 

majority vote I 𝜃 =0.98 

99.2 

Component model with 

majority vote II 𝜃=0.98 

99.1 

Table 2: Results on the MC160 test data 

 

6   Conclusions 

 
We have shown that abstaining committees built 

from off-the-shelf POS taggers can produce very 

high accuracy results with modest loss in cover-

age.  Further, we found that applying majority 

vote to the abstentions results in state of the art 

accuracies, and that these results were robust to 

two choices of how the majority vote broke ties.  

This suggests that, when building a cascade us-

ing these ideas, the majority vote results could 

also be used as inputs to downstream classifiers 

to help provide a strong initial baseline. Selective 



 

 

classifiers have other advantages in terms of effi-

ciency (since the bulk of the data may be handled 

by simple, fast classifiers) and interpretability 

and correctability (since each classifier works on 

a subtask of the overall problem).  Given these 

results, a natural next step would be to build on 

these ideas and investigate using cascades of ab-

staining committees for natural language tasks. 
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Figure 1 Accuracy vs. threshold for the WSJ train and test sets. The coverage curves drop from left to 

right while the accuracy curves are flat or increase (as for Figure 2). 
 

 

 

 



 

 

 
 

Figure 2: Accuracy, precision and recall vs. threshold for the MC160 train and test sets. 
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