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Abstract

We investigate the use of selective classi-
fiers for part-of-speech tagging (POS).
The idea is to allow classifiers to abstain
on hard instances, passing them to down-
stream classifiers that may have more
context available. In this report we focus
on just the first stage of such a cascade,
and ask whether selective classifiers attain
the accuracies needed on those instances
they accept, given that such instances will
not be revisited by downstream pro-
cessing. We show that a selective classi-
fier that is constructed as an abstaining
committee of two off-the-shelf POS tag-
gers can indeed achieve very high accura-
cies with modest drops in coverage. We
also compute the overall accuracy when
all instances are voted on by applying ma-
jority vote to the abstentions, and we find
that this results in state of the art accura-
cies, robustly.

1 Introduction

There is a substantial amount of work on propa-
gating uncertainty through the NLP pipeline. For
example, Finkel et al. (2006) model the NLP pipe-
line as a Bayesian network and propose a simple
and effective sampling technique to perform ap-
proximate joint inference. Auli and Lopez (2011)
investigate using both loopy belief propagation
and dual decomposition to combine supertagging
and parsing (replacing their use in a pipeline) for
a Combinatory Categorial Grammar parser. How-
ever, in general, approaches that rely on loopy
graphical models are limited by the need to avoid
the intractability of inference in such models
(Koller and Friedman, 2009). If instead we take

the view that such a pipeline consists of modules
where more context becomes available as the pro-
cessing moves downstream, the question natu-
rally arises as to whether the problem could be ap-
proached by modeling the decisions using a se-
quence of finite state machines, rather than treat-
ing the problem as a single inference problem. In
this report we investigate a preliminary step to-
wards a simple method for building modular text
processing systems, where module outputs can be
updated easily based on feedback from down-
stream modules for which more textual context is
available. We use Selective Classifiers (El-Yaniv
and Wiener, 2010). A selective binary classifier
is simply a classifier with three outputs: the hy-
pothesized class {+1}, and abstain, denoted by
‘+” below. The central question addressed in this
work is: if we apply selective classifiers to a fun-
damental natural language problem such as part of
speech (POS) tagging, can accuracy rates on the
accepted instances, together with coverage (the
fraction of accepted instances), be made high
enough that applying such methods to solve the
feedback problem is even feasible? In addition,
we demonstrate a simple combination technique
using selective classifiers that robustly gives state
of the art results on POS tagging, which gives
some indication that this approach may be worth
pursuing.

We emphasize that selective classifiers have
further advantages beyond the main focus of this
study, namely: if such classifiers are linked in a
cascade in such a way that the bulk of the data is
classified by the first few classifiers in the cas-
cade, then models that would be prohibitively
slow to use on all the data can be applied to small,
targeted subsets that are abstained on by the up-
stream, simpler classifiers. Similar ideas have
been investigated for object detection in images



(Viola and Jones , 2001). Second, by breaking the
problem into components, the overall system can
be made more interpretable, since errors made by
classifiers that are specialized to specific tasks are
often easier to understand than errors made by a
single general purpose classifier. Finally, the
compartmentalization would also makes the over-
all system more correctable (that is, its overall de-
cision surface is more stable when adding training
data to correct errors), since only the classifier
making the error need be corrected. However, we
are getting ahead of ourselves: in this paper, we
focus on just the first stage of such a cascade, and
we ask the preliminary question of whether or not
the accuracy/coverage tradeoff there will be good
enough to support such a model.

2 The Data

We used the standard benchmark set for POS
tagging, namely the Wall Street Journal (WSJ)
data from the Penn TreeBank v3 (Marcus et al.,
1993), sections 0-18 for training and 22-24 for
testing (we did not use the development set, sec-
tions 19-21). The WSJ data has noisy labels. For
example, on the training set, for the phrase
“Chief Executive Officer”, the token “Executive”
is labeled as either a noun or an adjective in
roughly equal numbers. In order for our simple
selective classification scheme to be useful, it is
important that error rates on the accepted in-
stances be very low, since such errors are not re-
visited. To attain a clearer picture of the value of
this approach we thus needed a dataset with more
reliable labels. To this end, we used MC160, a
set of 160 short stories gathered using
crowdsourcing (Richardson et al., 2013). We
chose this data because the vocabulary is limited
to that of a typical seven year old, thus limiting
the occurrence of labeling ambiguities, yet the
data is also open domain. We labeled all tokens
as either noun, or not noun, using the Oxford
English Dictionary as arbiter, with one excep-
tion: we noticed that the OED labels indefinite
pronouns as pronouns, whereas they are consist-
ently labeled as nouns in the WSJ corpus; for
overall consistency we therefore labeled all in-
definite pronouns (namely, someone, somebody,
something, anyone, anybody, anything, everyone,
everybody, everything) as nouns. For this data,
we used the first 100 stories as the training set
and the remaining 60 as the test set.?

! These labels will be made available at http://re-
search.microsoft.com/mct.

3 Related Work

The state of the art for POS tagging accuracies (all
tokens) on the WSJ data is between 97.0% and
97.5%. The ACL Wiki on the POS tagging state-
of-the-art lists 12 systems whose accuracies lie in
this range (ACL Wiki, 2014).

3.1 Selective Classifiers

El-Yaniv and Wiener (2010) analyze the proper-
ties of selected classifiers in the noise-free case,
that is, the case where the data is separable. A se-
lective classifier is a pair f, g with f:x —» {+1}
and g: x — [0,1] such that
(. )G {reject wp. 1 —.g(x)
f (x) otherwise.

The risk is then defined as the expected loss on the
accepted samples, and the coverage as E[g(X)].
As motivation for our work, note that in the case
in which the function class is both finite, and con-
tains the target function f*, zero risk can in fact
be achieved with guaranteed finite coverage using

the Consistent Selective Strategy (CSS), in which
case the coverage is bounded below by

—Lo(1+n(3)

with probability 1 — §. Here, m is the number of
I1D training samples and |F| the size of the func-
tion class. CSS is very simply implemented by
using the training data to select that subset of
functions that predict it perfectly; by assumption,
f* isin that set; and a given test point is accepted
only if all such functions agree on it, otherwise
CSS abstains, guaranteeing that the assigned class
is also that assigned by f* (El-Yaniv and Wiener,
2010).

3.1.1 Cascades of Selective Classifiers

One can build a cascade out of a sequence of se-
lective classifiers, such that the second stage
classifier attempts to classify all samples on
which the first stage classifier abstains, the third
does the same with the second’s abstentions, and
so on. Although in this paper we only consider a
single stage, our hope is to help lay the ground-
work for using cascades for text processing, and
so we note here a simple generalization bound
for such cascades. Throughout the paper, we



will only consider the simple case where g is de-
terministic, i.e. g:x — {0,1}. Letx € X and let u
denote the measure on X x {+1}. We define an
€, p selective classifier c: X — {£1,*} to be one
for which P, (c(x) € {£1}) = p and
Pey-u(c(x) # ylc(x) € {£1}) <€, that s,
whose coverage is at least p and whose risk is at
most €. Then the following

Algorithm: Repeatedly train new €, p selective
classifiers on the set of examples for which all
previous classifiers abstained, until the probabil-
ity mass of the remaining abstentions is < e

satisfies the following

Theorem: The resulting hypothesis has generali-
zation error < 2¢, and the algorithm will run in

I N
at most —=2<_ jterations.
log(1-p)

Proof: Label the regions on which each classi-
fier outputs {+1} as X3, ... X,,, and let X, de-
note the final abstention region. Then
P(error) = YL P(error| X)) P(X;) <
Yr L €p;+ Pnyr-1 < 2esince Y p; = 1 and
Pn+1 < €. Also after the ith iteration, the absten-
tion mass is at most (1 — p)*; hence we stop for

. . i . loge
that i for which (1 —p)' <e or i > Tog(i—p"
m]

4 The Abstaining Committee

Our (first stage) model, which we call an Ab-
staining Committee, is built using two “black
box” component models: SPLAT and NLPLib.
SPLAT is a publicly available language analysis
toolkit (Quirk et al., 2012). We used SPLAT’s
POS tagger and constituency tree parser to pro-
vide two sources for POS hypotheses. SPLAT’s
POS tagger is a maximum entropy Markov
model trained on POS tags from the Penn Tree-
Bank (Marcus et al., 1993). Its constituency
parser is trained on the Wall Street Journal por-
tion of the Penn TreeBank.

NLPLib (Chen, 2012) is an NLP toolkit that
uses the averaged perceptron algorithm (Collins,
2002) trained on the POS and constituency tree
tags and data in OntoNotes Release 4.0
(Weischedel et al., 2010). As for SPLAT, we
used the NLPLib POS tagger and constituency

tree outputs to provide two sources for POS hy-
potheses. In the following, we refer to these four
POS taggers as the base taggers.

Using these four component models, we built a
composite model as follows. First, the base tag-
gers were run on the data, mapping each token to
a 4-vector with components indexed by the four
POS taggers, and containing either a POS tag or
“abstain”. Then, a “voting table” is formed
where each row corresponds to one particular 4-
vector. Thus, for example, if one row corre-
sponds to the vector [NN, NN, J],*], then two of
the base taggers voted noun, singular or mass,
one voted adjective, and one abstained. In the
worst possible case, the number of rows would
be n,,q, = 43*, since there are 42 different tags
in the Penn TreeBank. However if all base tag-
gers agreed and none abstained, then the total
number of rows would be the number of different
parts of speech encountered in the text, which is
at most 42. Indeed, the number of rows is typi-
cally much smaller than n,,,, since the disagree-
ments are rare and tend to occur in patterns. At
this stage abstentions only occur when SPLAT
and NLPLib disagree on the tokenization (we
used the SPLAT tokenization, so the SPLAT
base taggers never abstain, and the NLPLib base
taggers abstain only when they encounter a token
that does not occur in NLPLib’s tokenization).
Finally, two more columns are added to the table
as follows: the first contains the fraction of the
training set that is correctly classified, for which-
ever POS is correctly classified the most, and the
second contains that POS tag. For example, if
whenever the base classifiers vote
[NN,NN,]],«], the measured frequency of NN
being the correct tag is X, similarly Y for jJ, and
Z for,say, VB,sothat X + Y + Z = 1, and if
X = max(X,Y, Z), then the fifth column in the
table would be X, and the sixth, NN. Finally, we
also introduce an accuracy threshold 6, the only
parameter in our model. Denoting the voting ta-
ble by T, then for a given 6, whenever T;s > 0,
then the abstaining committee outputs Tjg, else it
abstains. In this way we are guaranteed that for
those instances for which the combined classifier
does not abstain, the accuracy on the training set
is bounded below by 6.

5 Results

The first four rows of Tables 1 and 2 show the
accuracies of the base classifiers on the WSJ and
MC160 test data sets, respectively. The fifth row
of Table 1 shows the results of a majority vote



(type 1) where ties are broken by taking the high-
est frequency POS in the training set; thus, for
example, if the 4-vector were [NN, NN, JJ, JJ],
and more tokens were labeled NN than were la-
beled JJ in the entire training set, then the output
hypothesis would be NN. The fifth row in Table
2 is the analog for nouns only (i.e. the vote is
“not noun”, since the majority of tokens in the
train set are not labeled as nouns). The sixth row
of both tables shows the results of an alternative
majority vote (type 1) where the hypothesis of
that base tagger with the highest accuracy on the
training set is used. The seventh row shows the
result of choosing €, the minimum accuracy on
the training set, to be 0.98. Thus, by abstaining
on 6.5% of the WSJ data, we are able to achieve
99.2% accuracy on the accepted data. The final
rows shows the results of forcing the abstaining
committee to commit by simply performing ma-
jority vote on the abstentions, using each type of
majority vote. Note that on the WSJ data, the
NLPLib POS tagger performs quite poorly, but
we nevertheless find that combining these four
systems into an abstaining committee gives state
of the art results, which suggests that abstaining
committees are quite robust. It is also striking
that this strategy does considerably better than
simply performing majority vote | on all in-
stances, showing further robustness to the kind of
majority voting used on abstentions. The
MC160 test data shows that, in the case where
the labels are clean and the problem simpler, the
abstaining committee achieves close to 100% ac-
curacy on the accepts: by dropping the coverage
from 100% to 97.1%, the accuracy improves by
75% relative (from 99.2% to 99.8%). The sim-
plicity of the MC160 noun detection task as com-
pared to the WSJ POS task is also indicated by
the number of rows in their corresponding voting
tables, which are 17 and 2,712 respectively.

Figure 1 shows the dependency of the train
and test accuracies, and the coverage, on 6, for
the WSJ test data. Figures 2, 3 and 4 show the
same for accuracy, precision and recall for the
MC160 data. It is striking that the performances
consistently exceed that of the best single system
(the best single system performance, and worst
single system performance, are denoted by hori-
zontal lines in the figures), demonstrating a “wis-
dom of the crowd” effect. The left y axis uses log
base 10 so that, for example, 99.99% accuracy
maps to 3, 99.9% to 2, and so on. The right y axis
applies only to the two coverage curves.

System Accuracy/%
SPLAT POS 96.4
SPLAT constituency 96.7
tree
NLPLib POS 85.0
NLPLib constituency 94.5
tree
Majority vote | 96.0
Majority vote Il 97.5
Component model, 6 99.2
=0.98, 93.5% coverage
Component model with 97.5
majority vote | 6 =0.98
Component model with 97.5
majority vote I1 6 =0.98

Table 1: Results on the WSJ test Data

System Accuracy/%
SPLAT POS 98.4
SPLAT constituency 98.7
tree
NLPLib 98.6
NLPLib constituency 99.1
tree
Majority vote | 99.2
Majority vote Il 99.1
Component model, 8 = 99.8
0.98, 97.1% coverage
Component model with 99.2
majority vote | 8 =0.98
Component model with 99.1
majority vote 11 6=0.98

Table 2: Results on the MC160 test data
6 Conclusions

We have shown that abstaining committees built
from off-the-shelf POS taggers can produce very
high accuracy results with modest loss in cover-
age. Further, we found that applying majority
vote to the abstentions results in state of the art
accuracies, and that these results were robust to
two choices of how the majority vote broke ties.
This suggests that, when building a cascade us-
ing these ideas, the majority vote results could
also be used as inputs to downstream classifiers
to help provide a strong initial baseline. Selective



classifiers have other advantages in terms of effi-
ciency (since the bulk of the data may be handled

by simple, fast classifiers) and interpretability Acknowledgments

and correctability (since each classifier works on ~ We thanks Aitao Chen for providing NLPLib. We
a subtask of the overall problem). Given these thank Chris Quirk, Lucy Vanderwende and Kristina
results, a natural next step would be to build on Toutanova for help with SPLAT and for useful dis-
these ideas and investigate using cascades of ab- cussions.

staining committees for natural language tasks.
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Figure 2: Accuracy, precision and recall vs. threshold for the MC160 train and test sets.
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