
Employing Topic Models for Pattern-based Semantic Class Discovery 

 

 

Huibin Zhang
1*

     Mingjie Zhu
2*

     Shuming Shi
3
     Ji-Rong Wen

3
 

1
Nankai University 

2
University of Science and Technology of China 

3
Microsoft Research Asia 

{v-huibzh, v-mingjz, shumings, jrwen}@microsoft.com 

 

  

 

Abstract

 

 

A semantic class is a collection of items 
(words or phrases) which have semantically 

peer or sibling relationship. This paper studies 

the employment of topic models to automati-

cally construct semantic classes, taking as the 

source data a collection of raw semantic 

classes (RASCs), which were extracted by ap-

plying predefined patterns to web pages. The 

primary requirement (and challenge) here is 

dealing with multi-membership: An item may 

belong to multiple semantic classes; and we 

need to discover as many as possible the dif-
ferent semantic classes the item belongs to. To 

adopt topic models, we treat RASCs as “doc-

uments”, items as “words”, and the final se-

mantic classes as “topics”. Appropriate 

preprocessing and postprocessing are per-

formed to improve results quality, to reduce 

computation cost, and to tackle the fixed-k 

constraint of a typical topic model. Experi-

ments conducted on 40 million web pages 

show that our approach could yield better re-

sults than alternative approaches. 

1 Introduction 

Semantic class construction (Lin and Pantel, 

2001; Pantel and Lin, 2002; Pasca, 2004; Shinza-

to and Torisawa, 2005; Ohshima et al., 2006) 
tries to discover the peer or sibling relationship 

among terms or phrases by organizing them into 

semantic classes. For example, {red, white, 

black…} is a semantic class consisting of color 
instances. A popular way for semantic class dis-

covery is pattern-based approach, where prede-

fined patterns (Table 1) are applied to a 
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collection of web pages or an online web search 
engine to produce some raw semantic classes 

(abbreviated as RASCs, Table 2). RASCs cannot 

be treated as the ultimate semantic classes, be-
cause they are typically noisy and incomplete, as 

shown in Table 2. In addition, the information of 

one real semantic class may be distributed in lots 
of RASCs (R2 and R3 in Table 2). 

 
Type Pattern 
SENT NP {, NP}

*
{,} (and|or) {other} NP 

TAG <UL>  <LI>item</LI>  …  <LI>item</LI>  </UL> 

TAG <SELECT> <OPTION>item…<OPTION>item </SELECT> 

* SENT: Sentence structure patterns; TAG: HTML Tag patterns 

Table 1. Sample patterns 

 
R1: {gold, silver, copper, coal, iron, uranium} 

R2: {red, yellow, color, gold, silver, copper} 

R3: {red, green, blue, yellow} 

R4: {HTML, Text, PDF, MS Word, Any file type} 

R5: {Today, Tomorrow, Wednesday, Thursday, Friday, 
Saturday, Sunday} 

R6: {Bush, Iraq, Photos, USA, War} 

Table 2. Sample raw semantic classes (RASCs) 

 

This paper aims to discover high-quality se-

mantic classes from a large collection of noisy 
RASCs. The primary requirement (and chal-

lenge) here is to deal with multi-membership, i.e., 

one item may belong to multiple different seman-
tic classes. For example, the term “Lincoln” can 

simultaneously represent a person, a place, or a 

car brand name. Multi-membership is more pop-

ular than at a first glance, because quite a lot of 
English common words have also been borrowed 

as company names, places, or product names. 

For a given item (as a query) which belongs to 
multiple semantic classes, we intend to return the 

semantic classes separately, rather than mixing 

all their items together. 
Existing pattern-based approaches only pro-

vide very limited support to multi-membership. 

For example, RASCs with the same labels (or 

hypernyms) are merged in (Pasca, 2004) to gen-



erate the ultimate semantic classes. This is prob-

lematic, because RASCs may not have (accurate) 
hypernyms with them. 

In this paper, we propose to use topic models 

to address the problem. In some topic models, a 
document is modeled as a mixture of hidden top-

ics. The words of a document are generated ac-

cording to the word distribution over the topics 

corresponding to the document (see Section 2 for 
details). Given a corpus, the latent topics can be 

obtained by a parameter estimation procedure. 

Topic modeling provides a formal and conve-
nient way of dealing with multi-membership, 

which is our primary motivation of adopting top-

ic models here. To employ topic models, we treat 

RASCs as “documents”, items as “words”, and 
the final semantic classes as “topics”. 

There are, however, several challenges in ap-

plying topic models to our problem. To begin 
with, the computation is intractable for 

processing a large collection of RASCs (our da-

taset for experiments contains 2.7 million unique 
RASCs extracted from 40 million web pages). 

Second, typical topic models require the number 

of topics (k) to be given. But it lacks an easy way 

of acquiring the ideal number of semantic classes 
from the source RASC collection. For the first 

challenge, we choose to apply topic models to 

the RASCs containing an item q, rather than the 
whole RASC collection. In addition, we also per-

form some preprocessing operations in which 

some items are discarded to further improve effi-
ciency. For the second challenge, considering 

that most items only belong to a small number of 

semantic classes, we fix (for all items q) a topic 

number which is slightly larger than the number 
of classes an item could belong to. And then a 

postprocessing operation is performed to merge 

the results of topic models to generate the ulti-
mate semantic classes. 

Experimental results show that, our topic 

model approach is able to generate higher-quality 

semantic classes than popular clustering algo-
rithms (e.g., K-Medoids and DBSCAN). 

We make two contributions in the paper: On 

one hand, we find an effective way of construct-
ing high-quality semantic classes in the pattern-

based category which deals with multi-

membership. On the other hand, we demonstrate, 
for the first time, that topic modeling can be uti-

lized to help mining the peer relationship among 

words. In contrast, the general related relation-

ship between words is extracted in existing topic 
modeling applications. Thus we expand the ap-

plication scope of topic modeling. 

2 Topic Models 

In this section we briefly introduce the two wide-
ly used topic models which are adopted in our 

paper. Both of them model a document as a mix-

ture of hidden topics. The words of every docu-

ment are assumed to be generated via a 
generative probability process. The parameters of 

the model are estimated from a training process 

over a given corpus, by maximizing the likelih-
ood of generating the corpus. Then the model can 

be utilized to inference a new document. 

pLSI: The probabilistic Latent Semantic In-

dexing Model (pLSI) was introduced in Hof-
mann (1999), arose from Latent Semantic 

Indexing (Deerwester et al., 1990). The follow-

ing process illustrates how to generate a docu-
ment d in pLSI: 

1. Pick a topic mixture distribution 𝑝(∙ |𝑑). 

2. For each word wi in d 
a. Pick a latent topic z with the probabil-

ity 𝑝(𝑧|𝑑) for wi 

b. Generate wi with probability 𝑝(𝑤𝑖 |𝑧) 

So with k latent topics, the likelihood of gene-
rating a document d is 

 𝑝(𝑑) =   𝑝 𝑤𝑖 𝑧 𝑝(𝑧|𝑑)

𝑧𝑖

 (2.1) 

LDA (Blei et al., 2003): In LDA, the topic 
mixture is drawn from a conjugate Dirichlet prior 

that remains the same for all documents (Figure 

1). The generative process for each document in 

the corpus is, 
1. Choose document length N from a Pois-

son distribution Poisson(𝜉). 

2. Choose 𝜃  from a Dirichlet distribution 

with parameter α. 

3. For each of the N words wi. 

a. Choose a topic z from a Multinomial 

distribution with parameter 𝜃. 

b. Pick a word wi from 𝑝 𝑤𝑖  𝑧, 𝛽 . 
So the likelihood of generating a document is 

 𝑝(𝑑) =  𝑝(𝜃|𝛼)
𝜃

  𝑝(𝑧|𝜃)𝑝 𝑤𝑖 𝑧, 𝛽 𝑑𝜃

𝑧𝑖

 (2.2) 

 

 
Figure 1. Graphical model representation of LDA, 

from Blei et al. (2003) 
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3 Our Approach 

The source data of our approach is a collection 
(denoted as CR) of RASCs extracted via applying 

patterns to a large collection of web pages. Given 

an item as an input query, the output of our ap-

proach is one or multiple semantic classes for the 
item. To be applicable in real-world dataset, our 

approach needs to be able to process at least mil-

lions of RASCs. 

3.1 Main Idea 

As reviewed in Section 2, topic modeling pro-

vides a formal and convenient way of grouping 

documents and words to topics. In order to apply 
topic models to our problem, we map RASCs to 

documents, items to words, and treat the output 

topics yielded from topic modeling as our seman-

tic classes (Table 3). The motivation of utilizing 
topic modeling to solve our problem and building 

the above mapping comes from the following 

observations. 
1) In our problem, one item may belong to 

multiple semantic classes; similarly in topic 

modeling, a word can appear in multiple top-
ics. 

2) We observe from our source data that 

some RASCs are comprised of items in mul-

tiple semantic classes. And at the same time, 
one document could be related to multiple 

topics in some topic models (e.g., pLSI and 

LDA). 
 

Topic modeling Semantic class construction 

word item (word or phrase) 

document RASC 

topic semantic class 

Table 3. The mapping from the concepts in topic 
modeling to those in semantic class construction 

 

Due to the above observations, we hope topic 

modeling can be employed to construct semantic 
classes from RASCs, just as it has been used in 

assigning documents and words to topics. 

There are some critical challenges and issues 

which should be properly addressed when topic 
models are adopted here. 

Efficiency: Our RASC collection CR contains 

about 2.7 million unique RASCs and 26 million 
(1 million unique) items. Building topic models 

directly for such a large dataset may be computa-

tionally intractable. To overcome this challenge, 

we choose to apply topic models to the RASCs 
containing a specific item rather than the whole 

RASC collection. Please keep in mind that our 

goal in this paper is to construct the semantic 

classes for an item when the item is given as a 
query. For one item q, we denote CR(q) to be all 

the RASCs in CR containing the item. We believe 

building a topic model over CR(q) is much more 
effective because it contains significantly fewer 

“documents”, “words”, and “topics”. To further 

improve efficiency, we also perform preprocess-

ing (refer to Section 3.4 for details) before build-
ing topic models for CR(q), where some low-

frequency items are removed. 

Determine the number of topics: Most topic 
models require the number of topics to be known 

beforehand
1
. However, it is not an easy task to 

automatically determine the exact number of se-

mantic classes an item q should belong to. Ac-
tually the number may vary for different q. Our 

solution is to set (for all items q) the topic num-

ber to be a fixed value (k=5 in our experiments) 
which is slightly larger than the number of se-

mantic classes most items could belong to. Then 

we perform postprocessing for the k topics to 
produce the final properly semantic classes. 

In summary, our approach contains three 

phases (Figure 2). We build topic models for 

every CR(q), rather than the whole collection CR. 
A preprocessing phase and a postprocessing 

phase are added before and after the topic model-

ing phase to improve efficiency and to overcome 
the fixed-k problem. The details of each phase 

are presented in the following subsections. 

 

 
Figure 2. Main phases of our approach 

 

3.2 Adopting Topic Models 

For an item q, topic modeling is adopted to 

process the RASCs in CR(q) to generate k seman-

tic classes. Here we use LDA as an example to 
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illustrate the process. The case of other genera-

tive topic models (e.g., pLSI) is very similar. 
According to the assumption of LDA and our 

concept mapping in Table 3, a RASC (“docu-

ment”) is viewed as a mixture of hidden semantic 
classes (“topics”). The generative process for a 

RASC R in the “corpus” CR(q) is as follows, 

1) Choose a RASC size (i.e., the number of 

items in R): NR ~ Poisson(𝜉). 

2) Choose a k-dimensional vector 𝜃𝑅  from a 

Dirichlet distribution with parameter 𝛼. 

3) For each of the NR items an: 

a) Pick a semantic class 𝑧𝑛  from a mul-

tinomial distribution with parameter 

𝜃𝑅 . 

b) Pick an item an from 𝑝(𝑎𝑛 |𝑧𝑛 , 𝛽) , 
where the item probabilities are pa-

rameterized by the matrix 𝛽. 

There are three parameters in the model: 𝜉 (a 

scalar), 𝛼  (a k-dimensional vector), and 𝛽  (a 

𝑘 × 𝑉 matrix where V is the number of distinct 

items in CR(q)). The parameter values can be ob-

tained from a training (or called parameter esti-
mation) process over CR(q), by maximizing the 

likelihood of generating the corpus. Once 𝛽  is 

determined, we are able to compute 𝑝(𝑎|𝑧, 𝛽), 

the probability of item a belonging to semantic 
class z. Therefore we can determine the members 

of a semantic class z by selecting those items 

with high 𝑝 𝑎 𝑧, 𝛽  values. 
The number of topics k is assumed known and 

fixed in LDA. As has been discussed in Section 

3.1, we set a constant k value for all different 

CR(q). And we rely on the postprocessing phase 
to merge the semantic classes produced by the 

topic model to generate the ultimate semantic 

classes. 
When topic modeling is used in document 

classification, an inference procedure is required 

to determine the topics for a new document. 
Please note that inference is not needed in our 

problem. 

One natural question here is: Considering that 

in most topic modeling applications, the words 
within a resultant topic are typically semantically 

related but may not be in peer relationship, then 

what is the intuition that the resultant topics here 
are semantic classes rather than lists of generally 

related words? The magic lies in the “docu-

ments” we used in employing topic models. 

Words co-occurred in real documents tend to be 
semantically related; while items co-occurred in 

RASCs tend to be peers. Experimental results 

show that most items in the same output seman-
tic class have peer relationship. 

It might be noteworthy to mention the exchan-

geability or “bag-of-words” assumption in most 
topic models. Although the order of words in a 

document may be important, standard topic mod-

els neglect the order for simplicity and other rea-
sons

2
. The order of items in a RASC is clearly 

much weaker than the order of words in an ordi-

nary document. In some sense, topic models are 

more suitable to be used here than in processing 
an ordinary document corpus. 

3.3 Preprocessing and Postprocessing 

Preprocessing is applied to CR(q) before we build 

topic models for it. In this phase, we discard 
from all RASCs the items with frequency (i.e., 

the number of RASCs containing the item) less 

than a threshold h. A RASC itself is discarded 
from CR(q) if it contains less than two items after 

the item-removal operations. We choose to re-

move low-frequency items, because we found 

that low-frequency items are seldom important 
members of any semantic class for q. So the goal 

is to reduce the topic model training time (by 

reducing the training data) without sacrificing 
results quality too much. In the experiments sec-

tion, we compare the approaches with and with-

out preprocessing in terms of results quality and 
efficiency. Interestingly, experimental results 

show that, for some small threshold values, the 

results quality becomes higher after preprocess-

ing is performed. We will give more discussions 
in Section 4. 

In the postprocessing phase, the output seman-

tic classes (“topics”) of topic modeling are 
merged to generate the ultimate semantic classes. 

As indicated in Sections 3.1 and 3.2, we fix the 

number of topics (k=5) for different corpus CR(q) 

in employing topic models. For most items q, 
this is a larger value than the real number of se-

mantic classes the item belongs to. As a result, 

one real semantic class may be divided into mul-
tiple topics. Therefore one core operation in this 

phase is to merge those topics into one semantic 

class. In addition, the items in each semantic 
class need to be properly ordered. Thus main 

operations include, 

1) Merge semantic classes 

2) Sort the items in each semantic class 
Now we illustrate how to perform the opera-

tions. 

Merge semantic classes: The merge process 
is performed by repeatedly calculating the simi-
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larity between two semantic classes and merging 

the two ones with the highest similarity until the 
similarity is under a threshold. One simple and 

straightforward similarity measure is the Jaccard 

coefficient, 

 𝑠𝑖𝑚 𝐶1 , 𝐶2 =
 𝐶1 ∩ 𝐶2 

 𝐶1 ∪ 𝐶2 
 (3.1) 

where 𝐶1 ∩ 𝐶2  and 𝐶1 ∪ 𝐶2  are respectively the 

intersection and union of semantic classes C1 and 

C2. This formula might be over-simple, because 

the similarity between two different items is not 

exploited. So we propose the following measure, 

 𝑠𝑖𝑚 𝐶1 , 𝐶2 =
  𝑠𝑖𝑚(𝑎, 𝑏)𝑏∈𝐶2𝑎∈𝐶1

 𝐶1 ∙  𝐶2 
 (3.2) 

where |C| is the number of items in semantic 
class C, and sim(a,b) is the similarity between 

items a and b, which will be discussed shortly. In 

Section 4, we compare the performance of the 
above two formulas by experiments. 

Sort items: We assign an importance score to 

every item in a semantic class and sort them ac-
cording to the importance scores. Intuitively, an 

item should get a high rank if the average simi-

larity between the item and the other items in the 

semantic class is high, and if it has high similari-
ty to the query item q. Thus we calculate the im-

portance of item a in a semantic class C as 

follows, 

 𝑔 𝑎|𝐶 = 𝜆 ∙sim(a,C)+(1-𝜆) ∙sim(a,q) (3.3) 

where 𝜆 is a parameter in [0,1], sim(a,q) is the 

similarity between a and the query item q, and 

sim(a,C) is the similarity between a and C, calcu-
lated as, 

 𝑠𝑖𝑚 𝑎, 𝐶 =
 𝑠𝑖𝑚(𝑎, 𝑏)𝑏∈𝐶

 𝐶 
 (3.4) 

Item similarity calculation: Formulas 3.2, 
3.3, and 3.4 rely on the calculation of the similar-

ity between two items. 

One simple way of estimating item similarity 
is to count the number of RASCs containing both 

of them. We extend such an idea by distinguish-

ing the reliability of different patterns and pu-

nishing term similarity contributions from the 
same site. The resultant similarity formula is, 

 𝑠𝑖𝑚(𝑎, 𝑏) =  log(1 +  𝑤(𝑃(𝐶𝑖,𝑗 ))

𝑘𝑖

𝑗=1

)

𝑚

𝑖=1

 (3.5) 

where Ci,j is a RASC containing both a and b, 

P(Ci,j) is the pattern via which the RASC is ex-

tracted, and w(P) is the weight of pattern P. As-
sume all these RASCs belong to m sites with Ci,j 

extracted from a page in site i, and ki being the 

number of RASCs corresponding to site i. To 

determine the weight of every type of pattern, we 

randomly selected 50 RASCs for each pattern 

and labeled their quality. The weight of each 
kind of pattern is then determined by the average 

quality of all labeled RASCs corresponding to it. 

The efficiency of postprocessing is not a prob-
lem, because the time cost of postprocessing is 

much less than that of the topic modeling phase. 

3.4 Discussion 

3.4.1 Efficiency of processing popular items 

Our approach receives a query item q from users 

and returns the semantic classes containing the 
query. The maximal query processing time 

should not be larger than several seconds, be-

cause users would not like to wait more time. 

Although the average query processing time of 
our approach is much shorter than 1 second (see 

Table 4 in Section 4), it takes several minutes to 

process a popular item such as “Washington”, 
because it is contained in a lot of RASCs. In or-

der to reduce the maximal online processing 

time, our solution is offline processing popular 
items and storing the resultant semantic classes 

on disk. The time cost of offline processing is 

feasible, because we spent about 15 hours on a 4-

core machine to complete the offline processing 
for all the items in our RASC collection. 

3.4.2 Alternative approaches 

One may be able to easily think of other ap-
proaches to address our problem. Here we dis-

cuss some alternative approaches which are 

treated as our baseline in experiments. 

RASC clustering: Given a query item q, run a 
clustering algorithm over CR(q) and merge all 

RASCs in the same cluster as one semantic class. 

Formula 3.1 or 3.2 can be used to compute the 
similarity between RASCs in performing cluster-

ing. We try two clustering algorithms in experi-

ments: K-Medoids and DBSCAN. Please note k-
means cannot be utilized here because coordi-

nates are not available for RASCs. One draw-

back of RASC clustering is that it cannot deal 

with the case of one RASC containing the items 
from multiple semantic classes. 

Item clustering: By Formula 3.5, we are able 

to construct an item graph GI to record the 
neighbors (in terms of similarity) of each item. 

Given a query item q, we first retrieve its neigh-

bors from GI, and then run a clustering algorithm 
over the neighbors. As in the case of RASC clus-

tering, we try two clustering algorithms in expe-

riments: K-Medoids and DBSCAN. The primary 

disadvantage of item clustering is that it cannot 
assign an item (except for the query item q) to 



multiple semantic classes. As a result, when we 

input “gold” as the query, the item “silver” can 
only be assigned to one semantic class, although 

the term can simultaneously represents a color 

and a chemical element. 

4 Experiments 

4.1 Experimental Setup 

Datasets: By using the Open Directory Project 
(ODP

3
) URLs as seeds, we crawled about 40 mil-

lion English web pages in a breadth-first way. 

RASCs are extracted via applying a list of sen-
tence structure patterns and HTML tag patterns 

(see Table 1 for some examples). Our RASC col-

lection CR contains about 2.7 million unique 
RASCs and 1 million distinct items. 

Query set and labeling: We have volunteers 

to try Google Sets
4
, record their queries being 

used, and select overall 55 queries to form our 
query set. For each query, the results of all ap-

proaches are mixed together and labeled by fol-

lowing two steps. In the first step, the standard 
(or ideal) semantic classes (SSCs) for the query 

are manually determined. For example, the ideal 

semantic classes for item “Georgia” may include 

Countries, and U.S. states. In the second step, 
each item is assigned a label of “Good”, “Fair”, 

or “Bad” with respect to each SSC. For example, 

“silver” is labeled “Good” with respect to “col-
ors” and “chemical elements”. We adopt metric 

MnDCG (Section 4.2) as our evaluation metric. 

Approaches for comparison: We compare 
our approach with the alternative approaches dis-

cussed in Section 3.4.2. 

LDA: Our approach with LDA as the topic 

model. The implementation of LDA is based 
on Blei’s code of variational EM for LDA

5
. 

pLSI: Our approach with pLSI as the topic 

model. The implementation of pLSI is based 
on Schein, et al. (2002). 

KMedoids-RASC: The RASC clustering ap-

proach illustrated in Section 3.4.2, with the 
K-Medoids clustering algorithm utilized. 

DBSCAN-RASC: The RASC clustering ap-

proach with DBSCAN utilized. 

KMedoids-Item: The item clustering ap-
proach with the K-Medoids utilized. 

DBSCAN-Item: The item clustering ap-

proach with the DBSCAN clustering algo-
rithm utilized. 

                                                   
3 http://www.dmoz.org 
4 http://labs.google.com/sets 
5 http://www.cs.princeton.edu/~blei/lda-c/ 

K-Medoids clustering needs to predefine the 

cluster number k. We fix the k value for all dif-
ferent query item q, as has been done for the top-

ic model approach. For fair comparison, the same 

postprocessing is made for all the approaches. 
And the same preprocessing is made for all the 

approaches except for the item clustering ones 

(to which the preprocessing is not applicable). 

4.2 Evaluation Methodology 

Each produced semantic class is an ordered list 
of items. A couple of metrics in the information 

retrieval (IR) community like Precision@10, 

MAP (mean average precision), and nDCG 
(normalized discounted cumulative gain) are 

available for evaluating a single ranked list of 

items per query (Croft et al., 2009). Among the 
metrics, nDCG (Jarvelin and Kekalainen, 2000) 

can handle our three-level judgments (“Good”, 

“Fair”, and “Bad”, refer to Section 4.1), 

 𝑛𝐷𝐶𝐺@𝑘 =
 𝐺 𝑖 /log(𝑖 + 1)𝑘
𝑖=1

 𝐺∗ 𝑖 /log(𝑖 + 1)𝑘
𝑖=1

 (4.1) 

where G(i) is the gain value assigned to the i’th 

item, and G
*
(i) is the gain value assigned to the 

i’th item of an ideal (or perfect) ranking list. 

Here we extend the IR metrics to the evalua-

tion of multiple ordered lists per query. We use 
nDCG as the basic metric and extend it to 

MnDCG. 

Assume labelers have determined m SSCs 
(SSC1~SSCm, refer to Section 4.1) for query q 

and the weight (or importance) of SSCi is wi. As-

sume n semantic classes are generated by an ap-

proach and n1 of them have corresponding SSCs 
(i.e., no appropriate SSC can be found for the 

remaining n-n1 semantic classes). We define the 

MnDCG score of an approach (with respect to 
query q) as, 

 𝑀𝑛𝐷𝐶𝐺 𝑞 =
𝑛1

𝑛
∙
 𝑤𝑖 ∙ 𝑆𝑐𝑜𝑟𝑒(SSC𝑖)
𝑚
i=1

 𝑤𝑖
m
i=1

 (4.2) 

where 

 𝑆𝑐𝑜𝑟𝑒 𝑆𝑆𝐶𝑖 =  

0                                         𝑖𝑓 𝑘𝑖 = 0
1

𝑘𝑖
max
𝑗 ∈[1, 𝑘𝑖]

(𝑛𝐷𝐶𝐺 𝐺𝑖,𝑗  )  𝑖𝑓 𝑘𝑖 ≠ 0
  (4.3) 

In the above formula, nDCG(Gi,j) is the nDCG 

score of semantic class Gi,j; and ki denotes the 

number of semantic classes assigned to SSCi. For 
a list of queries, the MnDCG score of an algo-

rithm is the average of all scores for the queries. 

The metric is designed to properly deal with 

the following cases, 



i). One semantic class is wrongly split into 

multiple ones: Punished by dividing 𝑘𝑖  in 
Formula 4.3; 

ii). A semantic class is too noisy to be as-

signed to any SSC: Processed by the 

“n1/n” in Formula 4.2; 
iii). Fewer semantic classes (than the number 

of SSCs) are produced: Punished in For-

mula 4.3 by assigning a zero value. 
iv). Wrongly merge multiple semantic 

classes into one: The nDCG score of the 

merged one will be small because it is 
computed with respect to only one single 

SSC. 

The gain values of nDCG for the three relev-

ance levels (“Bad”, “Fair”, and “Good”) are re-
spectively -1, 1, and 2 in experiments. 

4.3 Experimental  Results 

4.3.1 Overall performance comparison 

Figure 3 shows the performance comparison be-

tween the approaches listed in Section 4.1, using 
metrics MnDCG@n (n=1…10). Postprocessing 

is performed for all the approaches, where For-

mula 3.2 is adopted to compute the similarity 

between semantic classes. The results show that 
that the topic modeling approaches produce 

higher-quality semantic classes than the other 

approaches. It indicates that the topic mixture 
assumption of topic modeling can handle the 

multi-membership problem very well here. 

Among the alternative approaches, RASC clus-

tering behaves better than item clustering. The 
reason might be that an item cannot belong to 

multiple clusters in the two item clustering ap-

proaches, while RASC clustering allows this. For 
the RASC clustering approaches, although one 

item has the chance to belong to different seman-

tic classes, one RASC can only belong to one 
semantic class. 

 

 
Figure 3. Quality comparison (MnDCG@n) among 

approaches (frequency threshold h = 4 in preprocess-

ing; k = 5 in topic models) 

4.3.2 Preprocessing experiments 

Table 4 shows the average query processing time 

and results quality of the LDA approach, by va-

rying frequency threshold h. Similar results are 
observed for the pLSI approach. In the table, h=1 

means no preprocessing is performed. The aver-

age query processing time is calculated over all 
items in our dataset. As the threshold h increases, 

the processing time decreases as expected, be-

cause the input of topic modeling gets smaller. 
The second column lists the results quality 

(measured by MnDCG@10). Interestingly, we 

get the best results quality when h=4 (i.e., the 

items with frequency less than 4 are discarded). 
The reason may be that most low-frequency 

items are noisy ones. As a result, preprocessing 

can improve both results quality and processing 
efficiency; and h=4 seems a good choice in pre-

processing for our dataset. 

 

h 
Avg. Query Proc. 

Time (seconds) 
Quality 

(MnDCG@10) 
1 0.414 0.281 

2 0.375 0.294 

3 0.320 0.322 

4 0.268 0.331 

5 0.232 0.328 

6 0.210 0.315 

7 0.197 0.315 

8 0.184 0.313 

9 0.173 0.288 

Table 4. Time complexity and quality comparison 

among LDA approaches of different thresholds 

 

4.3.3 Postprocessing experiments 

 

Figure 4. Results quality comparison among topic 

modeling approaches with and without postprocessing 

(metric: MnDCG@10) 

 

The effect of postprocessing is shown in Figure 
4. In the figure, NP means no postprocessing is 

performed. Sim1 and Sim2 respectively mean 

Formula 3.1 and Formula 3.2 are used in post-

processing as the similarity measure between 
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semantic classes. The same preprocessing (h=4) 

is performed in generating the data. It can be 
seen that postprocessing improves results quality. 

Sim2 achieves more performance improvement 

than Sim1, which demonstrates the effectiveness 
of the similarity measure in Formula 3.2. 

4.3.4 Sample results 

Table 5 shows the semantic classes generated by 

our LDA approach for some sample queries in 
which the bad classes or bad members are hig-

hlighted (to save space, 10 items are listed here, 

and the query itself is omitted in the resultant 
semantic classes).  

 
Query Semantic Classes 

apple 

C1: ibm, microsoft, sony, dell, toshiba,  sam-

sung, panasonic, canon, nec, sharp … 

C2: peach, strawberry, cherry, orange, bana-

na, lemon, pineapple, raspberry, pear, grape 

… 

gold 

C1: silver, copper, platinum, zinc, lead, iron, 

nickel, tin, aluminum, manganese … 

C2: silver, red, black, white, blue, purple, 

orange, pink, brown, navy … 

C3: silver, platinum, earrings, diamonds, 

rings, bracelets, necklaces, pendants, jewelry, 

watches … 

C4: silver, home, money, business, metal, 

furniture, shoes, gypsum, hematite, fluorite 

…  

lincoln 

C1: ford, mazda, toyota, dodge, nissan, hon-

da, bmw, chrysler, mitsubishi, audi … 

C2: bristol, manchester, birmingham, leeds, 

london, cardiff, nottingham, newcastle, shef-

field, southampton … 

C3: jefferson, jackson, washington, madison, 

franklin, sacramento, new york city, monroe, 

Louisville, marion … 

computer 

science 

C1: chemistry, mathematics, physics, biolo-

gy, psychology, education, history, music, 

business, economics … 

Table 5. Semantic classes generated by our approach 
for some sample queries (topic model = LDA) 

 

5 Related Work 

Several categories of work are related to ours. 

The first category is about set expansion (i.e., 

retrieving one semantic class given one term or a 

couple of terms). Syntactic context information is 
used (Hindle, 1990; Ruge, 1992; Lin, 1998) to 

compute term similarities, based on which simi-

lar words to a particular word can directly be 
returned. Google sets is an online service which, 

given one to five items, predicts other items in 

the set. Ghahramani and Heller (2005) introduce 
a Bayesian Sets algorithm for set expansion. Set 

expansion is performed by feeding queries to 

web search engines in Wang and Cohen (2007) 

and Kozareva (2008). All of the above work only 

yields one semantic class for a given query. 

Second, there are pattern-based approaches in the 
literature which only do limited integration of 

RASCs (Shinzato and Torisawa, 2004; Shinzato 

and Torisawa, 2005; Pasca, 2004), as discussed 
in the introduction section. In Shi et al. (2008), 

an ad-hoc approach was proposed to discover the 

multiple semantic classes for one item. The third 

category is distributional similarity approaches 
which provide multi-membership support (Har-

ris, 1985; Lin  and Pantel, 2001; Pantel and Lin, 

2002). Among them, the CBC algorithm (Pantel 
and Lin, 2002) addresses the multi-membership 

problem. But it relies on term vectors and centro-

ids which are not available in pattern-based ap-

proaches. It is therefore not clear whether it can 
be borrowed to deal with multi-membership here. 

Among the various applications of topic 

modeling, maybe the efforts of using topic model 
for Word Sense Disambiguation (WSD) are most 

relevant to our work. In Cai et al (2007), LDA is 

utilized to capture the global context information 
as the topic features for better performing the 

WSD task. In Boyd-Graber et al. (2007), Latent 

Dirichlet with WordNet (LDAWN) is developed 

for simultaneously disambiguating a corpus and 
learning the domains in which to consider each 

word. They do not generate semantic classes. 

6 Conclusions 

We presented an approach that employs topic 

modeling for semantic class construction. Given 

an item q, we first retrieve all RASCs containing 
the item to form a collection CR(q). Then we per-

form some preprocessing to CR(q) and build a 

topic model for it. Finally, the output semantic 
classes of topic modeling are post-processed to 

generate the final semantic classes. For the CR(q) 

which contains a lot of RASCs, we perform of-
fline processing according to the above process 

and store the results on disk, in order to reduce 

the online query processing time. 

We also proposed an evaluation methodology 
for measuring the quality of semantic classes. 

We show by experiments that our topic modeling 

approach outperforms the item clustering and 
RASC clustering approaches. 
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