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ABSTRACT 

 
We introduce a novel approach towards scene recognition 

using semantic segmentation maps as image representation. 

Given a set of images and a list of possible categories for each 

image, our goal is to assign a category from that list to each 

image. Our approach is based on representing an image by its 

semantic segmentation map, which is a mapping from each 

pixel to a pre-defined set of labels. Among similar high-level 

approaches, ours has the capability of not only representing 

what semantic labels the scene contains, but also their shapes, 

sizes and locations. We obtain state-of-the-art results over 

Siftflow and Msrc datasets.  

 

 Index Terms— Scene Recognition, Semantic 

Segmentation  

 

1. INTRODUCTION 

 

Scene recognition is a not an easy task, due to high variability 

even within a single scene. Much recent literature have 

dedicated their effort to approaching it [3] [4] [5] [6]. A 

typical approach consists of three steps: extracting suggested 

image representation, encoding the representation in a feature 

vector, and finally classifying images according to their 

feature vectors.  

As with many computer vision problems, image 

representations could be divided into: Low level, mid-level, 

and high level-based methods. Low-level features typically 

encode physical properties [7] such as color, texture, … etc. 

Many of the low-level feature vector representations are 

imported originally from other computer vision applications, 

e.g. HOG [8] and Sift [9]. [3] for example uses a multitude of 

low-level feature vectors including Gist, Sift, LBP, texton, 

besides many others for Scene Recognition. Mid-level 

features concern extracting spatial and shape relations, 

nonetheless without regard to semantics [7]. Approaches 

using mid-level representations generally search for interest 

points in a picture and tries to match them with similar ones 

to discover a scene template representing its common interest 

points to be looked for. [5] for example uses an Exemplar 

SVM to learn distinctive parts in a scene.  

In this paper, we mainly deal with high-level image 

representation for scene recognition. High-level image 

representation indicates a mapping from visual representation 

to meaning [7]. A common approach thus far has been to use 

pre-trained detectors for objects and background elements in 

order to find objects in a scene [4] [10] [11]. For example, 

[10] divides each image into a 10x10 grid and finds objects 

within each grid cell using 9 pre-trained detectors. Object 

Bank [4] generalizes to using more detectors and replaced 

image grid representation with a spatial pyramid. Object 

Bank used sparse response from object detectors’ as 

representative feature vector. These methods, however, are 

only capable of indicating objects’ existence in image, 

ignoring other important semantic information about their 

interrelated sizes, locations or shapes. Similarly, [6] has used 

weakly supervised classifier to predict objects within an 

image, but it suffers from the same disadvantage.  

We are going into details over Semantic Segmentation 

techniques, as it is not our target problem. However, using 

segmentation for scene recognition has been used before, as 

in [1] where they model images based on their unsupervised 

segmentation as a GMM model. Additionally, [12] have 

borrowed NLP’s LSA to generate vocabulary representing 

each image using SIFT descriptor [9]. However, they both 

obtain no semantic meaning for parts they segment. We argue 

that supervision on semantic segmentation level lead to a 

more compact and distinctive image descriptor. Resulting 

feature vector enforces scene recognition classifier to predict 

scene category based on combinations of semantically 

coherent regions, rather than regions with similar feature 

descriptors.  

We adopt the view that high-level visual tasks such as 

scene recognition require semantic information concerning 

various scene parts and spatial relations between them [1]. To 

our knowledge, this is the first work to use pixel-level 

semantic segmentation as image representation for scene 

recognition. In the rest of the paper, we first go into more 

details of our approach, then we describe our experiments and 

discuss the results.  

 

2. APPROACH 

 

Our approach has two major steps: semantic segmentation, 

followed by scene classification. In order to avoid confusion, 

one distinction we would like the reader to distinguish 

beforehand, is that the list of classes we select from during 

semantic segmentation is denoted “Labels”, whereas the list 



of classes we select during scene recognition are denoted 

“Categories”. Our pipeline is show in figure 3.  

 

 
Figure 1: Sketch of our pipeline  

 

3.1 Semantic Segmentation  

 

Semantic Segmentation aims at assigning each pixel in an 

image to one of a pre-listed set of labels, such as water, 

person, etc. Formally, given a set of 𝑘  labels: and a picture 

represented as a set of 𝑛 pixel: a semantic segmentation 

algorithm seeks. 
 

In all our experiments, we used Image Segmentation 

provided by Ladicky et all [13] – particularly for their well-

documented open access code, and state-of-the-art results 

they achieve on challenging datasets.  

 

3.2 Scene Recognition 
 
With the semantic labeling of an image at pixel level, as in 

Figure 1, we are now equipped with a semantic map of the 

image. We propose a number of feature representations 

encoding the information in the semantic image map, namely: 

SegCounts, Spatial Pyramid over Seg and Seg + Centrist. 

 

SegCounts Feature Vector: The simplest form of a feature 

vector considers the ratio of each label in the picture, through 

the equation:  
 

Hence, the length of our feature vector is the number of labels 

we are initially choosing from.  

 

  
Original Image 

 

Possible semantic 

segmentation 

Figure 2: Possible segmentation result. Original image 

taken from Siftflow dataset [14]. 

 

Spatial Pyramid over Seg: In order to equip our Seg feature 

vector with a sense of locality we used Spatial Pyramid [15]. 

Essentially, Spatial Pyramid divides an image into many sub-

regions over various scales then computes over each 

histogram of a feature vector, SegCounts in our case. Finally, 

it compares these histograms using the following weight 

equation. Specifically, Spatial Pyramid replaces SegCounts’ 

standard Bag of Features representation with a more 

sophisticated manner expressing spatial relations between 

labels.  

 

SegCounts + Centrist: Centrist [16] has the advantage of 

expressing structural features of an image. Hence, utilizing 

specific label shapes. Centrist uses the Census Transform, 

comparing each bit with its 8 local neighbors for having 

greater or less intensity, as show in Figure 2 in an image from 

Siftflow dataset. This results in encoding strong constraints 

of image’s global structure, as Wu et al. argues. A spatial 

pyramid is then applied to retain locations. We apply Centrist 

over semantically segmented images, resulting in a feature 

vector that represents labels’ outer shapes. 

 

   
Figure 3: Centrist over an image from Siftflow dataset. 

Left to right: original image, semantic segmentation 

result, Centrist result.  

 
4. EXPERIMENTS 

 

We conducted experiments with two datasets: MSRC [17], 

Siftflow [14]. Below we list the configuration results for the 

two datasets. Then, we discuss our results and try to answer 

how changing our experiment parameters, including the 

semantic segmentation training algorithm training and 

number of labels, affect our results.  

 The MSCR dataset has 591 images, covering 23 labels 

and 21 categories. Siftflow has 2886 images, covering 33 

labels and 8 categories. For the two datasets, we used test and 

train image splits as specified in their original papers [17] and  

[14] respectively.  

 We follow the same pipeline for all the experiments. As 

detailed in section 3, there are two main stages in our 

pipeline: semantic segmentation followed by scene 

recognition. First, we train [13]’s classifier using 50% of 

random images from the dataset. The resulting classifier that 

is trained over the available labels in the dataset is like a black 

box that we could use to semantically segment any image. We 

use that black box against the whole dataset. The resulting 

semantically segmented images are divided into train and test 

sets upon which different feature vectors described earlier are 

applied. For scene classification, we experimented using two 

different classifiers: a random forest and a linear SVM. We 

report the better performing classifier out of these two 

through this section of the paper. Moreover, a spatial pyramid 

of 3 levels is utilized. Throughout the paper, accuracy 

reported is the average over the confusion matrix diagonal. 

Input Image
Semantic 

Segmentation 
Map

Scene 
Prediction



 In table 1 we show our features results for scene 

recognition over Siftflow and Msrc datasets. We used HOG 

[8] and Gist [18] feature vectors as baselines. Three essential 

issues are there to discuss.  

 

4.1 Effect of varying Segmentation Accuracy  

 

First issue is the relation between segmentation accuracy and 

scene recognition. In order to study this, we used another 

segmentation algorithm provided by [19], that usually yielded 

worse results than ALE. In Table 2, we compare the accuracy 

effect of semantic segmentation on scene recognition. As the 

table shows, segmentation accuracy plays a very important 

rule in the resulting scene recognition. SegCounts is clearly 

proportional to Semantic Segmentation accuracy. This is 

expected since an incorrect segmentation could result in a 

total different description for the scene, for example, if a wall 

is segmented as a mountain.   

 

 Siftflow Msrc 

 SS SegCounts SS SegCounts 

[13] 83.8% 83.5% 91.9% 81.25% 

[19] 81.9% 75.8% 66.8% 61.50% 

Table 2: Comparison between different performing semantic 

segmentation accuracy (SS) versus scene recognition result 

 

4.2 Varying semantic segmentation training  

 

In most real world applications, the image set used to train 

the segmentation algorithm will be different from that used to 

train the scene recognition algorithm. In order to discover 

how scene classification would react to using a poorly-trained 

segmentation classifier, we did the following experiment. In 

order to do scene classification over Msrc dataset, we trained 

the semantic segmentation classifier over another different 

dataset.  We take in mind how the number of labels within 

each dataset could play a role too. Hence, we trained the 

semantic segmentation classifier over three datasets: Msrc, 

subMsrc, and Sowerby. Msrc is the usual Msrc dataset 

described above. We compiled a generic dataset; subMsrc, 

that is designed to contain the same images of Msrc, but with 

less number of labels, giving us an indication of the effect of 

varying the number of labels over the same dataset. With 

subMsrc, we merged Msrc’s 23 labels into 11 labels by 

naming similar labels the same, e.g. grass and tree labels are 

both renamed vegetation. Sowerby is a tiny dataset that 

includes 7 labels. Table 3 shows Siftflow’s scene recognition 

accuracy using different datasets for training its segmentation 

classifier. As a baseline, we used the results of using same 

dataset, Siftflow, to train the semantic segmentation 

classifier. 

 
Figure 3: Siftflow’s scene recognition results using different 

training datasets to train segmentation classifier 

 

Interestingly, accuracies for Msrc and subMsrc were 

quite higher than expected. Also, they were similar despite 

the disparity in label number. We demonstrate the following 

explanation. There are two scenarios.  First case is when the 

segmentation classifier is trained and tested on the same 

dataset. In that case, results are consistent with labels, i.e. a 

book is usually labeled as book and sea is always labeled as 

sea. Then, scene recognition classifier is able to 

draw connections from combination of these labels. The 

second case, shown in table 3, is when training and testing 

datasets are different. In that case, the segmentation classifier 

is trained over Sowerby for example. Then, it is merely 

exposed to animals, and suddenly it sees city pictures in 

Siftflow. In that case, it becomes blind and makes its own 

dictionary. For example, it encodes cars as cows. In the 

example above, with Msrc, mountain label is encoded as dog. 

As a result, scene recognition classifier is still capable of 

making correlations between labels and scenes, even if they 

do not hold correct semantic meaning. However, as 

Sowerby’s result indicates, too few labels result in confusing 

the Scene Recognition classifier, for example both sky and 

sea could be encoded as the same label.  

 

4.3 Optimum number of semantic labels 

 
Although more label in semantic segmentation makes the 

scene classification classifier’s job easier, it could negatively 

affect the semantic segmentation classifier’s results. To 

explore this area, we did the following experiment. We varied 

the number of labels used over Siftflow dataset and tested 

how this affect scene recognition results. Our method for 

varying the number of labels is based over merging similar 

labels together and gathering semantically similar labels into 

one. Table 4 shows results. [Commentary over results – 

expected that there will be a specific optimal number of 

labels, we will claim that these labels represent the essential 
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Siftflow Sowerby Msrc subMsrc

 SegCounts Spatial Pyramid Seg + Centrist Gist HOG [1] [2] 

Siftflow 83.5% 86.00% 88.50% 81.50% 80.50% 88.31% - 

Msrc 81.25% 81.64% 79.68%   - 80.60% 

Table 1: Experiment results over Siftflow and Msrc datasets.  



labels and smooth into next part. – ignore what’s below for 

now]. 

  

[We consider experiments in in [2] where scene 

detection is done over two datasets: Siftflow with 33 labels 

and 2886 images, and Barcelona with about 170 labels and 

14,871 images.  As seen in table 1, although the average 

accuracy (diagonal average on confusion matrix) is low for 

Siftflow and drops drastically for Barcelona dataset, per-pixel 

accuracy remains at a good shape despite the large increase 

in the dataset size. The cause behind this consistency in 

overall accuracy despite low average per-class accuracy is 

easily seen through the confusion matrix, where the classes 

with highest availability in the dataset are performing highly 

versus less available classes with low performance.   

 

 Per-pixel accuracy Average accuracy 

Siftflow 73.2% 29.1% 

Barcelona 65.2% 8.7% 

Table 5: segmentation results against varying datasets 

 

On the other hand, it is crucial to realize that for 

Scene Recognition process to be successful, only specific 

labels need to be correctly labeled, we will denote these as 

the “Essential Labels”. By definition, a combination of 

different densities of Essential Labels is what defines a Scene. 

For example, library could be defined as a high density of 

books and a possible low density of computers, while an 

office is defined as an average density of both books and 

computers. 

Put together, we use these facts to justify numbers 

in table 2: the reason why high-level segmentation does not 

suffer much through the increase number of classes; that 

Essential Labels’ accuracy remains high despite the increase 

in the number of classes leading to correct scene recognition. 

In other words, making the process of successful scene 

recognition is a matter of successful emphasis of Essential  

Labels in the training set for Semantic Segmentation, despite 

dataset size.  

Numbers in table (2) show state-of-the-art low level 

features HOG, GLCM, Color Histogram and their 

combination perform against two different datasets: Siftflow 

and Msrc. As detailed in the appendix, Siftflow dataset has 8 

classes while Msrc dataset has 21 classes. Although low-level 

features’ numbers are close to SegCounts’s with the Siftflow 

dataset, numbers are distinctively less with Msrc dataset.  We 

justify close SegCounts’s performance using facts above, by 

the fact that Essential Labels, e.g. sand, sky and building for 

Siftflow, are well-emphasized, resulting in high segmentation 

accuracy for them and in turn successful scene classification.   

We reach the conclusion that given a well-trained set 

of training images, Essential Labels become the labels with 

high availability, and hence are the ones kept with high 

segmentation accuracy even on huge datasets. This in turn 

allows the Scene Recognition classifier to find correct 

definitions for scenes using densities of Essential Labels.]  

5. CONCLUSION AND FUTURE WORK 

 
In this paper we have demonstrated a novel approach by 

expressing scenes in terms of their pixel-level semantic 

content. We have shown that state-of-the-art results are easily 

obtainable and improvable by using feature vector that makes 

usage of size, shape and location of shapes in an image. 

 

Further testing over larger datasets such as SUN [3] or MIT-

indoors [20] is essential. The major obstacle towards such 

tests would be the availability of enough annotated images 

for training semantic segmentation classifier over the varying 

set of labels available. Also, as the table 1 shows, 

segmentation accuracy plays a very important rule in the 

resulting scene recognition.  One effort towards treating this 

has been to incorporate pixel-level segmentation accuracy 

into consideration. This experiment could not be 

implemented due to the difficulty involved with obtaining 

uncertainties with graph cut approaches [21]. However, this 

would also still depend over segmenter accuracy, hence this 

was not tested further.  
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