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ABSTRACT 

 

Image matching is a cornerstone technology in many image 

understanding, augmented reality and recognition 

applications. The state-of-the-art techniques follow a 

feature-based approach by extracting interest points and 

describing them by either rotation or affine invariant 

descriptors. However, requiring rotation or affine invariance 

comes at an additional computational cost as well as 

inaccurate estimates in some cases such as out-of-plane 

rotations. Fortunately, today most mobile devices 

incorporate 3-D accelerometers that measure the 

acceleration values along the three axes. In this paper, we 

propose to employ the acceleration values to calculate the 

in-plane and tilting rotation angles of the capturing device, 

in order to alleviate the need for constructing rotationally 

invariant descriptors. We describe an approach for 

incorporating the calculated rotation angles in the process of 

interest point extraction and description. Furthermore, we 

evaluate empirically the proposed approach, both in terms of 

computational time and accuracy on standard datasets as 

well as a dataset collected using a mobile phone. Our results 

show that the proposed approach provides savings in 

computational time while providing accuracy gains. 

 

Index Terms— feature matching, accelerometer, 

sensors, mobile devices 

 

1. INTRODUCTION 

 

There is a steady increase in recent years in augmented 

reality applications on mobile devices. Many of these 

applications leverage computer vision techniques for image 

understanding and recognition. A key technology for 

enabling these techniques is image matching. Recently, 

feature-based image matching techniques have dominated 

the literature due to their ability to handle occlusions as well 

as various geometric and photometric image transforms 

when properly designed. These features are used to establish 

correspondence between set of images (could be two in the 

simplest case) and hence enable deriving geometric relations 

between them. A key to successful correspondence is the 

availability of invariant feature representations under a class 

of photometric and geometric transforms. One of the most 

popular feature representations that has shown good 

performance is SIFT ‎[3]. SIFT provides illumination 

changes immunity by working in the gradient domain. In-

plane rotation invariance for each interest point is achieved 

through local estimation of the gradient orientation based on 

the surrounding patch of pixels; hence, the descriptor can be 

represented relative to this orientation. Unfortunately, 

requiring a high level of geometric invariance always comes 

at a high computational cost. In many cases, the 

computational cost is prohibitively high so much so that the 

designer is forced to accept a lower level of invariance.   

In this work, we argue that by leveraging unique capabilities 

of mobile devices, especially that of providing acceleration 

values along the three major axis, computational savings in 

local orientation estimation can be harnessed. Clearly if the 

two images being matched are brought to the same 

orientation, by using accelerometer readings, then this 

computational step could be skipped altogether. In this case 

an upright version of the descriptor would suffice. The key 

technical contributions of this paper are: 

1.  Fusing feature-based descriptors with the rotation 

angles calculated from the device’s accelerometer 

to alleviate the need for constructing rotationally 

invariant descriptors.  

2. Describing an approach to perform this fusion 

effectively.  

3. Comparing the proposed approach to SIFT and its 

speeded up version (SURF)‎[2]. We experimentally 

validate that the proposed approach can achieve 

better matching capabilities at lower computational 

cost on a collected dataset as well as on a standard 

dataset.  

 

The rest of this paper is organized as follows. Section 2 

contains a brief discussion and survey of related work. We 

describe a method for calculating the rotational angles from 

the accelerometer information in Section 3. Section 4 

describes the proposed approach for fusing feature-based 

descriptors with the rotation angles. A description of the 

experimental setup is given in Section 5. The proposed 

approach is evaluated in Section 6. Finally, we conclude in 

Section 7. 

 

 

 



2. RELATED WORK 
Various forms of features have been used in the literature 

including points, edges, regions and contours ‎[4],‎[5],‎[6]. In 

this work we concentrate on point features, as they are the 

most commonly used owing to their general nature. The 

main stages in a typical feature-based image matching 

pipeline are feature detection, feature description and feature 

correspondence ‎[1]. In the feature detection stage, each 

image is searched for local features, often called interest 

points, with the desirable properties to be invariant under a 

class of image transforms as well as being distinctive. The 

feature description stage involves describing each interest 

point in terms of the surrounding patch of pixels, either 

using a single value or a distribution involving raw, 

moments or gradient components ‎[7]-‎[12]. Then, the interest 

point descriptor is represented as a feature vector and feature 

correspondence is established using a distance metric on that 

vector.  

Most modern day interest-point detectors are able to deal 

with in-plane image rotation. The state-of-the-art method to 

achieve rotational invariance is to estimate a dominant 

orientation at each detected interest point. Once the local 

orientation of an interest point has been estimated, an 

oriented patch around the detected point can be extracted 

and used to form a feature descriptor. The simplest possible 

orientation estimate is the average gradient within a region 

around the interest point. SIFT uses a better technique, it 

looks at the histogram of orientations computed around the 

interest point. SURF, on the other hand, uses the responses 

to Haar wavelets for orientation assignment. 

A number of fully affine invariant detectors and descriptors 

have been proposed in the literature ‎[11]-‎[17]; two detectors 

are considered to be the state of the art, Maximally Stable 

Extremal Region (MSER) ‎[12] and Affine SIFT 

(ASIFT) ‎[17]. MSER works by thresholding the image at all 

possible gray levels. Regions whose rate of change of area 

w.r.t. threshold is minimal are defined as maximally stable 

and are returned as detected regions. This results in regions 

that are invariant to affine geometric transformations. ASIFT 

follows a different approach; it simulates all image views 

obtainable by varying the two camera axis orientation 

parameters, namely, the latitude and the longitude angles. 

Then it deals with scale, translation and in-plane rotation by 

using the SIFT method itself. It is worth noting that the full 

affine invariant descriptors are considerably more 

computational expensive than the rotational invariant 

descriptors. 

A related problem space is the simultaneous localization and 

mapping (SLAM) ‎[18]. The SLAM problem asks if it is 

possible for a mobile robot to be placed at an unknown 

location in an unknown environment and for the robot to 

incrementally build a consistent map of this environment 

while simultaneously determining its location within this 

map. One class of approaches attempts to solve this problem 

using mainly visual information (VSLAM)‎[19]-‎[21]. In 

VSLAM, the mobile robots are equipped with a 3-cameras 

stereo vision system and uses feature descriptors such as 

SIFT for extracting landmark candidates. The candidates 

then are matched between cameras to determine the 3D 

position. The interesting aspect in this problem is that the 

robots are in many cases equipped with accelerometers for 

determining the speed of the robot. Therefore, we believe 

that our approach would be beneficial in that problem space. 
 

3. CALCULATING ROTATIONAL ANGLES FROM 

3D ACCELEROMETER INFORMATION  

A 3-D accelerometer is an electromechanical device that can 

measure the 3D acceleration forces ax, ay, az along the x, y, 

and z axes. For convenience, the three axes are chosen 

aligned with the capturing device axes as depicted in Figure 

1 (in this case a mobile phone). When the device is steady, 

these values correspond to components of gravitational 

acceleration along the different axes. Each value 

theoretically ranges from 0 to 9.80665 m2/sec.  The 

remaining of the discussion of this section will use mobile 

phone as an example for the capturing device.  

 

Figure 1 Mobile phone axes 

The three acceleration values can be embedded in the image 

header, according to any information embedding standard, 

similar to the Information Interchange Model (IIM)‎[22]. 

Alternatively, this information can be stored in a separate 

metadata file. Such as metadata information was used in 

Seon et al. work ‎[24] for instance to guide search within 

video archives. 

The accelerometer returns the ax, ay, az values along the 

axes that are shown in Figure 2 and Figure 3. In case the 

device is held upright, ay would have a value of 9.80665 



with ax and az equal to zero. In other positions, the 

gravitational force would have components in the x, z 

directions as well. In order to calculate the rotation angle in 

the (x,y) plane and the rotation angle in the (z,y) plane, 

denoted by α in Figure 2 and β in Figure 3 respectively, we 

need to calculate the 3D rotational transformation between 

the vector representing the gravitational acceleration (0, |Y|, 

0) and the vector generated by the accelerometer (ax, ay, 

az). The value of |Y| is theoretically 9.80665, however 

because of the imperfections of the 3D accelerometer the 

value need to be calculated as 222 azayaxY  . 

 

Figure 2 Device coordinates 

front view 

 

Figure 3 Device 

coordinates side view 

The 3D transformation relating the mobile device 

coordinates and the world coordinates is described using the 

equation (1). 






















































0

||

0

cossin0

sincoscoscossin

sinsincossincos

Y

az

ay

ax







 (1) 

 

4. FUSION OF FEATURE-BASED DESCRIPTORS 

WITH ACCELEROMETER READINGS 

 

As mentioned earlier, descriptors such as SIFT and SURF 

are in-plane rotation invariant, i.e. rotation in the vertical 

(x,y) plane. This invariance is achieved by estimating a 

reproducible orientation for each interest point, and the 

interest point descriptor is always represented with respect 

to this orientation. The exact method of the point orientation 

estimation depends of the particular descriptor used.  

In this paper we propose to depend on the angles calculated 

from the accelerometer readings, instead of estimating the 

orientation at each interest point, to provide in-plane and tilt 

rotational invariance. The proposed approach proceeds as 

follows; perform the feature detection step, then correct 

globally for both the in-plane and tilt rotational angles, and 

thereafter apply the feature description step
1
. In essence, this 

approach can be used to augment any state-of-the-art 

descriptor, however, in this paper we concentrate on SIFT 

and SURF. It is important to note here that the proposed 

approach is designed to compensate for camera rotation; 

however, it would not provide the desired invariance in 

cases where the image contents are rotated.  

 

Correcting for the in-plane rotation angle α calculated from 

Equation 1 would alleviate the need for estimating the 

orientation values associated with different interest points in 

both SIFT and SURF. We correct for the angle α by using 

the rotational transformation matrix in Equation 2. 
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With respect to the second angle, let’s recall that the SIFT 

and SURF descriptors are not designed to deal with affine 

deformations, instead, they are assumed to be second-order 

effects that are covered to some degree by the overall 

robustness of the descriptor. In addition, Lowe ‎[3] has 

claimed that the additional complexity of full affine-

invariant features often negatively impact their robustness 

and does not pay off, except in cases of large viewpoint 

differences. 

In our approach, we compensate for the tilt rotation angle 

(β) before applying the SIFT and SURF descriptors. This 

will enable the descriptors to respond consistently across 

affine deformations, such as (local) perspective 

foreshortening, without any additional computational cost. 

We will show empirically that this method indeed improves 

the results of the descriptors. 

5. EXPERIMENTAL SETUP 

We conducted a number of experiments aiming at testing the 

hypothesis that compensating for in-plane and tilt angles 

computed from accelerometer readings can improve 

matching accuracy as well as processing times of interest 

point descriptors. We evaluate the proposed approach when 

applied to two state-of-the art interest point descriptors 

namely SIFT and SURF.  

5.1 Datasets 

Since datasets previously used in the literature for 

comparing interest point descriptors do not have 

accelerometer readings associated, we resorted to collecting 

our own dataset using mobile phones while adhering to the 

                                                 
1
 Investigating the effect of global rotation correction on the 

feature detection step has been left for future work. 



methodology of data collection followed in ‎[1] such as a 

balanced collection between textured and structured scenes 

and a variation in both in-plane and out-of plane (tilt) 

rotations. We call this dataset “real dataset”, for which some 

statistics are shown in Table 1 and sample images are 

illustrated in Figure 4.  

Table 1. Real dataset statistics 

Scene name Type 

Number 

of 

images 

Number 

of pairs 

Backyard 

Scene_1 
structured 24 276 

Backyard 

Scene_2 
structured 24 276 

Food Area structured 17 136 

Hallway textured 10 45 

Monitor textured 7 21 

Newspaper textured 9 36 

Small Trees textured 13 78 

X-Box structured 19 171 

 
In order to remove any selection bias from our end in the 

data collection process, we have also used a set of standard 

images from the dataset used in ‎[1], then we’ve subjected 

these images to artificial geometric transformations and 

measured the matching performance. We have selected a 

total of 14 images from the images in [23]. For each selected 

image we have generated 30 images by introducing random 

in-plane rotations from 0 to 360 degree and tilt rotation 

(around x-axis) from -45 to 45 degrees. Table 2 shows the 

statistics for this “synthetic dataset”, while Figure 5 shows 

sample images from this dataset. Results reported in the 

remaining of this section are average over all the images 

corresponding to a scene. 

 

     

     
Figure 4: samples from the real dataset including structured 

and textured scenes 

5.2 Evaluation criteria 

We have adopted three main measures for testing the 

matching capability of the proposed fusion of interest point-

based scheme and accelerometer readings. These measures 

are the standard precision and recall, and computation time. 

It is worth mentioning that using accelerometer readings for 

compensating for rotation angle of the capturing device does 

not directly change the way interest points are detected or 

described in SIFT or SURF. However, by compensating for 

in-plane and tilt rotation angles before interest point 

description, we are able to show that one can expect a boost 

in performance as the job of detection and description 

becomes easier. In the following, we use SIFT+ to signify 

the case when SIFT is augmented with the rotational angles 

calculated from the accelerometer readings, and likewise, we 

use SURF+ to indicate the usage of the augmented SURF. 

Precision and Recall 

Recall and (1-precision) values are used to measure the 

quality of image descriptors as previously suggested in 

descriptors comparisons ‎[1]. These measures are based on 

computing the total number of correspondences (ground 

truth) and the ones correctly and incorrectly computed.  

 

  
(a) Bark scene, the original image on the left, and the 

image on the right is rotated by -317 degrees in-

plane and  35 degrees out-of-plane 

  
(b) Boat scene, the original image on the left, and the 

image on the right is rotated by -50 degrees in-

plane and  9 degrees out-of-plane 

   
(c) NewYork scene, the original image on the left, and 

the image on the right is rotated by -23 degrees in-

plane and -42 degrees out-of-plane 

Figure 5 Samples from the synthetically generated dataset 

where various amounts of in-plane and out-of-plane rotation 

are introduced 



Computation Time 

Another important aspect in our comparisons is the 

computational time savings. The time savings come from the 

fact that we do not have to estimate the orientation of 

interest points patches as this is compensated for globally 

using accelerometer readings. Furthermore, employing the 

tilt angle from the accelerometer alleviate the need for the 

complex calculations associated with fully affine transforms. 

6. RESULTS AND ANALYSIS 

6.1 Computation time 

The first comparison on real and synthetically generated 

datasets concerns the computation time and the savings 

achieved when utilizing accelerometer readings for 

compensating for rotational angles. This eliminates the need 

for any expensive calculation of rotation angles based on 

image content and replaces it with few inexpensive 

calculations. The running times of SIFT, SURF, SIFT+, and 

SURF+  are shown with in figure 6 for the synthetic and 

read datasets respectively using a 3GHz Intel® Core™2 

Duo CPU with 4.00 GB of RAM and running a 32-bit 

operating system (Windows 7 Enterprise). Results show 

savings in computation time in most of the cases. The 

savings over SIFT are more pronounced, since SURF is a 

speeded up version of SIFT. The computation time 

comparison shows a larger improvement in the case of 

synthetic data. This is in part attributed to the smaller 

resolution of images taken by mobile phones (320x240) in 

the real dataset, rendering the compensation for global 

rotation angles more expensive than estimating angles on an 

interest point level, because of the small number of interest 

points detected on average. 

 

 

Figure 6 Average computation time (msec) for for real and 

synthetic datasets 

6.2 Precision/recall  

In the descriptor evaluation, the overlap error threshold is 

fixed to 50% for the computation of correspondences. 

Hence, for each image pair, we have a single precision/recall 

value pair rather than a full graph.  Figure 7 shows recall 

values for the synthetic and real datasets respectively with an 

overall improvement noticeable especially for the case of 

comparing with SIFT. These results also show that the 

relative improvement when using SURF+ compared to 

SURF alone is considerably higher than in the case of using 

SIFT+ compared to SIFT alone. This is because of the fact 

that SURF is an approximation of SIFT, and thus less 

accurate. 

 

 
 

Figure 7 Average Recall for the four schemes for the real 

and synthetic datasets 

 

Figure 8 Average (1 – precision) for the four schemes for the 

real and synthetic datasets 

 
On the other hand, precision values do not enjoy the same 

level of improvement as the recall values. Figure 8 shows 

that the results with and without the accelerometer 

information are very comparable.  

 

7. CONCLUSION 

 

In this paper we have proposed a method for fusing interest-

point based image matching descriptors with information 

from the accelerometer sensor, which is commonly present 

today in many image capturing devices. The proposed 

method has been empirically evaluated in terms of 

precision/recall and computation time, and showed gains 

against two popular descriptors SIFT and SURF.  As for 

future work, usage of compass information is suggested for 



estimating rotation around the central axis as well as 

investigating the effect of global rotation correction on the 

feature detection stage. 
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