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ABSTRACT 
The area of automatic selection of physical database design to 
optimize the performance of a relational database system based on 
a workload of SQL queries and updates has gained prominence in 
recent years. Major database vendors have released automated 
physical database design tools with the goal of reducing the total 
cost of ownership. An important assumption underlying these 
tools is that the workload is a set of SQL statements. In this paper, 
we show that being able to treat the workload as a sequence, i.e., 
exploiting the ordering of statements can significantly broaden the 
usage of such tools. We present scenarios where exploiting 
sequence information in the workload is crucial for performance 
tuning. We also propose techniques for addressing the technical 
challenges arising from treating the workload as a sequence. We 
evaluate the effectiveness of our techniques through experiments 
on Microsoft SQL Server.   

1. INTRODUCTION 
Database vendors such as IBM, Microsoft and Oracle offer 
automated physical design tuning tools. Database Tuning Advisor 
(DTA) in SQL Server [1], Design Advisor [16] in IBM DB2  and 
SQL Access Advisor [7] in Oracle 10g automate the task of 
finding the best physical design structures (e.g., indexes and 
materialized views) to optimize server performance. These tuning 
tools require a workload comprised of queries and updates to 
arrive at a physical design recommendation. All these tools are 
set-based – the workload is viewed as a set of statements and no 
ordering of statements is assumed during tuning.  

The premise of this paper is that the ordering of statements can be 
important for performance tuning, specifically for physical 
database design. To illustrate this, we describe three scenarios in 
the context of physical database design where the set-based tuning 
approach falls short, and an alternative approach that exploits 
workload sequence information can lead to much superior 
workload performance. 

Scenario 1: Data warehousing: “Query by day, update at 

night”. 

During the day there are multiple applications that issue complex 
queries against the warehouse. At night there is a batch window 
during which the warehouse data is updated, e.g., new data is 
inserted. Figure 1 below captures the ordering information in data 
warehouses. 

 
If we tune the workload that includes both queries and updates as 
a single set using a set-based approach, it is quite possible that we 
do not get any physical design structure to be recommended that 
benefit the workload as a whole. This is because, although such a 
tool may identify structures that speed up the queries (in the day), 
the update cost incurred (in the night) for the structures may far 
outweigh their benefit.  

On the other hand, if we treat the workload as a sequence, we may 
recommend the following: create structures before the queries 
arrive and drop such structures before the updates arrive. Such a 
recommendation gives us the benefit of structures for queries but 
without the update overhead. If the benefit of such structures is 
greater than their creation cost, the data warehouse scenario can 
be optimized for performance as shown in Figure 2.  Note that 
performance improvement arises from the fact that the structures 
incur no maintenance cost since they are dropped prior to 
updates . 

 

 
Observe that the obvious approach of breaking the workload into 
two workloads (the query workload and update workload 
respectively) and tuning each without awareness of the other can 
lead to sub-optimal performance. This is due to the fact that 
physical design recommendations for each workload can be very 
different and the cost of transitioning between the two 
recommendations can be significant. In the above example, 
indexes need to be created for the queries and dropped for the 
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Figure 1. Data warehousing scenario. 

Figure 2. Optimized data warehousing scenario. 



updates. The creation and dropping of indexes can become very 
expensive at times (e.g., the drop of clustered index on a large 
table may internally lead to recreation of all non-clustered indexes 
on that table). Therefore, the cost of physical design transitions 
must be included in the analysis for achieving optimal 
performance. Similarly, a strategy that tunes physical design only 
for queries and ignores updates while tuning (thus there is no 
transition cost since the physical design does not need to change) 
can also be sub-optimal since the cost of updating physical design 
structures can be substantial. 

Scenario 2: SQL applications that use transient tables. 

 

 

 

 

 
 

 

 

 

 

Many applications use transient or temporary tables in the manner 
as illustrated in Figure 3. Again one can recommend structures on 
transient tables by leveraging the knowledge of how such tables 
are used. In this scenario, after Step 2 and before Step 3, one can 
create an appropriate index on the transient table to improve the 
performance of the SELECT statement. This kind of tuning can 
not be achieved by set-based tuning tools since recognizing the 
sequence of CREATE TABLE (this marks the start of life of 
transient tables), followed by INSERT then SELECT and finally 
DROP (this marks the end of life of transient tables) is important. 
For example, creation of the index just before Step 2 would not be 
optimal since the index would incur update cost but would yield 
no benefit in Step 2. 

Scenario 3:  Periodic data change on production server. 

A common scenario in applications is where data pertaining to a 
certain time period is available on the production server for a 
specified duration. For example, the sales table may contain data 
for the current quarter. The data gets populated as follows. At the 
end of the current quarter, all rows from the table are deleted. 
Subsequently data for the new quarter is inserted into the table. 
New data gets added at the end of each day from different sales 
sources. Meanwhile, there are queries that run against this data 
during the entire time period. Figure 4 captures this scenario. 

Note that even though the set of queries and updates can remain 
the same, the same physical design may be totally ineffective for a 
significantly different data size and/or distribution. For example, 

non-clustered indexes may become ineffective for seeks if 
selectivity becomes large. Overheads of inserting rows and 
benefits of physical design structures are inherently tied to table 
sizes. A sequence-based approach in conjunction with additional 
database statistics that capture the dynamic nature of data, can 
make the better trade offs for suggesting create/drop of physical 
design structures to optimize performance as compared to a set- 
based approach. 

The above scenarios highlight the fact that exploiting the order 
between statements can be crucial for improving performance. In 
practice, rarely is the workload either a single set or a single 
sequence of statements.  A more general model of a workload is a 
sequence of sets of statements. Let us see how each of the above 
scenarios fits this model. For scenario 1 above, we may treat the 
workload as alternate sets of queries (during the day) and updates 
(during the night). Similarly for scenario 3, sets of queries and 
inserts alternate in the workload. Note that in both cases the set of 
queries alternate with the set of updates and this defines a 
sequence. Likewise each statement in scenario 2 can be viewed as 
a single statement set, the sets being ordered naturally as the order 
of steps above. In the rest of this paper, for simplicity of 
exposition, we assume that workload is a sequence of sets where 
each set is a single query/update. This makes it easier to 
understand the problem space and reason about our solution.  In 
Section 7 we briefly discuss how our solution extends to the 
generalized model where the set contains multiple statements. 

It is important to note that the output model of sequence-based 
tuning is different from set-based tuning solutions. Unlike a set-
based approach where the output is a single SQL script with 
creates/drops of structures, for a sequence tuning tool the output 
contains create and drop of structures interleaved with the input 
workload. For example, in Scenario 2 above, the output would be 
“create index on transient table between the INSERT statement 
(Step 2) and the SELECT statement (Step 3)”. Thus, 
implementing the recommendations may require changes in 
application code.   

We summarize the key contributions of this paper below: 

• We motivate the physical design tuning opportunities that 
arise by treating the workload as a sequence.  

• We formally define the problem of physical design tuning for 
workload sequences (Section 2). Our goal is to add “create” 
and “drop” of physical design structures to the input 
sequence such that the overall performance of the generated 
sequence is maximized.  

• We present an optimal solution to this problem by showing 
that the problem can modeled as finding the shortest path 
over a directed acyclic graph (DAG) constructed from the 
input (Section 3).  

• We present two techniques cost-based pruning (Section 4) 
and split and merge (Section 5) that facilitate pruning of the 
search space.  

• We describe a greedy heuristic (Section 6) that scales well 
for large workloads and many physical design structures.    

 
Finally, we note that the techniques developed in the paper are 
general in the sense that they apply to any physical design 
structure (indexes, materialized views, etc.) that may be supported 
by the underlying database.  
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 // Step 1: create table 
CREATE TABLE #t (multiple columns TYPES)  
// Step 2: populate table 
INSERT INTO #t  
SELECT columns FROM Y WHERE column = value               
//Step 3: use table in multiple queries 
SELECT X.*,#t.*   
FROM    X INNER JOIN #t ON X.CUSTID = # t.CUSTID  
WHERE X. PRODUCTID = value  
ORDER BY #t.PRICE DESC  

//Step 4: drop table 
DROP TABLE #t 

Figure 3.  Transient table usage scenario 

Figure 4.  Periodic data change  
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2. PROBLEM DEFINITION 

2.1 Preliminaries 
We model the workload as a sequence of SQL statements, i.e., 
SELECT, INSERT, DELETE and UPDATE statements. All the 
statements are ordered by monotonically increasing ID (a 
timestamp is an example). We represent a statement in a sequence 
as Sk where k denotes its ID. [S1, S2... SN] denotes a sequence of 
N statements S1 through SN. The workload can be gathered using 
tracing tools (for example, Profiler tool in Microsoft SQL Server) 
that are available on today’s database systems.  

A physical design structure can be any access path supported by 
the database server, e.g., index, materialized view, 
multidimensional clustering of tables, etc.. A configuration is a 
valid set of physical design structures that can be realized in a 
database. A structure is considered relevant for a statement if it 
could potentially be used in an execution plan for answering the 
statement (even if the structure is not actually chosen by the query 
optimizer in the final plan).  

We use the following notations in the paper. COST(S, C) denotes 
the cost of executing statement S for configuration C. We rely on 
optimizer estimated costs and what-if extensions that are available 
in several commercially available database servers [1, 7, 16]. For 
the reasons described in [2], this allows our solution to be robust 
and scalable; we can try out numerous alternatives during search 
very efficiently without disrupting the normal database 
operations. TRANSITION-COST(C1,C2) denotes the minimum 
cost of realizing configuration C2 in the database starting from 
configuration C1, i.e. cost of creating and dropping structures to 
get from configuration C1 to configuration C2. For example, 
suppose configuration C1 contains a single index {I1} and C2 
contains a single index {I2}. C2 can be realized from C1 by 
executing the following statements - CREATE INDEX I2 

followed by the statement DROP INDEX I1. TRANSITION-
COST(C1,C2) would be the cumulative cost of creating I2 and 
dropping I1. In general, this function could be provided as an 
input. 

We represent the execution of a sequence [S1, S2... SN] as [C1, S1, 
C2, S2… CN, SN, CN+1] where Ci is the configuration that is 
realized in the database prior to executing Si and CN+1 denotes the 
configuration after statement SN is executed. Note that there is an 
implicit ordering between the configurations: ∀i Ci is realized 
before Ci+1. Let C0 denote the configuration prior to the sequence 
execution.  Note that C0 is an input and could be implicit (the 
current configuration in the database) or optionally specified 
through what-if interface [1]. We define the sequence execution 
cost of [C1, S1, C2, S2… CN, SN, CN+1] as TRANSITION-COST 
(CN, CN+1) + ∑N

k=1 (COST (Sk, Ck) + TRANSITION-COST (Ck-1, 
Ck)). Note that this includes the cost of changing the 
configurations during sequence execution through the 
TRANSITION-COST component. 

2.2 Physical Design Problem for a Workload 
Sequence 
Problem Statement: Given a database D, a sequence workload 
W=[S1,S2... SN], initial configuration C0 and a storage bound M, 
find configurations C1,C2,…CN+1 such that storage requirement of 

Ci (1≤i≤N+1) does not exceed M, and sequence execution cost 
of [C1, S1, C2, S2… CN, SN, CN+1] is minimized.  

There are few important points to observe about this problem 
formulation. First, the output of any solution to the above problem 
is itself another sequence where statements corresponding to 
create and drop of physical design structures (DDL statements) 
are inserted to the input sequence [S1, S2... SN] such that 
configurations Ci for i=1 to N+1 are realized as above. Second, if 
the workload contains inserts/updates/deletes, the cost of 
updating the physical design structures are accounted for 
automatically as part of our optimization problem – this is 
captured as part of COST(Si,Ci). Third, the cost of transitioning 
from one configuration to the next is also accounted for in the 
optimization problem – this is done via TRANSITION-COST(Ci-

1, Ci). Finally, observe that the storage bound M is required to 
hold at all points in the sequence.  

Our problem formulation is general enough to handle some other 
common constraints. Some important constraints include: 

• Consider the case where the sequences are generated by 
individual applications (for example, Scenario 2 in the 
Introduction). An application’s impact on the underlying 
databases physical design is limited to the duration when the 
corresponding workload sequence executes. This can be 
incorporated by constraining CN+1=C0, which ensures that 
the physical design is restored to the same state as it was 
prior to the workload sequence. We refer to this as 
transparency constraint. A variation of this includes the case 
where CN+1 is constrained to be an explicitly provided 
configuration (need not be C0) by the user. 

• Physical design changes are allowed only at specific points 
in the sequence. For example, in Scenario 1 in the 
introduction, the user (e.g., DBA) may allow physical design 
changes to happen only at two specific points during the day. 
More generally, in the sequence [S1..Sp..Sq..SN] if we want to 
allow configuration changes only between statements Sp and 
Sq, this can be specified via the constraint: For 1≤ i<p, Ci=Ci-

1  and for q<i≤N+1, Ci= Cq. Thus we only need find 
configurations Cp... Cq.  

• Only allow physical design changes that complete within a 
user specified cost bound. This can be represented as 
TRANSITION-COST(Ci-1, Ci) ≤ t for all 1≤i≤N+1.  

We now define the set of physical design structures over which 
we perform the sequence optimization described above. A naïve 
way to generate such a set from the input sequence is to union the 
set of all relevant structures for each statement in the input 
sequence. However as detailed in [1, 2, 15, 16] the space of 
relevant structures for a single statement can become prohibitively 
expensive to compute, let alone for the entire sequence. There are 
a number of existing techniques that allow us to efficiently 
generate a much smaller set of structures for the purposes of 
physical database design tuning. One example is the IBM DB2 
[15] approach where the optimizer recommends its own structures 
for a statement. An alternative approach is discussed in [2] where 
very good structures are generated using “candidate selection” 
and “merging” steps keeping the query optimizer in the loop. We 
note that the focus of this paper is orthogonal to the specific 
method used for the purpose. We refer to the set of structures 
generated using such a technique as “candidate structures”. For 



the rest of paper, we assume that a set of candidate structures can 
be obtained, given the input workload. 

Finally, we comment briefly on the search space for the 
optimization problem. If we are provided as input a sequence of N 
statements, and there are M candidate structures, the number of 
possible configurations is 2M, since each subset of structures 
defines a unique configuration. Hence we have a total of 2M*(N+1) 
choices as we need to find N+1 configurations C1,C2,…CN+1. We 
contrast this with the set-based tuning problem where there are 
“only” 2M possible configurations. Thus, we can view the set-
based tuning problem as a constrained version of sequence tuning 
problem, where physical design changes are only allowed at the 
beginning of the sequence.  

3. OPTIMAL ALGORITHM 
In this section, we describe an algorithm to generate an optimal 
solution to the physical design problem for workload sequences 
(defined in Section 2.2). The key observation is that given an 
instance of the problem, we can construct a graph such that the 
shortest path in that graph is an optimal solution for that instance.  

We illustrate our solution through a simple example. The input 
workload is a sequence of N SQL statements. The set of candidate 
structures is a single index (referred to as I). The goal is to find 
N+1 configurations (C1…CN+1) as described in Section 2.2. We 
observe the following. In this example, there are two possible 
configurations: (1) The empty configuration {} and (2) The 
configuration {I}. Thus, with any statement Si, there are two 
possible costs: COST (Si,{}) and COST (Si ,{I}). 

 

 

 

 

 

 

  

 

Figure 5 shows the graph that is generated for single index, N-
statement case. The graph is constructed as follows: 

1. For every statement in the input sequence and for every 
possible configuration generated from the input set of 
structures we generate a node, i.e., a node n represents a 
(statement S, configuration C) pair with a node cost = COST 
(S,C). The two nodes SOURCE and DESTINATION 
representing the initial and final configuration are added to 
the graph and have a node cost of 0. SOURCE precedes the 
first statement in the input sequence and DESTINATION 
succeeds the last statement in the input sequence. Thus in our 
example, there are 2*N+2 nodes in the graph since there are 
only two configurations {} or {I} possible for each 
statement. 

2. The graph has N+2 stages; a stage for each statement, 
SOURCE and DESTINATION. We refer to SOURCE as 0-
th stage and DESTINATION as (N+1)-th stage.  

3. The edges in the graph are directed, and exist only between 
nodes in stage k and nodes in stage k+1 (0≤k≤N). Let edge 

e=(n1, n2) represent the edge from node n1=(*,C) to node 
n2=(*,C’); * denotes that it could be any statement. Then cost 
of e=TRANSITION-COST(C,C’).   In our running example, 
there are 4*N edges and the costs of the edges can be: (i) 0 
when there is no change in configuration between nodes that 
define the edge (ii) cost of creating the index (denoted in the 
figure by (Ic)) when transitioning from {} to {I} and (iii) cost 
of dropping the index (denoted by Id) when transitioning 
from {I} to {}. 

4. If the final configuration denoted by CN+1 is constrained to 
be the same as initial configuration denoted by C0 or some 
other user provided configuration, we assign the appropriate 
edge cost between the nodes in stage N and DESTINATION 
node. However if we do not have any constraints on the final 
configuration, we assign a cost of 0 to all the edges between 
the nodes in the stage N and DESTINATION node. In our 
example, we assign edge costs of 0 between all nodes in SN 
and DESTINATION and CN+1 will be the same as CN. 

Once the graph is constructed as above, any path from SOURCE 
to DESTINATION represents a valid sequence execution. Note 
that the path cost includes the cost of nodes as well as edges.  The 
optimal output sequence is the shortest path in this graph. The 
equivalence between the shortest path in the graph above and 
sequence execution cost is straightforward as the node costs 
represent COST (Sk, Ck) and edge costs represent TRANSITION-
COST (Ck-1, Ck). We note the following properties of this graph. 
(1) The cost of nodes and edges are non negative. (2) The shortest 
path in this graph can be computed very efficiently using single–
source shortest path technique for DAGs described in [6] in linear 
complexity as number of both edges and nodes are O (N); the 
intuition behind the linear complexity is that each edge needs to 
be examined exactly once to arrive at the solution.  

Generalizing the graph to N-statement sequence and M structures 
to generate an optimal solution is conceptually straightforward. In 
each stage 1 through N, there are 2M nodes, each representing a 
configuration. This is because each subset of input structures 
defines a configuration. We refer to the solution that enumerates 
all 2M configurations exhaustively at each stage as 
EXHAUSTIVE. It is important to note that the graph has O 
(N*2M) nodes and O (N*22M) edges, i.e., the graph is exponential 
in the number of input structures. Though the shortest path can be 
solved in linear complexity of number of nodes and edges as 
above, these however are exponential in number of structures.  

Thus, if the input workload has only a small number of candidate 
structures, we can apply EXHAUSTIVE to get an optimal 
solution. However, it becomes impractical for large workloads 
that can typically have hundreds or more candidate structures. 
Note also that each node represents a (statement, configuration) 
pair and has an associated node cost. Thus, we have to compute 
COST(S,C) corresponding to that node. Using the costing 
technique described in Section 2.1 may involve invoking the 
query optimizer, which can also contribute to making graph 
construction expensive. 

In the next two sections we discuss two techniques that can 
improve the efficiency of the above algorithm by reducing the 
number of nodes in the graph significantly. The first technique 
(discussed in Section 4) is an optimality preserving cost-based 
pruning. The second technique (discussed in Section 5) is 
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Figure 5.  Graph for single index, N statements 



effective for large workloads where different statements touch 
different tables/columns of the database. 

4. COST-BASED PRUNING 
This optimization allows us to prune configurations at a given 
stage in the input sequence while preserving optimality. It relies 
on the observation that in many cases we can efficiently compute 
a lower bound on the cost of a statement for a given configuration. 
The intuition behind this technique is that we can leverage 
optimal solutions of individual structures as described in Section 
3 to significantly prune nodes at various stages in the graph that 
would otherwise be generated by EXHAUSTIVE above. We first 
describe the pruning technique under the assumption that the 
benefits of the structures are independent. We subsequently 
describe how the technique can be leveraged when the structures 
interact,  i.e., the benefits of the structures are not independent; [2] 
provides a detailed description of such interactions. One example 
of such an interaction is when both indexes used for a Merge Join 
are sorted on join key, join proceeds much faster compared to the 
case when only one index is sorted on the join key. 

We define the following. SPS (s) for a physical design structure s 
refers to the shortest path solution that we get by optimizing the 
entire sequence for s alone using the algorithm presented in 
Section 3. Let [b1, S1, b2, S2… bN, SN, bN+1] represent the solution 
SPS(s) where bi represents configurations. Let 
[C1,S1,C2,S2…CN,SN,CN+1] denote the solution where Ci represents 
configurations that we get by running EXHAUSTIVE over the 
graph that has all the configurations (the power set of all 
structures). If there are no interactions across structures (i.e., for 
every statement, the benefits of structures are independent of the 
presence of other structures) then the following claim holds.  

Claim: s ∉ bk in SPS(s) ⇒ s ∉ Ck for every structure s and stage 
k (k = 1 to N).  

Proof:  We prove it by contradiction. Assume that there exists a 
structure s where k is the first stage such that s ∈ Ck but s ∉ bk. 
All the costs are non negative and C0=b0 (both SPS and 
EXHAUSTIVE are solved with the same initial configuration). 
We use the following notations:  

• Ic as the creation cost for s. 
• Id as the drop cost for s. 
• p1 = COST(Sk, Ck) 
• p2 = COST(Sk, Ck–{s}) where Ck –{s} is the configuration 

one gets by removing s from Ck.   
• q1 = COST(Sk, {s}) 
• q2 = COST(Sk, {}) 
Since benefits are independent q1–p1=q2–p2 ⇒ q1–q2=p1–p2. We 
enumerate all possible cases as following. 

• s ∈ Ck-1. Then p1<Id+p2 must hold as EXHAUSTIVE would 
not pick Ck otherwise. If s ∈ bk-1, then q1>Id+q2 ⇒ q1–q2> Id 

⇒ p1–p2>Id results in a contradiction. The other case s ∉ bk-1 
can not happen as k is the first stage where violation occurs. 

• s ∉ Ck-1.  Then Ic+p1<p2 must hold. If s ∈ bk-1, then q1>Id+q2 
⇒ q1 > q2 ⇒ p1> p2 results in a contradiction. If s ∉ bk-1, then 
q1 > q2 ⇒ p1> p2 again results in a contradiction. 

We also note that CN+1= CN in our original optimization problem 
(or equals C0 in transparency constrained problem) and the proof 
holds for stage N+1. This allows us to eliminate structures (and 

configurations that contain these) at a given stage as follows. We 
run the SPS for all structures and analyze their respective 
solutions at each stage. For a given stage k, we construct a set of 
structures R={s | s ∈ bk in SPS(s)}. Note that every subset c of R 
defines a unique configuration and is added to the graph as node 
(Sk,c) if configuration c obeys the storage bound. 

Let’s apply this to following example. Assume that the input 
sequence has 4 statements [S1,S2,S3,S4]. Also for statement Si 
index Ii (i= 1, 2, 3 and 4) and no other index is relevant and the 
drop cost of every index is 0. Using EXHAUSTIVE we will 
enumerate all 24=16 configurations to find the optimal solution. 
By looking at optimal solutions on a per structure basis, i.e., 
SPS(I1)=[{I1},S1,{},S2,{},S3,{},S4,{}], SPS(I2)=[{},S1,{I2},S2,{}, 
S3,{},S4,{}] and so on,  we know that only Ii is present in stage i. 
Thus we can construct the “reduced” graph with 5 configurations 
as shown in Figure 6 (the unlabelled edges represent a cost of 0); 
the solution we get on this “reduced” graph is optimal.  

 

 

 

 

 

 

 

 

When the benefits of structures are not independent, in SPS(s) we 
use the lower bound cost of any configuration that contains s for 
statement Sk as COST(Sk,{s}). We note that the claim above 
remains true when the assignment of the costs to individual 
structures is done as described above. The argument is similar as 
for the independent structure case. We reuse the notation from the 
proof above. We assume the optimizer is well behaved; for a 
query the addition of a structure to a configuration can never 
increase the cost of the statement. For the case where s ∈ Ck and s 
∈ bk-1, we get the following: p1–p2< q1–q2 ⇒ (p1–q1) + (q2–p2)<0. 
However p1≥q1 due to the way we assign costs above and q2≥p2 
for queries. This leads to a contradiction. The proof for other 
cases is similar and is omitted.   

The effectiveness of cost-based pruning depends on how 
accurately and efficiently we can determine the lower bound of 
costs. This itself is a hard problem as we do not want to 
enumerate all configurations containing {s} to arrive at the lower 
bounds. A trivial lower bound is the minimal cost of a query 
under any physical design. This can be computed very efficiently 
by probing the optimizer once [3]. There are other techniques 
(e.g., [5] discusses how to derive costs of configurations using 
atomic configurations) that can be leveraged to get better lower 
bounds efficiently. The updates/inserts/deletes can be handled by 
“splitting” the update into a query part which identifies the 
specific rows that need to be updated and the actual update part. 
We omit details due to lack of space. 

We expect the cost-based pruning technique to work well when s 
∈ bk in SPS(s) for few values of k. This typically happens when 
there are a significant number of updates/inserts/deletes in the 
input sequence or in the presence of the transparency constraint. 
In our experiments, see Section 8.2.2 we demonstrate the 
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effectiveness of this pruning technique where it results in orders 
of magnitude reduction in number of nodes in the graph. 

5. EXPLOITING DISJOINT SEQUENCES 
As we saw in Section 3, the efficiency of our solution depends on 
the number of input structures which in turn depends on the 
statements in the sequence. In general, workloads can be large. 
These could be trace files collected by tracing the server activity 
and could be over a period of days with thousands of statements 
that touch different parts of the database. In this section we 
present a technique that leverages the fact that groups of 
statements access different parts of data, to reduce the search 
space significantly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We motivate the technique through an example. Figure 7 shows 
an input sequence workload W = [S1, S2... S7]. Suppose structure 
I1 is relevant for S1, S3 and S4 only (these statements reference 
table A only), I2 is relevant for S2, S5 and S6 (these statements 
refer table B only) and I3 is relevant for S7 only (it is on table C).  
S4 and S6 are updates on the tables A and B respectively. 
Applying EXHAUSTIVE on S with input structure set {I1,I2,I3} 
would enumerate 23 = 8 configurations. If we apply cost-based 
reduction as discussed in Section 4 we can reduce the number of 
configurations significantly. However at S2 and S3, we still need 
to consider the configurations corresponding to all the subsets of 
{I1,I2} a priori as both I1 and I2 are present in stages 2 and 3. Note 
that I1 and I2 are on different tables in the database and are 
relevant for different statements in the sequence. The interesting 
question is whether we can avoid generating such configurations 
up front and if possible at all. It turns out that for the above 
sequence we can do much better as described below. 

We define the notion of disjoint sequences. Two sequences X 
and Y are said to be disjoint if (1) X and Y do not share any 
statements and (b) no statement in X shares any relevant physical 
design structure with any statement in Y. This implies that given a 
physical design structure s, all the relevant statements 
corresponding to s are present in only one such sequence, i.e., its 
impact is limited to one sequence. On applying this to our 
example in Figure 7, whether we create or drop index I2 on table 

B cannot impact the cost of statements in W1 (recall that S1, S3 
and S4 are on table A). We note that disjoint sequences may be 
interleaved with respect to how these occur in the original 
sequence (W1 and W2 in Figure 7 are interleaved as S2 in W2 
starts before W1 ends). 

It may be tempting to suggest that we can “break” the input 
sequence into a set of disjoint sequences, solve each one 
independently as the choice of configurations in one disjoint 
sequence does not impact choices for other sequences and 
“combine” the results to get the globally optimal solution. In the 
absence of storage violations this strategy is indeed optimal and 
can lead to much better search performance than the alternative 
approach that tunes the input as a single sequence. The efficiency 
comes from significant reduction in number of configurations 
(and hence nodes) that needs to be generated for the graph. In our 
current example, each disjoint sequence in our example is solved 
for just one index (Wi for Ii) and configurations like {I1,I2} are 
never considered. However if there are storage violations, then the 
above strategy does not work as the resulting solution is not valid. 
In our example if we do not have sufficient storage for both I1 and 
I2, by using the above strategy we get {I1,I2} at S2 and S3 as shown 
in Figure 7 which is not valid.  An interesting question is how can 
we generate a valid solution efficiently in the latter?  

We present two operators that mirror the ideas above. The first 
operator Split described in 5.1 takes an input a sequence and the 
relevant set of structures and splits it into a set of disjoint 
sequences. The second operator Merge (in 5.2) takes as input a 
set of disjoint sequences and their respective solutions and 
combines these to generate a valid solution for the sequence 
derived from superimposing input set of sequences. The two 
operators can be combined to efficiently generate close to optimal 
solutions.  

5.1 Split  
The algorithm to achieve this is straightforward. For every 
structure we know the set of statements that are relevant by 
looking at the syntactic structure of statements. Consequently, for 
every statement, the set of relevant structures is known. Now, the 
split is achieved by doing a transitive closure over the statements 
as follows. (1) Start with each statement as a separate sequence. 
With every sequence associate its relevant set of structures. (2) If 
two sequences share any structure, combine them into one 
sequence (union of the statements) and union their set of 
structures. (3) Continue step 2 till no more sequences can be 
combined. At the end, our input sequence is split into a set of 
disjoint sequences that neither share any statements nor any 
structures. In the example above, we split the input sequence W 
into 3 disjoint sequences W1 = [S1,S3,S4], W2 = [S2,S5,S6] and W3 

= [S7] with relevant structure sets {I1}, {I2} and {I3} respectively.  

5.2 Merge  
The input to Merge is a set of disjoint sequences and their 
respective solutions. The output of Merge is a solution that obeys 
storage constraint and is defined over all the statements from 
input disjoint sequences. Let P={p1,…pm} represent the set of 
solutions where pi corresponds to the solution for Wi (1≤i≤m)  
that is provided as input to Merge.  Merge proceeds in two steps. 

Step 1: From the input set of solutions P, a solution Pu is 
constructed by performing a union of configurations of pi (1≤i≤m)   

Figure 7. Disjoint sequences 
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at each stage. In our current example as shown in Figure 8, we get 
P1,3 by performing the union of solutions of W1 and W3. Pu 

represents the union of solutions of disjoint sequences W1, W2 
and W3. Note that the union involves the superimposition of the 
individual statements in the input sequences as well as the union 
of configurations at each stage. 

Step 2: If all the configurations that are part of Pu obey storage 
bound then Pu is optimal and is the output of Merge. However if 
there are configurations in Pu (as shown in Figure 8) that violate 
storage bound, then Pu is not valid. In that case we make local 
changes to Pu to make it a valid solution. The intuition behind 
local optimization is based on the following observation. The 
solutions in the regions where storage bounds do not get violated 
remain optimal as long as the preceding and following 
configurations remains unchanged. This is guaranteed by the 
shortest path algorithm.  If the cost of the violating ranges is small 
with respect to the entire sequence execution cost, then applying 
local optimizations to the violating ranges only to generate a valid 
solution can result in nearly optimal solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

Let us see how we apply this to our current example. Using the 
notation from 2.2, C1={I1}, C2=C3= {I1,I2}, C4={I2} and so on in 
Pu (obtained from step 1 above). Assume that we have sufficient 
storage for only one index. Then Pu is not a valid solution as C2 
and C3 (= {I1,I2}) violate storage bound. By leveraging the 
observation above, we isolate the violating sequence which in this 
case is [S2,S3]. For the remaining parts of the sequence ([S1] and 
[S4,S5,S6,S7]), there are no storage violations in their respective 
solutions. If we locally optimize [S2,S3] to get a solution that 
respects the storage bound with SOURCE={I1} and 
DESTINATION={I2}, we preserve the optimality of solutions of 
[S1] and [S4,S5,S6,S7]. Here, if the benefit of indexes I1 and I2 far 
outweigh their create costs, then optimizing [S2,S3] with 
SOURCE={I1} and DESTINATION={I2} results in 
[{I2},S2,{I1},S3,{I2}]. Next we combine the locally optimal 
solutions of [S1] (from Pu), [S2,S3] (computed locally as above) 
and [S4,S5,S6,S7] (from Pu) to get Pu’ which is a valid solution. 

The sequence execution cost of Pu is a lower bound on the cost 
that we can get for any solution that obeys the storage bound and 
therefore for the optimal solution. If the cost of the solution we 
get by applying Merge (=Pu’) is close to the sequence execution 
cost of Pu then we have a nearly optimal solution at hand.  

In general one may apply Merge in different ways over the 
disjoint sequences to build alternative search schemes (for 

example, one may Merge disjoint sequences pair wise in a  greedy 
manner). This is made possible as Merge preserves disjointedness,  
e.g., if W1, W2 and W3 are mutually disjoint, then output sequence 
after Merge of W1 and W3 is disjoint with respect to W2.  

In our experiments, see Section 8.2.4, we used a simple strategy 
where we generated a valid solution for the entire sequence by 
first applying Split, and then Merge over the solutions of all 
disjoint sequences. We observed that even this simple strategy 
often led to an order of magnitude speed up compared to a 
strategy that blindly treated the input as a single sequence. Also 
the resulting solution after Merge was close to optimal (within 
3%) even under very limited storage bounds. We note that in data 
warehouse scenarios (see 8.2.4 for TPCH experiments that 
simulates this) the applicability of this becomes limited as almost 
all queries reference the fact table and we do not get multiple 
disjoint sequences. However if the same server hosts multiple 
such data warehouses (and workloads) then this technique can 
still be used very effectively. 

6. GREEDY HEURISTIC 
As described in Section 3, the number of configurations, and 
hence nodes and edges in our graph, is exponential in the number 
of candidate physical design structures for the workload. The 
EXHAUSTIVE approach (Section 3) can therefore infeasible in 
practice where a workload can often have a large number of 
candidate structures. Observe that the above problem exists even 
in the approach where the workload is treated as a set, e.g., [3,5, 
15]. We note that previous work in the context of set-based 
workloads (e.g., [3, 5]) have developed techniques to deal with 
the combinatorial explosion that results in the number of 
configurations that need to be considered. These techniques 
typically use a greedy heuristic to search through the space of 
configurations instead of looking at the entire (exponential) space. 
In this section, we describe how to adapt such a greedy heuristic 
for the case of workload as a sequence. We refer to our algorithm 
as GREEDY-SEQ. The GREEDY-SEQ algorithm uses a function 
we refer to as UnionPair. We first describe this function in 
Section 6.1, and present the overall algorithm in Section 6.2.  

6.1 UnionPair 
UnionPair takes as input two solutions denoted by 
p1=[a1,S1,…,aN,SN,aN+1] and p2=[b1,S1,…bN,SN,bN+1]. Observe that 
the inputs are both solutions for the same sequence1 [S1, …, SN] 
but the configurations in each solution are over a disjoint space of 
physical design structures. UnionPair generates a new solution 
for the sequence as described below. Initially, a graph is 
constructed that has all the nodes (and edges) from the two input 
solutions p1 and p2. At each stage k in the graph, additional 
configurations (as described below) are generated from 
configurations ak and bk and corresponding nodes and edges are 
added to the graph. The output of UnionPair is the shortest path 
solution in the graph thus generated. 

Next we discuss how to generate the additional configurations at 
each stage. Intuitively, at each stage k in the graph, i.e., (for Sk) 
we are looking for the best configuration (we refer to this as dk) 
we can generate from the structures in (ak ∪ bk) that satisfies the 

                                                                  
1 Observe also that unlike UnionPair, Merge (Section 5.2) is defined over 
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storage constraint. In general, the number of configurations we 
need to consider are exponential in |(ak ∪ bk)|. We observe 
however, that in many common cases the configuration (ak ∪ bk)  
itself is optimal at stage k (e.g., if Sk is a query and (ak ∪ bk)  
obeys the storage constraint) since (ak ∪ bk) preserves the benefits 
of both ak and bk.  In general however, (ak ∪ bk) can have worse 
update characteristics compared to ak and bk. Note that since we 
preserve the original configurations ak and bk in the generated 
graph, the update characteristics of (ak ∪ bk) get accounted for 
automatically in our strategy (for example if (ak ∪ bk) has a high 
update overhead, the shortest path output may ignore it and pick 
ak instead). Figure 9 represents the generated graph for the above 
input pair assuming dk = (ak ∪ bk). 

 

 

 

 

 

 

 

 

 

 

 

In general, it may be important to introduce other configurations 
in addition to (ak ∪ bk) as well. In such cases, we can take 
advantage of previous techniques developed (e.g., in [3,5]) to 
generate nearly optimal configurations very efficiently. We omit 
further details due to lack of space. 

6.2 The GREEDY-SEQ Algorithm 

 
 

We use UnionPair to build our greedy solution. The individual 
steps of GREEDY-SEQ are described in Figure 10. 

Let’s take a look at how GREEDY-SEQ works in the following 
example. Assume that the input sequence has 8 statements 
[S1,S2,S3,S4,S5,S6,S7,S8], input set of structures is {I1,I2,I3,I4} and 
storage is infinite. Also for statements Si and S4+i index Ii (1≤i≤4) 
and no other index is relevant and that the benefit of every index 
for the relevant statement is greater than its creation (and drop) 
cost. Also assume that the cost using index Ii<Ii+1 (1≤i≤3). The 
exhaustive approach in conjunction with cost-based pruning 
would still lead to 24 configurations at stage 4. Using GREEDY-
SEQ in Step 4 above we have 8 configurations only and we still 
get the optimal solution as it lazily generates the configurations 
({I1,I2},{I1,I2,I3} and {I1,I2,I3,I4}) that significantly impact the over 
all quality of recommendation. In Step 3, we look at a few extra 
configurations (because of UnionPair) but the overall number of 
generated configurations is typically much smaller than 
EXHAUSTIVE. In Section 8.2.3, we present results that 
demonstrate the effectiveness of GREEDY-SEQ where it results 
in close to optimal solutions and with significantly better 
performance compared to EXHAUSTIVE. 

While GREEDY-SEQ appears to work well in practice, it is 
important to note that it can in general be sub-optimal. The 
following example demonstrates such a case.  Table 1 shows the 
cost of 4 statements in the sequence for various indexes. Assume 
that the storage available is 100 MB and that I1 requires 80 MB, I2 

and I3 require 40 MB each. GREEDY-SEQ returns 
[{I1},S1,{I1},S2,{I1},S3,{I1},S4,{I1}] while optimal solution is 
[{I2,I3},S1,{I2,I3},S2,{I2,I3},S3,{I2,I3},S4,{I2,I3}].  

Table 1. Sub-optimality of GREEDY-SEQ 

Sequence 
Index 

S1 S2 S3 S4 Total Cost 

Initial Cost 100 100 100 100 400 

I1 50 100 100 50 300 

I2 70 70 100 70 310 

I3 70 100 70 70 310 

The two main reasons for sub-optimality of GREEDY-SEQ are 
storage constraints and interactions across various physical design 
structures. We note there are already effective greedy search 
techniques that result in very good and efficient solutions in the 
context of set-based workload to overcome the limitations 
mentioned above. For example, one such technique discussed in 
[5] advocates generating configurations with up to a certain size 
exhaustively and proceeding greedily there after. The other [15] 
uses measures like benefit per unit store instead of pure benefit to 
mirror knapsack like approaches. We note that these techniques 
can be integrated easily with GREEDY-SEQ.  

Let’s analyze the complexity of GREEDY-SEQ discussed above 
for a N-statement sequence and M structures. The graph for each 
structure is same as 3.1 and has O (N) edges and nodes. Step 1 
requires O(N*M) time. Step 3 can be repeated at most M times 
(In each invocation an element, i.e., two paths in P get merged 
and subsequently removed from the set and the merged path gets 
added). Since we only retain shortest path solutions in P, an 
element in P always has O (N) edges and nodes. This allows us to 
solve step 3 in O (N*M2) time. In step 4, C has O(M*N) 
configurations as we generate at most M solutions in step 3 and 

1. For every structure in the set S={s1,..sM}, find the 
optimal solution using the graph formulation as 
described in Section 3. At this point, we have a set of 
solutions P for individual structures. Let P= {p1,…pM} 
and pi=[ai1,S1…SN,aiN+1].  

2. Let C be the set of all configurations over all pi’s. 

3. Run a greedy search over P as follows.  

a. Let r = [c1, S1, … cN, SN, cN+1] represent the least 
cost solution in P. P=P-{r}. Let C = C ∪ {c1, … 
cN+1} 

b. Pick an element s from P such that 
t=UnionPair(r,s) has the minimal sequence 
execution cost for among all elements of P and 
sequence execution cost of t is less than that of r. 
If no such element exists go to step 4. P=P-{s}. 
P=P ∪{t}. Go to a. 

4. Generate the graph with all the configurations in C at 
each stage. Run the shortest path over this graph and 
return the solution. 

Figure 10. The GREEDY-SEQ algorithm 

Figure 9.  Generated graph for UnionPair 
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each solution has O(N) configurations; hence number of nodes in 
step 4 is O(M*N2) and edges is O(M2*N3). Therefore GREEDY-
SEQ runs in O(M2*N3). However in practice, we found number of 
nodes in step 4 to be O(M*N) as step 3 led to O(M) 
configurations resulting in  O(N*M2) running time. We validate 
our analysis above through experiments in Section 8.2.3. 

7. DISCUSSION 

7.1 End to End Solution 
We briefly outline a possible end to end solution based on the 
ideas discussed in the paper. Figure 11 shows the architecture of 
our solution. We Split the input sequences into disjoint sequences 
(Section 5.1) based on the candidates (Section 2.2 describes how 
to get candidates).  We apply the optimality preserving cost-based 
pruning (Section 4) on each sequence. Subsequently we tune each 
sequence separately using EXHAUSTIVE (Section 3) or 
GREEDY-SEQ (Section 6). Finally we Merge (Section 5.2) the 
results of disjoint sequences to get the over all solution. We note 
that the various techniques discussed in the paper can be put 
together in different ways based on quality and performance 
requirements. For example, one may want to use the 
EXHAUSTIVE strategy and not apply the Split and Merge 
operations if quality is the driving factor and enumerating all the 
configurations is not prohibiting. 

 

7.2 Extending to Sequence of Sets 
Extending our techniques when the workload is treated as a 
sequence of sets of statements is straightforward. In the graph 
formulation discussed in Section 3 each stage represents a set of 
statements rather than individual statements and each node 
represents a (set, configuration) pair. The configurations selected 
optimize the performance of a set. There are known techniques [5] 
that we can leverage to find such configurations efficiently.  Here 

the physical design changes occur at the set boundaries instead of 
possibly at each statement. 

8. EXPERIMENTS 
We have implemented the algorithms presented in this paper via a 
prototype that extend the Database Tuning Advisor [1] in 
Microsoft SQL Server 2005. In our experiments we demonstrate 
the following:  

• In the presence of updates and/or at low storage bounds, 
sequence-based approach leads to much better quality 
recommendations than a set-based approach.  

• Cost-based pruning technique discussed in Section 4 results 
in significant pruning in number of nodes that need to be 
generated in the graph.  

• The quality of recommendations from our greedy approach 
discussed in Section 6 is close to that achieved by an 
exhaustive solution that enumerates all configurations. The 
performance of greedy scales linearly with the workload size 
in practice and quadratically with the number of structures.   

• Our split and merge approach for exploiting disjoint 
sequences (Section 5) results in close to optimal quality 
solutions and is much more efficient than the alternative that 
treats the input as a single sequence on “real” workloads. 

8.1 Experimental Setup 
The experiments were performed on a HP workstation with 2.8 
GHz CPU with hyper-threading and 1 GB RAM on a 
commercially available database server. All the databases used in 
the experiment were stored locally on 80 GB hard disk.  We used 
the available what-if APIs on the server to simulate the “create” 
and “drop” costs of various structures. This was further used to 
simulate the cost of transitions between various configurations. 

We use the following workloads in our experiments to 
demonstrate the effectiveness of our techniques. 

• TPCH-1-n consists of the first n queries from TPC-H 22 
query benchmark [14]. TPCH-1-n-M-m is same as TPCH-1-n 
except the queries of TPCH-1-n are repeated m times. 

• TPCH-1-n-U-k-MID consists of TPCH-1-n and updates to 
LINEITEM table that increases the #rows by k%. Updates 
are in the middle of the workload. TPCH-1-n-U-k-END same 
as TPCH-1-n-U-k-MID except updates are present at the end. 

• Two “real” workloads and databases, WKLD1 and WKLD2 
on databases DB1 (~250 MB with about 1000 tables) and 
DB2 (~500 MB with about 250 tables) respectively. WKLD1 
has a mix of 1000 insert/update/delete/select statements. 
WKLD2 contains complex stored procedures as statements. 

8.2 Experimental Results 

8.2.1 Effectiveness of sequence-based approach 
Here we compared the quality of sequence and set-based tuning 
approaches. We used TPCH1G database and workloads TPCH-1-
22, TPCH-1-22-U-10-MID and TPCH-1-22-U-10-END at two 
storage bounds (i) a low storage bound of 1.2 GB which allows 
for maximum 20% of data size for redundant structures and (ii) a 
high storage bound of 3 GB which allows for an extra 2 GB space 
for redundant structures. Table 2 below compares the quality of 
the two approaches. The % improvement is relative to the optimal 
output of set-based approach and thus getting any further 
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Solve each sequence independently using 
EXHAUSTIVE or GREEDY-SEQ 

   Merge results of disjoint sequences   

Apply cost based pruning on each sequence 

Figure 11.  Architecture of our solution 



improvement was not an easy task. When there were no updates 
and high available storage (TPCH-1-22 at 3GB), both approaches 
led to similar results as expected. However when updates were 
added to the workload (or at low storage), sequence-based 
approach could further improve the solutions of set-based 
approach by another 16-28%. In the low storage cases with 
updates, set-based approach led to almost no improvement over 
the initial physical design while sequence-based approach 
improved it by about 25%. The running time of the two 
techniques was very similar as (a) the overhead of computing 
shortest path itself was negligible and (b) both techniques looked 
at almost the same set of structures and configurations. This 
shows that sequence-based tuning leads to much superior 
recommendations compared to set-based tuning approach in the 
presence of updates and/or low limited storage; it performs the 
required trade off between storage requirements, update costs and 
benefits of structures dynamically to decide not only the specific 
structures to create and drop but also where in the sequence to do 
the required creates and drops. 

Table 2. Sequence vs. Set-based tuning comparison 

Workload % improvement 
compared to set -
based approach at 
1.2 GB 

% improvement 
compared to set- 
based approach at 
3 GB 

TPCH-1-22  19% 0% 

TPCH-1-22-U-10-MID  22% 16% 

TPCH-1-22-U-10-END  25% 28% 

8.2.2 Effectiveness of cost-based pruning technique. 
In this experiment, we demonstrate how the cost-based pruning 
technique results in significant reduction in number of nodes that 
are added to the graph. First, we compared this to the exhaustive 
strategy EXHAUSTIVE discussed in Section 3 that considers all 
possible configurations that obeys the provided storage bound. 
EXHAUSTIVE-BEN refers to our strategy where cost-based 
pruning is applied at every stage on the graph. We used the 
database TPCH1G and smaller workloads TPCH-1-5 and TPCH-
1-5-M-10 for this experiment as it was infeasible to enumerate all 
possible configurations for the entire TPCH-1-22 workload for 
EXHAUSTIVE. We evaluated the effectiveness of 
EXHAUSTIVE-BEN at two storage bounds (i) a low storage 
bound of 1.2GB and (ii) a high storage bound of 3 GB as 
described in 8.2.1 above. 

Table 3. Effectiveness of cost-based pruning 

Workload 

% Reduction in # 
nodes compared to 
EXHAUSTIVE at 

1.2GB 

% Reduction in # 
nodes compared to 
EXHAUSTIVE at 

3GB 

TPCH-1-5 99.4% 99.8% 

TPCH-1-5-M-10 94.3% 97.7% 

 

Table 3 shows two orders of magnitude reduction in #nodes for 
EXHAUSTIVE-BEN compared to EXHAUSTIVE. It is 
interesting to note that when storage bound was increased from 
1.2GB to 3GB, we got relatively more reduction. That is because 
the number of configurations in EXHAUSTIVE increased much 
more rapidly than EXHAUSTIVE-BEN. We also note that as the 
benefit of individual structures increases (we achieved this by 

making 10 copies of the queries and there are no updates in the 
workload), the pruning achieved by EXHAUSTIVE-BEN 
decreases.  However the reduction was still significant compared 
to EXHAUSTIVE (two orders of magnitude). 

In the second part, we eliminated EXHAUSTIVE from 
consideration. We evaluated the effectiveness of EXHAUSTIVE-
BEN for workloads with different update characteristics. We used 
TPCH1G database and TPCH-1-22, TPCH-1-22-U-k-MID (k=1, 
10 and 20), TPCH-1-22-U-1-END as workloads for this part. 
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Figure 12 shows the increase in #nodes for update workloads 
compared to the workload TPCH-1-22-U-20-MID that has the 
maximum update overhead. We observed that as the updates 
became more expensive the reduction in #nodes increased 
significantly. The #nodes for TPCH-1-22-U-1-MID was more 
than twice the #nodes for TPCH-1-22-U-20-MID.  We also 
observed that the reduction depended very strongly as to where 
the updates occurred in the workload. When the updates were at 
the end (TPCH-1-22-U-1-END) the #nodes was more than 18 
times the #nodes in TPCH-1-22-U-20-MID, i.e., EXHAUSTIVE-
BEN did not result in significant pruning. This is expected as the 
shortest path algorithm can choose to drop the structures that 
incur heavy update overheads just before the updates and not 
before that. Consequently, the results for TPCH-1-22-U-1-END 
and TPCH-1-22 (no updates) were similar. This shows that 
EXHAUSTIVE-BEN is most effective in the presence of updates 
especially when these are interspersed with the queries in the 
workload (workloads with MID). 

8.2.3 Effectiveness of GREEDY-SEQ. 
In this experiment, we evaluated the effectiveness of our greedy 
technique GREEDY-SEQ discussed in Section 6.  In the first part 
of the experiment, we compared our approach to EXHAUSTIVE-
BEN. We used the database TPCH1GB and the following 
workloads: TPCH-1-3, TPCH-1-5-M-5 and TPCH-1-22. 

Table 4 compares the quality and performance characteristics of 
GREEDY-SEQ normalized with respect to EXHAUSTIVE-BEN 
for various workloads. For the smaller workload TPCH-1-3 both 
techniques resulted in similar results as both look at good 
configurations yet GREEDY-SEQ ran almost twice as fast as 
EXHAUSTIVE-BEN. For the larger workload TPCH-1-5-M-5 the 
performance of EXHAUSTIVE-BEN degraded much faster. It 
looked at about a 100 times the number of configurations as 
compared to what GREEDY-SEQ generated. Consequently 

Figure 12. Variation of #Nodes with updates 



GREEDY-SEQ ran two orders of magnitude faster than 
EXHAUSTIVE-BEN while the quality degradation was about 2% 
compared to latter. For TPCH-1-22, we had to terminate 
EXHAUSTIVE-BEN after 24 hours as the #structures was more 
than 50 and despite all the optimizations the #nodes generated 
was order of hundreds of thousands rendering EXHAUSTIVE-
BEN impractical. On the other hand, GREEDY-SEQ returned 
with a solution with ~56% improvement compared to pre-
optimization workload cost in less than an hour. 

Table 4. GREEDY-SEQ and EXHAUSTIVE-BEN comparison 

Workload % reduction in running 
time of GREEDY-SEQ 
compared to 
EXHAUSTIVE-BEN 

% reduction in quality 
of GREEDY-SEQ 
compared to 
EXHAUSTIVE-BEN 

TPCH-1-3 50% <1% 

TPCH-1-5-M-5 98.4% 2.3% 

TPCH-1-22 EXHAUSTIVE-BEN was 
terminated after 24 hours 

Not available 

Here we measured the scalability of GREEDY-SEQ with varying 
number of queries in workload and candidate structures.  

Performance of GREEDY-SEQ with number of queries: Here 
the number of queries was increased while number of structures 
was kept constant. We achieved this by making multiple copies of 
TPCH-1-5 workload (TPCH-1-5-M-m for m=10 through 70 in 
steps of 10). Figure 13 shows the running time normalized to that 
for TPCH-1-5-M-10. We observe that the running time increased 
almost linearly with the number of queries in the input. 

Running Time  for workload sizes

0

5

10

15

20

25

1x 2x 3x 4x 5x 6x 7x

 x Workload size 

R
u

n
n

in
g

 t
im

e 
co

m
p

ar
ed

 t
o

 
T

P
C

H
-1

-5
-M

-1
0

 

 

Performance of GREEDY-SEQ with number of structures: 
Here we used TPCH-1-3-M-8, TPCH-1-5-M-5, TPCH-1-8-M-3 
and TPCH-1-22. These workloads have similar number of queries 
(close to 25 each) but very different number of structures. Figure 
14 shows the increase in running time for different workloads 
compared to TPCH-1-3-M-8. We observed that the running time 
increased almost quadratically with the number of structures. The 
number of structures applicable for TPCH-1-22 was about 5 times 
that for the TPCH-1-3-M-8 and resulted in about 16x increase of 
running time.  Similarly for TPCH-1-8-M-3, the number of 
structures was about 3.5 times that for TPCH-1-3-M-8 and 
increase in running time was about 11 times. For TPCH-1-5-M-5, 
the number of structures was about 1.5x that for TPCH-1-3-M-8 
and increase was close to 3x.  
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This shows that the variation of running time of GREEDY-SEQ is 
consistent with our analysis presented in Section 6. 

8.2.4 Effectiveness of split and merge. 
Here we demonstrate the effectiveness of split and merge 
technique discussed in Section 5. We compared the two 
alternatives (1) SPMR which was the split and merge and (2) 
WO-SPMR where the entire input sequence was considered as 
single sequence during optimization. We used GREEDY-SEQ 
search technique for each disjoint sequence. 

Table 5. Split and merge quality and performance 

Workload % reduction in 
running time 
compared to 
WO-SPMR 

% cost 
difference 

compared to  
unconstrained 
optimal cost 

% cost 
difference 

compared to  
WO-SPMR 

TPCH-1-22 <0.1% 0% 0% 

WKLD1 89.9% 0% 0% 

WKLD1-LOW 71.4% 3.4% 3.0% 

WKLD2 83% 0% 0% 

We used the following in this experiment: TPCH-1-22 on 
TPCH1G, WKLD1 on DB1, and WKLD2 on DB2. The 
motivation for using “real” workloads and databases was to 
demonstrate the effectiveness of SPMR in practice. We allow 
storage to be at most 3 times the data size that is more typical in 
practice. We also ran WKLD1 where extra storage is only 20% 
data size that we refer to as WKLD1-LOW; this allowed us to 
measure the quality degradation of SPMR (how far it was from 
WO-SPMR) when storage was extremely limited leading to more 
storage violations during merge of individual solutions.  

Table 5 summarizes our results. We observed that when storage 
was not a limiting factor (cases except WKLD1-LOW) SPMR 
resulted in the same quality as WO-SPMR. For TPCH-1-22, the 
quality and performance of the two techniques was the same; split 
resulted in a single sequence and its overhead was negligible 
(<0.1%). The input sequence was split into multiple disjoint 
sequences for WKLD1 and WKLD2 (6 and 10 respectively) 
which resulted in much better performance compared to WO-
SPMR (5 times speed up). The case when storage was extremely 
low (WKLD1-LOW), we still got answers close to WO-SPMR; 
the parts of sequence where storage violation occurred after 
merging individual solutions were relatively small and sub-
optimality in that region did not impact the over all solution by 
much (about 3% degradation even for extremely limited storage). 
This shows that SPMR is very effective in practice for getting 
very good results. 

Figure 13. GREEDY-SEQ running time for workload sizes 

Figure 14. GREEDY-SEQ running time with # structures 



9. RELATED WORK 
Automated physical design tuning solutions are offered by major 
database vendors such as IBM, Microsoft and Oracle. IBM offers 
DB2 Design Advisor [16] that recommends indexes, materialized 
query tables (i.e., materialized views), shared nothing partitions 
and multidimensional clustering of tables. Microsoft SQL Server 
has Database Tuning Advisor [1] that allows for integrated 
selection of indexes, indexed views and horizontal partitions. 
Oracle 10G includes an Oracle Tuning Pack that has a SQL 
Access Advisor [7, 10] that deals with selection of indexes and 
materialized views. Rao et al. [11] uses a workload to recommend 
data partitions. [9] talks about index selection in an adaptive 
fashion. There is also work in the area of monitoring databases 
workload and to use the information for physical design tuning. 
Chaudhuri et al. [4] describes a framework that can be used to 
gather such a workload very efficiently. Sattler et al. [13] details a 
system QUIET that provides continuous query driven index 
selection. While the workload gathered using such approaches can 
be provided as input to our approach directly, these techniques are 
all set-based and hence are unable to exploit sequence information 
in the workload (e.g., the scenarios described in the introduction).  

There is a significant amount of literature that deals with how to 
determine interesting physical design structures, i.e., candidates 
for a given workload.  Bruno et al. [3] and Valentin et al. [15] 
advocate the use of query optimizer to generate candidates. The 
work in [2,5] adopts an approach where it uses query optimizer in 
conjunction with various strategies like candidate selection, index 
and view merging on the entire workload to arrive at candidates. 
Rozen [12] presents a framework to choose physical design 
automatically where the space of materialized views is restricted 
to single table aggregation views with group by. There have been 
several papers, e.g., [8] on selection of materialized views in the 
context of OLAP/Data Cube. Typically these assume a space of 
aggregation views over dimensions. We view these as 
complementary to our work. The main focus of our work is how 
to perform sequence-based tuning using the candidates efficiently 
once the set is identified. In fact instead of reinventing the wheel 
we leverage such strategies in our approach. Also some of these 
techniques [3, 5] advocate the use of approximations during 
optimization to make the physical design selection very efficient. 
Chaudhuri et al. [5] mentions atomic configurations and details 
how to exploit these to derive costs of other configurations in 
order to reduce optimizer calls; [3] uses bounding techniques to 
estimate a cost for a configuration at times. Again these 
techniques complement our work and can be incorporated into our 
approach to enable more efficient solutions. 

10. CONCLUSION 
In this paper we motivate the need for exploiting sequence 
information in the workload for the purpose of physical design 
tuning. We define the problem formally and present an optimal 
approach to tune sequences by mapping it to shortest path 
problem. We present two pruning techniques as well as an 
efficient greedy heuristic that is effective in practice. 
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