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Abstract—Recently there have been renewed interests in single-hidden-layer neural 

networks (SHLNNs). This is due to its powerful modeling ability as well as the existence of 

some efficient learning algorithms. A prominent example of such algorithms is extreme 

learning machine (ELM), which assigns random values to the lower-layer weights. While 

ELM can be trained efficiently, it requires many more hidden units than is typically needed 

by the conventional neural networks to achieve matched classification accuracy. The use of a 

large number of hidden units translates to significantly increased test time, which is more 

valuable than training time in practice. In this paper, we propose a series of new efficient 

learning algorithms for SHLNNs. Our algorithms exploit both the structure of SHLNNs and 

the gradient information over all training epochs, and update the weights in the direction 

along which the overall square error is reduced the most. Experiments on the MNIST 

handwritten digit recognition task and the MAGIC gamma telescope dataset show that the 

algorithms proposed in this paper obtain significantly better classification accuracy than 

ELM when the same number of hidden units is used. For obtaining the same classification 

accuracy, our best algorithm requires only 1/16 of the model size and thus approximately 

1/16 of test time compared with ELM. This huge advantage is gained at the expense of 5 times 

or less the training cost incurred by the ELM training. 
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1. INTRODUCTION 

Recently there have been renewed interests in single-hidden-layer neural networks (SHLNNs) with 

least square error (LSE) training criterion, partly due to its modeling ability and partly due to the 

existence of efficient learning algorithms such as extreme learning machine (ELM) (Huang et al. 

2006). 

Given the set of input vectors   [            ], in which each vector is denoted by 

   [               ]
 
 where   is the dimension of the input vector and   is the total number 

of training samples. Denote   the number of hidden units and   the dimension of the output vector, 

the output of the SHLNN is     
     where     ( 

   ) is the hidden layer output,   is an 

    weight matrix at the upper layer,   is an     weight matrix at the lower layer, and  ( ) is 

the sigmoid function. Note that the bias terms are implicitly represented in the above formulation if 

   and    are augmented with 1’s. 

Given the target vectors   [            ], where each target    [               ]
 

, the 

parameters   and   are learned to minimize the square error  

  ‖   ‖    [(   )(   ) ]  (1) 

where   [            ] . Note that once the lower-layer weights   are fixed, the 

hidden-layer values   [            ] are also determined uniquely.  And subsequently, the 

upper-layer weights   can be determined by setting the gradient 

  

  
 
   [(     )(     )

 
]

  
   (     )

 
 (2) 

to zero,  leading to the closed-form solution 

  (   )
  
     (3) 

Note that (3) defines an implicit constraint between the two sets of weights,    and  , via the 
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hidden layer output H, in the SHLNN. This gives rise to a structure that our new algorithms will 

exploit in optimizing the SHLNN. 

Although solution (3) is simple, regularization techniques need to be used in actual 

implementation to deal with sometimes ill-conditioned hidden layer matrix H (i.e.,     is 

singular). A popular technique, which is used in this study, is based on the ridge regression theory 

(Hoerl and Kennard, 1970). More specifically, (3) is converted to 

  (
 

 
    )

  

     (4) 

by adding a positive value   ⁄  to the diagonal of    , where   is the identity matrix and   is a 

positive constant to control the degree of regularization. The resultant solution (4) actually 

minimizes ‖     ‖
 
  ‖ ‖ , where  ‖ ‖  is an L2 regularization term. Solution (4) is 

typically more stable and tends to have better generalization performance than (3) and is used 

throughout the paper whenever pseudo inverse is involved. 

It has been shown in Huang et al. (2006) that the lower-layer weights   can be randomly 

selected and the resulting SHLNN can still approximate any function by setting the upper-layer 

weights   according to (3). The training process can thus be reduced to a pseudo-inverse problem 

and hence it is extremely efficient. This is the basis of the extreme learning machine (ELM) (Huang 

et al. 2006). 

However, the drawback of ELM is its inefficiency in using the model parameters. To achieve 

good classification accuracy, ELM requires a huge number of hidden units. This inevitably 

increases the model size and the test time. In practice, the test time is much more valuable than the 

training time due to two reasons. First, training is only needed to be done once while test needs to 

be done as many times as the service is live. Second, training can be done offline and can tolerate 

long latency while test typically requires real time response. To reduce the model size, a number of 

algorithms, such as evolutionary-ELM (Zhu et al. 2005) and enhanced random search based 

incremental ELM (EI-ELM) (Huang and Chen 2008), have been proposed in the literature. These 
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algorithms randomly generate all or part of the lower-layer weights and select the ones with the 

LSE. However, these algorithms are not efficient in finding good model parameters since they only 

use the value of the objective function in the search process. 

In this paper, we propose a series of new efficient algorithms to train SHLNNs. Our algorithms 

exploit both the structure of SHLNNs, expressed in terms of the constraint of (3), and the gradient 

information over all training epochs. They also update the weights in the direction that can reduce 

the overall square error the most. We compare our algorithms with ELM and EI-ELM on the 

MNIST handwritten digit recognition dataset (LeCun et al. 1998) and the MAGIC gamma 

telescope dataset. The experiments show that all algorithms proposed in this paper obtain 

significantly better classification accuracy than ELM and EI-ELM when the same number of 

hidden units is used. To obtain the same classification accuracy, our best algorithm requires only 

1/16 of the model size and thus test time needed by ELM at the cost of 5 folds or less training time 

by ELM. The 2048 hidden unit SHLNN trained using our best algorithm achieved 98.9% 

classification accuracy on the MNIST task. This compares favorably with the three-hidden-layer 

deep belief network (DBN) (Hinton and Salakhutdinov, 2006). 

The rest of the paper is organized as follows. In Section 2 we describe our novel efficient 

algorithms. In Section 3 we report our experimental results on the MNIST and MAGIC datasets. 

We conclude the paper in Section 4. 

2. NEW ALGORITHMS EXPLOITING STRUCTURES 

In this section, we propose four increasingly more effective and efficient algorithms for learning 

the SHLNNs. Although the algorithms are developed and evaluated based on the sigmoid network, 

the techniques can be directly extended to SHLNNs with other activation functions such as radial 

basis function. 

2.1. Upper-layer-Solution-Unaware Algorithm 

The idea behind this first algorithm is simple. Since the upper-layer weights can be determined 
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explicitly using the closed-form solution (4) once the lower-layer weights are determined, we can 

just search for the lower-layer weights along the gradient direction at each epoch. 

Given fixed current   and  ,  we compute gradient 

  

  
 
   [(   (   )   )(   (   )   )

 
]

  
 

   [  (   )  (       )
 
] 

(5) 

where   is element-wise product. This first algorithm first updates   using the gradient defined 

directly in (5) as 

         
  

  
  (6) 

where   is the learning rate. It then calculates   using the closed-form solution (4). Since it is 

unaware of the upper-layer solution when calculating the gradient, we name it as 

“upper-layer-solution-unaware” or USUA. The USUA algorithm is simple to implement and each 

epoch takes less time than other algorithms we will introduce in the next several subsections thanks 

to the simple form of the gradient (5). However, it is less effective than other algorithms and 

typically requires more epochs to converge to a good solution and more hidden units to achieve the 

same accuracy. 

2.2. Upper-layer-Solution-Aware Algorithm 

In the USUA algorithm we do not take into consideration the fact that   completely depends on 

 . As a result, the direction defined by gradient (5) is suboptimal. In the 

upper-layer-solution-aware (USA) algorithm we derive the gradient     ⁄  by considering  ’s 

effect on the upper-layer weights   and thus its effect on the square error as the training objective 

function. By treating   a function of   and plugging (3) into criterion (1) we obtain the new 

gradient 

  

  
 
   [(     )(     ) ]

  
 (7) 
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where  

     (   )
  

 (8) 

is the pseudo-inverse of  . 

In the derivation of (7) we used the fact that     is symmetric and so is (   )
  

. We also used 

the fact that 

   [(   )
  
      ]

   
     (   )

  
      (   )

  
       (   )

  
  (9) 

Since the USA algorithm knows the effect of   on  , it tends to move W towards a direction 

that finds the optimal points faster. However, due to the more complicated gradient calculation that 

involves a pseudo-inverse, each USA epoch takes longer time to compute than that of USUA. Note 

that we grouped the products of matrices in (7). This is necessary to reduce the memory usage when 

the number of samples is very large.  

2.3. Accelerated Upper-layer-Solution-Aware Algorithm 

The USA algorithm updates weights based on the current gradient only. However, it has been 

shown for the convex problems that the convergence speed can be improved if the gradient 

information over the history is used when updating the weights (Nesterov, 2004, Beck and 

Teboulle, 2010). Although the speedup may not be guaranteed in theory for our non-convex 

problems, we have observed in practice that such algorithms do converge faster and to a better 



Submitted to Pattern Recognition Letters, March 2011 7 

place, we have observed in practice that such algorithms do converge faster and to a better place. 

Actually, similar but less principled techniques such as momentum (Negnevitsky and Ringrose 

1999) have been successfully applied to train non-convex multi-layer perceptrons (MLPs). In this 

paper, we used the FISTA algorithm (Beck and Teboulle, 2010) to accelerate the learning process. 

More specifically, we choose    and set  ̅     and      during initialization. We then 

update  ,  ̅ and   according to 

    ̅   
  

  ̅
  (10) 

     
 

 
(  √     

 )      
(11) 

 ̅       
    
    

(       )  (12) 

We name this algorithm accelerated USA (A-USA). 

Note that since the A-USA algorithm needs to keep track of two sets of weights    and  ̅ , it is 

slightly slower than the USA algorithm for each epoch. However, since it used the gradient 

information from the history to determine the search direction, it can find the optimal solution with 

less epochs than the USA algorithm. Additional information on how FISTA and similar techniques 

can speed up the gradient descent algorithm can be found in (Nesterov, 2004, Beck and Teboulle, 

2010). 

2.4. Weighted Accelerated USA Algorithm 

In (7), each sample is weighted the same. It is intuitive, however, that we may improve the 

convergence speed by focusing on the samples with most errors for two reasons. First, it allows the 

training procedure to slightly change the search direction (since weighted sum is different) at each 

epoch and thus has better chance to jump out of the local optimums. Second, since the training 

procedure focuses on the samples with most errors, it can reduce the overall errors faster. 

In this work, we define the weight  
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for each sample  , where   is the square error over the whole training set,   is the training set size, 

and   is a smoothing factor. The weighting factors     are so chosen that they are positively 

correlated to the errors introduced by each sample while being smoothed to make sure weights 

assigned to each sample is at least  (   )⁄ .   is typically set to 1 initially and  increases over 

epochs so that eventually the original criterion   defined in (1) is optimized.  

At each step, instead of minimizing   directly we can minimize the weighted error 

 ̈    [(   ) (   ) ]  (14) 

where       [               ] is an   by   diagonal weight matrix. 

To minimize  ̈, once the lower-layer weights   are fixed the upper-layer weights   can be 

determined by setting the gradient 

  ̈

  
 
   [(   ) (   ) ]

  
    (     )

 
 (15) 

to zero, which has the closed-form solution 

  (    )
  
      (16) 

By plugging (16) into (14) and using similar derivation steps used to derive 
  

  ̅
 in (7), we obtain 

the gradient  

  ̈
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(17) 

where  
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      (    )
  
  (18) 

Note that since we re-estimate the weights after each epoch, the algorithm will try to move the 

weights with a larger step toward the direction where the error can be most effectively reduced. 

Once the error for a sample is reduced, the weight for that sample becomes smaller in the next 

epoch. This not only speeds up the convergence but also makes the training less likely to be trapped 

into local optima. Because this algorithm uses adaptive weightings, we name it weighted 

accelerated USA (WA-USA).  

3. EXPERIMENTS 

We evaluated and compared the four learning algorithms described in Section 2 against the basic 

ELM algorithm and the EI-ELM algorithm on the MNIST dataset (LeCun et al. 1998) and the 

MAGIC gamma telescope dataset (Frank and Asuncion 2010).  

3.1. Dataset Description 

The MNIST dataset contains binary images of handwritten digits. The digits have been 

size-normalized to fit in a 20x20 pixel box while preserving their aspect ratio and centered in a 

28x28 image by computing and translating the center of mass of the pixels. The task is to classify 

each 28x28 image into one of the 10 digits. The MNIST training set is composed of 60,000 

examples from approximately 250 writers, out of which we randomly selected 5,000 samples as the 

cross validation set. The test set has 10,000 patterns. The sets of writers of the training set and test 

set are disjoint.  

The MAGIC gamma telescope dataset was generated using the Monte Carlo procedure to 

simulate registration of high energy gamma particles in a ground-based atmospheric Cherenkov 

gamma telescope using the imaging technique. Cherenkov gamma telescope observes high energy 

gamma rays, taking advantage of the radiation emitted by charged particles produced inside the 

electromagnetic showers initiated by the gammas, and developing in the atmosphere. This 

Cherenkov radiation leaks through the atmosphere and gets recorded in the detector, allowing 
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reconstruction of the shower parameters. 

The MAGIC dataset contains 19020 samples out of which we randomly selected 10% (1902 

samples) as the cross validation set, 10% (1902 samples) as the test set, and the rest as the training 

set. Each sample in the dataset has 10 real-valued attributes and a class label (signal or 

background). The task is to classify the observation to either the signal class or background class 

based on the attributes. Note that these attributes have some structures. However, in this study we 

did not exploit these structures since our goal is not to achieve the best result on this dataset but 

compare different algorithms proposed in the paper. 

3.2. Experimental Results on MNIST 

We compared the basic ELM algorithm, the EI-ELM algorithm, and all four algorithms 

described in Section 2 with the number of hidden units in the set of {64, 128, 256, 512, 1024, 2048} 

on the MNIST dataset. The results are summarized in Table I. We ran each configuration 10 times 

and report the mean and standard deviations in test-set classification accuracy, training-set 

classification accuracy, and training time. The test time only depends on the model size and is 

summarized in Table II. Not surprisingly, the test time approximately doubles when the hidden 

layer size (and model size) doubles. 

For EI-ELM, we randomly generated 50 new configurations of weights at each step first. The one 

with least square error (LSE) was selected and survived. We noticed, however, that if we added 

only one hidden unit at each time, the training process can be very slow. To make the training speed 

comparable to other algorithms discussed in this paper, we added 16 hidden units at each step. 

For USUA and USA, we set the maximum number of epochs to 30 and used simple line search 

that doubles or halves the learning rate so as to improve the training objective function. When the 

learning rate is smaller than 1e-6 the algorithms stopped even if the maximum number of epoch 

was not reached. 

We did not use line search for A-USA and WA-USA. The learning rate used in A-USA was fixed 
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for all epochs and was set to 0.001. We used the learning rate of 0.0005 in WA-USA for all settings, 

which is smaller than that used for A-USA since the update is expected to move with large steps 

along some directions. The cross validation set is used to select the best configuration and to 

determine when to stop training. 

The results summarized in Table I can be compared from several perspectives. To make 

observation easier, we plot the test set accuracy in Fig. 1. If we compare the accuracy across 

different algorithms for the same number of hidden units, we can clearly see that all the algorithms 

proposed in this paper significantly outperform ELM and EI-ELM. We also notice that from the 

accuracy point of view, WA-USA performs best, followed by A-USA, which in turn performs 

better than USA and USUA. If we compare the training time for the SHLNNs with the same 

number of hidden units, we can indeed see that ELM takes considerably less time (about two orders 

of magnitude) than all other algorithms. Note all the algorithms proposed in this paper significantly 

outperform EI-ELM with similar training time. This is expected since EI-ELM only uses the 0-th 

order information while all our algorithms used first-order gradient information. Among the 

algorithms proposed in this paper, WA-USA and A-USA perform faster than USA since they are 

accelerated algorithms. 

These results can be examined from a different angle. Instead of comparing results with the same 

network size, we can compare SHLNNs with the same test-set’s accuracy. From Fig. 1 and Table I 

we see that the best average accuracy obtained using ELM is 94.68% with 2048 hidden units. 

EI-ELM is only slightly better than ELM with an average accuracy of 94.78%. This is because 

when the number of hidden units increases, random selection becomes less effective. This fact is 

also indicated by smaller standard deviations as the number of hidden units increases in ELM. 

However, using USUA, we obtained accuracy of 94.84% with only 1024 hidden units. This would 

cut the test time by half. Further improvement is achieved when we use USA with accuracy of 

94.78% using only 512 hidden units. For A-USA only 256 hidden units are needed to achieve 

95.87% accuracy. Further, only 128 hidden units are needed to obtain comparable accuracy of 
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94.80% using WA-USA. In other words, WA-USA can achieve the same accuracy as ELM using 

only 1/16 of the network size and test time. This is extremely favorable for practical usage since a 

1/16 test time translates to 16 times more throughput. Also note that it takes only 155 seconds to 

train a network with 128 hidden units using WA-USA. This is in comparison to 28.35 seconds 

needed to train a 2048 hidden unit ELM model and 2,220 seconds for a 1024 hidden unit EI-EIM 

model. If 2048 hidden units are used, we can obtain 98.55% average test set accuracy with 

WA-USA, which is very difficult to obtain using ELM. 

Note that we can consistently achieve 100% classification accuracy on the training set when we 

use WA-USA with 1024 and more hidden units which is not the case when other algorithms are 

used. This prevents further improvement on the classification accuracy on both training and test 

sets even though square error continues to decline. This also explains the smaller gain when the 

number of hidden units increases from 1024 to 2048 when WA-USA is used. 

TABLE I 

SUMMARY OF TEST SET ACCURACY, TRAINING SET ACCURACY, AND TRAINING TIME ON 

MNIST DIGIT CLASSIFICATION TASK 

Algorithm # hid units Test Acc (%) Train Acc (%) Training Time (s) 

ELM 64 67.88±2.01 66.88±2.00 1.05±0.14 

ELM 128 78.99±1.20 78.06±1.28 1.89±0.07 

ELM 256 85.55±0.44 84.9±0.36 3.46±0.12 

ELM 512 89.65±0.28 89.41±0.27 6.96±0.06 

ELM 1024 92.65±0.21 92.85±0.13 13.8±0.07 

ELM 2048 94.68±0.06 95.31±0.05 28.35±0.17 

EI-ELM 64 73.68±0.87 72.84±0.57 147.59±0.88 

EI-ELM 128 81.46±0.63 80.61±0.44 282.37±1.27 

EI-ELM 256 86.74±0.40 86.2±0.30 550.13±11.17 

EI-ELM 512 90.52±0.35 90.24±0.17 1069.73±6.27 

EI-ELM 1024 92.92±0.14 93.23±0.10 2220.47±18.41 

EI-ELM 2048 94.78±0.15 95.51±0.07 4629.67±91.81 

USUA 64 84.78±1.42 84.27±1.49 99.13±3.03 

USUA 128 88.42±1.05 88.06±1.10 177.81±5.86 

USUA 256 90.73±0.46 90.82±0.5 347.35±14.83 

USUA 512 93.24±0.39 93.79±0.47 681.88±20.04 

USUA 1024 94.84±0.37 95.82±0.41 1323.04±64.35 

USUA 2048 96.27±0.14 97.86±0.13 2643.73±84.18 

USA 64 86.4±1.06 85.89±1.25 114.68±2.00 
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USA 128 89.81±0.76 89.62±0.87 221.1±3.37 

USA 256 92.59±0.86 92.86±0.83 463.97±10.43 

USA 512 94.87±0.35 95.58±0.46 1029.47±13.45 

USA 1024 96.47±0.13 97.63±0.10 2471.36±10.35 

USA 2048 97.39±0.07 98.95±0.07 7116.77±19.10 

A-USA 64 90.12±1.66 89.98±1.82 88.1±5.81 

A-USA 128 94.35±0.16 94.82±0.11 153.77±0.41 

A-USA 256 95.87±0.13 96.64±0.11 320.9±0.33 

A-USA 512 97.01±0.12 98.04±0.17 717.64±0.60 

A-USA 1024 97.64±0.06 99.3±0.03 1727.17±1.89 

A-USA 2048 98.02±0.08 99.87±0.01 4916.57±2.64 

WA-USA 64 93.64±0.46 94.12±0.46 84.51±0.61 

WA-USA 128 96.03+0.25 97.08±0.20 154.9±0.85 

WA-USA 256 97.09±0.21 98.720.12 322.4±1.91 

WA-USA 512 97.59±0.13 99.56±0.09 757.34±0.75 

WA-USA 1024 98.45±0.12 100±0 1965.28±7.10 

WA-USA 2048 98.55±0.11 100±0 5907.17±10.81 

 

 
Fig. 1.  The average test set accuracy as a function of the number of hidden units and different 

learning algorithms on the MNIST dataset. 

Our proposed algorithms also compare favorably over other SHLNN training algorithms 

previous proposed. For example, with random initialization WA-USA can achieve 97.3% test set 

accuracy using 256 hidden units. This result is better than 95.3% test set accuracy achieved using 

SHLNN with 300 hidden units but trained using conventional back-propagation algorithm with 

mean square error criterion (LeCun et al. 1998).  

Furthermore, using the WA-USA algorithm and the single 2048 hidden layer weights initialized 

with the restricted Boltzmann machine (RBM), we obtained average test set accuracy of 98.9% 

which is slightly better than the 98.8% obtained using a 3-hidden-layer DBN initialized using RBM 



Submitted to Pattern Recognition Letters, March 2011 14 

(Hinton and Salakhutdinov, 2006) with significantly less training time.  

 

TABLE II 

TEST TIME AS A FUNCTION OF THE NUMBER OF HIDDEN UNITS ON MNIST DATASET 

# hidden 

units 
Test Time (s) 

64 0.19±0.01 

128 0.38±0.03 

256 0.76±0.06 

512 1.48±0.13 

1024 2.65±0.10 

2048 4.97±0.08 

3.3. Experimental Results on MAGIC Dataset 

Similar comparison experiments have been conducted on the MAGIC dataset. Fig. 2 

summarizes and compares the classification accuracy using ELM, EI-ELM, USUA, USA, A-USA, 

and WA-USA algorithms as a function of the number of hidden units. Although the relative 

accuracy improvement is different from those observed in MNIST dataset, the accuracy curves 

share the same basic trend as that in Fig. 1. We can see that, esp. when the number of hidden units is 

small, the proposed algorithms significantly outperform ELM and EI-ELM. Although when the 

number of hidden units increases to 256, the gap between the accuracies obtained using proposed 

approaches and that achieved using ELM and EI-ELM decreases, the difference is still very large. 

Actually, ELM obtained the highest test set accuracy of 87.0% when 1024 hidden units are used 

and when 2048 hidden units are used, it overfits the training data and the test set accuracy becomes 

lower. However, we can achieve same or higher accuracies as the best achievable using ELM 

algorithm with 64, 32, and 32 hidden units, respectively, using USA, A-USA, and WA-USA 

algorithms. This indicates that at test time we can achieve the same or higher accuracy with 1/16, 

1/32, and 1/32 of computation time using these algorithms compared to the ELM algorithm. Note 

that to train a 32-hidden-unit SHLNN using the A-USA or WA-USA algorithm we only need to 

spend less than four times of the time needed to train a 1024 hidden unit model using ELM. 
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Fig. 2.  The average test set accuracy as a function of the number of hidden units and different 

learning algorithms on the MAGIC dataset. 

 

4. CONCLUSION 

In this paper we presented four efficient algorithms for training SHLNNs. These algorithms 

exploit information such as the structure of SHLNNs and gradient values over epochs, and update 

the weights along the most promising direction. We demonstrated both the efficiency and 

effectiveness of these algorithms on the MNIST and MAGIC datasets. Among all the algorithms 

developed in this work, we recommend using the WA-USA and A-USA algorithms since they 

converge fastest and typically to a better model. We believe this line of work can help improve the 

scalability of neural networks in speech recognition systems (e.g., Dahl et al. 2012, Yu and Deng 

2010) which typically require thousands of hours of training data.  
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