
Submitted to Pattern Recognition Letters, March 2011 1

Dong Yu
1
, Li Deng

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

{dongyu, deng}@microsoft.com

Abstract—Recently there have been renewed interests in single-hidden-layer neural

networks (SHLNNs). This is due to its powerful modeling ability as well as the existence of

some efficient learning algorithms. A prominent example of such algorithms is extreme

learning machine (ELM), which assigns random values to the lower-layer weights. While

ELM can be trained efficiently, it requires many more hidden units than is typically needed

by the conventional neural networks to achieve matched classification accuracy. The use of a

large number of hidden units translates to significantly increased test time, which is more

valuable than training time in practice. In this paper, we propose a series of new efficient

learning algorithms for SHLNNs. Our algorithms exploit both the structure of SHLNNs and

the gradient information over all training epochs, and update the weights in the direction

along which the overall square error is reduced the most. Experiments on the MNIST

handwritten digit recognition task and the MAGIC gamma telescope dataset show that the

algorithms proposed in this paper obtain significantly better classification accuracy than

ELM when the same number of hidden units is used. For obtaining the same classification

accuracy, our best algorithm requires only 1/16 of the model size and thus approximately

1/16 of test time compared with ELM. This huge advantage is gained at the expense of 5 times

or less the training cost incurred by the ELM training.

1
 Corresponding author, phone: 425-707-9282; fax: 425-936-7329.

Efficient and Effective Algorithms for Training

Single-Hidden-Layer Neural Networks

Submitted to Pattern Recognition Letters, March 2011 2

Keywords—neural network, extreme learning machine, accelerated gradient algorithm,

weighted algorithm, MNIST

1. INTRODUCTION

Recently there have been renewed interests in single-hidden-layer neural networks (SHLNNs) with

least square error (LSE) training criterion, partly due to its modeling ability and partly due to the

existence of efficient learning algorithms such as extreme learning machine (ELM) (Huang et al.

2006).

Given the set of input vectors [], in which each vector is denoted by

 []

 where is the dimension of the input vector and is the total number

of training samples. Denote the number of hidden units and the dimension of the output vector,

the output of the SHLNN is
 where (

) is the hidden layer output, is an

 weight matrix at the upper layer, is an weight matrix at the lower layer, and () is

the sigmoid function. Note that the bias terms are implicitly represented in the above formulation if

 and are augmented with 1’s.

Given the target vectors [], where each target []

, the

parameters and are learned to minimize the square error

 ‖ ‖ [()()] (1)

where [] . Note that once the lower-layer weights are fixed, the

hidden-layer values [] are also determined uniquely. And subsequently, the

upper-layer weights can be determined by setting the gradient

 [()()

]

 ()

 (2)

to zero, leading to the closed-form solution

 ()

 (3)

Note that (3) defines an implicit constraint between the two sets of weights, and , via the

Submitted to Pattern Recognition Letters, March 2011 3

hidden layer output H, in the SHLNN. This gives rise to a structure that our new algorithms will

exploit in optimizing the SHLNN.

Although solution (3) is simple, regularization techniques need to be used in actual

implementation to deal with sometimes ill-conditioned hidden layer matrix H (i.e., is

singular). A popular technique, which is used in this study, is based on the ridge regression theory

(Hoerl and Kennard, 1970). More specifically, (3) is converted to

 (

)

 (4)

by adding a positive value ⁄ to the diagonal of , where is the identity matrix and is a

positive constant to control the degree of regularization. The resultant solution (4) actually

minimizes ‖ ‖

 ‖ ‖ , where ‖ ‖ is an L2 regularization term. Solution (4) is

typically more stable and tends to have better generalization performance than (3) and is used

throughout the paper whenever pseudo inverse is involved.

It has been shown in Huang et al. (2006) that the lower-layer weights can be randomly

selected and the resulting SHLNN can still approximate any function by setting the upper-layer

weights according to (3). The training process can thus be reduced to a pseudo-inverse problem

and hence it is extremely efficient. This is the basis of the extreme learning machine (ELM) (Huang

et al. 2006).

However, the drawback of ELM is its inefficiency in using the model parameters. To achieve

good classification accuracy, ELM requires a huge number of hidden units. This inevitably

increases the model size and the test time. In practice, the test time is much more valuable than the

training time due to two reasons. First, training is only needed to be done once while test needs to

be done as many times as the service is live. Second, training can be done offline and can tolerate

long latency while test typically requires real time response. To reduce the model size, a number of

algorithms, such as evolutionary-ELM (Zhu et al. 2005) and enhanced random search based

incremental ELM (EI-ELM) (Huang and Chen 2008), have been proposed in the literature. These

Submitted to Pattern Recognition Letters, March 2011 4

algorithms randomly generate all or part of the lower-layer weights and select the ones with the

LSE. However, these algorithms are not efficient in finding good model parameters since they only

use the value of the objective function in the search process.

In this paper, we propose a series of new efficient algorithms to train SHLNNs. Our algorithms

exploit both the structure of SHLNNs, expressed in terms of the constraint of (3), and the gradient

information over all training epochs. They also update the weights in the direction that can reduce

the overall square error the most. We compare our algorithms with ELM and EI-ELM on the

MNIST handwritten digit recognition dataset (LeCun et al. 1998) and the MAGIC gamma

telescope dataset. The experiments show that all algorithms proposed in this paper obtain

significantly better classification accuracy than ELM and EI-ELM when the same number of

hidden units is used. To obtain the same classification accuracy, our best algorithm requires only

1/16 of the model size and thus test time needed by ELM at the cost of 5 folds or less training time

by ELM. The 2048 hidden unit SHLNN trained using our best algorithm achieved 98.9%

classification accuracy on the MNIST task. This compares favorably with the three-hidden-layer

deep belief network (DBN) (Hinton and Salakhutdinov, 2006).

The rest of the paper is organized as follows. In Section 2 we describe our novel efficient

algorithms. In Section 3 we report our experimental results on the MNIST and MAGIC datasets.

We conclude the paper in Section 4.

2. NEW ALGORITHMS EXPLOITING STRUCTURES

In this section, we propose four increasingly more effective and efficient algorithms for learning

the SHLNNs. Although the algorithms are developed and evaluated based on the sigmoid network,

the techniques can be directly extended to SHLNNs with other activation functions such as radial

basis function.

2.1. Upper-layer-Solution-Unaware Algorithm

The idea behind this first algorithm is simple. Since the upper-layer weights can be determined

Submitted to Pattern Recognition Letters, March 2011 5

explicitly using the closed-form solution (4) once the lower-layer weights are determined, we can

just search for the lower-layer weights along the gradient direction at each epoch.

Given fixed current and , we compute gradient

 [(())(())

]

 [() ()

]

(5)

where is element-wise product. This first algorithm first updates using the gradient defined

directly in (5) as

 (6)

where is the learning rate. It then calculates using the closed-form solution (4). Since it is

unaware of the upper-layer solution when calculating the gradient, we name it as

“upper-layer-solution-unaware” or USUA. The USUA algorithm is simple to implement and each

epoch takes less time than other algorithms we will introduce in the next several subsections thanks

to the simple form of the gradient (5). However, it is less effective than other algorithms and

typically requires more epochs to converge to a good solution and more hidden units to achieve the

same accuracy.

2.2. Upper-layer-Solution-Aware Algorithm

In the USUA algorithm we do not take into consideration the fact that completely depends on

 . As a result, the direction defined by gradient (5) is suboptimal. In the

upper-layer-solution-aware (USA) algorithm we derive the gradient ⁄ by considering ’s

effect on the upper-layer weights and thus its effect on the square error as the training objective

function. By treating a function of and plugging (3) into criterion (1) we obtain the new

gradient

 [()()]

 (7)

Submitted to Pattern Recognition Letters, March 2011 6

 [([()])([()])]

 [()]

 [()]

 [(()[()]) () [()]]

 [() [()() ()]]

where

 ()

 (8)

is the pseudo-inverse of .

In the derivation of (7) we used the fact that is symmetric and so is ()

. We also used

the fact that

 [()

]

 ()

 ()

 ()

 (9)

Since the USA algorithm knows the effect of on , it tends to move W towards a direction

that finds the optimal points faster. However, due to the more complicated gradient calculation that

involves a pseudo-inverse, each USA epoch takes longer time to compute than that of USUA. Note

that we grouped the products of matrices in (7). This is necessary to reduce the memory usage when

the number of samples is very large.

2.3. Accelerated Upper-layer-Solution-Aware Algorithm

The USA algorithm updates weights based on the current gradient only. However, it has been

shown for the convex problems that the convergence speed can be improved if the gradient

information over the history is used when updating the weights (Nesterov, 2004, Beck and

Teboulle, 2010). Although the speedup may not be guaranteed in theory for our non-convex

problems, we have observed in practice that such algorithms do converge faster and to a better

Submitted to Pattern Recognition Letters, March 2011 7

place, we have observed in practice that such algorithms do converge faster and to a better place.

Actually, similar but less principled techniques such as momentum (Negnevitsky and Ringrose

1999) have been successfully applied to train non-convex multi-layer perceptrons (MLPs). In this

paper, we used the FISTA algorithm (Beck and Teboulle, 2010) to accelerate the learning process.

More specifically, we choose and set ̅ and during initialization. We then

update , ̅ and according to

 ̅

 ̅
 (10)

(√

)
(11)

 ̅

() (12)

We name this algorithm accelerated USA (A-USA).

Note that since the A-USA algorithm needs to keep track of two sets of weights and ̅ , it is

slightly slower than the USA algorithm for each epoch. However, since it used the gradient

information from the history to determine the search direction, it can find the optimal solution with

less epochs than the USA algorithm. Additional information on how FISTA and similar techniques

can speed up the gradient descent algorithm can be found in (Nesterov, 2004, Beck and Teboulle,

2010).

2.4. Weighted Accelerated USA Algorithm

In (7), each sample is weighted the same. It is intuitive, however, that we may improve the

convergence speed by focusing on the samples with most errors for two reasons. First, it allows the

training procedure to slightly change the search direction (since weighted sum is different) at each

epoch and thus has better chance to jump out of the local optimums. Second, since the training

procedure focuses on the samples with most errors, it can reduce the overall errors faster.

In this work, we define the weight

Submitted to Pattern Recognition Letters, March 2011 8

‖ ‖

 (

‖ ‖

) ()⁄ (13)

for each sample , where is the square error over the whole training set, is the training set size,

and is a smoothing factor. The weighting factors are so chosen that they are positively

correlated to the errors introduced by each sample while being smoothed to make sure weights

assigned to each sample is at least ()⁄ . is typically set to 1 initially and increases over

epochs so that eventually the original criterion defined in (1) is optimized.

At each step, instead of minimizing directly we can minimize the weighted error

 ̈ [() ()] (14)

where [] is an by diagonal weight matrix.

To minimize ̈, once the lower-layer weights are fixed the upper-layer weights can be

determined by setting the gradient

 ̈

 [() ()]

 ()

 (15)

to zero, which has the closed-form solution

 ()

 (16)

By plugging (16) into (14) and using similar derivation steps used to derive

 ̅
 in (7), we obtain

the gradient

 ̈

 [() ()]

 [([()]) ([()])]

 [()]

 [()]

 [() [()() ()]]

(17)

where

Submitted to Pattern Recognition Letters, March 2011 9

 ()

 (18)

Note that since we re-estimate the weights after each epoch, the algorithm will try to move the

weights with a larger step toward the direction where the error can be most effectively reduced.

Once the error for a sample is reduced, the weight for that sample becomes smaller in the next

epoch. This not only speeds up the convergence but also makes the training less likely to be trapped

into local optima. Because this algorithm uses adaptive weightings, we name it weighted

accelerated USA (WA-USA).

3. EXPERIMENTS

We evaluated and compared the four learning algorithms described in Section 2 against the basic

ELM algorithm and the EI-ELM algorithm on the MNIST dataset (LeCun et al. 1998) and the

MAGIC gamma telescope dataset (Frank and Asuncion 2010).

3.1. Dataset Description

The MNIST dataset contains binary images of handwritten digits. The digits have been

size-normalized to fit in a 20x20 pixel box while preserving their aspect ratio and centered in a

28x28 image by computing and translating the center of mass of the pixels. The task is to classify

each 28x28 image into one of the 10 digits. The MNIST training set is composed of 60,000

examples from approximately 250 writers, out of which we randomly selected 5,000 samples as the

cross validation set. The test set has 10,000 patterns. The sets of writers of the training set and test

set are disjoint.

The MAGIC gamma telescope dataset was generated using the Monte Carlo procedure to

simulate registration of high energy gamma particles in a ground-based atmospheric Cherenkov

gamma telescope using the imaging technique. Cherenkov gamma telescope observes high energy

gamma rays, taking advantage of the radiation emitted by charged particles produced inside the

electromagnetic showers initiated by the gammas, and developing in the atmosphere. This

Cherenkov radiation leaks through the atmosphere and gets recorded in the detector, allowing

Submitted to Pattern Recognition Letters, March 2011 10

reconstruction of the shower parameters.

The MAGIC dataset contains 19020 samples out of which we randomly selected 10% (1902

samples) as the cross validation set, 10% (1902 samples) as the test set, and the rest as the training

set. Each sample in the dataset has 10 real-valued attributes and a class label (signal or

background). The task is to classify the observation to either the signal class or background class

based on the attributes. Note that these attributes have some structures. However, in this study we

did not exploit these structures since our goal is not to achieve the best result on this dataset but

compare different algorithms proposed in the paper.

3.2. Experimental Results on MNIST

We compared the basic ELM algorithm, the EI-ELM algorithm, and all four algorithms

described in Section 2 with the number of hidden units in the set of {64, 128, 256, 512, 1024, 2048}

on the MNIST dataset. The results are summarized in Table I. We ran each configuration 10 times

and report the mean and standard deviations in test-set classification accuracy, training-set

classification accuracy, and training time. The test time only depends on the model size and is

summarized in Table II. Not surprisingly, the test time approximately doubles when the hidden

layer size (and model size) doubles.

For EI-ELM, we randomly generated 50 new configurations of weights at each step first. The one

with least square error (LSE) was selected and survived. We noticed, however, that if we added

only one hidden unit at each time, the training process can be very slow. To make the training speed

comparable to other algorithms discussed in this paper, we added 16 hidden units at each step.

For USUA and USA, we set the maximum number of epochs to 30 and used simple line search

that doubles or halves the learning rate so as to improve the training objective function. When the

learning rate is smaller than 1e-6 the algorithms stopped even if the maximum number of epoch

was not reached.

We did not use line search for A-USA and WA-USA. The learning rate used in A-USA was fixed

Submitted to Pattern Recognition Letters, March 2011 11

for all epochs and was set to 0.001. We used the learning rate of 0.0005 in WA-USA for all settings,

which is smaller than that used for A-USA since the update is expected to move with large steps

along some directions. The cross validation set is used to select the best configuration and to

determine when to stop training.

The results summarized in Table I can be compared from several perspectives. To make

observation easier, we plot the test set accuracy in Fig. 1. If we compare the accuracy across

different algorithms for the same number of hidden units, we can clearly see that all the algorithms

proposed in this paper significantly outperform ELM and EI-ELM. We also notice that from the

accuracy point of view, WA-USA performs best, followed by A-USA, which in turn performs

better than USA and USUA. If we compare the training time for the SHLNNs with the same

number of hidden units, we can indeed see that ELM takes considerably less time (about two orders

of magnitude) than all other algorithms. Note all the algorithms proposed in this paper significantly

outperform EI-ELM with similar training time. This is expected since EI-ELM only uses the 0-th

order information while all our algorithms used first-order gradient information. Among the

algorithms proposed in this paper, WA-USA and A-USA perform faster than USA since they are

accelerated algorithms.

These results can be examined from a different angle. Instead of comparing results with the same

network size, we can compare SHLNNs with the same test-set’s accuracy. From Fig. 1 and Table I

we see that the best average accuracy obtained using ELM is 94.68% with 2048 hidden units.

EI-ELM is only slightly better than ELM with an average accuracy of 94.78%. This is because

when the number of hidden units increases, random selection becomes less effective. This fact is

also indicated by smaller standard deviations as the number of hidden units increases in ELM.

However, using USUA, we obtained accuracy of 94.84% with only 1024 hidden units. This would

cut the test time by half. Further improvement is achieved when we use USA with accuracy of

94.78% using only 512 hidden units. For A-USA only 256 hidden units are needed to achieve

95.87% accuracy. Further, only 128 hidden units are needed to obtain comparable accuracy of

Submitted to Pattern Recognition Letters, March 2011 12

94.80% using WA-USA. In other words, WA-USA can achieve the same accuracy as ELM using

only 1/16 of the network size and test time. This is extremely favorable for practical usage since a

1/16 test time translates to 16 times more throughput. Also note that it takes only 155 seconds to

train a network with 128 hidden units using WA-USA. This is in comparison to 28.35 seconds

needed to train a 2048 hidden unit ELM model and 2,220 seconds for a 1024 hidden unit EI-EIM

model. If 2048 hidden units are used, we can obtain 98.55% average test set accuracy with

WA-USA, which is very difficult to obtain using ELM.

Note that we can consistently achieve 100% classification accuracy on the training set when we

use WA-USA with 1024 and more hidden units which is not the case when other algorithms are

used. This prevents further improvement on the classification accuracy on both training and test

sets even though square error continues to decline. This also explains the smaller gain when the

number of hidden units increases from 1024 to 2048 when WA-USA is used.

TABLE I

SUMMARY OF TEST SET ACCURACY, TRAINING SET ACCURACY, AND TRAINING TIME ON

MNIST DIGIT CLASSIFICATION TASK

Algorithm # hid units Test Acc (%) Train Acc (%) Training Time (s)

ELM 64 67.88±2.01 66.88±2.00 1.05±0.14

ELM 128 78.99±1.20 78.06±1.28 1.89±0.07

ELM 256 85.55±0.44 84.9±0.36 3.46±0.12

ELM 512 89.65±0.28 89.41±0.27 6.96±0.06

ELM 1024 92.65±0.21 92.85±0.13 13.8±0.07

ELM 2048 94.68±0.06 95.31±0.05 28.35±0.17

EI-ELM 64 73.68±0.87 72.84±0.57 147.59±0.88

EI-ELM 128 81.46±0.63 80.61±0.44 282.37±1.27

EI-ELM 256 86.74±0.40 86.2±0.30 550.13±11.17

EI-ELM 512 90.52±0.35 90.24±0.17 1069.73±6.27

EI-ELM 1024 92.92±0.14 93.23±0.10 2220.47±18.41

EI-ELM 2048 94.78±0.15 95.51±0.07 4629.67±91.81

USUA 64 84.78±1.42 84.27±1.49 99.13±3.03

USUA 128 88.42±1.05 88.06±1.10 177.81±5.86

USUA 256 90.73±0.46 90.82±0.5 347.35±14.83

USUA 512 93.24±0.39 93.79±0.47 681.88±20.04

USUA 1024 94.84±0.37 95.82±0.41 1323.04±64.35

USUA 2048 96.27±0.14 97.86±0.13 2643.73±84.18

USA 64 86.4±1.06 85.89±1.25 114.68±2.00

Submitted to Pattern Recognition Letters, March 2011 13

USA 128 89.81±0.76 89.62±0.87 221.1±3.37

USA 256 92.59±0.86 92.86±0.83 463.97±10.43

USA 512 94.87±0.35 95.58±0.46 1029.47±13.45

USA 1024 96.47±0.13 97.63±0.10 2471.36±10.35

USA 2048 97.39±0.07 98.95±0.07 7116.77±19.10

A-USA 64 90.12±1.66 89.98±1.82 88.1±5.81

A-USA 128 94.35±0.16 94.82±0.11 153.77±0.41

A-USA 256 95.87±0.13 96.64±0.11 320.9±0.33

A-USA 512 97.01±0.12 98.04±0.17 717.64±0.60

A-USA 1024 97.64±0.06 99.3±0.03 1727.17±1.89

A-USA 2048 98.02±0.08 99.87±0.01 4916.57±2.64

WA-USA 64 93.64±0.46 94.12±0.46 84.51±0.61

WA-USA 128 96.03+0.25 97.08±0.20 154.9±0.85

WA-USA 256 97.09±0.21 98.720.12 322.4±1.91

WA-USA 512 97.59±0.13 99.56±0.09 757.34±0.75

WA-USA 1024 98.45±0.12 100±0 1965.28±7.10

WA-USA 2048 98.55±0.11 100±0 5907.17±10.81

Fig. 1. The average test set accuracy as a function of the number of hidden units and different

learning algorithms on the MNIST dataset.

Our proposed algorithms also compare favorably over other SHLNN training algorithms

previous proposed. For example, with random initialization WA-USA can achieve 97.3% test set

accuracy using 256 hidden units. This result is better than 95.3% test set accuracy achieved using

SHLNN with 300 hidden units but trained using conventional back-propagation algorithm with

mean square error criterion (LeCun et al. 1998).

Furthermore, using the WA-USA algorithm and the single 2048 hidden layer weights initialized

with the restricted Boltzmann machine (RBM), we obtained average test set accuracy of 98.9%

which is slightly better than the 98.8% obtained using a 3-hidden-layer DBN initialized using RBM

Submitted to Pattern Recognition Letters, March 2011 14

(Hinton and Salakhutdinov, 2006) with significantly less training time.

TABLE II

TEST TIME AS A FUNCTION OF THE NUMBER OF HIDDEN UNITS ON MNIST DATASET

hidden

units
Test Time (s)

64 0.19±0.01

128 0.38±0.03

256 0.76±0.06

512 1.48±0.13

1024 2.65±0.10

2048 4.97±0.08

3.3. Experimental Results on MAGIC Dataset

Similar comparison experiments have been conducted on the MAGIC dataset. Fig. 2

summarizes and compares the classification accuracy using ELM, EI-ELM, USUA, USA, A-USA,

and WA-USA algorithms as a function of the number of hidden units. Although the relative

accuracy improvement is different from those observed in MNIST dataset, the accuracy curves

share the same basic trend as that in Fig. 1. We can see that, esp. when the number of hidden units is

small, the proposed algorithms significantly outperform ELM and EI-ELM. Although when the

number of hidden units increases to 256, the gap between the accuracies obtained using proposed

approaches and that achieved using ELM and EI-ELM decreases, the difference is still very large.

Actually, ELM obtained the highest test set accuracy of 87.0% when 1024 hidden units are used

and when 2048 hidden units are used, it overfits the training data and the test set accuracy becomes

lower. However, we can achieve same or higher accuracies as the best achievable using ELM

algorithm with 64, 32, and 32 hidden units, respectively, using USA, A-USA, and WA-USA

algorithms. This indicates that at test time we can achieve the same or higher accuracy with 1/16,

1/32, and 1/32 of computation time using these algorithms compared to the ELM algorithm. Note

that to train a 32-hidden-unit SHLNN using the A-USA or WA-USA algorithm we only need to

spend less than four times of the time needed to train a 1024 hidden unit model using ELM.

Submitted to Pattern Recognition Letters, March 2011 15

Fig. 2. The average test set accuracy as a function of the number of hidden units and different

learning algorithms on the MAGIC dataset.

4. CONCLUSION

In this paper we presented four efficient algorithms for training SHLNNs. These algorithms

exploit information such as the structure of SHLNNs and gradient values over epochs, and update

the weights along the most promising direction. We demonstrated both the efficiency and

effectiveness of these algorithms on the MNIST and MAGIC datasets. Among all the algorithms

developed in this work, we recommend using the WA-USA and A-USA algorithms since they

converge fastest and typically to a better model. We believe this line of work can help improve the

scalability of neural networks in speech recognition systems (e.g., Dahl et al. 2012, Yu and Deng

2010) which typically require thousands of hours of training data.

ACKNOWLEDGMENT

We thank Dr. Guang-Bin Huang at Singapore Nanyang Technological University for fruitful

discussions on ELM.

70%

72%

74%

76%

78%

80%

82%

84%

86%

88%

90%

8 16 32 64 128 256

A
cc

u
ra

cy

Number of Hidden Units

ELM

EI-ELM

USUA

USA

A-USA

WA-USA

Submitted to Pattern Recognition Letters, March 2011 16

REFERENCES

[1] Beck, A. and Teboulle, M. (2010) “Gradient-based methods with application to signal recovery

problems," Convex Optimization in Signal Processing and Communications, D. Palomar and

Y. Eldar (Eds.), Cambridge University Press.

[2] Dahl, G. E., Yu, D., Deng, L. and Acero, A. (2012) "Context-dependent pre-trained deep neural

networks for large vocabulary speech recognition", IEEE Transactions on Audio, Speech, and

Language Processing - Special Issue on Deep Learning for Speech and Language Processing.

[3] Frank, A. & Asuncion, A. (2010). UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and

Computer Science.

[4] Hinton, G. E. and Salakhutdinov, R. R. (2006) “Reducing the dimensionality of data with

neural networks”, Science, Vol. 313. no. 5786, pp. 504 - 507.

[5] Hoerl, A. E. and Kennard, R. W. (1970) “Ridge regression: biased estimation for

nonorthogonal problems”, Technometrics, vol. 12, no. 1, pp. 55-67.

[6] Huang, G.-B., Zhu, Q.-Y. and Siew, C.-K. (2006) “Extreme learning machine: theory and

applications”, Neurocomputing, vol. 70, pp. 489-501.

[7] Huang, G.-B. and Chen, L. (2008) “Enhanced random search based incremental extreme

learning machine,” Neurocomputing, vol. 71, pp. 3460-3468.

[8] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998) “Gradient-based learning applied to

document recognition”, Proceedings of the IEEE, 86(11):2278-2324.

[9] Negnevitsky, M., Ringrose, M. (1999) "Accelerated learning in multi-layer neural networks ",

Neural Information Processing, 1999, ICONIP, Vol. 3, pp 1167 – 1171.

[10] Nesterov, Y. (2004) Introductory Lectures on Convex Optimization: A Basic Course, Kluwer

Academic Publishers.

Submitted to Pattern Recognition Letters, March 2011 17

[11] Yu, D. and Deng, L. (2011) "Deep learning and its relevance to signal and information

processing", IEEE Signal Processing Magazine, vol. 28, No. 1, pp. 145-154.

[12] Zhu, Q.-Y., Qin, A. K., Suganthan, P. N. and Huang, G.-B. (2005) “Evolutionary extreme

learning machine,” Pattern Recognition, vol. 38, pp. 1759-1763.

